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In the past several decades, density functional theory (DFT) has evolved as a leading player
across a dazzling variety of fields, from organic chemistry to condensed matter physics.
The simple conceptual framework and computational elegance are the underlying driver
for this. This article reviews some of the recent developments that have taken place in our
laboratory in the past 5 years. Efforts are made to validate a viable alternative for DFT
calculations for small to medium systems through a Cartesian coordinate grid- (CCG-)
based pseudopotential Kohn–Sham (KS) DFT framework using LCAO-MO ansatz. In order
to legitimize its suitability and efficacy, at first, electric response properties, such as dipole
moment (μ), static dipole polarizability (α), and first hyperpolarizability (β), are calculated.
Next, we present a purely numerical approach in CCG for proficient computation of exact
exchange density contribution in certain types of orbital-dependent density functionals. A
Fourier convolution theorem combined with a range-separated Coulomb interaction kernel
is invoked. This takes motivation from a semi-numerical algorithm, where the rate-deciding
factor is the evaluation of electrostatic potential. Its success further leads to a systematic
self-consistent approach from first principles, which is desirable in the development of
optimally tuned range-separated hybrid and hyper functionals. Next, we discuss a simple,
alternative time-independent DFT procedure, for computation of single-particle excitation
energies, by means of “adiabatic connection theorem” and virial theorem. Optical gaps in
organic chromophores, dyes, linear/non-linear PAHs, and charge transfer complexes are
faithfully reproduced. In short, CCG-DFT is shown to be a successful route for various
practical applications in electronic systems.
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exact exchange energy, range-separated hybrid functional, optimal tuning, excitation energies

1 INTRODUCTION

“The general theory of quantum mechanics is now almost complete/ The underlying physical laws
necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble. It therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much computation” (Dirac, 1929). This
famous and enlightening announcement in 1929 made physicists and chemists rise to the challenge
and develop the theoretical framework needed to calculate wave functions and properties of atoms,
molecules, and solids. Throughout the course of the past few decades, ab initio quantum mechanical
methods have been utilized for elucidation of electronic structure, properties, and dynamics of many-

Edited by:
Thomas S. Hofer,

University of Innsbruck, Austria

Reviewed by:
Taye Demissie,

University of Botswana, Botswana
Xiaowei Sheng,

Anhui Normal University, China

*Correspondence:
Amlan K. Roy

akroy@iiserkol.ac.in
akroy6k@gmail.com

Specialty section:
This article was submitted to

Theoretical and Computational
Chemistry,

a section of the journal
Frontiers in Chemistry

Received: 23 April 2022
Accepted: 09 June 2022
Published: 22 July 2022

Citation:
Majumdar S and Roy AK (2022)

Recent Advances in Cartesian-Grid
DFT in Atoms and Molecules.

Front. Chem. 10:926916.
doi: 10.3389/fchem.2022.926916

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9269161

REVIEW
published: 22 July 2022

doi: 10.3389/fchem.2022.926916

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.926916&domain=pdf&date_stamp=2022-07-22
https://www.frontiersin.org/articles/10.3389/fchem.2022.926916/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.926916/full
http://creativecommons.org/licenses/by/4.0/
mailto:akroy@iiserkol.ac.in
mailto:akroy6k@gmail.com
https://doi.org/10.3389/fchem.2022.926916
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.926916


electron systems. With the rapid progress of computational
algorithms, in association with modern computer architecture
and resources, some of the recent advancements have been
extended to widely explored fields such as materials science,
nanoscience, and biological science. The electronic Schrödinger
equation (SE) of such an N-electron system is, in principle, a
many-body problem having space, spin, and time variables,
expressed as

Hψi x1, x2, . . . , xN( ) � Eiψi x1, x2, . . . , xN( ), x � r, σ{ }, (1)
whereH is the many-electron Hamiltonian operator consisting of
M nuclei and N electrons, ψi is the N-electron anti-symmetric
wave function corresponding to ith eigenstate of H, and Ei is its
energy. However, to pursue it practically, one has to go through
multiple challenges caused due to the size of many-body SE. The
exact analytical solution is very hard to obtain in most cases,
leaving aside a few well-known model systems. The quantum
mechanical solvability of N-electron systems is exhausted by
hydrogen and helium atom. That is why the question of how
to deal with systems containing thousands of electrons and
hundreds of nuclei has attained utmost relevance. The
straightforward application of SE, either in its numerical,
variational, or perturbation theory versions, is nowadays out
of the reach of even the most advanced supercomputers. It is
for this reason that alternative ways of handling such problems
have been vigorously pursued during the last few decades. In the
past few years, significant strides have been made in these
aforementioned areas.

In today’s computational chemistry, it is desirable to achieve
the energy of a chemical reaction within the bounds of chemical
accuracy (< 1 kcal mol−1). The primary challenge is to reduce the
computational cost without much compromise on accuracy for
increasingly larger and complicated systems. Now, starting from
less accurate, reliable empirical or semi-empirical schemes to
modern ab initio methods, all fall under the roof of the current
computational chemistry repertoire. Two fundamentally
different routes, based on wave function approaches and
functional theories, have gained popularity and credence so far.

The usual quantum-mechanical approach to SE can be
summarized as follows:

v r( )0SE Ψ r1, r2 . . . . . . ., rN( ) 0
<Ψ|...|Ψ>

observables. (2)
In other words, one specifies a system by choosing v(r), plugs it
into SE, solves that equation for a wave function Ψ, and then
calculates observables by taking the expectation values of
operators. Many powerful approximate methods for solving SE
have been developed. Thus, starting from the single
determinantal uncorrelated Hartree–Fock (HF) to various
correlated multi-configurational methods is available. It is
well-known that the HF method is still not accurate enough
for energy predictions in chemistry; for example, bond energies
are significantly underestimated. Thus, post-HF methods, adding
numerous other determinants involving excited or “virtual”
orbitals, are generally required for a satisfactory prediction.
Some notable correlated methods are diagrammatic
perturbation theory (based on Feynman diagrams and Green’s

functions), Möller–Plesset perturbation theory (MPn),
configuration interaction (CI), coupled-cluster ansatz (comes
in many flavors such as CCSD, CCSD(T), CCSDT, and
CCSDTQ), and multi-reference perturbation theory (such as
CASPT2), among others. These methods offer authentic and
reliable results but are quite difficult to be implemented
computationally for large N mainly because of their
unfavorable scaling.

The above-mentioned methods based on an approximation to
many-electron wave function were the only possibilities until
1964, the birth year of density functional theory (DFT). In
general, the so-called functional theories rely on utilizing the
limited information coming from single-particle electron density,
ρ(r), reduced density matrix or Green’s function, and follow
variational principle. Amongst them, however, DFT has emerged
as the most versatile and outstanding candidate in electronic
structure theory. This leads to the central quantity of our present
article, namely, the spin-less, single-particle electron density ρ(r),
which is the diagonal element of one-particle density matrix,
defined as

ρ r( ) � N∫ . . . .∫Ψ rσ, x2 , . . . . . . xN( )Ψp rσ, x2 , . . . . . . xN( )dσdx2 . . . ..dxN . (3)

Walter Kohn noted in his Nobel lecture that “DFT has been most
useful for systems of very many electrons where wave function
methods encounter and are stopped by the exponential wall”
(Kohn, 1999). Many beautiful books and in-depth reviews are
available on the subject (Parr and Yang, 1989; Koch and
Holthausen, 2001; Martin, 2004; Pugh and Hinchliffe, 2006;
Hoffman, 2007; Champagne and Springborg, 2009; Burke,
2012; Roy, 2012; Zangwill, 2015; Yu et al., 2016; Mardirossian
and Head-Gordon, 2017; Janesko, 2021).

The first genuine DFT scheme for electronic systems was
given as early as in 1927 (Thomas, 1927); it was a model for
calculating atomic properties, based purely on ρ(r). It assumed
that electrons form a gas satisfying Fermi statistics, with
electron–electron interaction energy determined from
classical Coulomb potential. For kinetic energy, they adopted
a local density approximation (LDA), where the contribution
from a point r is determined from kinetic energy of a
homogeneous electron gas with this density. The resulting
Euler equation is

5
3
CFρ

2
3 r( ) + ∫ dr′ ρ r′( )

|r − r′| + vext r( ) + λ � 0, (4)

where CF � 3
10(3π2)23, vext(r) is external potential, and λ is the

Lagrange multiplier related to the constraint of constant particle
number. The Thomas–Fermi (TF) model has severe deficiencies
because of poor description of outer region of an atom. The
charge density decays as r−6 far from nucleus, not exponentially as
it should. Moreover, it does not bind neutral atoms or form
molecules or solids. Later, Dirac (1930) noted the necessity of
incorporating “exchange” phenomena, by recasting HF theory in
terms of a “density function,” without reference to a single-
determinantal wave function. This function leads to a
correction to the energy derived from exchange energy for a
homogeneous electron gas of ρ(r). The modified
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Thomas–Fermi–Dirac (TFD) energy density functional can be
written as

ETFD ρ r( )[ ] � CF ∫ ρ r( )53dr + ∫ ρ r( )vext r( )dr − Cx ∫ ρ r( )43dr

+ 1
2
∫∫ ρ r( )ρ r′( )

|r − r′| .

(5)
The overwhelming simplicity of abandoning a complicated

many-electron SE for a single equation in terms of ρ(r) alone is
remarkably appealing. However, underlying approximations are
rather primitive, making it grossly inadequate for any practical
use in quantum chemistry.

In 1964–1965, the Hohenberg–Kohn (HK) (Hohenberg and
Kohn, 1964) and Kohn–Sham (KS) (Kohn and Sham, 1965)
theorems, the twin pillars of modern DFT, were published.
They asked a plain obvious question of whether the
information contained in ρ(r) is sufficient for elucidating a
many-electron system completely. In these seminal works, they
founded the rigorous theory that finally legitimized the intuitive
leaps of other previous works. They first proved that the external
potential, vext(r), of a non-degenerate ground state of an N-
particle system (and hence total energy), is a unique functional
of ground-state electron density ρ(r). This one-to-one mapping,
which is the basic preamble of this theorem, can be expressed by
the following energy functional:

Evext ρ[ ] � 〈ψ ρ[ ]|T + Vext + Vee|ψ ρ[ ]〉
� FHK ρ[ ] + ∫ vext r( )ρ r( )dr, (6)

where FHK[ρ] denotes the universal energy density functional
containing kinetic energy and electron–electron interaction
terms. Further, the total energy of a given system can be
determined variationally by minimizing the functional
Evext[ρ(r)], subject to the normalization condition, ∫ρ(r) = N,
as a constant, through the following equation:

δFHK ρ[ ]
δρ r( ) + vext r( ) � μ. (7)

Moreover, to make sure that a given density is indeed the true
ground-state density, now the second HK theorem suggests

Evext ρ r( )[ ]≥Evext ρ0 r( )[ ], (8)
where Evext[ρ0(r)] corresponds to the ground-state energy of a
Hamiltonian with vext(r) as external potential and ρ0(r) is its
ground-state density.

The explicit form of FHK(ρ) is unknown as yet. Hence, this
needs to be evaluated approximately. However, so far, the most
successful way to implement DFT is through a method proposed
in Kohn and Sham (1965). They introduced the clever concept of
a fictitious, non-interacting system built from a set of KS orbitals,
such that the major part of kinetic energy can be computed
exactly. The remaining fairly small portion is absorbed in the
non-classical contribution of electron–electron repulsion, which
is also unknown. However, the advantage is that electrons now

move in an effective KS single-particle potential. The mapped
auxiliary system now yields the same ground-state density as the
real interacting system. However, this simplifies the actual
calculation tremendously, as it is operationally an
independent-particle theory, simpler even than HF. Yet, it
delivers, in principle, the exact density the same as ground-
state density resulting from a summation of moduli of square
of orbitals through

ρs r( ) �∑N
i

∑
σ

Ψi r, σ( )| |2 � ρ0 r( ). (9)

Here, σ signifies spin, and the exact total energy is expressed as

E ρ[ ] � ∫ vext r( )ρ r( )dr + J ρ[ ] + Ts ρ[ ] + Exc ρ[ ], (10)
where

Exc ρ[ ] � T ρ[ ] − Ts ρ[ ]( ) + Eee ρ[ ] − J ρ[ ]( ) � Tc ρ[ ] + Enc ρ[ ].
(11)

The associated terms have the following meanings: J[ρ] is the
known classical part of Eee[ρ], whereas Exc[ρ] contains everything
unknown, that is, non-classical electrostatic effects of Eee[ρ] and
the difference between true kinetic energy T[ρ] and Ts[ρ]. The
latter represents the sum of individual kinetic energies of
reference system with same density as real system as Ts �
−1
2∑N

i ∇
2
i and Tc[ρ] symbolizes the correlation kinetic energy.

Thus, as apparent from above, the beauty of DFT lies in its
being exact yet efficient, with a single determinant describing the
ρ(r)—the whole complexity is hidden in one term, the exchange-
correlation (XC) functional. Local exchange functionals in KS
theory automatically include some static correlation (Cook and
Karplus, 1987; Handy and Cohen, 2001). Thus, a single Slater
determinant is not necessarily as poor in KS theory as in HF
theory, keeping the burden at the same level as HF. Building
better and improved XC functionals to treat real correlated
systems within KS theory is an active area of research
(Peverati and Truhlar, 2014; Dale et al., 2017; Verma et al.,
2019; Wang et al., 2019; Verma and Truhlar, 2020), so much
so that the story behind the success of DFT, to a large extent, is
tantamount to the search for accurate reliable XC functional. The
exact form remains elusive; it is necessary to use various density
functional approximations (DFAs). The popular DFAs can be
hierarchically characterized in the following manner. The
simplest XC functionals are of LDA-type (Kohn and Sham,
1965) (containing ρ only), residing in the first rung of Jacob’s
ladder. They are exact for an infinite uniform electron gas but are
highly inaccurate for molecular properties because most real
systems have inhomogeneous density distribution. Next,
generalized gradient approximation (GGA) functionals (Becke
and Dickson, 1988; Perdew et al., 1996a) (with the addition of
gradient of electron density, ∇ρ) occupy the second rung of the
ladder and tend to improve significantly upon LDA. In addition
to combining separable exchange and correlation functionals
(e.g., PBE, BP86, BLYP, PW91, rev-PBE, and RPBE), it is
possible to semi-empirically parameterize GGA XC functionals
(HCTH, N12, and GAM) (Boese and Handy, 2001; Peverati and
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Truhlar, 2012a; Yu et al., 2015). Then, the third rung belongs to
meta-GGA (Tao et al., 2003; Zhao and Truhlar, 2008) functionals
(addition of kinetic energy density, τ). With further inclusion of
exact exchange (EEX) energy, one gets the hybrid functionals,
occupying the fourth rung of the ladder (Perdew and Schmidt,
2000). We also have functionals that go beyond the fourth rung
(including virtual orbitals), thus requiring an even higher
computational cost.

Now with these insightful backgrounds, we proceed to
investigate some aspects of the realistic solution of the KS
equation. Therefore, one has to deal with several
mathematically non-trivial integrals that cannot be evaluated
analytically and pose a certain degree of difficulty. Without
such procedures, one is left with no choice but to calculate
numerically. It is well recognized that such a discrete
procedure for multi-center integrals in 3D space is difficult. It
becomes even more daunting when it is noted that more
computation time and a larger grid size are often required to
achieve a satisfactory level of chemical accuracy due to the
involvement of a prohibitively huge number of operations.
Cusps in the density and singular nature of Coulombic
potential offer a major challenge when constructing such
integration routes. Therefore, to accomplish high-accuracy
calculations within a reasonable number of quadrature grids,
one needs numerical integrators that are both efficient and
sophisticated enough to capture the forms of density at a
reasonable level. This opens up a wide range of integrators
with varying degrees of performance. Of these, two distinct,
well-recognized partitioning schemes have shown a great deal
of promise: the Voronoi cellular approach and fuzzy cells Avenue,
commonly known as the atom-centered grid (ACG). Currently,
the enviable status of DFT is beholden to the ensuing basis-set
calculations. As these studies are heavily dominated by ACG, the
real-space grid has been invoked for fully numerical, basis-set free
DFT methods. Apart from ACG, a few scattered works exist for
different grids in literature, for example, an adaptive Cartesian
grid with a hierarchical cubature technique, a transformed sparse-
tensor product grid, and a Fourier Transform Coulomb method
interpolating density fromACG to a more regular grid. This work
presents a simple fruitful way to implement DFT within the basis-
set framework, utilizing only CCG.

Thus, within the Born–Oppenheimer approximation and
Hohenberg–Kohn–Sham framework, an implementation of DFT
is offered in CCG.With the aid of a linear combination of Gaussian
functions, molecular orbitals (MO) and quantities such as basis
functions, ρ(r), as well as classical Hartree and non-classical XC
potentials, are directly calculated on a 3D real CCG. A combination
of Fast Fourier Transform (FFT) and inverse FFT is used to
calculate the Coulomb potential quite accurately. In order to
present the inner core electrons, analytical effective core
potentials are used, whereas energy-optimized truncated
Gaussian bases are used for valence electrons. The requisite
work of a many-electron problem has four different proceeding
directions: method development, improvement of respective new
and existing theories, successful implementation of them, and
finally, application of these theories in various physicochemical
problems. All four genres are covered in this review. Section 2

forms the theoretical backbone for works presented throughout,
followed by a systematic investigation of static linear response
properties for a host of atoms and molecules in Section 3. Within
the finite-field (FF) KS framework, several properties such as
permanent dipole moment (μ), dipole polarizability (α), and
first hyperpolarizability (β) are considered within the InDFT
program (Roy et al., 2019) developed in our laboratory. A
simple alternative of the FF technique, employing a rational
function fit to μ with respect to the electric field, is also
acquired. Next, a purely numerical, efficient computation
scheme of HF exchange energy, density, and matrix elements
for certain orbital-dependent and range-separated hybrid (RSH)
functionals is presented in Section 4. This is inspired by a recently
developed algorithm by Liu and Kong (2017), where an accurate
evaluation of the electrostatic potential (ESP) integral is the rate-
determining step. A combination of the Fourier convolution
theorem (FCT) with an RS Coulomb interaction kernel (CIK) is
introduced. The latter is efficientlymapped onto a real grid through
an easy optimization procedure, leading to a constraint within the
RS parameter, allowing a logarithmic scaling with respect to
atomic/molecular size. Simultaneously, as an offshoot of this
work, in Section 5, a self-consistent systematic optimization
procedure, from first principles, is proposed for the
development of optimally tuned (OT) RSH functionals through
a size-dependency-based ansatz. To this end, a novel self-consistent
procedure appears, which engages the characteristic length of a
system with the RS parameter. Finally, Section 6 details the
successful implementation of Becke’s exciton model, followed by
its applications in computing the optical gap in organic
chromophores and various properties of charge-transfer
complexes. This is an alternative time-independent DFT
procedure to compute single-particle excitation energies, which
are of particular relevance in photochemistry. Correct evaluation of
the correlated singlet-triplet splitting (STS) energy is the key step in
this procedure. Non-empirical models from both the “adiabatic
connection theorem” and “virial theorem” are introduced for such
calculations. The obtained results are compared with theoretical
and experimental references as appropriate. Finally, we end with a
few comments in Section 7.

2 DFT IN CARTESIAN GRID

In this segment, we briefly outline the methodology and the
computational aspects. The single-particle KS equation of a
many-electron system in presence of pseudopotential can be
written as follows (atomic unit employed unless stated otherwise):

−1
2
∇2 + vppion r( ) + vh ρ r( )[ ] + vxc ρ r( )[ ][ ]ϕi r( ) � ϵiϕi r( ), (12)

where vppion designates ionic pseudopotential, expressed as

vppion �∑
Ra

vppion,a r − Ra( ). (13)

In the above equation, vppion,a represents the ion-core
pseudopotential associated with atom a, situated at Ra,
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whereas vh[ρ(r)] � ∫ ρ(r′)
|r−r′|dr′ describes usual classical

electrostatic (Hartree) potential among valence electrons, and
vxc[ρ(r)], as usual, represents the non-classical part of many-
electron Hamiltonian, H as δExc[ρ(r)]

δρ(r) , the functional derivative of
XC energy. The single-particle charge density is then given by

ρ r( ) � ρα r( ) + ρβ r( ) �∑
i

fα
i |ϕα

i r( )|2 +∑
i

fβ
i |ϕβ

i r( )|2, (14)

where {ϕσi , σ � α or β} corresponds to a set of N occupied
orthonormal spin molecular orbitals (MO) and fσ

i ’s denote
occupation numbers of ith spin-MO. The integral of this
pseudo-valance density offers the total number of valence
electrons, Nv. The benefits of pseudopotential are twofold.
Firstly, as the number of KS orbitals relies exclusively on Nv

only, it is particularly favorable for heavy elements. In such cases,
where each atom involves several tens of electrons, Nv can be
much smaller. Thus, pseudopotential can consider the non-
negligible relativistic impacts in heavy elements. Secondly, as
pseudo-valance orbitals are typically smoother than core orbitals,
much lesser grid points suffice.

For the realistic solution of Eq. 12, the basis-set technique is by
far the most convenient and pragmatic one. This is essentially
motivated from the success of basis-set related methodologies in
conventional wave function (such as HF and post-HF) theory
through LCAO-MO ansatz. Consequently, the KS MOs are
expanded in terms of K appropriately picked, known basis
functions {χμ(r); μ = 1, 2, 3, . . .., K}, often called atomic
orbitals (AO), in a practice homologous to that in the
Roothaan-HF method, such as

ϕi r( ) �∑K
μ�i

Cμiχμ r( ), i � 1, 2, 3, . . . .K. (15)

The electron density then takes the following expression in this
basis

ρ r( ) �∑Nv

i�1
∑K
μ�1
∑K
]�1

CμiC]iχμ r( )χ] r( ). (16)

In principle, one requires a complete basis set (K =∞) to get exact
expansion of MOs, but it is not achievable in reality.
Subsequently, appropriate truncation is needed for practical
computational purposes; it suffices to work with a finite basis set.

Now embedding Eq. 15 in Eq. 12, multiplying left side of
resulting equation with χ]*(r), and then integrating over entire
space, trailed by some algebraic manipulation gives rise to the
following KS matrix equation, in parallel to the HF case:

FKSC � SC, (17)
where F and S stand for K × K real, symmetric total KS and
overlap matrices, respectively. The eigenvector matrix C contains
basis-set expansion coefficients Cμi and diagonal matrix  holds
orbital energies ϵi. It could be promptly solved by standard
numerical techniques of linear algebra. Individual components
of KS matrix can be expressed as

FKS
μ] � ∫ χμ r( ) hcore + vhxc r( )[ ]χ] r( )dr

� Hcore
μ] + 〈χμ r( )|vhxc r( )|χ] r( )〉 � Hcore

μ] + Jμ] + Vxc
μ]

vhxc r( ) � vh r( ) + vx r( ) + vc r( ),
(18)

where Hcore
μ] includes the core bare-nucleus Hamiltonian matrix

element comprising of kinetic energy and nuclear-electron
attraction, representing 1e− contributions. These can be
evaluated analytically with the assistance of well-established
recursion relations (Obara and Saika, 1986) for Gaussian type
orbital (GTO) bases, which is employed here (see later). The
second term vhxc(r) contains all 2e− interactions including
classical Coulomb repulsion and non-classical XC potential. Jμ]
signifies matrix element of vh(r), whereas the remaining term,Vxc

μ]
supplies XC contribution into 2e− matrix element, whose
development remains one of the fundamental steps in the
entire KS-DFT process. In absence of any analytical method,
the latter can be either computed numerically or fitted by an
auxiliary set of Gaussian functions (Sambe and Felton, 1975;
Dunlap et al., 1979a; Dunlap et al., 1979b). The current procedure
does not engage any fitting. For gradient-corrected functionals,
non-local XC contribution of KS matrix is implemented by a
finite-orbital basis expansion, without requiring an evaluation of
the density Hessians. Thus, in such cases, XC contribution is
written in a convenient working form, given in (Pople et al., 1992)

Fxcα
μ] � ∫ zf

zρα
χμχ] + 2

zf

zγαα
∇ρα +

zf

zγαβ
∇ρβ⎛⎝ ⎞⎠ · ∇ χμχ]( )⎡⎢⎢⎣ ⎤⎥⎥⎦dr,

(19)
where γαα = |∇ρα|

2, γαβ = ∇ ρα ·∇ ρβ, γββ = |∇ρβ|
2, and f is a

function only of local quantities ρα, ρβ, and their gradients.
To continue further, all relevant quantities, such as basis

function, electron density, MO, and all 2e− potentials are
straightforwardly set up on a real 3D CCG:

ri � r0 + i − 1( )hr, i � 1, 2, 3, . . . ., Nr; for r ∈ x, y, z{ },
(20)

where hr, Nr imply grid spacing and total number of grid points,
respectively, (r0 � −Nrhr

2 ). As necessary, the single-particle
density in the active grid can be expressed as

ρ rg( ) �∑
μ]
Pμ]χμ rg( )χ] rg( ), (21)

where rg is the gth grid point in the simulation box. Similarly, any
multi-centre integration involved in KS-DFT, such as classical
Hartree energy and XC energy, in principle, can be directly set up
in 3D real-space grid utilizing small 3D unit volume:

I � ∫F r( )dr ≈ ∑
i

F ri( )hxhyhz. (22)

The 2e− matrix elements can be acquired by direct numerical
integration in CCG:
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〈χμ r( )|vhxc r( )|χ] r( )〉≈ hxhyhz∑
grid

χμ r( )vhxc r( )χ] r( ). (23)

The pragmatic implementation of Eq. 22 is a lot less involved
than that in ACG. We note that the presence of a cusp in density
and singularity in Coulomb potential would create some
computational burden if F(r) is not smooth enough
throughout the simulation box.

A pressing issue in the grid-based approach comprises an accurate
estimation of vh(r). For finite systems, the simplest and crudest route
for computing this is through direct numerical integration on the
grid. For smaller systems, this is a feasible option; in any remaining
cases, it is generally tedious and cumbersome. However, the most
rewarding and widespread approach is through a solution of the
corresponding Poisson equation:

∇2vh r( ) � −4πρ r( ). (24)
The standard method for tackling this is by conjugate gradients

(Saad, 2003) or multi-grid solvers (Brandt, 1977). As another option,
a conventional FCT was originally suggested by Martyna and
Tuckerman (1999), Mináry et al. (2002), Skylaris et al. (2002)
and adapted in the context of molecular modeling (Hine et al.,
2011; Chang et al., 2012). To give a layout of this theorem, let us start
with two functions f(r) and F(k) in r and k spaces, which are Fourier
transforms (FT) (denoted by F ) of one another as follows:

f r( ) � F k( ) � ∫∞
−∞

F k( )e2πirkdk

F k( ) � F −1 r( ) � ∫∞
−∞

f r( )e−2πirkdr.
(25)

With two functions f(r), g(r), one can frame the convolution,
characterized by

f+g � ∫∞
−∞

f r′( )g r − r′( )dr′. (26)

The FCT directs that FT of convolution is just the product of
individual FTs:

F f+g( ) � F k( ).G k( ), f+g � F −1 F k( ).G k( )( ). (27)
The above theorem can be utilized to construct vh(r) efficiently

as follows:

vh r( ) � FFT−1 vch k( )ρ k( ){ } and ρ k( ) � FFT ρ r( ){ }, (28)
where vch(k) and ρ(k) represent Fourier integrals of the CIK and
density. The quantity ρ(k) can be handily calculated using
discrete FT of its real-space value. Accordingly, our essential
worry here lies in the calculation of CIK, which has a singularity
in real space. For this, we use an Ewald summation-type approach
(Chang et al., 2012), expanding the Hartree kernel into long-
range (LR) and short-range (SR) parts:

vch r( ) � erf ζr( )
r

+ erfc ζr( )
r

≡ vchlr r( ) + vchsr r( ), (29)

where erf(x) and erfc(x) denote error function and its
complementary function, respectively. The FT of SR part can
be dealt with analytically, whereas the LR segment necessitates to
be computed directly from FFT of real-space values. A
convergence parameter ζ is utilized to adjust the range of
vchsr(r), so that the error is minimized. Following the
conjecture of Martyna and Tuckerman (1999), here we employ
ζ × L = 7 (L indicates smallest side of the box), which produces
quite precise outcomes (Ghosal et al., 2016; Ghosal et al., 2018;
Ghosal et al., 2019). A few other courses that evaluate LR part
proficiently are fast multi-pole (Beatson and Greengard, 1997),
multi-level summation (Skeel et al., 2002), and fast Fourier-
Poisson (York and Yang, 1994) method, among others.

Next, we follow a simple grid-optimization technique as
follows:

Nx,Ny,Nz{ }
i
5 ρSCFi 5 ESCF

tot,i , (30)
for a fixed grid spacing hr. Here, “i” denotes the ith combination
of Nx, Ny, Nz for the active box. With this grid parameter, the
corresponding self-consistent field (SCF) density and total energy
can be labelled as ρSCFi and ESCF

tot,i , respectively. Now, one can
systematically increase the value of {Nx, Ny, Nz} from an
appropriate starting point and eventually reach the optimal
value of {Nx, Ny, Nz} such that

Nx,Ny,Nz{ }
i
� Nx,Ny,Nz{ }

opt
, when

ΔE � ESCF
tot,i − ESCF

tot,i−1( )< thresh, (31)

where thresh is the grid accuracy for total energy convergence,
that is, the energy difference between two successive calculations
with different grid parameters. A detailed demonstration of this
simple optimization strategy has been well documented (Ghosal
et al., 2016; Ghosal et al., 2018; Mandal et al., 2019).

For practical, useful electronic structure calculation, it is of
foremost significance to choose suitable functions that imitate KS
MOs as precisely as possible. Numerical accuracy of KS-DFT is
very delicate to the choice and design of a basis set for a particular
problem, as an incomplete basis set inducts certain restrictions on
the relaxation of density through KS orbitals. A sizeable number
of elegant, flexible, versatile basis sets have been proposed from
various perspectives, of which GTOs stand out as our most
appealing choice. Moreover, for a practical purpose, rather
than involving individual GTOs as the basis, it is customary to
utilize a fixed linear combination of GTOs, called contracted
GTOs. It is cordial in terms of ease and efficiency of computation
of essential integrals. While man attractive choices exist for full
calculations, which contain higher angular momentum orbitals,
the option is much restricted for pseudopotential
approximations. We have employed the following effective
core potential basis sets: SBKJC (Stevens et al., 1984) for
species containing Group-II elements, LANL2DZ (Wadt and
Hay, 1985) for Group-III or higher group elements, and
Labello–Ferreira–Kurtz (LFK) basis as proposed in Labello
et al. (2005), based in the light of a method to incorporate
diffuse and polarization functions in familiar Sadlej basis set
(Sadlej, 1992). These are adopted from EMSL Basis Set Library
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(Feller, 1996). All 1e− integrals are generated by standard
recursion relations (Obara and Saika, 1986) utilizing GTOs as
primitive basis functions. The norm-conserving pseudopotential
matrix elements on a contracted basis are imported from the
GAMESS (Schmidt et al., 1993) program package. The discrete
Fourier transforms are incorporated from the FFTW3 package
(Frigo and Johnson, 2005). The above features are implemented
in the InDFT (Roy et al., 2019) program developed in our
laboratory over the years, which has been employed in several
practical applications in a series of articles (Roy, 2008a; Roy,
2008b; Roy, 2010a; Roy, 2010b; Roy, 2011; Ghosal et al., 2016;
Ghosal et al., 2018; Ghosal et al., 2019; Mandal et al., 2019; Ghosal
et al., 2021; Roy et al., 2021; Ghosal and Roy, 2022a; Ghosal and
Roy, 2022b; Roy et al., 2022). At this point, this includes some of
the frequently used, prominent XC functionals mentioned at
relevant places in the article. The following sections summarize
some of the applications of InDFT that have taken place in our
laboratory in almost the last 5 years.

3 ELECTRIC RESPONSE PROPERTIES

A salient feature of atoms, molecules, and clusters is the electric
dipole polarizability; in other words, their ability to respond to an
external electric field (George, 2006; Champagne and Springborg,
2009). An accurate description of this has a prominent role in
exploring various interesting phenomena of field-matter
interaction and inter-particle collision, such as Rayleigh and
Raman scattering, second-order Stark effect, and electron
detachment process (El Ghazaly et al., 2005). The linear and
nonlinear electric properties, such as μ, α, β are highly relevant in
many applications, for example, the development of nonlinear
optical materials, structural identification of atomic clusters,
Raman and infrared spectroscopy, and separations of
molecular isomers. Note that these symbols have also been
used for basis set indices. However, there should be no
confusion, as their meanings would be apparent from the
context of their usage. From a technological point of view, it is
interesting to synthesize and design novel optical materials and
molecular assemblies with large non-linear optical coefficients
(Kümmel and Kronik, 2006). Several distinct theoretical routes
were put forward in the literature to obtain these properties
within the KS-DFT rubric. Some of the noteworthy ones are the
coupled-perturbed Kohn–Sham (CPKS) method (Fournier, 1990;
Colwell et al., 1993), linear-response time-dependent DFT (Jansik
et al., 2005; Helgaker et al., 2012), perturbative sum-over state
expression over all dipole-allowed electronic transitions (Orr and
Ward, 1971; Bishop, 1994), the numerical method using the
Sternheimer approach (Talman, 2012), auxiliary DFT (Flores-
Moreno and Köster, 2008; Carmon-Espíndola et al., 2012), non-
iterative CPKS (Shophy et al., 2008) and the fully numerical FF
method (Bishop and Pipin, 1987; Maroulis and Thakkar, 1988).
The least expensive method, from a computational standpoint, is
FF. This approach does not require any analytical derivatives or
information about the excited state; implementation is also quite
favorable because only the one-body Hamiltonian is perturbed by
the applied field (Kurtz et al., 1990). These are the reasons for its

success and popularity over other methods (Bulat et al., 2005; de
Wergifosse et al., 2014; Wouters et al., 2016).

3.1 FF KS Method
The response of a many-electron system can be represented by
expanding field-dependent μ, computed from the field-instigated
charge distribution, as a power series in external electric field F
(provided the field strength remains small), as

μi F( ) � μi 0( ) +∑
j

αijFj + 1
2
∑
j,k

βijkFjFk +/ . (32)

In this equation, three consecutive terms on the right-hand side
designate static dipole moment μi(0), dipole polarizability
αij � zμi

zFj
, and first-hyperpolarizability βijk � z2μi

zFjzFk
(Mclean and

Yoshimine, 1967), respectively. An alternative representation is
also available in terms of field-induced energy; however, both are
equivalent according to the Hellmann–Feynman theorem
(Feynman, 1939).

The components of α, β can be obtained using well-known
finite-difference formulas (Smith, 1978):

αiiFi � 2
3

μi Fi( ) − μi −Fi( )[ ] − 1
2

μi 2Fi( ) − μi −2Fi( )[ ]
αijFj � 2

3
μi Fj( ) − μi −Fj( )[ ] − 1

2
μi 2Fj( ) − μi −2Fj( )[ ]

βiiiF2
i �

1
3

μi 2Fi( ) + μi −2Fi( )[ ] − 1
3

μi Fi( ) + μi −Fi( )[ ]
βijjF2

j �
1
3

μi 2Fj( ) + μi −2Fj( )[ ] − 1
3

μi Fj( ) + μi −Fj( )[ ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(33)
Furthermore, in addition to α, β tensors, for a given species,

one can also compute the so-called experimentally determined
quantity, the average polarizability (�α), in the form of

�α � 1
3

αzz + αxx + αyy( ). (34)

In order to get these tensors from μ of the system (expressed as a
function of F), one needs the perturbed density matrix at various
field strengths. This can be obtained from the SCF solution of Eq.
13. Hence, the core part of the Hamiltonian (symbolized by a
prime) will now be altered by a relevant/appropriate field-
dependent term conventionally expressed as

H′core
μ] � Hcore

μ] + Fi〈μ|r|]〉, i ∈ x, y, z{ }. (35)
Here, Hcore

μ] denotes the unperturbed core Hamiltonian
mentioned above, Fi refers to ith component of F, and 〈μ|r|]〉
provides the dipole moment integral related to length vector r.
The two-body matrix elements do not change during FF
calculations. Eventually, μ of a molecule can be described as
follows:

μ ≡ μel �∑
μ]
Pμ]〈μ|r|]〉 +∑

a

ZaRa, (36)

where Za and Ra are nuclear charge and position of atom “a”,
respectively.
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In the FF method, numerical accuracy is a crucial factor. The
system’s dipole moment is computed in the presence of F, and the
respective finite differences are used to approximate the
derivatives. Hence, it is very sensitive with respect to F, and
the field needs to be chosen with utmost care such that 1) it is
adequately large to subdue finite-precision artifacts for a
meaningful estimation of essential finite differences,
particularly in the nonlinear domain for β and 2) it must also
be small enough to be able to neglect the higher-order derivatives
for one particular coefficient. Selection of the appropriate field
strengths initiates with picking up an initial field strength (F0),
around which other field strengths (F) are distributed. This is
achieved by selecting the field distribution according to the
following relation:

Fn � F0 2
3n
100, (37)

where n ranges from 0 to 160, and F0 = 0.0005 a.u. It gives a
maximum field strength larger than 0.01 a.u. For a given Fn, these
properties are calculated for a fixed grid and basis set.

3.2 Field Sensitivity and Its Optimization
To address the delicate nature of electric field on these properties,
in addition to the above procedure, we also adopted a recently
proposed (Patel et al., 2017) technique, whereby the energy is
fitted with respect to electric-field coefficients in the form of a
rational function. This is examined by a fitting strategy for
induced dipole moment in terms of the electric field as follows:

μ F( ) � a + bF + cF2 + dF3/

1 + BF + CF2 +DF3/
. (38)

where a,b,c,d,/ and B,C,D,/ are fitting coefficients. If the
denominator coefficients are set to zero, this gives rise to a
generalized form of Taylor expansion. Such a recipe has the
advantage that it provides a less sensitive (thus more effective)
dependence on the electric field, as it enlarges the range of the
field. In the FF technique, μ needs to be computed at certain field
strengths. That requires a proper selection of initial field strength
(F0), which is achieved here via a proposal put forth by Patel et al.
(2017):

Fn � xnF0, x � 2
p
100. (39)

The recommended value of p is 50, corresponding to a
geometric progression. This was arrived on the basis of a
systematic and detailed analysis of α and γ for a set of
121 and β for 91 molecules. Following Ghosal et al. (2018), an
initial value of 10−2.5 was found to be quite appropriate. The
optimal form of rational function is adopted (Patel et al., 2017) as

μ F( ) � a + bF + cF2 + dF3

1 + BF + CF2 , (40)

containing four and three terms in numerator and denominator.
Now putting value of μ at F = 0 in the above equation leads to a
trivial relation, μ(0) = a. The remaining unknown coefficients can
be determined employing different Fn. For five unknown
coefficients, six minimum equations can be constructed (as

both +Fn and −Fn used), each Fn giving two equations.
Employing μ(0) for a, one may write the following matrix
equation of form, Ax = b:

−F0μ F0( ) −F2
0μ F0( ) F0 F2

0 F3
0

F0μ −F0( ) −F2
0μ −F0( ) −F0 F2

0 −F3
0

−xF0μ xF0( ) −x2F2
0μ xF0( ) xF0 x2F2

0 x3F3
0

xF0μ −xF0( ) −x2F2
0μ −xF0( ) −xF0 x2F2

0 −x3F3
0

−x2F2
0μ x2F2

0( ) −x4F4
0μ x2F2

0( ) x2F2
0 x4F4

0 x6F6
0

x2F2
0μ −x2F2

0( ) −x4F4
0μ −x2F2

0( ) −x2F2
0 x4F4

0 −x6F6
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B
C
b
c
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

μ F0( ) − μ 0( )
μ −F0( ) − μ 0( )
μ xF0( ) − μ 0( )
μ −xF0( ) − μ 0( )
μ x2F2

0( ) − μ 0( )
μ −x2F2

0( ) − μ 0( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(41)
The solution of this equation is overdetermined, as both (+)ve
and (−)ve fields are used. A least-squares method can be
convenient; else, one may disregard any one equation. The
current work invokes the latter, where one of the six equations
is arbitrarily eliminated. The required properties can be
determined from derivatives of Eq. 38 at F = 0:

α � μ′ 0( ) � b − aB,

β � μ″ 0( ) � 2c − 2bB − 2aC − 2aB2.
(42)

Further details of the method and its validation can be found
in Mandal et al. (2019).

3.3 Numerical Tests and Convergence
This section presents some sample results to demonstrate the
applicability of the above-described method. At first, a few
practical points may be pointed out. All computations are
executed involving norm-conserving pseudopotential at the
experimental geometries taken from the NIST database
(Johnson, 2016). A simple grid-optimization technique has
been followed, ensuring a grid precision of at least 5 ×
10−6 a.u., all through, at a fixed hr = 0.3. It was noticed that
the optimal non-uniform grid marginally differs from functional
to functional. We employ the LFK basis set for this study. The
properties are inspected for four representative XC functionals,
namely, LDA, BLYP, PBE, and LBVWN. The SCF convergence
criteria imposed in this calculation to generate the perturbed
density matrix are as follows: 1) orbital energy difference between
two consecutive iterations and 2) absolute deviation in a density
matrix element. They both must stay below a specific
predetermined threshold, which is set to 1 × 10−8 a.u. This
assured that total energy maintains a convergence to at least
this level. In order to facilitate the convergence, an unperturbed
(field-free) density matrix was employed as trial input. The
convergence was carefully examined with respect to all
parameters, such as grid and field optimization, both in the
absence and presence of the electric field.

Let us now examine the α and β tensors. Following
Buckingham and Hirschfelder (1967), we have two
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independent components (αxx=yy, αzz) associated with α and β
(βxxz=yyz, βzzz), for a hetero-nuclear diatomic molecule havingC∞v

symmetry. The maximum field response toward the electron
density is then found along the z direction as it is the
molecular axis. Now, as a check, we have performed the
GAMESS calculations (Schmidt et al., 1993) with default grid
options, that is, 96 radial and 302 angular points for the spatial
grid and 0.001 for field strength. A recent study of grid effects
(based on ACG), reported in Castet and Champagne (2012),
suggested a spatial grid of 99 radial and 974 angular points to be
an optimal solution. It has been observed that the default option
delivers results that are practically coincident with that from the
finer grid; we have verified this for three diatomicmolecules (HCl,
HBr, and HI). Thus, for all practical purposes, the default grid
suffices the current purpose.

3.3.1 Comparison With Standard Packages
Now with this preamble, at first, we report the non-zero
components of α, β in addition to �α and μ, of a representative
test molecule, HCl in Table 1. These are supplied for all four XC
functionals. We quote the reference values (except for LBVWN)
acquired from GAMESS software (Schmidt et al., 1993).
Comparative components for a few other selective diatomic
molecules are additionally presented by Ghosal et al. (2018),
which are excluded here to save space. The largest mean absolute
deviation (MAD) in μz in HCl is around 5 × 10−5 a.u., for PBE,
whereas the LDA and BLYP results impeccably coincide with
reference (in all the digits quoted) for LDA and BLYP. The α, β
tensors of our calculations are also similarly consistent with the
reference data. For comparison, a few relevant theoretical
outcomes are cited in the footnote, alongside the methods
(such as higher-order perturbation theory, MCSCF, and
CCSD(T)) and basis set. Also, experimental values for �α are
additionally recorded from two different kinds of experimental
strategies (Olney et al., 1997; Hohm, 2013). These values contain
just the electronic part, and neither geometry relaxation in the
presence of the electric field nor vibrational contribution is
considered. It uncovers a fascinating fact that all three
traditional functionals (LDA, BLYP, and PBE) overestimate
both experimental outcomes; however, LBVWN

underestimates. These conclusions are in accordance with the
behavioral pattern of these functionals for �α in Cohen et al. (1999)
and Vasiliev and Chelikowsky (2010). This verification for the
diatomic hydrides goes about as a test-bed for the following
arrangement of atoms and molecules. Note that because the
converged properties reproduce standard GAMESS results
(Schmidt et al., 1993) for all XC functionals (verified for other
systems as well), these reference values are discarded hereafter.

3.3.2 Results on μ, �α, β
Now, in Table 2, we present μ for some linear and non-linear
molecules covering both close and open shells of systems
extending from diatomic to the hexa-atomic ones at
equilibrium geometry. These correspond to the electronic part
only; geometry relaxation or vibration contribution has not been
incorporated. The total energies are accurately reproduced by the
present calculation and not reported here. These can be found in
Mandal et al. (2019). The computed zero values of components of
μ in the case of non-polar molecules have been correctly
produced and henceforth not discussed. The polar molecules
show good overall concurrence with experimental results. For a
bunch of 29 molecules, the MAD from respective experimental
outcomes is 13% (for PBE, LDA) and 10% (for LBVWN, BLYP),
separately.

TABLE 1 | Static dipole moment μz and FF α, �α, β values (in a.u.) of HCl for different XC functionals. PR implies present result. More details could be found in Ghosal et al.
(2018).

XC μz αxx=yy αzz �αa βxxz=yyz βzzz

Molecule Functionals PR Referernce
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

PR PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

HClb,c,d LDA −0.43826 −0.43826 18.48 18.48 19.38 19.38 18.79 8.26 8.27 20.77 20.77
BLYP −0.42337 −0.42337 18.19 18.19 19.24 19.24 18.55 6.28 6.28 19.60 19.60
PBE −0.43420 −0.43425 18.05 18.04 19.01 19.01 18.37 7.19 7.19 18.91 19.89
LBVWN −0.45357 — 15.39 — 17.41 — 16.07 3.77 — 15.20 —

aExperimental �α of HCl: (i) dipole (e,e) method (Olney et al., 1997) = 16.97, (ii) refractive index method (Hohm, 2013) = 17.40, 23.78, 35.30.
bCAS (taug-cc-pVTZ) (Bishop and Norman, 1999): μz = 0.45, αxx=yy = 16.86, αzz = 18.52, �α � 17.41, βxxz=yyz = −0.31, βzzz = −11.32.
cCAS (qaug-sadlej) (Fernández et al., 1998): αxx=yy = 16.6952, αzz = 18.3361, �α � 17.2422, βxxz=yyz = 0.64, βzzz = 12.71.
dCCSD(T) (KT1 basis) (Maroulis, 1998): μz = 0.4238, αxx=yy = 16.85, αzz = 18.48, �α � 17.39, βxxz=yyz = −0.2, βzzz = −10.7.

TABLE 2 | Permanent dipole moment of molecules for four XC functionals. All
results in a.u. and taken from Mandal et al. (2019).

Molecule μ

LDA BLYP PBE LBVWN Expt.a

HF 0.70315 0.68988 0.69307 0.75623 0.71604
HCl 0.43825 0.42337 0.43420 0.45357 0.42490
H2O 0.71610 0.69956 0.70607 0.76583 0.7278
NH3 0.57940 0.57091 0.57498 0.59063 0.57834
SiH3Cl 0.50313 0.50656 0.49827 0.58014 0.51539
CH3Cl 0.73076 0.73269 0.72914 0.71637 0.73571
CH3Br 0.71377 0.72486 0.71875 0.63353 0.71210
C3H8 0.04065 0.03925 0.03844 0.03102 0.03304

aFor HCl and CHCl3, the dielectric method (Nelson et al., 1967); for all others, the
microwave spectroscopy method (Nelson et al., 1967).
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Next, we advance toward �α of a cross-section of atoms and
molecules, in Table 3. For the sake of comparison, accessible
theoretical values from the NIST database and experimental
values of zero frequency (containing electronic part only)
(Johnson, 2016; Miller and Bederson, 1997) are quoted for
comparison. It reveals that each of the three customary
functionals (LDA, BLYP, and PBE) overestimate the
experimental references. However, LBVWN offers
underestimation in all cases (except for Be) and thus
differentiates from the other three mentioned functionals.

Now, in this segment, we proceed to higher-order coefficients;
Table 4 reports non-zero components of β (using T convention)
for some representative molecules. It is evident that the
components of a given molecule differ fundamentally from
functional to functional—in some cases, including even the
sign changes. One such candidate is HI, where βxxz, βyyz signs

for LDA, PBE functionals are opposite from those of BLYP, PBE.
For a comparative understanding, a few selected high-level all-
electron calculations (such as CCSD, CAS, and CCSD(T)) in
elaborate basis sets (NLO-II, Sadlej, qaug-sadlej, and taug-cc-
pVTZ) are provided, along with certain experiments. For clear
reasons, our outcomes differ from extended calculations rather
significantly. However, this is not the primary objective of
this work.

3.3.3 Distorted Geometries
We now offer some illustrative results to explore the efficacy of
CCG in determining non-zero components of μ and α, β
tensors, as functions of R, in Table 5. As an example, HCl
is chosen with R ranging from 1.5 to 3.0 a.u. In general, beyond
equilibrium geometry, the static correlation becomes
predominant; subsequently, the role of XC functional is of

TABLE 3 | Average static polarizability, �α for some atoms and molecules using FF KS method, for four XC functionals. All results in a.u. For details, see Mandal et al. (2019).

�α (Atom) �α (Molecule)

LDA BLYP PBE LBVWN Refererncea LDA BLYP PBE LBVWN Referenceb

Be(1s) 44.49 43.43 43.10 40.81 37.79 HF 6.24 6.25 6.15 4.88 5.09
B(2P) 22.24 21.88 21.11 18.81 20.45 HCl 18.79 18.55 18.37 16.07 17.40
O(3S) 5.62 5.48 5.47 4.21 5.41 H2O 10.52 10.41 10.26 8.91 9.52
Mg(1S) 76.91 75.02 74.23 70.51 71.53 NH3 15.43 15.31 15.08 12.59 14.61
Si(3P) 37.50 37.89 36.23 35.13 36.31 SiH3Cl 44.93 43.81 43.86 39.93 35.8
P(4S) 28.68 28.27 27.91 24.17 24.50 CHCl3 60.12 59.52 58.98 52.02 56.22
Cl(2P) 16.25 16.51 15.73 13.84 14.71 Si2H6 65.76 63.32 63.81 59.02 63.53
Xe(1S) 28.67 28.42 28.04 25.02 27.29 C4H

c
6 59.34 59.64 58.27 53.07 54.64

aTheoretical values are from Miller and Bederson (1997), as quoted in the NIST database (Johnson, 2016).
bZero-frequency result. For SiH3Cl, the dielectric permittivity method (Hohm, 2013); for all others, the refractive index method (Hohm, 2013).

TABLE 4 | The components of β for some selected molecules for four XC functionals. All results are in a.u. See Mandal et al. (2019) for details.

Molecule LDA BLYP PBE LBVWN LDA BLYP PBE LBVWN LDA BLYP PBE LBVWN

βxxz βyyz βzzz

H2S
a −12.41 −14.30 −12.21 −4.93 6.96 5.80 6.07 8.78 −25.07 −27.54 −24.92 −7.31

PH3
b 6.07 4.56 6.38 5.19 6.07 4.56 6.39 5.19 20.73 5.63 14.79 6.12

CHCl3
c −19.42 −18.65 −17.82 −11.75 −18.49 −17.80 −16.92 −11.42 15.31 17.06 15.94 2.17

βxxy βyzz βyyy

C3H8 1.04 2.99 1.69 1.82 −25.01 −25.15 −23.92 −14.13 −28.59 −26.24 −26.30 −11.06

βxyy βxzz βxxx

CH3Br 42.62 45.80 4.84 21.94 42.59 45.86 44.13 21.94 17.24 18.72 21.43 5.40

βxxz = βyyz βzzz

HFd −3.59 −3.24 −3.22 −1.51 −14.09 −14.04 −13.52 −9.24
HCle 8.27 6.30 7.19 3.78 20.77 19.60 18.91 15.19
HI −3.32 1.19 −1.80 2.39 −16.48 −12.64 −13.22 −9.22

aCCSD (polarizability-consistent Sadlej) (Sekino and Bartlett, 1993): βzzz = 7.7, βxxz = −1.2, and βyyz = −11.7. Experimental value 〈β〉 =
""""""
(∑iβ

2
i )

√
= − 10.1, βi = (1/3)∑kβikk (Sekino and

Bartlett, 1993).
bCCSD (NLO-II) (Pascola et al., 2014): 〈β〉 =

""""""
(∑iβ

2
i )

√
= −18.5, βi = (1/3)∑kβikk.

cCCSD-QRF (d-aug-cc-pVDZ): βHRS = 15.05 and TDHF (d-aug-cc-pVDZ): βHRS = 10.02 (de Wergifosse et al., 2015); Experimental value (Hyper–Rayleigh scattering experiment)
βHRS = −19.0 (Castet and Champagne, 2012); βHRS �

""""""""""""""""
(〈β2ZZZ〉 + 〈β2XXZ〉)
√

, corresponding to laboratory axes.
dCAS (taug-cc-pVTZ) (Bishop and Norman, 1999): βxxz = βyyz = −1.2, βzzz = −8.77. CCSD (polarizability-consistent Sadlej) (Sekino and Bartlett, 1993): βxxz = βyyz = −0.08, βzzz = −8.91.
Experimental value 〈β〉 = 11.0 (Shelton and Rice, 1994).
eCAS (taug-cc-pVTZ) (Bishop and Norman, 1999): βxxz = βyyz = −0.31, βzzz = −11.32. CCSD(T) (KT1) (Maroulis, 1998): βxxz = βyyz = −0.2,βzzz = −10.7. Experimental value 〈β〉 = 9.8 (Dudley
and Ward, 1985).
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utmost significance. Moreover, the role of the basis set is
likewise a major factor. The computed values are in
excellent concurrence with theoretical references for all XC
functionals throughout the entire region. Upon closer
investigation, there is an adjustment in sign in βxxz=yyz on
shifting R from 2.5 to 3 a.u., which is quite satisfactorily
captured in InDFT (Roy et al., 2019). Besides that, a
comparison with all-electron calculations is additionally
performed and portrayed in Figure 1, which are done using
the Sadlej basis (Sadlej, 1992) and standard B3LYP functional
through the GAMESS program. All functionals reproduce the
qualitative shape of αxx=yy and αzz very well for the whole
range. In both panels, PBE is the nearest to Sadlej-B3LYP
results around Req. While in panel (a), all plots stay well
separated, a distinct crossover is recorded in panel (b) as
one moves farther past Req. The PBE plot in (b) tends to
deviate maximum from all-electron results in the case of all
functionals. Consequently, InDFT (Roy et al., 2019) can
produce competitive results for αxx=yy, αzz, with more

elaborate full calculations, both around and away from
equilibrium. More point-by-point results and thorough
analysis could be found in Mandal et al. (2019).

4 HF EXCHANGE THROUGH FCT

While DFT has witnessed an overwhelming number of successful
applications, in general, the DFA arouses certain discomfitures.
These are 1) piece-wise linearity (PWL) of total energy in
fractional particle numbers (Perdew and Wang, 1992; Yang
et al., 2000), 2) non-cancellation of fictitious Coulomb self-
repulsion energy, often called self-interaction error (SIE)
(Perdew and Zunger, 1981; Bao et al., 2018), and 3)
asymptotically correct XC potential behavior at LR (Levy
et al., 1984). The above three issues are not equivalent, but, to
a certain extent, they are interconnected (Kronik and Kümmel,
2020). They provide crucial guidelines in the development of
advanced density functionals. A prominent route through which

TABLE 5 | Static dipole moment μz, along with FF α, �α, β (in a.u.) of HCl molecule at various distorted geometries. All quantities are in a.u. More details are available in Ghosal
et al. (2018).

R XC μz αxx=yy αzz βxxz=yyz βzzz

Functional PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

PR Reference
(Schmidt
et al.,
1993)

1.5 LDA −0.31111 −0.31111 16.80 16.80 13.85 13.85 20.29 20.29 18.59 18.59
BLYP −0.31210 −0.31213 16.69 16.69 13.64 13.64 19.20 19.19 16.55 16.52
PBE −0.32008 −0.32013 16.46 16.46 13.52 13.52 19.37 19.35 17.05 16.89

2.5 LDA −0.45428 −0.45429 18.67 18.67 20.19 20.19 6.48 6.48 20.98 20.99
BLYP −0.43630 −0.43630 18.36 18.35 20.06 20.06 4.39 4.40 19.84 19.83
PBE −0.44800 −0.44804 18.22 18.21 19.81 19.81 5.39 5.39 19.07 19.07

3.0 LDA −0.55506 −0.55506 19.63 19.63 25.44 25.44 −3.83 −3.82 26.01 26.01
BLYP −0.51364 −0.51361 19.22 19.21 25.42 25.42 −6.49 −6.47 24.69 24.68
PBE −0.53309 −0.53312 19.13 19.13 25.05 25.05 −4.98 −4.99 23.25 23.26

FIGURE 1 | Impact of R on (A) αxx=yy and (B) αzz of HCl molecule, taken from Ghosal et al. (2018).
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these problems can be addressed is via the introduction of EEX
into the picture, which may be combined empirically (Becke,
1993) or non-empirically (Perdew et al., 1996b; Guido et al.,
2013), with semi-local functionals. This can improve the
asymptotic nature, and, as a consequence, the SIE may get
reduced significantly. Following this, the global hybrid
functionals (Becke, 1993) (a classic case being B3LYP) were
subsequently proposed (Adamo and Barone, 1999; Ernzerhof
and Scuseria, 1999; Zhao and Truhlar, 2008); this has
tremendously enhanced the chemical applicability of DFT in a
large range of chemical systems (Silva-Junior et al., 2008;
Mangiatordi et al., 2012). Recently, static correlation in
covalent bonds has been treated with general single-
determinant model functionals up to the dissociation limit
(Becke, 2013; Kong and Proynov, 2015). These emerging
hyper-GGA functionals involve exact exchange energy density,
ex, as a fundamental variable, requiring a higher computational
cost than the global hybrid ones. Another promising route
through which the above conditions can be controlled is
optimal tuning of RSH functionals (Baer et al., 2010; Kronik
and Kümmel, 2018).

Within the scope of basis-set expansion of MOs, HF exchange
energy and related matrix elements can be calculated analytically
through four-center electron repulsion integrals (ERI), when
GTOs are used. This provides the following contribution to
the KS-Fock matrix:

Fxσ
μ] �∑

λη

Pσ
λη μλ|η]( )

�∑
λη

Pσ
λη ∫∫ χμ,σ r( )χλ,σ r( )χ],σ r′( )χη,σ r′( )

|r − r′| drdr′. (43)

Here, ERI is represented by (μλ|η]) with μ, ], λ, η denoting the
contracted AO basis, and Pσ

λη represents an element of single-
particle spin density matrix, Pσ with spin σ. The corresponding
HF exchange energy density can be expressed as

exσ r( ) � −∑occ
i

∑occ
j

∫ ϕi,σ* r( )ϕj,σ* r( )ϕi,σ r′( )ϕj,σ r′( )
|r − r′| dr′

� −∑
μ]
∑
λη

Pσ
μ]P

σ
λη ∫ χμ,σ r( )χλ,σ r( )χ],σ r′( )χη,σ r′( )

|r − r′| dr′.
(44)

The first and second mathematical forms are written in terms of
KS-occupied MO (ϕσ) and AO (χσ). The real form of density
matrix and basis gives us the liberty to omit the complex
conjugate sign. At first glance, its computational cost appears
to be higher than the regular exchange energy calculation (as it
requires to be computed at each grid point with four AO indices).
Of late, a few proposals have been reported showing considerable
computational cost lightening through a pair-atomic RI (Proynov
et al., 2010; Liu et al., 2012; Proynov et al., 2012) or a semi-
numerical (SNR) (Kossmann and Neese, 2009; Bahmann and
Kaupp, 2015; Liu and Kong, 2017; Laqua et al., 2018)
approximation.

In what follows, we present a simple, novel strategy for
calculating HF exchange density, energy, and necessary matrix

elements in CCG, which are significant components for some XC
functionals (especially orbital-dependent ones). This takes
inspiration from Liu and Kong (2017), where evaluating an
intermediate quantity, such as the two-center ESP integral, is a
vital step, given as follows:

v]η r( ) � ∫ χ] r′( )χη r′( )
|r − r′| dr′ �∑

p

∑
q

∫ φp
] r′( )φq

η r′( )
|r − r′| dr′. (45)

The two expressions are based on AO basis and primitive
functions, φp

] for a particular χ] (spin indices omitted for
simplicity). We offer a direct, efficient numerical (NR) strategy
for the accurate, reliable calculation of ESP integral. This is
founded on FCT and employs an RS technique, leading to an
LR and SR interaction for CIK. A critical point is the
characterization of optimal RS parameter for successful
mapping of CIK in CCG from first principles and not
empirically. Here, it is achieved through a grid-optimization
technique (Ghosal et al., 2016; Ghosal et al., 2018) with
respect to the total energy in CCG through a well-defined
constraint. This is helpful in the additional development of so-
called RSH functionals in combination with the generalized KS
theorem (Seidl et al., 1996).

4.1 HF Exchange Energy, Density, and
Matrix Elements
This section delineates a numerical methodology for EEX energy
and potential, where the former is evaluated by integrating the
respective density, exσ(r), given as

Ex
σ �

1
2
∫ exσ r( )dr. (46)

Now, Eq. 44 can be rewritten as follows:

exσ r( ) � −∑
]
Qσ

] r( )Mσ
] r( ). (47)

Onemay anticipate the computation of exσ(r) in three phases. The
first component, Qσ

](r) can be written as follows:

Qσ
] r( ) �∑

μ

χμ,σ r( )Pσ
μ], (48)

in which a simple matrix multiplication is used to combine
density matrix with the AOs. The step computationally scales
as O(NgN2

B), where NB, Ng refer to total number of basis
functions and grid points, respectively. The next vital step
pertains to the evaluation of ESP integral (contained in
Mσ

](r)), which as per Eq. 45 also scales the same way. This
integral is usually performed analytically (second expression of
Eq. 45) using various types of recursion relations such as
Obara–Saika (OS) (Obara and Saika, 1986; Obara and Saika,
1988), Head-Gordon–Pople (Head-Gordon and Pople, 1988), or
some other combinations (Liu et al., 2016). Here, we have
performed this integral through the OS scheme in terms of
expensive incomplete Gamma function; this is referred to as
the SNR-OS method. Evidently, each ESP integral scales as
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O(NgN2
P), where NP denotes the average number of primitive

functions. The final step requires the computation of Mσ
](r) as

follows:

Mσ
] r( ) �∑

η

Qσ
η r( )vσ]η r( ). (49)

This segment also scales in the same way as ESP integral
calculation, but with lesser steps than the latter; in the
innermost loop, only one multiplication and addition are
required. This provides a NR route to evaluate the HF
exchange matrix, which can be further modified as

zEx
σ

zPσ
λη

� Fxσ
μ] � −∫

r

χμ r( )Mσ
] r( )dr. (50)

Then, the HF exchange energy and KS-Fock matrix with its
contribution, can be evaluated accurately in CCG in a purely NR
way via the following equations:

Ex
σ �

1
2
hxhyhz∑

g

exσ rg( ),
Fxσ
μ] � −hxhyhz∑

g

χμ rg( )Mσ
] rg( ). (51)

Now, to evaluate ESP integral in CCG, one can rewrite Eq. 45
in the form of

v]η r( ) � ∫ χ] r′( )χη r′( )
|r − r′| dr′ � ∫ χμ] r′( )

|r − r′| dr′ � χ]η r( )+vc r( ).
(52)

For simplicity, the spin indices are omitted here. The final
mathematical form involves a convolution integral, with χ]η
representing a straightforward multiplication of two AO basis
functions, and vc(r) denoting the usual CIK. This is further
simplified by invoking FCT as follows:

v]η r( ) � F −1 vc k( )χ]η k( ){ } where χ]η k( ) � F χ]η r( ){ }. (53)
Here, vc(k) and χ]η(k) signify Fourier integrals of CIK and AO
basis functions. The key issue is obtaining a precise mapping of
the former, which involves a singularity at r→ 0. To deal with this
concern, we use a simple RS strategy based on the works of Gill
and Adamson (1996) and Gill et al. (1996), expanding the CIK
into LR and SR parts using a suitable RS parameter (ζ) as follows:

vc r( ) � erf ζr( )
r

+ erfc ζr( )
r

vc rg( ) � vclong rg( ) + vcshort rg( ). (54)

The last issue is determining an optimum value of parameter ζOT,
from first principles. This is achieved through the following
relation:

ζopt ≡ opt
ζ

Ex
σ ≡ opt

ζ

Etot � opt
Nx,Ny,Nz

Etot, at a fixed hr,

(55)
which is reminiscent of the grid-optimization strategy employed
in Section 2.

It is worth noting that, every ESP integral is computed using
only a collection of FFTs (two forward and one backward
transformation) resulting in a O(Ng logNg) scaling. This
contrasts with quadratic scaling with respect to NP (apart from
Ng), in the SNR-OS scheme. Hence, the computational cost is
unaffected by the degree of contraction; but in SNR-OS, the cost
grows quadratically with the degree of contraction. It is favorable
for basis sets with substantial degrees of contraction, needed for a
system with decent grid size.

4.1.1 Computational Time of SNR-OS Versus NR
Now, we venture into a comparative discussion on the NR and
SNR-OS schemes. Toward this pursuit, a real-time comparison
of the performance in terms of the average effective CPU time
for an SCF iteration of these two approaches is quoted for a
representative set of molecules from Ghosal et al. (2019) in
Table 6. Calculations are carried out on a system with Intel
Core i7-7700 CPU (3.6 GHz) using the identical optimized
grid. A study of the ratio (SNR−OS

NR ) suggests that it hovers in the
range of 3.70 (Si2H6)–10.83 (CH4), implying that the NR route
offers an advantageous scaling over SNR-OS. This is consistent
with the scaling relations given previously. As demonstrated,
the ease of implementation of this method is quite encouraging
and can be intuited to have a fruitful application in future
extensions.

4.1.2 Orbital-Dependent Hybrid Functionals via
RS-FCT
The strategy described above is applied in constructing three
global hybrid functionals, namely, B3LYP, PBE0, and BHLYP,
with a variable amount of former, as well as the traditional XC
functional. The XC energy corresponding to each functional is
expressed as follows:

EB3LYP
xc � 1 − a0( )Ex

LSDA + a0E
x
HF + axE

x
B88 + acE

c
LYP

+ 1 − ac( )Ec
VWN, (56)

EPBE0
xc � b0E

x
HF + 1 − b0( )Ex

PBE + Ec
PBE, (57)

EBHLYP
xc � 1 − c0( )Ex

LSDA + c0E
x
HF + Ec

LYP. (58)
Following (Stephens et al., 1994), a0, ax, ac are 0.2, 0.72, 0.81 for
B3LYP, whereas in case of PBE0 (Perdew et al., 1996b), b0 = 0.25.
Note that, in PBE0, the contribution of HF exchange is slightly
higher than B3LYP, but a higher proportion (c0 = 0.5) is assigned
in BHLYP.

The pertinent LDA- and GGA-type functionals related to
B3LYP, BHLYP, and PBE0 are as follows: 1)
Vosko–Wilk–Nusair (VWN), the homogeneous electron gas
correlation proposed in parametrization formula V (Vosko
et al., 1980); 2) B88–incorporating Becke (Becke, 1988) semi-
local exchange; 3) Lee–Yang–Parr (LYP) (Lee et al., 1988)
semi-local correlation; and 4) Perdew–Burke–Ernzerhof
(PBE) (Perdew et al., 1996a) functional for semi-local XC.
Other computational details and scaling properties are
available in Roy (2008a), Roy (2008b), Roy (2010b), Roy
(2011), Ghosal et al. (2016), Ghosal et al. (2018), Mandal
et al. (2019).
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4.2 Analysis of Hybrid Functionals
Let us begin with the total energies for a few representative atoms
and molecules in Table 7. The NR and SNR-OS results are
reported for three sets of computations: HF, B3LYP, and
PBE0. In all cases, the same pseudopotential, basis set, and
convergence (both grid and SCF) criteria of the previous
section were engaged. The highest absolute difference in
energy (labeled Ediff) between NR and SNR-OS is displayed

side by side for simple comparison in all instances. With the
exception of O and CH4, where absolute deviations are far below
0.0004 and 0.001 a.u., the overall agreement between these two
sets of results is excellent, showing that the two energies are
practically indistinguishable for all species. Needless to say, these
energies are in close agreement with those from the standard
package GAMESS (Schmidt et al., 1993). For a more detailed
analysis, the interested reader may consult (Ghosal et al., 2019).

TABLE 6 | Timing (in s) comparison between NR and SNR-OS schemes for one SCF iteration for some representative systems, adopted from Ghosal et al. (2019).

Molecule tNRCPU(102) tSNR−OS
CPU (102) Ratio (SNR−OS

NR ) Molecule tNRCPU(102) tSNR−OS
CPU (102) Ratio (SNR−OS

NR )

Cl2 0.20 1.03 5.15 Si2H6 1.25 4.63 3.70
PH3 0.15 0.68 4.53 CH3Cl 0.33 3.00 9.09
CH4 0.23 2.49 10.83 SiH3Cl 0.76 3.00 3.95

TABLE 7 | HF, B3LYP, and PBE0 energies (a.u.) of atoms and molecules. Ediff = |ENR − ESNR-OS|. These are adopted from Ghosal et al. (2019).

Atom − 〈E〉

HF B3LYP PBE0

NR SNR-OS Ediff NR SNR-OS Ediff NR SNR-OS Ediff

Be 0.96019 0.96019 0.00000 0.99386 0.99386 0.00000 0.99598 0.99598 0.00000
O 15.61720 15.61681 0.00039 15.80556 15.80549 0.00007 15.80351 15.80341 0.00010
Ge 3.59814 3.59814 0.00000 3.67466 3.67466 0.00000 3.68693 3.68693 0.00000
CH4 7.78878 7.78888 0.00010 8.00843 8.00846 0.00003 8.02684 8.02686 0.00002
SiH3Cl 20.19863 20.19862 0.00001 20.58442 20.58441 0.00001 20.61885 20.61885 0.00000
Si2H6 10.93377 10.93377 0.00000 11.28249 11.28249 0.00000 11.31207 11.31207 0.00000

TABLE 8 | Negative HOMO energies, − ϵHOMO (in a.u.) for atoms and molecules using HF, B3LYP, PBE0 XC functionals. For details, consult Ghosal et al. (2019).

Atom − HOMO(a.u.) Molecule − HOMO(a.u.)

HF B3LYP PBE0 BHLYP Expt.a HF B3LYP PBE0 BHLYP Expt.b

Be 0.3090 0.2291 0.2387 0.2650 0.3426 Cl2 0.4786 0.3274 0.3433 0.3947 0.4219
S 0.3631 0.2506 0.2625 0.3043 0.3807 PH3 0.3849 0.2675 0.2781 0.3200 0.3626
Ga 0.2058 0.1263 0.1381 0.1590 0.2205 CH4 0.5416 0.3882 0.4013 0.4555 0.4998
Ge 0.2844 0.1825 0.1974 0.2232 0.2903 SiH3Cl 0.4509 0.3149 0.3288 0.3754 0.4281
As 0.3665 0.2426 0.2605 0.2910 0.3607 Si2H6 0.4068 0.3043 0.3152 0.3516 0.3870
Se 0.3319 0.2337 0.2451 0.2815 0.3584 P4 0.3844 0.2921 0.3075 0.3362 0.3381

aOptical spectroscopy (Johnson, 2016).
bPhoto-electron spectroscopy (Johnson, 2016).

TABLE 9 | Negative HOMO energies, − ϵHOMO (in a.u.) for selected π-electron molecules using HF, B3LYP, PBE0, and BHLYP XC functionals. Further details are available in
Ghosal et al. (2019).

Molecule − HOMO(a.u.)

HF B3LYP PBE0 BHLYP Theory (Johnson,
2016)a

Expt.b

Ethylene 0.3686 0.2649 0.2796 0.3140 0.376b 0.3859
Propene 0.3544 0.2503 0.2645 0.2994 0.354b 0.3565
1,3-Butadiene (E) 0.3188 0.2308 0.2444 0.2734 0.332b 0.3333

aCCSD result using cc-PVTZ basis.
bPhoto-electron spectroscopy (Johnson, 2016).
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Now, the highest occupied molecular orbital (HOMO)
energies are investigated in atoms and molecules for some
selected cases in Tables 8 and 9. These are collected from
Ghosal et al. (2019), where a broader set of results are
available. In addition to the three functionals of the (Table 7),
here we also include BHLYP and experimental results. The latter
table contains some π-electron molecules (simple, aromatic, and
conjugated), where the fundamental gap (difference in energy
between HOMO and LUMO) plays an important role. Accurate
knowledge of such orbital energies is required for a satisfactory
estimation of such gaps. As the outcomes of the NR and SNR-OS
schemes are almost identical, we only proceed with the former. A
comparison with available theoretical and experimental results
reveals that HF HOMO energies (which do not incorporate
correlation or relaxation effects) are better than any of the
four DFT functionals investigated in terms of agreement with
the experiment. This is generally true for a larger data set (Ghosal
et al., 2019). Furthermore, it is interesting to note that, with the
increase in the fractional contribution of HF exchange (which
plays a key role in determining accurate asymptotic behavior at
LR) in the hybrid functionals, the deviation falls (e.g., from
B3LYP to BHLYP). This could be beneficial in larger systems
that require a highly contracted basis, although just a moderate
size of grid suffices for the purpose. The precision and ease with
which it can be implemented augurs well for its future use in the
development of RSH functionals, which may eventually lead to a
comprehensive view of HF exchange in the asymptotic limit,
bridging theoretical and experimental results.

5 OT-RSH FUNCTIONALS

This section presents an outgrowth of the prior work described
earlier. The OT-RSH functionals perform remarkably well in
resolving some of the important issues in connection with DFAs
(detailed in Section 6). Generally, this is based on a partitioning
of CIK into SR and LR parts, using an RS operator, g(γ, r), and an
RS parameter, γ, as follows:

1
r
� ~g γ, r( )

r
+ g γ, r( )

r
, (59)

where ~g(γ, r) denotes the complementary RS operator.
Historically, this was introduced for the first time
(Leininger et al., 1997) in context of multi-resolution CI,
where dynamical correlation hardly impacts LR interactions
due to fast decaying features. In this scenario, γ plays a central
role in adjusting the EEX contribution from SR to LR region
for a certain g(γ, r). For a system, usually these two regions are
treated separately: the SR region is represented using a revised
inter-electronic distance-dependent local/semi-local DFA,
while the LR sector, by EEX with g(γ, r)/r rectification.
Based on the partitioning scheme, the XC energy can be
obtained as follows:

Exc � asreexE
sr
eex γ( ) + 1 − asreex( )Ex, sr

dfa γ( ) + blreexE
lr
eex γ( )

+ 1 − blreex( )Ex, lr
dfa γ( ) + Ec

dfa, (60)

where Esr
eex, E

lr
eex signify EEX energy contribution, whereas Ex, sr

dfa ,
Ex, lr
dfa represent DFA exchange, at SR and LR segments. A certain

set of (asreex, b
lr
eex) characterizes a particular mode of partitioning

for a given g(γ, r). RSH functionals with blreex � 1 offer an
asymptotically correct XC potential at LR region. Furthermore,
choosing an optimal asreex strikes a fine balance between EEX and
dynamical correlation. As a result, these functionals are not fully
free from SIE and also, if not tuned optimally for a desired system,
do not follow the PWL condition. This occurs mainly due to a
pre-defined default γ, generally obtained semi-empirically by
fitting some reference data (Iikura et al., 2001; Tawada et al.,
2004; Yanai et al., 2004; Lange et al., 2008).

In OT parlance, γ is usually determined from first principles by
imposing Koopmans’ theorem (Salzner and Baer, 2009). It helps
satisfy PWL conditions, makes XC potential asymptotically correct
at the LR region, and preserves the size-dependency of γ on ρ.
Consequently, these functionals improve properties that are rooted
in orbital energies, such as vertical ionization energy (IE),
fundamental gap, electron affinity (EA), charge-transfer (CT)
excitation, optical gap, and Rydberg excitation (Livshits and Baer,
2007; Stein et al., 2010). However, these are hard to maintain with a
universal γ (Baer et al., 2010). In recent years, techniques based on
electron localization function and localized orbital locator have been
attempted, which necessitates only one single SCF calculation
(Borpuzari and Kar, 2017; Wang and Zhang, 2018). Also, a self-
consistent OT-RSH approach (Tamblyn et al., 2014), based on a
minimization of inter-atomic forces, has been reported as well; it
produces better geometries and vibrational modes.

Following the general framework of RSH functionals
presented in Eq. 60, three distinct types are considered in this
rubric which obey a certain well-established mode of partitioning.
The first one is the long-range correction (LC) scheme (Iikura
et al., 2001) which looks like this

ELC
xc � Ex, sr

dfa γ( ) + Elr
eex γ( ) + Ec

dfa,
g γ, r( ) � erf γr( ) and ~g γ, r( ) � erfc γ, r( ).} (61)

The second one is termed as Coulomb-attenuating method
(CAM) approach (Yanai et al., 2004), originally introduced
utilizing a more general form of g(γ, r) as follows:

gα,β γ, r( ) � α + β erf γr( ) and ~gα,β γ, r( ) � 1 − α + β erf γ, r( )[ ],
0≤ α + β≤ 1, 0≤ α≤ 1, and 0≤ β≤ 1. } (62)

The α parameter ensures the EEX contribution over the whole
range by a factor of α, whereas the β parameter is responsible for
the incorporation of DFA throughout the complete range by a
factor of 1 − (α + β). In the particular scenario of α = 0, β = 1, the
CAM approach gives rise to the previously mentioned LC
scheme. These two parameters are related to asreex in a rather
difficult way. The third one, considered here, is called the long-
range-corrected (LRC) (Rohrdanz et al., 2009) one, including an
additional parameter in Esr

eex as

ELRC
xc � asreexE

sr
eex γ( ) + 1 − asreex( )Ex, sr

dfa γ( ) + Elr
eex γ( ) + Ec

dfa,
g γ, r( ) � erf γr( ) and ~g γ, r( ) � erfc γ, r( ). } (63)

This extra parameter asreex accounts for the incorporation of a
certain particular amount of Esr

eex by a factor a
sr
eex. In a special case,
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when asreex � 0, LRC leads to LC. Several other partitioning
schemes and different g(γ, r) have been reported in the
literature, primarily to deal with accurate thermochemistry
and reaction height (Chai and Head-Gordon, 2008a; Chai and
Head-Gordon, 2008b; Peverati and Truhlar, 2012b; Vikramaditya
et al., 2018; Chan et al., 2019).

To properly incorporate Ex, sr
dfa in RSH functionals, a number

of schemes were proposed, such as adiabatic connection
theorem (Baer and Neuhauser, 2005; Cohen et al., 2007),
model exchange hole (Iikura et al., 2001; Henderson et al.,
2008), and exchange energy density (Chai and Head-Gordon,
2008b; Lin et al., 2012). The present work invokes the
framework of Iikura et al. (2001), involving a modified
Fermi wave vector in exchange enhancement factor,
applicable to any LDA or GGA type DFAs. Later, this was
also utilized for CAM-B3LYP (Yanai et al., 2004) through a
general g(γ, r), defined in Eq. 62. In this way, the SR GGA-
exchange energy can be put forth as

Ex, sr
gga � −1

2
∑

σ
∫ ρ

4
3
σK

x, sr
gga,σ dr,

Kx, sr
gga,σ � Kx

gga,σ 1 − α( ) − β
8
3
aσ

""
π

√
erf

1
2aσ

+ 2aσ bσ − cσ( )( )[ ]{ }[ ],
aσ � γ

2Kf
gga,σ

, bσ � exp − 1

4a2σ
( ), cσ � 2a2σbσ +

1
2
, Kf

gga,σ �
9π

Kx
gga,σ

⎛⎝ ⎞⎠1
2

ρ
1
3
σ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(64)

where Kx
gga,σ signifies the enhancement factor. The average

relative momentum for GGA, Kf
gga,σ , is used to define the

modified GGA-enhancement factor, Kx, sr
gga,σ . One can see that

Eq. 64 reproduces the original GGA DFA, when γ = α = 0.
The respective potential is evaluated using Kx, sr

gga,σ , as it was
employed for standard GGA DFAs (Johnson et al., 1993).
More detailed discussion on SR DFAs can be found in the
literature (Iikura et al., 2001; Baer and Neuhauser, 2005;
Cohen et al., 2007; Chai and Head-Gordon, 2008b; Henderson
et al., 2008; Lin et al., 2012).

Now, we proceed for the discussion on OT-RSH functionals
and properties derived from them. Three different kinds of RSH
functionals (LC, CAM, and LRC) are employed in our
calculations. As in the original articles, the segmentation mode
and RS operator remain unaltered. Here, however, γOT is
determined following the strategy expressed as

γOT ≡ opt
Nx,Ny,Nz

Etot,γ, at fixed hr. (65)

This optimization technique does not require any fitting scheme.
Through the characteristic length of a system, this procedure
satisfies the size-dependency principle. In InDFT (Roy et al.,
2019), these are implemented for five representative sets of
functionals having a varying amount of SR/LR EEX with SR
DFA exchange and traditional correlation functional. We

TABLE 10 | Ionization energies, − ϵHOMO for selected atoms and molecules in eV, adopted from Ghosal and Roy (2022a).

System B3LYP LC-
BLYP

LC-
BLYPot

CAM-
B3LYP

CAM-
B3LYPot

PBE0 LC-
PBE

LC-
PBEot

CAM-
PBE0

CAM-
PBE0ot

LRC-
ωPBEh+

LRC-
ωPBEh+ot

Expt.a

Atom

Be 6.23 8.52 8.50 7.64 7.63 6.50 8.58 8.67 8.71 8.78 8.23 8.75 9.32
O 8.83 11.42 12.97 10.77 11.49 9.19 11.13 13.00 12.10 13.50 10.95 13.40 13.62
Si 5.27 7.67 7.72 6.78 6.80 5.68 7.81 8.01 8.06 8.22 7.46 8.18 8.15
S 6.82 9.37 9.82 8.49 8.69 7.14 9.34 10.00 9.75 10.24 8.97 10.19 10.36
Ge 4.97 7.27 7.32 6.41 6.43 5.37 7.44 7.62 7.66 7.79 7.12 7.76 7.90
Br 8.19 10.78 11.10 9.87 10.02 8.56 10.77 11.30 11.20 11.60 10.41 11.54 11.81

Molecule

N2 11.48 14.25 14.81 13.45 13.71 11.83 13.94 14.82 14.88 15.54 13.71 15.40 15.60
NaCl 5.79 8.37 7.67 7.44 7.12 6.12 8.33 7.81 8.79 8.45 8.26 8.33 9.80
H2S 7.12 9.77 10.11 8.84 8.99 7.48 9.74 10.29 10.18 10.60 9.37 10.54 10.48
CH4 10.48 13.19 13.78 12.30 12.57 10.85 13.06 13.91 13.68 14.32 12.73 14.24 13.6
CH3Cl 8.02 10.67 11.04 9.76 9.94 8.39 10.60 11.20 11.14 11.59 10.27 11.51 11.29
C2H4 7.27 10.00 10.18 8.95 9.03 7.67 10.06 10.41 10.34 10.60 9.62 10.56 10.51
Si2H6 8.23 10.62 10.59 9.76 9.74 8.54 10.62 10.75 10.94 11.04 10.30 10.98 10.53

aOptical spectroscopy for the atom (Johnson, 2016). Photo-electron spectroscopy for the molecule (Johnson, 2016).

TABLE 11 | (G)KS gap vs. experimental fundamental gap for selected atoms in eV. Results are adopted from Ghosal and Roy (2022a).

Atom B3LYP LC-
BLYP

LC-
BLYPot

CAM-
B3LYP

CAM-
B3LYPot

PBE0 LC-
PBE

LC-
PBEot

CAM-
PBE0

CAM-
PBE0ot

LRC-
ωPBEh+

LRC-
ωPBEh+ot

Exp. (Johnson,
2016)

B 2.57 7.38 7.88 5.54 5.78 2.84 6.95 7.78 7.58 8.20 6.31 8.12 8.02
O 4.40 9.32 12.13 7.98 9.28 5.33 8.93 12.37 10.91 13.44 8.81 13.23 12.18
Si 1.75 6.49 6.59 4.59 4.63 2.08 6.20 6.55 6.62 6.88 5.55 6.82 6.76
Cl 2.46 7.78 9.13 5.87 6.49 3.10 7.42 9.22 8.48 9.82 6.78 9.70 9.36
Se 1.92 6.90 7.39 4.96 5.18 2.50 6.78 7.59 7.35 7.96 6.08 7.89 7.73
Br 2.04 7.24 7.83 5.26 5.54 2.61 6.96 7.93 7.72 8.45 6.26 8.35 8.32
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consider the LC-BLYP (Tawada et al., 2004) and LC-PBE (Perdew
et al., 1996a; Iikura et al., 2001) functionals from the LC-hybrid
group with γ = 0.33 and γ = 0.30, respectively. Furthermore, for
the CAM-hybrid group, CAM-B3LYP (Yanai et al., 2004) with
α = 0.19, β = 0.46, γ = 0.33 and CAM-PBE0 (Lange et al., 2008)
with α = 0.25, β = 0.75, γ = 0.30 are utilized. With slight
modifications, the original LRC-ωPBEh functional (Rohrdanz
et al., 2009) with ax, sr = 0.2, γ = 0.2 is employed for the LRC-
hybrid group. Here, it is designated as LRC-ωPBEh+. To

distinguish it from the original, it is superscripted with +. The
sole difference is about the construction of the SR DFA exchange.
All the parameters are left unchanged as in the original paper,
except for γ, which is represented by the subscript “ot.” B3LYP
and PBE0, the two global hybrid functionals with a configurable
quantity of EEX energy and a conventional DFA, are also
compared side by side (Stephens et al., 1994; Perdew et al.,
1996b). For ease of discussion, the five functionals (LC-BLYP,
CAM-B3LYP, LC-PBE0, CAM-PBE0, and LRC-ωPBEh+) are

FIGURE 2 | Performance of various functionals on fractional occupation in C atom. The left panel shows HOMO energy as a fraction of occupied p-electron number
for (A) 0, ≤ N ≤ 2, (C) 0, ≤ N ≤ 1, (E) 1 ≤ N ≤ 2, for B3LYP block functionals. Right panels (B,D,F) refer to the PBE0 block, taken from Ghosal and Roy (2022a).
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categorized into two distinct blocks: B3LYP (containing
B88 exchange and LYP correlation) and PBE0 (PBE exchange
and correlation) types.

5.1 Ionization Energy
It is well-known that even if we have the EEX potential, the
physical interpretation of KS frontier orbitals is not
straightforward; the only exception is the HOMO. The
ionization energy of a system can be assigned utilizing a KS
analog to Koopmans’ theorem in HF theory and can be written in
the form of

IE � −ϵHOMO. (66)
When it comes to LDA or GGA-type DFAs, Eq. 66
underestimates HOMO energy. Moreover, this will not work
for other functionals outside the KS regime, especially those that
interest us. The RSH functionals have, in principle, correct
asymptotic behavior in the LR region, but the (G)KS version
of Koopmans’ theorem is required to fully capture the essence of
HOMO and its energy. It is proved that, for a selected case of an
EEX operator, it is still possible to spot the (G)KS HOMO energy
with − IE(M) (Görling and Levy, 1997), and, accordingly,

IE � −ϵγHOMO. (67)
Like KS mapping, the (G)KS map is not unique. When the RSH
functional is considered, any choice of γ can generate a viable
approximation of the (G)KS map. The apparent question is
whether the (G)KS HOMO energy with − IE(M) can be
accurately approximated by the RSH functional with a fixed
value of γ, regardless of the system we are interested in.
Hence, the comparison of (G)KS HOMO energy with
experimental − IE(M) is a good check in determining γOT via
Eq. 55. For that, the calculated negative (G)KS HOMO energies
of a few atoms and molecules for 12 functionals are presented in
Table 10. More detailed results are offered in Ghosal and Roy
(2022a). It suggests that, for all the functionals, these are close to
each other, but a comparison with experimental values indicates
an underestimation of obtained results. The fruitfulness of OT-
RSH functionals can be probed through a quantity designed as,
ϒ = MAE(RSH)/MAE(OT-RSH); this ratio ϒ suggests the
reduction in error relative to its unoptimized counterpart
(fixed γ). Here, MAE signifies the mean average error. Based
on this measure, the five OT functionals from both blocks, for
atoms, can be arranged in the following descending order:
ϒLRCωPBEhot,ϒCAM−PBE0ot,ϒLC−PBEot,ϒLC−BLYPot,ϒCAM−B3LYPot.
However, for molecules, the arrangement is bit different and the
descending order of performance is
ϒLRCωPBEhot,ϒLC−PBEot,ϒCAM−PBE0ot,ϒLC−BLYPot,ϒCAM−B3LYPot.
For easy understanding, a subscript “ot” has been added to
identify the respective OT functionals. It is seen that,
generally, the PBE0 block performs better than B3LYP. Also,
within a given block, LC functionals perform better than CAM.
Perhaps this is because the auxiliary parameters (α, β, ax,sr) may
have some sensitivity during the self-consistent tuning process,
which are kept unaltered. Note that, during optimization of γOT,
its compatibility with other auxiliary parameters should be taken

care of. This is not examined yet and remains a matter for future
investigation. In any case, however, the accuracy of RSH
functionals is always improved by OT-RSH functionals
irrespective of the system or block under consideration.

5.2 Fundamental Gap
We now proceed to report some properties, which are challenging
within DFT, mostly due to the inaccurate description of
employed functionals. With that in mind, the estimated (G)KS
gap along with the experiment (Johnson, 2016) is tabulated in
Table 11 for all functionals for a few illustrative atoms. These are
collected from a detailed report available in Ghosal and Roy
(2022a). It indicates that, for all functionals, these are comparable
to each other except for LC-PBEot. Taking the same measure as
earlier, the five functionals in descending order of performance
are as follows: LRC-ωPBEh+ot, LC-PBEot, LC-BLYPot, CAM-
PBE0ot, and CAM-B3LYPot. On the contrary, if we compare
the MAE, then OT-RSH (LC) functionals seem to do better than
OT-RSH (LRC) and OT-RSH (CAM). As found in the previous
case, here also, CAM-PBE0 tends to be more accurate than CAM-
B3LYP. Thus, these conclusions are in accordance with the earlier
findings. For all species, the overall performance of OT-RSH
functionals is better than that of RSH. Amongst them, LRC-
ωPBEh+ot and LC-BLYPot exhibit excellent performance. Note
that the above calculations are done with a pseudo-valence basis
and SR LDA/GGA exchange. As a result, there is a substantial
prospect of additional improvement, employing an all-electron
basis set, including modern SR exchange functionals.

5.3 Fractional Charge
Another important measure of success of DFT is a proper
description of fractional charge systems. According to the
PWL condition (Perdew et al., 1982), for the ground-state
energy of systems (of M electrons) with fractional number of
electrons (δ), the energy versus δ curve should be a straight line
connecting the values at integer. It can be expressed as

Efrac N( ) � E N( ) − EPWL N( ), N � M + δ,
EPWL N( ) � 1 − δ( )E M( ) + δE M + 1( ), 0≤ δ ≤ 1,
EPWL N( ) � 1 + δ( )E M( ) − δE M − 1( ), −1≤ δ ≤ 0,

⎫⎪⎬⎪⎭ (68)

where E(N) and EPWL(N) define the energy and PWL
interpolation of energy for fractional number of electrons,
respectively. Here, Efrac is a measure of deviation from PWL
behavior. Depending on the choice of range, two different cases
arise; when Efrac < 0, the curve is convex and it is concave for
Efrac > 0. The well-known DFAs meet certain challenges, resulting
in a smooth convex curve, whereas EEX demonstrates reverse
trend. RSH functionals which comprise these two ingredients
have shown improvement in this direction (Mori-Sánchez et al.,
2006).

According to Janak’s theorem (Janak, 1978), for (G)KS
HOMO, the change in ϵHOMO as a function of fractional
occupation number should be straight line. This is then
followed by a finite jump at integer point (due to derivative
discontinuity). After that again, the variation should be a straight
line till the following integer point. With this realization,
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fractional occupation number ni, is introduced in density
(ignoring degeneracy in HOMO and spin indices) as

ρ r( ) �∑
i

ni|ϕi r( )|2, ni
0, i> imax

δ, i � imax

1, i< imax

⎧⎪⎨⎪⎩ , (69)

where imax corresponds to the HOMO level.
In Figure 2, we illustrate the relative performance of OT-RSH

for the C atom as a test case. The pattern in the ranges −1 ≤ δ ≤
0(0 ≤N ≤ 1) and 0 ≤ δ ≤ 1(1 ≤N ≤ 2) is obtained from experimental
IE and EA, respectively. Three respective regions in the upper panel
are 0, ≤ N ≤ 2 (a), 0, ≤ N ≤ 1 (c), and 1 ≤ N ≤ 2 (e), containing
functionals from the B3LYP block, whereas the lower block
corresponds to PBE0 functionals, in panels (b), (d), and (f).
Once again, in all cases, OT-RSH shows its superiority over the
respective RSH functionals. A deeper analysis of panels (c) and (e)
reveals that LC-BLYPot is quite similar to the straight-line behavior
in both regions, and in 1 ≤ N ≤ 2, it performs significantly better.
From panels (d) and (f), it follows that LRC-ωPBEh+ot and CAM-
PBE0ot behave similarly. In region 1 ≤ N ≤ 2, their performance is
very close to the experiment with a tiny overall positive shift in
energy. When two blocks are compared, OT-RSHs (PBE0) seem to
be substantially better than OT-RSH (B3LYP); more precisely, the
CAM-PBE0ot outperforms the CAM-B3LYPot. Based on all these
facts, the five OT functionals can now be organized in declining
order of performance as follows: LRC-ωPBEh+ot ≈ CAM-PBE0ot >
LC-PBEot ≈ LC-BLYPot > CAM-B3LYPot.

6 EXCITATION ENERGIES

DFT has feathers in its cap as regards its application to a vast
array of electronic systems in ground states. However, it suffers
in the case of excited states due to several non-trivial reasons.
In today’s time, the most popular approach with reasonable
negotiation between accuracy and efficiency is the so-called
time-dependent (TD) DFT within the linear response
framework, which is a TD variant of KS-DFT. While it is,
in principle, an exact method, its success mainly lies in the
DFA employed and, specifically, the magnitude to which XC
energies are impacted. Despite its numerous successful
applications, it faces difficulties in characterizing
phenomena such as double excitation, charge transfer, and
Rydberg excitation. Here, we offer a simple route for accurate
calculation of excited states within a time-independent
approach; specifically, we are interested in the ΔSCF
method (Ziegler et al., 1977; Kowalczyk et al., 2011). This
uses a standard SCF iteration with the non-Aufbau occupation
at each iteration using the ground-state functional. From a
computational perspective, it is more convenient than linear
response TDDFT due to its favorable ground-state-like scaling.
Even though it provides a fair enough estimation of excitation
energies, it has a tendency to variational collapse. Several
sophisticated schemes, such as constrained-DFT (Ziegler
et al., 2012; Barca et al., 2014; Ramos and Pavanello, 2016),
methods connected to meta dynamics, and gentlest ascent

dynamics (Li et al., 2015), have been quite popular in
alleviating these issues.

In photo-induced electronic excitation, the lowest singlet
excited energies play a crucial role. In principle, due to its
multi-determinantal nature, the standard DFT cannot be used
on such occasions. However, the calculation of triplet states is
quite straightforward. An economical way to compute optical
gaps within time-independent DFT in large molecules was
introduced lately (Becke, 2016; Becke, 2018a; Becke, 2018b;
Becke et al., 2018). For estimating the lowest single-particle
excitation energies, the basic model employs a term known as
the correlated STS energy. In essence, it involves two independent
single-determinant DFT calculations: one for a closed-shell
ground state and the other for the lowest triplet state with an
open shell. This also requires evaluating a simple 2e− integral
(Coulomb self-energy) related to the HOMO-LUMO transition.
Interestingly, this strategy is free from concerns involved in
standard DFA applied to a triplet excited state, defined by a
single Slater determinant and represented by a Fermi hole. As a
result, the correlated STS energy ΔESTS is the major element that
could possibly be dealt with using 1) the adiabatic connection
theorem (Becke, 2016) and 2) the virial theorem (Becke, 2018a).
In a way, this is altogether a non-empirical approach that
circumvents the configuration mixing.

We employ these aforementioned approaches to find the
excitation energies in molecules by the above approach. The
idea is to apply the FCT in conjunction with CIK to deal with the
relevant 2e− integral numerically. Also, to analyze its suitability
and efficacy, the scheme is adopted to characterize a few
properties in molecules of two different genres. First, we
consider the organic chromophores, which are extremely
significant in nature, showing a photo-luminescence property;
a few prominent examples are photosynthesis (Murata, 1969),
vision (Palczewski, 2012), and bio-luminescence (Navizet et al.,
2011). These materials have wide applications in the development
of unique technologies, such as organic light-emitting devices
(Mitschke and Bäuerle, 2000; Forrest, 2004), fluorescent sensors
(Hou et al., 2015; Li et al., 2016), organic solar cells (Taouali et al.,
2018; Khan et al., 2020), medical imaging (Kundu et al., 2009; Li
et al., 2016), and laser (Chénais and Forget, 2012). Another class
of molecules is charge-transfer (CT) complexes, which form a
distinct class of inter- and intra-molecular compounds. These
molecules are characterized by the presence of a certain low-
energy transition with a relatively strong oscillator strength.
According to Mulliken’s quantum theory (Mulliken and
Person, 1962; Mulliken and Person, 1969), the ground state of
these complexes is typically a resonance hybrid wave function
composed of an interacting donor (D) and acceptor (A) that can
be expressed as the total of the terms, namely, neutral (DA) and
dative (D+ A−, D− A+) states as given in Eq. 70. A partial ground
state charge transfer occurs when an electron is transported from
donor to acceptor (D+ A−) and acceptor to donor (D− A+). Such
complexes have a wave function that looks like (Winget and
Brédas, 2011)

Ψ D,A( ) � aΨ DA( ) +∑
i

biΨ D+,A−( ) +∑
i

ciΨ D−,A+( ). (70)
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Many processes involving electron-transfers mechanism and
molecular conductance rely on these especially characterized
excited states.

6.1 Virial Theorem and Adiabatic
Connection Theorem for Singlet-Triplet
Splitting
Let us consider an excitation of a given system from a closed-shell
ground state with an electronic configuration φiφf. With the
assumption of completely filled core with closed shell, this is
made up of four Slater determinants: |φα

i φ
α
f〉, |φα

i φ
β
f〉, |φβ

i φ
α
f〉, and|φβ

i φ
β
f〉, where α, β denote up and down spins. Therefore,

diagonalization of Hamiltonian matrix in the vicinity of the
above four determinants gives the coupled excited states. The
singlet state is given by |ψS〉 � 1"

2
√ {|φα

i φ
β
f〉 − |φβ

i φ
α
f〉}, and the

three degenerate triplet states, on the contrary, is represented as
follows:ψT � |φα

i φ
α
f〉 or 1"

2
√ {|φα

i φ
β
f〉 + |φβ

i φ
α
f〉} or |φβ

i φ
β
f〉.

The energies of respective singlets and triplets (denoted by “S”
and “T” subscripts) have the form of

ES � Eαβ +Kif (71)
and

ET � Eαα or Eαβ −Kif or Eββ, (72)
where Eσ1σ2 is the energy of a given determinant of form |φσ1

i φσ2
f 〉,

(σ1, σ2) ∈ {α, β}, and Kif is the 2e
− integral (Coulomb self-energy of

product of transition orbitals) defined as

Kif � ∫∫ φi r1( )φf r1( )φi r2( )φf r2( )
|r1 − r2| dr1dr2. (73)

A combination of Eqs. 71 and 72 gives singlet and triplet
excitation energies as follows:

E0S � E0T + 2Kif, (74)
where E0S = ES − E0, E0T = ET − E0 and ground-state energy of the
closed-shell system is denoted by E0. However, the problem in
determining correlated STS energy makes Eq. 74 highly
inaccurate for calculation of E0S. One way to deal with this is

to use the well-known “adiabatic connection” theorem (Harris
and Jones, 1974), which suggests that, in case of single-particle
excitation, the single-triplet energy difference can be expressed in
the form of

ΔESTS � ΔE0
STS + ΔEcorr

ST , ΔESTS � 2Kif + ΔEcorr
ST . (75)

Here, ΔE0
STS is the uncorrelated STS energy and ΔEcorr

ST
represents the difference between singlet-triplet correlation
energies.

Recently, a non-empirical formula (Becke, 2016) has been
proposed to tackle the ΔEcorr

ST term. This is derived from the inter-
electronic cusp condition and the effect it causes to electron
correlation. Consequently, it can be written as

ΔEcorr
ST � −0.4 ∫ 4 φ2

i r1( )φ2
j r1( ) z2C 1 − ln 1 + zC( )

zC
[ ]dr1. (76)

In this prescription, the only unknown quantity is correlation
length zC. This is nothing but the measure of spatial extent of
electron correlation in configuration, φiφf. In the limit of “strictly
correlated electrons,” zC can be expressed in terms of 2e− integral,
Kif, as

0.4z2C ∫ 4 φ2
i r1( )φ2

j r1( ) dr1 � 2Kif. (77)

Moreover, invocation of standard virial theorem to it (Becke,
2018a) allows one to write

ΔEcorr
ST � −Kif. (78)

This surprisingly leads to a further simplification, which reduces
the relation to

ΔESTS � 2Kif − Kif � Kif. (79)
It is to be pointed out here that this is a completely non-empirical
expression of correlated STS energy but a more simplified one,
involving only the 2e− integral.

Therefore, both routes prescribed in Eqs 76 and 79 are entirely
non-empirical, implying ΔESTS to be lower than 2Kif. This leads to
a formal definition of a molecule-independent re-scaling
parameter f such that

TABLE 12 | E0S, E0T, and ΔESTS (in eV) using B3LYP functional. For details, see Ghosal et al. (2021).

Molecule State E0S E0T ΔESTS zC

PR1 PR2 PR3 TD-
B3LYP

(Schmidt
et al.,
1993)

Reference
(Roy et al.,

2019)

TD-
B3LYP

PR3 TD-
B3LYP

Ethylene B1u(π → π+) 7.78 7.63 7.87 8.09 4.47 4.03 3.40 4.06 2.97
Propene A′(π → π+) 7.18 7.05 7.26 7.81 4.44 4.03 2.82 3.78 2.99
1,3-Butadiene (E) B(π → π+) 5.63 5.42 5.70 6.02 3.26 2.71 2.44 3.31 3.29
1,3,5-Hexatriene (E) Bu(π → π+) 4.38 4.14 4.44 4.79 2.42 1.85 2.02 2.94 3.53
1,3-Cyclo-
pentadiene

A′(π → π+) 5.12 5.03 5.17 5.28 3.21 2.70 1.96 2.58 2.98

Thiophene B2(π → π+) 5.61 5.31 5.66 6.02 3.88 3.47 1.78 2.55 3.99
Acetaldehyde A′′(n → π+) 4.67 4.75 4.68 5.07 4.39 4.44 0.29 0.24 1.44
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TABLE 13 | Excitation energies of organic chromophores and linear acenes from “virial theorem.” These are taken from Ghosal et al. (2021).

Orgnaic chromophores

Molecule State E0T (eV) E0S (PR3) (eV) Lit.a (eV)

B3LYP LC-BLYP B3LYP LC-BLYP

Cyclopropene B2(π → π+) 4.03 4.05 7.04 7.07 7.01
Norbornadiene A2(π → π+) 4.62 4.23 5.77 5.45 4.91
Naphthalene B2u(π → π+) 3.22 3.53 4.74 5.20 4.64
Pyridazine B3u(n → π+) 2.76 2.78 3.35 3.34 3.57
Acetamide A′′(n → π+) 5.20 5.15 5.45 5.37 5.46

Linear acenes

Number of rings

2 — 3.24 3.56 4.75 5.22 4.65
3 — 2.22 2.46 3.71 4.43 3.58
4 — 1.55 1.81 2.85 3.41 2.75
5 — 1.08 1.32 2.30 2.96 2.22
6 — 0.75 0.98 1.89 2.50 1.82

aThis corresponds to E0S from Becke (2018a).

TABLE 14 | E0S (in eV) in organic dyes, using B3LYP functional. See Roy et al. (2021) for details.

Molecule State TBE-2 (Silva-Junior
et al., 2010)

TD-B3LYP (B1) PR (B1) TD-B3LYP (B2) PR (B2)

Ethene B1u(π → π+) 7.80 7.99 8.07 7.41 7.71
E-Butadiene Bu(π → π+) 6.18 5.98 6.31 5.58 6.06
Cyclopentadiene B2(π → π+) 5.55 5.20 5.58 4.96 5.38
Norbornadiene A2(π → π+) 5.37 5.03 6.10 4.71 5.62
Naphthalene B2u(π → π+) 4.82 4.50 4.79 4.31 4.63
Imidazole A′(π → π+) 6.25 6.15 7.09 5.11 4.61
Pyridine B1(n → π+) 4.59 3.84 3.71 3.94 3.82
Pyrazine B3u(n → π+) 4.13 3.84 3.71 3.94 3.82
p-benzoquinone B1g(n → π+) 2.74 2.38 2.52 2.44 2.55
Uracil A′′(n → π+) 5.00 4.60 4.52 5.13 5.56

FIGURE 3 | E0Swith different functionals against (A) polyene length and (B) the number of rings. Both panels employ a B1 basis. More details are given by Roy et al.
(2021).

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 92691621

Majumdar and Roy Advances in Cartesian-Grid DFT

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ΔESTS � 2fKif, 0<f< 1. (80)
As long as the de-localization error (Perdew et al., 1982) is not a
serious concern, determining this parameter in a semi-empirical
way might offer overall good quality excitation energies.
Optimization of f through a semi-empirical technique (Becke,
2016) gives the value as 0.486 when the results are fitted using the
best approximated theoretical excitation energy data set of Silva-
Junior et al. (2010). Surprisingly, this is close to the value (0.5)
obtained from a consideration of the “virial theorem.”

Here, the central quantity, Kif, is implemented in a manner
considerably different from the original prescription (Becke,
2016). In place of the multi-center numerical integral
procedure used in Becke and Dickson (1988), we employ an

FCT scheme using an RS technique in CIK. As per the description
in Ghosal et al. (2019), Kif can be recast as

Kif � ∫∫ φi r1( )φf r1( )φi r2( )φf r2( )
|r1 − r2| dr1dr2

� ∫φi r1( )φf r1( )vif r1( )dr1. (81)

Now, the tricky job is to evaluate the vif integral, for which we
employ the RS-FCT procedure once again. This can be further
manipulated as

vif r1( ) � ∫ φi r2( )φf r2( )
|r1 − r2| dr2 � ∫ φif r2( )

|r1 − r2|dr2 � φif r1( )+vc r1( ).
(82)

The last expression involves the convolution integral, where φif
indicates a simple multiplication of ith and fth MO from lowest
triplet excited state, whereas vc(r) signifies the CIK. Further
simplification of this integral can be made using FCT as

vif r( ) � F −1 vc k( )φif k( ){ } where φif k( ) � F φif r( ){ }.
(83)

Here, vc(k), φif(k) represent Fourier integrals of Coulomb kernel
and MOs. Other necessary quantities such as correlation length,
zC, and difference in singlet-triplet correlation energy, are simply
evaluated in the same essence, in real-space grid using pseudo KS
orbitals φi and φf.

6.2 Excitation Energies From Becke’s
Exciton Model
The effectiveness of the above-mentioned approach is presented
through an “SBKJC” type pseudopotential basis set, which is
devoid of any diffused function. Furthermore, the lowest singlet
and triplet excited states in this exploratory study correspond to
the first single excitation for every molecule. Calculations are
pursued with an optimized grid using a similar technique to that
mentioned in previous sections. In this background, E0S and E0T
(in eV), as well as correlated STS terms, are tabulated separately in
Table 12, along with correlation length (zC), for B3LYP
functional. A cross-section of molecules is presented from a
larger set provided in Ghosal et al. (2021); current conclusions
are drawn based on that set. Note that E0S presented here is of
both non-empirical and empirical nature: 1) PR1 uses Eq. 79,
which is a semi-empirical approach with re-scaling parameter f =
0.486, 2) PR2 refers to a non-empirical model from “adiabatic
connection” defined in Eq. 75, and 3) PR3 presents results
obtained from Eq. 78 employing a non-empirical model from
the virial theorem. In columns 6 and 8, corresponding TD-B3LYP
energies (E0S, E0T) calculated from GAMESS (Schmidt et al.,
1993) using the same functional and basis set are presented for
side-by-side comparison. An analysis of E0S suggests that PR3

improves results from PR2. The performance of PR1 is in close
proximity to PR3. Therefore, out of three methods, PR3 proves to
be the best estimate as those are quite competitive with TD-
B3LYP. The next columns provide E0T and ΔESTS for an

TABLE 15 | HOMO-LUMO gap (EL-H), HOMO-LUMO singlet excitation energy in
organic chromophores. PR ≡ present result. Details are available in Roy et al.
(2021).

Linear acenes

Rings EL-H

(eV)
Expt.
(eV)a

TD-
B3LYP (eV)

PR
(eV)

2 4.91 4.66 4.57 4.85
3 3.66 3.60 3.37 3.76
4 2.84 2.88 2.57 2.91
5 2.26 2.37 2.02 2.36
6 1.84 2.02 1.60 1.94

Non-linear PAHs

Phenanthrene 4.84 4.35 4.40 4.76
Benzo[e]pyrene 4.10 3.84 3.87 4.25
Dibenz[a,c]anthracene 3.10 3.95 3.61 4.07
anthanthrene 2.94 2.97 2.92 3.34

Organic dyes

2.22 2.50 2.23 2.44

2.18 1.82 2.11 2.52

2.94 2.26 2.85 2.95

2.96 2.11 2.71 2.78

aExperimental values are obtained from Grimme and Parac (2003) for linear acenes,
Parac and Grimme (2003) for non-linear PAHs, and Kowalczyk et al. (2011) for organic
dyes.
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understanding of the contribution of these terms in calculating
E0S. Though the overall agreement is satisfactory for both E0S and
E0T, the worst performance is observed for propene (relative to
TD-B3LYP). A careful analysis suggests that the major source of
inaccuracy in E0S is the STS term, not E0T. This leads to the
understanding that the success of our method depends on an
accurate estimation of 2e− integrals or, in other words, the
accuracy of triplet states.

In order to validate the usefulness of the proposed method and
enlarge the scope of applicability, some larger molecular systems

are approached in Table 13. Thus, E0S, E0T for some
representative organic chromophores and linear acenes
(Ghosal et al., 2021) are presented. Geometries of these
systems are taken from Silva-Junior et al. (2010), whereas the
same for linear acenes are obtained from GAMESS calculation
using the B3LYP functional and CC-pVDZ basis. In addition to
B3LYP, LC-BLYP from the family of RSH functionals is also
invoked. All the results henceforth refer to the PR3 calculation.
Apparently, the performance of B3LYP is much more consistent
than that of LC-BLYP; the former shows an overestimation in

TABLE 16 | E0S from the present result (PR) and TDDFT (TD) in some CT complexes. NC implies “not converged.” More details are available in Roy et al. (2022).

Weakly bound CT complex TADF exhibiting CT complex

(CT-A) (CT-B)

System PR1 PR2 PR3 TD1 TD2 TD3 Reference System PR1 PR2 PR3 TD1 TD2 TD3 Expt.
(Hait
et al.,
2016)

Hexamethylbenzene-TCNEa NC 1.92 1.92 0.79 1.09 2.74 2.36 (Risthaus et al.,
2014)

2CzPN 2.87 3.06 3.42 2.26 2.85 4.29 3.19

Diphenylene-TCNEb 1.82 3.06 1.96 0.72 0.82 2.63 2.28 (Risthaus et al.,
2014)

4CzPN NC 2.64 3.23 1.84 2.48 4.10 2.82

Hexamethylbenzene-
chloranila

NC 2.09 2.54 0.84 1.30 3.28 2.87 (Risthaus et al.,
2014)

4CzTPN 2.06 2.41 3.35 1.66 2.24 3.75 2.61

Diphenylene-chloranilb 1.87 2.29 2.48 1.24 1.49 3.89 2.81 (Risthaus et al.,
2014)

ACRFLCN NC 2.87 4.48 1.82 2.52 4.75 3.05

DCS 2.87 3.16 3.98 2.69 3.07 3.76 3.59 (Brémond et al.,
2021)

PXZ-TAZ 3.01 3.46 4.32 1.91 2.73 4.60 3.33

DANSa 2.60 2.96 3.84 2.14 2.65 3.64 3.45 (Brémond et al.,
2021)

DPA-DPS 3.25 3.94 5.60 2.81 3.42 4.35 3.53

Coumarin-152 3.81 3.92 4.42 2.96 3.39 4.06 3.72 (Brémond et al.,
2021)

PXZ-OXD NC 3.14 4.39 1.50 2.33 4.33 3.18

aRO-BLYP calculation did not converge in this particular case.
bGAMESS software (Schmidt et al., 1993) was employed as RO-calculation did not converge in Gaussian09.

FIGURE 4 | E0S for C2 H4 − C2 F4 versus R. PR1, PR2, and PR3 denote the present result with BLYP, B3LYP, and LC-BLYP functional, and TD1, TD2, and TD3

represent the same within TDDFT. Adapted from Roy et al. (2022).
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excitation energies. Also, instead of a dramatic one, only a subtle
betterment of results is observed using LC-BLYP. The effect of full
HF exchange at LR has no dramatic effect on excitation energies,
although it enhances the behavior of frontier orbitals used in Kif

computations. This discordance has occurred as γ is assumed to
be independent of system size. It is possible to achieve a greater
level of performance by treating γ as a system-dependent
parameter (functional of ρ) estimated from the first principles
(Baer et al., 2010). It is believed that an optimally tuned (in the
spirit of the size-dependency principle) γ will outperform the
conventional hybrid and RSH functionals in terms of results. An
analogous qualitative trend is also depicted by linear acenes.

6.2.1 Basis-Set Dependence
This section produces optical gaps generated from n → π* and π
→ π* transitions in selected molecules in Table 14. In order to
probe the dependence on the basis set, singlet excitation energies
are reported employing two basis sets, namely, 6-311G (B1) and
6-311 + +G* (B2), both with B3LYP functional. The
corresponding geometries are taken from supplementary
materials of Silva-Junior et al. (2010). All calculations are done
with all-electron orbitals. The energies E0 and ET are calculated
using the GAMESS program package. The triplet calculations
correspond to restricted open-shell. The Kif integrals are
evaluated numerically with our InDFT program (Roy et al.,
2019), taking orbitals from GAMESS. The results are
compared with the “theoretical best estimate” TBE-2 (Silva-
Junior et al., 2010) benchmark values tabulated in column
3 and are comparable. A detailed analysis in terms of MAE
and ME values for a larger set is available in Roy et al. (2021), of
which Table 15 is a subset. Now, similar to our previous
conclusion, these results are also comparable with TD-B3LYP
energies; in fact, the ones with B2 are in better agreement (Roy
et al., 2021). This reflects the basis set dependency of these
quantities. It is also delineated by Roy et al. (2021) that TD-
B3LYP significantly underestimates the excitation energies from
the current procedure.

6.2.2 Dependence on XC Functional
Next, in Figure 3, we investigate the functional reliance of the
present approach. In this regard, in left and right panels, E0S for
polyenes and linear acenes with three different functionals,
namely, B3LYP, ωB97X, and CAM-B3LYP, are plotted with
respect to polyene length and the number of rings. These
three functionals have a variable amount of EEX contribution
throughout the inter-electronic distance. This study aims to
demonstrate the role of EEX in determining the optical gap in
systems with reduced HOMO-LUMO gap. When the chain
length (or rings) increases, the gap squeezes. As one moves
from panels (a) to (b), the optical gap exhibits a similar
pattern. This feature is well reproduced by all three
functionals, but when compared to TBE-2 (Silva-Junior et al.,
2010), B3LYP outperforms all of them. Specifically, ωB97X
deviates most from reference, followed by CAM-B3LYP. The
impact of EEX in the LR region is less important; rather, an
appropriate balance between EEX and correlation is required
throughout the inter-electronic distances. This is consistent with

the fact that, unlike Rydberg and CT excitations, the optical gap
has no LR feature. According to Becke (2018b), the optimal
contribution of EEX is around 21%; thus, the success of B3LYP
over CAM-B3LYP and ωB97X is easily understandable. When
comparing CAM-B3LYP with ωB97X, the former wins as EEX’s
contribution in SR is still minor when compared to ωB97X.
However, the system-independent value of the RS parameter in
ωB97X and CAM-B3LYP fails to induce the size dependency of
the optical gap problem, implying that this size-dependency
component is necessary in the parameter. Overall, the present
method shows sensitivity toward EEX contributions in SR
(rather LR).

6.2.3 Optical Gaps in Organic Chromophores
Now, we explore a few applications pertaining to the
photoluminescence effects in organic chromophores. This
requires a detailed account of low-lying excited states. In this
regard, the HOMO-LUMO gap (EL−H) and E0S for a few
representative linear and nonlinear poly-cyclic aromatic
hydrocarbons (PAH) and organic dyes (comparatively difficult
systems) from Roy et al. (2021) are tabulated in Table 15.
Geometries for the organic dyes are supplied by Kowalczyk et al.
(2011). These correspond to B3LYP/cc-PVTZ calculations. Along
with the calculated excitation energies, experimental and TD-B3LYP
results are also presented here. The consistency in overall
performance is quite encouraging. A careful analysis (Roy et al.,
2021) shows that PR is comparable with TD-B3LYP for both PAHs
and organic dyes. While excitation energies calculated with TD-
B3LYP shows systematic underestimation, the present scheme, in
contrast, shows an overestimation consistently, which follows Becke
(2018a). For organic dyes, while the efficiency of TD-B3LYP is
superior to the current approach, the inaccuracy is more consistent
in the latter. Note that the energies obtained for organic dyes have
shown sensitivity toward the chosen basis set.

6.2.4 Charge-Transfer ExcitationWithin a Hybrid (G)KS
Framework
The working equation on this occasion is Eq. 79. The respective
single-point energies (E0 and ET) are obtained from conventional
DFT calculations usingGaussian 09 package (Frisch et al., 2016). Full
calculations are performed with the cc-PVTZ basis set employing
BLYP, B3LYP, and LC-BLYP functionals. Similar to the previous
case, Kif integrals are accomplished using InDFT (Roy et al., 2019).
Two different kinds of CT complexes are chosen, which are relatively
hard to deal with numerically. First, we consider weakly bound CT
complexes (first four molecules of CT-A of Table 16). They are
bounded with non-covalent bonds of length in the range of
3.2–3.6 Å, making them quite attractive and challenging. A set of
intra-molecular CT complexes is also studied (last three of CT-A).
Finally, we look at some harder organic compounds (presented in
column CT-B) that display thermally activated delayed fluorescence
(TADF). The geometry of these molecules is sourced from the
supplementary materials of Hait et al. (2016). InTable 16, excitation
energies, PRn, calculated from the current scheme and TDn referring
to the same with TDDFT, are presented. Here, subscript “n”
symbolizes three XC functionals; n = 1, 2, 3 stands for BLYP,
B3LYP, and LC-BLYP. For comparison, literature/experimental
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results are also provided side by side. Now, energies from restricted
open shell or unrestricted calculations are reported as per
convergence; we have taken this liberty as the difference between
these two calculations is not significant enough to bring any
perceptible change in excitation energy (Roy et al., 2022). As we
shift from BLYP to LC-BLYP via B3LYP for both PR and TD, a
general trend of increment in excitation energy is noticed in both CT
complexes. An in-depth examination indicates that, for molecules in
CT-A, the impact of Kif gets dominated by E0T for all the XC
functionals considered here. Thus, in the framework, to a large
extent, E0T determines the observed trend in E0S. However, for
systems inCT-B, there is noway to determine a prioriwhichwill be a
dominant factor between E0T and Kif for a given case. Therefore, for
systems with E0T dominance over Kif, B3LYP performs better than
RSH functionals, but when their contributions are comparable, the
mutual cancellation of these determines the excitation energy.

Finally, we proceed to investigate the asymptotic limit of CT
excitation in some weakly interacting systems, characterized by R−1

energy decay (R is inter-molecular separation). This study also
intends to exploit the perseverance of the present scheme
throughout R. With this in mind, in Figure 4, the excitation
energy of an inter-molecular dimer C2H4 − C2F4 is depicted as a
function of R for functionals that have already been mentioned.
Results are compared with configuration interaction singles (CIS)
(Foresman et al., 1992) which may be a benchmark. For the entire
region, all the PRn(n = 1–3) energies are in admissible accordance
with CIS, without any substantial difference between them.
However, this is not true for TDn(n = 1–3) results. They remain
distinctly separated. TD3 offers overestimation from CIS, whereas
the other two record underestimation. Note that the B3LYP result
(Feng et al., 2018) within the “virial theorem” model slightly
overestimates CIS for the entire region of R, whereas PR2
energies are underestimated. This lean disparity perhaps is
introduced from two separate numerical strategies used for the
calculation of Kif. In contrast to the present approach, TDDFT
appears to be more sensitive to R and shows CT breakdown.
Surprisingly, TD3 appears to provide the poorest result. This is
mainly due to the system independence of γ. The invocation of a
size-dependent γ possibly can partly alleviate this problem.

7 FUTURE AND OUTLOOK

Wehave exhibited the legitimacy and viability of the Gaussian-based
LCAO-MO approach to DFT involving CCG in the context of
atomic and molecular properties. A wide variety of atoms and
molecules are used as test beds to examine the efficacy of CCG
in the context of μ, α, β with an optimized FF procedure.
Comparison with existing theoretical and experimental data
vouch for its suitability and effectiveness. The feasibility and
practicability of a direct NR approach for coupling accurate
exchange energy density, which is a key component of hyper-
type of functionals, energy, and matrix in real-space CCG, is
discussed. This was done for a variety of atoms and molecules,
with properties including total energy and orbital energies. These
were also shown for B3LYP, PBE0, and BHLYP hybrid functionals.
The effectiveness of this strategy is reliant on the precise estimation

of ESP integral, which in turn, depends on the optimization of the RS
parameter in CIK. The scaling suggests that this approach could be
very useful in massive large-scale DFT calculations incorporating
orbital-dependent functionals. Most importantly, within the CCG,
the NR scheme appeared to be more proficient than the alternative
SNR-OS technique. Carrying forward the success of this approach,
in the following segment, the suitability and performance of a self-
consistent systematic optimization procedure for OT-RSH
functionals are presented. Their performance was assessed by
probing properties such as frontier orbital energies, fractional
occupation of electron on HOMO, and fundamental gap. For
finite systems, the predominance of OT-RSH functionals is
observed over the respective RSH functionals. The success of this
method relies on the precise estimation of γOT based on the size-
dependency principle.

We then move to the realm of excited states (within a time-
independent scheme) and detail the practicability and
convenience of a simple yet accurate TIKS-DFT approach, to
calculate single excitation energies in a realistic manner. This was
tested for a host of linear acenes having π network, organic
chromophores, linear acenes, and charge-transfer complexes. The
derived results from the virial theorem are in appreciable
accordance with reference results for all species. This simple
scheme has been exhibited as a feasible choice for predicting
optical gaps in organic chromophores. The above-mentioned
outcome of the CCG method encourages us to use more
effective core potential, more elaborate and sophisticated basis
sets, and superior quality density functionals (e.g., RSH, hyper,
and local hybrid XC functionals) to study different
physicochemical aspects of many-electron systems. It might
likewise be alluring to inspect its performance in a variety of
exciting configurations apart from the lowest excited state. This
approach could be highly beneficial in real-time dynamical
approach, especially laser-molecules interactions in the intense
domain within the TDDFT framework. In this pursuit, early
results have very recently got published in Ghosal and Roy
(2022b). In this article, the application of an intense laser field
on electron dynamics of H2 and N2 molecules has been
performed using real-time TDDFT. Moreover, other than
single-point calculations, it would also be interesting to assess
the merit and suitability of the current method for geometry
optimization of molecules in CCG. A significant concern would
be to reduce the computation cost by invoking a linear scaling
technique. Some of these works are presently being scrutinized.
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