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Development of safer drugs based on epigenetic modifiers, e.g., histone

deacetylase inhibitors (HDACi), requires better understanding of their effects

on cardiac electrophysiology. Using RNAseq data from the genotype-tissue-

expression database (GTEx), we created models that link the abundance

of acetylation enzymes (HDAC/SIRT/HATs), and the gene expression of ion

channels (IC) via select cardiac transcription factors (TFs) in male and female

adult human hearts (left ventricle, LV). Gene expression data (transcripts

per million, TPM) from GTEx donors (21–70 y.o.) were filtered, normalized

and transformed to Euclidian space to allow quantitative comparisons in 84

female and 158 male LVs. Sex-specific partial least-square (PLS) regression

models, linking gene expression data for HDAC/SIRT/HATs to TFs and to

ICs gene expression, revealed tight co-regulation of cardiac ion channels

by HDAC/SIRT/HATs, with stronger clustering in the male LV. Co-regulation

of genes encoding excitatory and inhibitory processes in cardiac tissue

by the acetylation modifiers may help explain their predominantly net-

neutral effects on cardiac electrophysiology. ATP1A1, encoding for the

Na/K pump, represented an outlier—with orthogonal regulation by the

acetylation modifiers to most of the ICs. The HDAC/SIRT/HAT effects were

mediated by strong (+) TF regulators of ICs, e.g., MEF2A and TBX5, in both

sexes. Furthermore, for male hearts, PLS models revealed a stronger (+/-)

mediatory role on ICs for NKX25 and TGF1B/KLF4, respectively, while RUNX1

exhibited larger (-) TF effects on ICs in females. Male-trained PLS models

of HDAC/SIRT/HAT effects on ICs underestimated the effects on some ICs

in females. Insights from the GTEx dataset about the co-expression and

transcriptional co-regulation of acetylation-modifying enzymes, transcription

factors and key cardiac ion channels in a sex-specific manner can help inform

safer drug design.
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Introduction

Over the last decade, large-scale annotated biomedical
data collections, have been assembled, such as the genotype-
tissue expression (GTEx) dataset (1–3), combining RNAseq
and other technologies to enable discovery of molecular
mechanisms of human disease with unprecedented throughput.
Transcriptomics data can be linked to subject’s demographics
and other characteristics, and molecular relationships can be
parsed by sex, age, and tissue context. Now, these resources are
being leveraged to estimate safety risk for drugs and to predict
the outcomes of clinical trials (4–6), in hopes to reduce cost, time
for drug development and potential side effects. Such analyses
using the GTEx data have brought awareness to tissue specificity
(1), cell specificity (7) and the impact of sex on key molecular
pathways and transcriptional control mechanisms (7–10). For
example, the GTEx dataset has been useful in identifying
heart-specific genes implicated in pathologies, and in exploring
cardiac tissue-specific relationships and regulators as well as
transcriptome-wide differences between the ventricles and the
atria (8, 9, 11–16). Such unique cardiac targets can be useful in
designing new and safer therapies. Furthermore, transcriptional
principles of ion channel co-expression, underlying bioelectrical
stability (lower risk of early afterdepolarizations and other
arrhythmias), have been uncovered using the GTEx data from
the left ventricle (LV) and validated in vitro using human
induced pluripotent stem-cell-derived cardiomyocytes, iPSC-
CMs (14).

Avoiding cardiotoxicity is a critical consideration in drug
design. Cardiotoxicity is at least in part due to side effects
of drugs on key cardiac ion channels (directly modulating
their function, affecting their transcription or trafficking), thus
leading to increased arrhythmia risk (17). Prior failed drugs
and recent computational data stress the need for addressing
diversity in responses. For example, a drug-response risk
classifier trained on male data underpredicts arrhythmia risk
in females (18). Hormonal effects are now believed to only
partially explain sex differences in these functional responses,
as the GTEx data analysis has revealed that about 37% of all
genes (majority of these autosomal) exhibit sex-differential gene
expression in at least one tissue, including in the LV of the
heart, where over 1,300 genes have differential sex expression
(7). Importantly, among the most sex-differentially expressed
genes are those involved in ion transport processes and response
to drugs, including ion channels and CYP enzymes (6, 7, 19).
Furthermore, sex differences in gene expression in the heart
(8, 9, 20) include differences in the expression of epigenetic
modifiers, in chromatin accessibility and the related regulatory
networks (21, 22). Even when sex differences in transcription are
not dramatic, the cumulative effect of these at the system level
can be functionally impactful because of the differential effects
on multiple key regulators, including cardiac transcription
factors (10).

Here we consider the relationship between a class
of acetylation modifiers (with histone and non-histone
action) and key cardiac ion channels, defining excitation,
repolarization, calcium handling, and cell-cell coupling in the
heart’s LV. These include histone deacetylases (HDACs and
sirtuins, SIRTs) acting as “acetylation erasers” and histone
acetyltransferases (HATs) acting as “writers,” which operate
to balance chromatin acetylation state and accessibility for
transcription factors to regulate gene expression (23) (Figure 1).
Sirtuins, SIRTs, represent a sub-class of HDACs with NAD+
dependence, therefore, linking metabolism to post-translational
modifications. In general, decreased action of HDACs and
SIRTs tilts the balance to increased acetylation, a more open
chromatin state and increase in transcription of certain
genes (apoptosis and other growth control processes being
among the most affected ones), of particular importance in
anti-cancer strategies. HDACs and HATs are also known
to have important non-histone related functions, including
acetylation of cytoplasmic proteins and subsequent effects on
multiple cellular processes (24, 25). HDAC inhibitors (HDACi)
have emerged in the last two decades as a novel anti-cancer
therapy, with four of them FDA approved and several hundred
clinical trials on the way (26, 27). Early analysis of safety
(from clinical trials) (28, 29) and in vitro work with human
iPSC-CMs (30–32) indicates that overall HDACi are relatively
safe, with few adverse events, including arrhythmias, more
prevalent for non-selective HDACi, e.g., panobinostat and
vorinostat, and less prevalent for selective inhibitors, such
as entinostat. Therefore, the identity of the HDACis and
their specific targets among the cardiac electrophysiology key
players are of high importance in achieving safer therapeutics.
Beyond initial animal studies that have established select
engagement of cardiac transcription factors (TFs) upon HDACi
application and their role in controlling ion channel (IC) gene
expression in the heart (32, 33), a more comprehensive model
linking HDACs/SIRTs/HATs to ion channel transcription in
the human heart via the action of cardiac TFs (33–35) is
highly desirable.

Our objective was to use the GTEx RNAseq dataset to
construct simplified computational models linking these classes
of gene regulators, and to investigate if sex-specific differences
exist. We chose partial least-square (PLS) regression modeling
(36–38) to quantify the relationships in female and male hearts.
Projection of the many master regulators into a reduced-
dimension latent structures through PLS helps to elucidate
co-regulation mechanisms of cardiac electrophysiology by these
histone modifiers and to identify potential key mediators
among the cardiac TFs. The exponential rise of publicly
accessible human transcriptomics datasets can yield continuous
refinement of such models for better stratification of drug
action. Such models can help understand the specific effects of
acetylation modifiers on the heart and guide the design of safer
anti-cancer therapeutics, minimizing cardiac effects, or help
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FIGURE 1

Study design outline and processing steps. Using the GTEx database to inform PLS regression models of the effects of acetylation modifiers
(HDACs, SIRTs, HATs) on cardiac ion channels via key TFs in the adult male and female left ventricle (LV). (A) LV bulk RNAseq data from 84 female
and 158 male adults were used from the GTEx dataset. (B) The performed analysis examines how the balance of HDACs, SIRTs, and HATs may
affect cardiac ion channel transcription in a sex-dependent manner. HDACs and SIRTs counter the action of HATs, which acetylate chromatin
thus increasing its accessibility for key cardiac TFs to act on genes of interest; they also have non-histone actions, including acetylation of
cytoplasmic proteins, direct binding to, acetylation of transcription factors, effects on oxidative stress, anti-viral action etc. HDACs, SIRTs, and
HATs negatively or positively regulate the effects of TFs and consequently change the expression of cardiac ion channels. (C) Parts of panel B
were generated using Biorender.com. Processing pipeline: Starting with 689 donors in the GTEx v.8 dataset, after filtering and transformations,
242 donors were used for correlation and PLS regression analysis. The processing steps include TPM filtering based on GAPDH levels to yield
similar normal distributions and a log-ratio transformation from simplex to Euclidian space.

targeted HDACi design for cardiac use to purposefully augment
cardiac function.

Materials and methods

Classes of human genes in the models

The human genes analyzed here are listed in Table 1. These
included the four classes of histone deacetylases, HDACs, for
a total of 18: class I (HDAC1, 2, 3, and 8), class IIa (HDAC4,
5, 7, 9), class IIb (HDAC6 and 10), class III (SIRT1 to 7) and
class IV (HDAC11); 15 key histone acetyltransferases HATs,

including EP300; 19 cardiac transcription factors (TFs) and 10
genes encoding proteins that form key cardiac ion channels, ICs.

Sourcing the data From GTEx v.8

The analyses are based on the use of study data
obtained from the dbGaP web site, under dbGaP accession
number phs000424.v8.p2 (GTEx).1 Expression levels
in transcripts per million (TPM) derived from RNA-
seq data were downloaded on 08/28/2020 as a single

1 https://gtexportal.org/home/datasets
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TABLE 1 Genes considered in the models.

HDACs (11) HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, HDAC9, HDAC10, HDAC11

SIRTs (7) SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7

HATs (15) KAT2A, KAT2B, HAT1, ATF2, KAT5, KAT6A, KAT6B, KAT7, EP300, CREBBP, NCOA1, NCOA3, TAF1, GTF3C1, CLOCK

TFs (19) FOXO1, FOXO3, GATA4, GATA6, HIF1A, KLF4, KLF5, MEF2A, NFAT5, NFKB1, NKX25, NOTCH1, RUNX1, SHMT2, SOD1, TBX5, TGFB1, TRIM28, YY1

ICs (10) SCN5A, CACNA1C, KCNH2, KCNQ1, KCNJ2, ATP1A1, SLC8A1, ATP2A2, RYR2, GJA1

file combining all body sites and cell types from the
GTEx database. From this file, 324 TPM datasets of
samples (103 female and 220 male samples) obtained
from heart left ventricle (LV) were extracted based on
accession numbers listed in the de-identified, open access
version of the sample annotations available in dbGaP
(GTEx_Analysis_v8_Annotations_SampleAttributesDS,
downloaded on 08/28/2020) (see text footnote 1). The
subjects age, gender and additional phenotype features
were obtained from the de-identified, open access
version of the subject phenotypes available in dbGaP
(GTEx_Analysis_v8_Annotations_SubjectPhenotypesDS,
downloaded on 08/28/2020) (see text footnote 1). Subjects
range in age between 20 and 71 y.o. These RNA-seq libraries
were generated using non-strand specific, polyA-based
Illumina TruSeq protocol and sequenced to a median
depth of 78 million 76-bp paired-end reads. Annotated
gene expression was obtained using genome reference
Homo_sapiens.GRCh38.79.gtf.

Data preprocessing

As indicated in Figure 1, TPM values were filtered,
normalized and transformed before analysis. The large scale
of the GTEx project and the span over a decade implies
continued optimization of the sequencing technology and
sample handling. Thus, the dataset contains samples of variable
quality, mostly influenced by the timing of death with respect
to sample processing (39). In addition to the quality control
applied by the consortium, we chose to filter the data by
GAPDH levels (leaving samples with 500–2,500 TPMs in
GAPDH)- a prominently expressed gene that is usually a good
indicator of sample dilution and quality. The aim was to
exclude outliers in both the female and male samples and to
yield close to normal distribution in both (see Figure 1 and
Supplementary Figure 1).

The RNAseq TPM data, used in this study, are
compositional data, referenced with respect to the whole
transcript/library size. As such, they exist in simplex/Aitchison
space (40, 41). To allow derivation of quantitative relationships
and obtain meaningful comparisons, correlations and distance
measures, a transformation into Euclidian space was necessary
and it was done by normalization using the geometric
mean and log-ratio representation. Two more outliers were

removed based on a preliminary PLS model, trained within
the normal range of GAPDH, based on extreme outlier scores
(Supplementary Figure 2). The remaining 242 samples were
normalized by the geometric mean and log scaling (Eqs. 1
and 2) (40, 41) (Figure 1) and used in the further analyses.

( n∏
i = 1

xi

) 1
n

= n√x1x2...xn (1)

log10
xi(∏n

i = 1 xi
) 1

n
= log10

(
xi

n
√

x1x2...xn

)
(2)

Correlation analysis

The samples were analyzed in 3 blocks of relationships
(HDACs, SIRTs, HATs to ion channels), (HDACs, SIRTs, HATs
to TFs) and (TFs to ion channels) (Figure 1). Pearson’s
correlations Eq. 3 (x, y representing the correlated variables, n—
number of samples) were calculated for each one of these blocks
and potential relationships visualized for the female and male
samples, as shown in Figures 2, 3, 4.

rxy =

∑n
i = 1 (xi − x)(yi − y)√∑n

i = 1 (xi − x)2
√∑n

i = 1 (yi − y)2
(3)

Clustering of the genes in Figures 2, 3 was done using the
clustergram function in the python library seaborn. The average
and Euclidean were used for the linkage method and distance
metric. The algorithm used in the seaborn implementation is
described in Bar-Joseph et al. (42).

Partial least squares analysis

Three types of PLS models were trained in MATLAB and
Python on the female data and the male data separately. The
only differences between the two platforms are the methods
employed to execute PLS: MATLAB uses nonlinear iterative
PLS (NIPALS) while the sklearn library uses the statistically-
inspired modification of PLS (SIMPLS). Both methods produced
similar results. When using PLS it is important to use the correct
number of components. Once the model was trained, prediction
was calculated using Eq. 4, where X and Y are the input
and output variable vectors, B is the Beta-coefficient matrix
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FIGURE 2

Analysis of links between acetylation modifiers (HDACs, SIRTs, and HATs) and key cardiac ion channels based on transcription. (A) Pearson’s
correlation of ion channels with HDACs, SIRTs, and HATs for female (left) and male (right) LV heart samples. Positive/negative correlations are
coded in green/red and shaded by their strength. The top correlation matrices are grouped using agglomerative clustering which generates the
linkages. The unorganized correlation coefficients are on the bottom (B). PLS regression models for female (orange) and male (blue) samples.
Inset in (B) shows the models being investigated. The results are presented in biplots for the PLS model inputs (left) and model outputs (right).
The biplots are projections of the model parameters onto the space of the first two latent variables of the constructed 4-latent-variable PLS
models; shown are also the % variance explained for each latent variable. All biplots represent the average results from 1,000 Monte Carlo PLS
runs with random selection of training and testing samples (with the testing samples representing 10%). Proximity in angle between the lines for
the model variables indicates co-regulation/similarity of action; the size of the lines signifies the importance of the variable in the shown
projection. For example, ATP2A2 is strongly influenced by the histone modifiers and is mainly represented in component 1 in the male and the
female models (right panels). Positive co-regulation by SIRT 3, 4, and 5 and negative co-regulation of SIRT 6 and 7 on cardiac ion channels are
strong in both the female and male models (left panels) (see text for more interpretations).
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FIGURE 3

Analysis of links between acetylation modifiers (HDACs, SIRTs, and HATs) and key cardiac TFs. (A) Pearson’s correlation of TFs with HDACs,
SIRTs, and HATs for female (top) and male (bottom) LV heart samples. Positive/negative correlations are coded in green/red and shaded by their
strength. The linkages in the top clustering’s were created using agglomerative clustering. (B) PLS regression models for female (orange) and
male (blue) samples. Inset in B shows the models being investigated. Shown are biplots for the PLS models—constructed as described in
Figure 2.
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calculated by PLS. Choosing the correct number of components
can be found using cross-validation, percent variance explained,
and predicted residual error sum of squares (PRESS). Leave-
One-Out Cross Validation (LOOCV) was first used to find the
number of components. Next PRESS was performed to confirm
this finding. PRESS was calculated as per Eqs 5. The number of
components settled on was 4, as it explained the most variance
(over 70% for the various models) while keeping the model
simple to prevent overfitting (see Supplementary Table 1).

Ŷ = BTX (4)

PRESS =
∣∣∣∣Y− Ỹ

∣∣∣∣2 (5)

Visualization by biplots

The results are presented in biplots for the PLS model
inputs and model outputs. In all cases, the biplots represent
the average results from 1,000 Monte Carlo simulations (see
below). The biplots are projections of the model parameters
(PLS “loadings”) onto the space of the first two latent variables
of the constructed 4-latent-variable PLS models. The biplots
also indicate on the axes the % variance explained for
each of the first two latent variables. For all models, the
first two latent variables explained > 50% of the variance.
Proximity in angle between the lines for the model variables
indicates co-regulation/similarity of action; the magnitude of
the lines signifies the importance of the variable in the
shown projection.

Consideration of potential
confounding factors and dimension
reduction uniform manifold
approximation and projection

Using phenotypic information about the GTEx samples,
we considered several potential confounders to our female—
male analysis, including age, BMI, quality index RIN, and
total ischemic time, SMTSISCH. By feeding HDACs, SIRTs,
HATs, TFs, Ion Channels into uniform manifold approximation
and projection (UMAP), a dimension-reduction visualization
(43), the samples became embedded in a 2D space and
were plotted and colored by the potential confounders.
The factor that appeared to systematically influence the
clustering was the total ischemic time as shown in Figure 5A.
Therefore, we performed a histogram matching for the
female and male samples based on SMTSISCH, and built
a “reduced” male model to compare to the female, as
explained in the Results.

Monte Carlo modeling and analysis of
male and female differences

Monte Carlo Cross-Validation (MCCV) was used for all PLS
models, typically 1,000 runs were done with random assignment
of training and testing samples (with 10% holdout for testing).
This applies for the results shown in Figures 2, 3, 4. MCCV
was also used to examine differences in the models trained on
male and female samples, as shown in Figure 5. By randomly
training n numbers of models a possible distribution of models
was created. PLS was performed 1,000 times on either the male
or female samples. The male and female data was split into
training and test sets with a random 10% holdout. After the
split, PLS models were trained. The average B-matrix, scores,
and loadings were calculated and plotted, and the data used for
generation was stored for later use. Subsequently, two more tests
were performed using the different inputs and outputs blocks.
Each input and output block were analyzed to uncover features
of regulation in finer detail.

Three tests to examine the differences between male and
female samples were performed. Not all PLS model types were
used to analyze the differences. The only relations examined
were HDACS, SIRTs, HATs predicting ion channels. The first
approach involved “male-trained, female tested models.” A
model was created using only male samples for training (from
the 158 male samples, 84 random samples were selected, of
which 10% were used for holdout). With the 76 remaining
male samples, a PLS model was trained. The beta matrix
was obtained from this model, which is used to calculate
the predictions. The errors were calculated as [prediction –
actual] so that underpredictions would generate negative errors
and over predictions—positive. Previous steps were repeated
1,000 times with a new random hold out. For the next
model a reduced data set was used using the same method.
The dataset was reduced to control for the potential error
introduced with ischemic time, as seen in Figure 5A. Once
a bin width was chosen samples were removed randomly
from the males within that bin until the number of samples
in male and female matched. The third approach involved
“mixed-trained, mixed-tested models.” After selecting 84 male
samples, they were mixed with the female samples. This left
two sets of 84 samples with equal numbers of male and female
in each. This model was created to test if the relations are
due to random sample bias. Both procedures are visualized in
Figure 5C.

Beyond individual influence on ion channels, the potential
effect on ion channel groupings were examined. These effects
were calculated by taking the mean of the beta matrix
coefficients for a desired ion channel group. The groupings
analyzed were Depolarization (SCN5A, CACNA1C, SLC8A1),
Repolarization (KCNH2, KCNQ1, KCNJ2, ATP1A1), Net
(Depolarization—Repolarization), Resting membrane potential
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FIGURE 4

Analysis of links between cardiac TFs and key cardiac ion channels. (A) Pearson’s correlation of key ion channels with cardiac TFs for female
(left) and male (right) LV heart samples. The ranking of the TFs is done based on sum of correlations (from predominantly positive to
predominantly negative) from left to right. These ranking yields slightly different order for female and male samples. (B) Bar plots show the
cumulative correlation of individual ion channels with each TF for female, male samples, and the final plot shows the overlaid impacts of TFs on
ion channels for female and male samples to reveal any differences. (C) PLS regression models trained with the TFs predicting ion channels for
female (orange) and male (blue) samples. Inset in B shows the models being investigated. Shown are biplots for the PLS models—constructed as
described in Figure 2.
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FIGURE 5

Monte Carlo (MC) simulations to examine the predictive power of male-trained PLS models when applied to female data. (A) UMAP embedding
(dimension reduction) was used to visualize the samples in 2D space, when considering all HDACs, SIRTs, HATs, TFs, and Ion Channels. This
representation showed strong role for the total ischemic time (SMTSISCH, colored) in the separation of samples. (B) To eliminate the effects of
SMTSISCH as a confounder in the sex-difference analysis, a histogram matching was performed—the histograms show the before and after
reduction of the set of male samples to match the female samples based on total ischemic time. (C) (Left) Details on the MC model runs and
estimation of errors for male-trained, female-tested PLS models linking histone acetylation modifiers to cardiac ion channels in the LV. Two
types of male models (matching the sample size of the female set, 84) were constructed—“original” with randomly selected 84 male samples
and “reduced” (with histogram matching for SMTSISCH). (Right) Details on the construction of MC mixed models—trained on mixed data and
tested on mixed female-male data. By mixing male and female, the model will have seen both samples and predict both well, assuming that the
training samples represent the actual distribution of male and female samples. (D) From the 1,000 runs, the total errors were stored and
displayed in histograms for the three types of models depicted in D, respectively. Note systematic shifts in errors in D from the zero-mean
center. Left shift (to more negative error values) indicates underestimation of effects by the created PLS model for the respective variable. (E)
Ashman’s D coefficient (measure of bimodality, or how distinct the two populations of errors are) was calculated for each of the model results
and displayed on the bar plot; higher Ashman’s D values indicate better separability.
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(KCNJ2, ATP1A1), Calcium Handling (ATP2A2, RYR2, SLC8A1,
CACNA1C), and Coupling (GJA1). The coefficients used in
these calculations were from two PLS models using all the
samples (HDACs, SIRTs, HATs to Ion Channels and TFs to Ion
Channels). From these Beta matrices the coefficients for a given
group were averaged and then plotted using the seaborn library
function barplot. The results of these calculations are seen in
Figure 6.

Figure 7 was generated using the Sankey figure from the
python library plotly. A new PLS model was trained in python
using the 4 components. All samples were used to obtain the
Beta Matrix used in the plot. Once the models were trained
on male and female separately, the Beta Matrices were used for
the coloring and generation of the plot. Since the scale of some
coefficients in the Beta Matrix were large, it overshadowed the
overall effect of most of the HDACs on TFs and TFs on Ion
Channels. To mitigate this the MaxAbsScaler function from the
library sklearn was used to scale the values of each gene between
−1 and 1 without shifting the center, which preserves the sign
of the effect. The weight and color of the lines were generated
using the scaled data.

Statistical analysis

The Ashman’s D coefficient was used to examine if the two
distributions of errors are part of the same distribution. For the
two distributions to be separable the coefficient must be greater
than 2. Ashman’s D coefficient is calculated using Eq. 6 (44).

D = (2
1
2 )
|µ1 − µ2|√

σ2
1 + σ2

2

(6)

Results

Genes involved in the effects of
histone acetylation modifiers on
cardiac electrophysiology via key
cardiac transcription factors

In this study various acetylation modifiers were considered:
all HDACs, including class III, sirtuins, SIRTs; as well as key
HATs (Table 1). From the 1,500+ human transcription factors,
previously a subset has been identified as “cardiac TFs,” of
which we considered 19 that have been implicated in control
of electrophysiological processes in the heart (33–35). From
the extended list of genes known to encode proteins relevant
to cardiac electrophysiological processes in the LV, sometimes
called the “rhythmonome” (14), we focused on the ten key
genes controlling the depolarization—repolarization balance,
the resting membrane potential, calcium handling and cell-cell
coupling in the LV human heart (Table 2). The reductionist

approach here—to choose 19 TFs and 10 ICs out of a bigger
set was based on prior knowledge of their importance in
cardiac electrophysiology but mostly dictated by the sample
size available. Using standard PLS-R, we deliberately kept the
number of variables lower than the number of samples. In
doing so, important TFs and ICs may have been omitted; a full
transcriptome PLS-R would require modified algorithms.

Linking acetylation modifiers and key
cardiac ion channels based on
transcription

Hierarchical clustering of female and male correlation
coefficients (Figure 2A), separates approximately 3 groups
of negatively, weakly, and positively correlated epigenetic
modifiers, i.e., HDACs and HATs, in relation to the select 10
cardiac ion channels (Table 2). Many of these correlations
are further corroborated by the results of PLS regression
modeling on the transcriptomics data from female and male LV
tissues (Figure 2B).

In female and male LVs, the strongest negative regulators
of cardiac ion channels appear to be similar for the two
sexes—HDAC7, HDAC10, SIRT6, SIRT7, and KAT2A, based
on correlations of gene expression. However, the strongest
positive regulators are different in female and male LV. For
male hearts, these positive regulators are mostly HATs (GTF3C1,
KAT5, HAT1, CLOCK, and EP300) plus HDAC8. In the female
hearts, SIRT3, SIRT4, and SIRT5 along with HDAC9 exhibit
the strongest positive regulation, in addition to KAT7 and
KAT2B. The mitochondria-localized SIRT3, SIRT4, SIRT5 act
together, displaying very close (positive) relationships to the
ion channel expression in both sexes. In contrast, the nucleus-
localized SIRT6 and SIRT7 display strong negative correlations
with cardiac ion channel expression in both sexes.

From the correlation analysis one can see that the key
cardiac ion channels are largely co-regulated by these acetylation
modifiers. An exception to this appears to be ATP1A1, which
in many cases shows reverse correlation compared to the
rest. PLS regression analysis results, presented as biplots in
Figure 2B, provide a more granular view. For example, the
co-regulation of ion channels by HDACs and HATs is more
pronounced in the male LV compared to the female LV—tighter
clustering and alignment seen in the PLS model output biplots.
In both sexes, this key cardiac ion channel set is flanked by two
genes regulating the resting membrane potential—ATP1A1 and
KCNJ2, with ATP1A1 being orthogonally regulated compared to
the rest. Such distinct pattern may have compensatory role—
if the gene expression of all ion channels is upregulated or
downregulated simultaneously, there may be undesired changes
in the resting membrane potential that need to be countered.
Genes involved in calcium handling (RYR2, ATP2A2, SLC8A1)
are strongly affected by the acetylation modifiers in both sexes
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FIGURE 6

Control of key genes defining cardiac electrophysiology by HDACs, SIRTs, HATs, and TFs. Using the results from the PLS beta matrix, the effects
of the HDACs, SIRTs, HATs, and TFs were summed to quantify the effect on the electrophysiology of cardiomyocytes. The 6 groupings
examined were Depolarization (SCN5A, CACNA1C, SLC8A1), Repolarization (KCNH2, KCNQ1, KCNJ2, ATP1A1), Net
(Depolarization—Repolarization), Resting (KCNJ2, ATP1A1), Calcium Handling (ATP2A2, RYR2, SLC8A1, CACNA1C), and Coupling (GJA1). This
analysis was done for both female (top) and male (bottom) samples separately.

(see prominent representation lines in the output biplots).
According to this PLS model, SIRT2, SIRT3, SIRT4, and SIRT5
act very closely together to exert positive regulation on the ion
channels (exception being ATP1A1). Most of the HATs are co-
aligned with ATP1A1, implying positive regulation of the Na/K
pump to maintain the resting membrane potential. KAT2A is
the exception in both sexes—it has distinct negative effect on all
cardiac ion channels in both sexes along with HDAC10 and to
some degree HDAC7, SIRT6, and SIRT7.

Linking acetylation modifiers and key
cardiac transcription factors

Most of the gene control by epigenetic modifiers is
channeled through transcription factors; and these TFs can
act as positive or negative regulators of downstream targets,
e.g., ion channels. Figure 3 shows our results from correlative
analysis and clustering of such effects (Figure 3A), and from
PLS regression modeling linking HDACs and HATs to cardiac
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FIGURE 7

Integrated (Sankey) flow diagrams of how HDACs and SIRTs influence ion channels via cardiac TFs. PLS regression models (for female samples
on top and male samples on bottom) were trained using HDACs and SIRTs to predict TFs and then using TFs to predict cardiac ion channels.
The resulting B-matrix coefficients were utilized to create the plots. The width and color intensity of the lines correspond to the strength of the
B-matrix coefficients, and the color distinguishes between positive (green) and negative (red) coefficients. Note that in some cases, double
negative regulation (e.g., SIRT3 - > RUNX1 - > RYR2) results in positive input-output relationships.

TFs (Figure 3B). From the clustering analysis it is obvious that
the effects on TFs are complex and the outcomes are not co-
aligned like the ion channels. For some TFs, like YY1, most
of the effects appear positive, especially for HAT effects on
YY1. This means that histone acetylation by HATs likely yields
increased expression of YY1. Similarly, for both sexes, the HATs
result in positive regulation of one of the strongest cardiac

TFs – MEF2A. Furthermore, MEF2A is negatively regulated
by the same set of acetylation modifiers that appeared as the
most prominent negative modulators of cardiac ion channel
expression as per Figure 2: HDAC7, HDAC10, SIRT6, SIRT7,
and KAT2A. This reinforces the idea that the action of HDACs
and HATs on the ion channels is likely through potent TFs,
as exemplified by MEF2A. Prior studies support some of these
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TABLE 2 Genes, proteins and ion channels in the LV.

Gene Protein Ion current/process

Depolarizing

SCN5A Nav1.5 Underlying the main cardiac excitatory (inward) current, INa

CACNA1C Cav1.2 Main subunit of the (inward) L-type calcium current ICaL

SLC8A1 NCX1 Main subunit of the sodium-calcium exchanger INCX , which generates inward current and contributes to excitation in the forward
mode

Repolarizing

KCNH2 Kc11.1 (hERG) Main subunit of the key repolarizing (outward) current in the LV, the rapid delayed rectifier, IKr

KCNQ1 Kv7.1 Main subunit of the slow delayed rectifier, IKs, a repolarizing current in the LV

KCNJ2 Kir2.1 Main subunit of the inward rectifier IK1 , which contributes to the maintenance of the resting membrane potential and the late phase
of repolarization

ATP1A1 Na+/K+ ATPase Main subunit of the sodium-potassium pump INaK , which provides outward current to maintain the resting membrane potential

Resting membrane potential

KCNJ2 Kir2.1 Main subunit of the inward rectifier IK1 , which contributes to the maintenance of the resting membrane potential and the late phase
of repolarization

ATP1A1 Na+/K+ ATPase Main subunit of the sodium-potassium pump INaK , which provides outward current to maintain the resting membrane potential

Calcium handling

CACNA1C Cav1.2 Main subunit of the (inward) L-type calcium current ICaL – bringing calcium through the sarcolemma to trigger calcium-induced
calcium release (CICR) for contraction

RYR2 RyR2 Main subunit of the ryanodine receptor – key player in the CICR from the sarcoplasmic reticulum (SR)

ATP2A2A SERCA2 Encodes the main subunit of the SERCA pump which helps terminate the cytosolic calcium transients and refill the SR with Ca2+

SLC8A1 NCX1 Encodes the main subunit of the sodium-calcium exchanger INCX , which participates in the bi-directional sarcolemmal calcium flux

Cell-cell coupling

GJA1 Cx43 Encodes the main gap junctional ion channel in the LV, electrically coupling cells

findings, e.g., HDAC7 serving as a negative regulator of MEF2A
(33, 45).

The PLS biplots reveal some differences between the female
and male LVs. In the male LV, NKX25 is co-aligned with TBX5
and strongly influenced by the positive acetylation modifiers
SIRTs 2-5. In contrast, the response of NKX25 to acetylation
modifiers in the female heart appears minimal. TBX5 is strongly
positively regulated by the mitochondrial SIRTs (SIRT3-5) and
strongly negatively regulated by the nuclear SIRTs (SIRT6 and
SIRT7) in both sexes. Similar to MEF2A, likely TBX5 plays an
important role in mediating the effect of acetylation modifiers
on the ion channels. Other clustered response to histone
acetylation is seen for GATA4, GATA6, and SOD1, which show
perfect co-regulation in the male LV along an axis similar
but distinct from MEF2A. In the female LV, these additional
TFs are closer to the responses for MEF2A yet smaller in
magnitude. GATA4, GATA6, and SOD1 appear co-aligned with
(likely positively regulated by) KAT2B and KAT6B. A distinct
difference between the female and male model outputs is seen
in KAT2B—this HAT is co-aligned (positive regulation) with
MEF2A and GATA4 in the female LV, while it is closer aligned
with GATA4 but not MEF2A in the male LV. Other positively
regulated TFs, especially by the HATs are HIF1A, NFAT5,
FOXO1, and FOXO3. The responses of these four TFs are more
closely aligned together in the female LV compared to the male.
Many of the HATs, including CLOCK, HAT1, and EP300, are

clustered (act together) in their effects on the cardiac TFs and
they are most closely aligned with HIF1A, NFAT5, YY1, FOXO1,
and FOXO3, implying positive regulation.

Distinct negative cluster of TFs is formed by RUNX1, KLF5,
TGFB1, and NOTCH1. For the female LV, these are joined by
TRIM28 and SHMT2 and together they appear to present a
counter-regulator for TBX5. Their expression may be positively
regulated by SIRT6, SIRT7, and HDAC7 (negative regulators
of ion channels as seen in Figure 2). In the male LV PLS
model, KLF4 appears as direct counter-regulator of MEF2A,
presumably exerting negative effects on the ion channels.
HDAC10 and KAT2A seem to positively regulate KLF4 in the
male LV. KLF4’s role in the female model is less pronounced.

Cardiac transcription factors and
control of the gene expression of key
cardiac ion channels

The set of 19 TFs was selected because of their known
prominent role in regulation of genes underlying cardiac
electrophysiology processes (33–35). In Figure 4, we examine
closely the role of these “cardiac TFs” on the 10 ion channels
of interest. As in Figure 2 for links between the acetylation
modifiers and the ion channels, here we also see pronounced
co-regulation of ion channels by the TFs. This means that there
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are potent “positive TFs” that act to increase the expression
of all or almost all key cardiac ion channels; there are also
potent “negative TFs” that act to decrease the expression of
all of almost all key cardiac ion channels. Among the positive
TFs are MEF2A, GATA4, GATA5, SOD1, TBX5, YY1. Their
extent of action varies in female and male LV. Perhaps the
most striking sex difference is in the stronger role for NKX25
on ion channel expression in the male LV compared to the
female LV (Figure 4B, right panel). Additionally, some of the
weaker TFs, like TRIM28 and SHMT2, may show opposite effect
on the regulation of the ion channels for the female and male
LV. Based on the ranking of correlation in Figures 4A,B and
based on the PLS biplots in Figure 4C, the ion channel co-
regulation is also driven by a set of exclusively negative cardiac
TFs. In this cluster are RUNX1, NOTCH1, TGFB1, KLF5, and
KLF4 for both sexes, though their relative ranking is different
for female and male LVs. Similar to the results in Figure 2,
ATP1A1 is orthogonally regulated (with respect to the rest of
the cardiac ion channels) by many of the positive and negative
TFs. This is clearly seen for TBX5, which exerts negative effect on
ATP1A1 yet acts as a strong positive regulator of the rest of the
ion channels. Similarly, RUNX1, TGFB1, NOTCH1, and KLF5
exert positive effects on ATP1A1 yet they act as strong negative
regulators of the rest of the ion channels.

The PLS output biplots (Figure 4C), illustrate the co-
regulation of cardiac ion channels by TFs. Again, similar
to Figure 2B, this co-regulation is much stronger (tighter
clustering) in the male LV. And the distinct orthogonal
regulation of ATP1A1 (compared to the rest of the ion
channels) is seen in the female and male LV. HIF1A and
NFAT5 seem most aligned with ATP1A1 (positive regulation)
for both sexes. TBX5, GATA6 (and NKX25 for the male LV
only) appear to be most aligned with KCNJ2. In both sexes,
MEF2A plays a prominent positive role for the expression of
cardiac ion channels, aligned with the cluster of ion channels.
KLF4 directly counters the role of MEF2A, especially in the
male LV. The PLS input biplots also showcase the extent of
clustering of the negative TFs, especially RUNX1, KLF5, TGFB1,
NOTCH1.

Can male-trained partial least-square
models predict female relationships
Between acetylation modifiers and
cardiac ion channels?

Using the genes of interest in this study (Table 1), we
visualized all samples using a dimension-reduction approach,
UMAP (Figure 5A). When color-coding various phenotypic
variables associated with the samples, including age, BMI etc.,
we did not observe specific clustering, except for the UMAP
plots when total ischemic time was displayed (Figure 5A).
SMTSISCH is the total time for handling an LV tissue sample

from the moment of opening the chest to the collection
of tissue lysate for transcriptomics in GTEx. To eliminate
ischemic time as a potential confounder in our analysis,
we looked closely at the SMTSISCH histograms for female
and male LV samples used. Figure 5B, left, shows that
the larger data set for male LV did also include some
longer ischemic times. We performed histogram-matching, by
reducing the male dataset, eliminating samples so that the
histograms of ischemic time for female and male samples
became identical—see “reduced” in Figure 5B. The PLS biplots
for the “original” male and female models along with the
biplots for the new “reduced” male model are shown in
Supplementary Figures 3–5.

We tested if purely male-trained PLS models of influences
of HDACs and HATs on cardiac ion channels can accurately
predict such influences for female LV samples. This was done
using the full male set of 158 samples (Figure 5C, left, “original”
model), the “reduced” male data set of 84 samples with
histogram-matched ischemic time (Figure 5C, left, “reduced”
model) and for a “mixed” model using equal number of female
and male samples for training and for testing (Figure 5C,
right). Monte Carlo simulations in all three cases yielded
prediction errors for various outputs (ion channels) when the
models were tested on male and female samples. Histograms
of these errors are displayed in Figure 5D for the “original”
and “reduced” male-trained models as well as for the “mixed”
model. For good predictions, we expect the error histograms
to be centered at zero and to be relatively tight. This is mostly
the case for the mixed model, where the male and female
error histograms overlap. The “original” and “reduced” male-
trained models exhibit similar behavior for some of the ion
channel genes, such as SCN5A, KCNQ1, ATP1A1, and RYR2,
implying that predicting the effects of HDACs and HATs on
these genes may not be sex dependent. However, other results,
especially for KCNJ2, SLC8A1, KCNH2, and GJA1 had error
histograms for female predictions that were left shifted from
zero, implying that the extent of regulation of these genes was
under-estimated by the male-trained models. This is similar for
the “original” and the “reduced” model (after ischemic time
has been histogram-matched). Ashman’s D is a metric that can
quantify the degree of bi-modality in a lumped distribution
that may encompass two distinct populations. In Figure 5E, we
computed Ashman’s D for the error histograms obtained in the
three models. For the “mixed” model (training on equal mix of
male and female samples), Ashman’s D coefficients remained
low (< 1) for all output variables. For the “original” male-
trained model, Ashman’s D exceeded 1 for KCNH2, KCNJ2, and
SLC8A1. The “reduced” model showed similar trends to the
“original” male-trained model, though slight decrease was seen
in this metrics of bimodality. Ashman’s D was the highest for
SLC8A1, implying that male-trained models may inaccurately
predict the regulation of the Na/Ca2+ exchanger by HDACs and
HATs in the female LV.

Frontiers in Cardiovascular Medicine 14 frontiersin.org

https://doi.org/10.3389/fcvm.2022.941890
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-941890 July 18, 2022 Time: 12:34 # 15

Pressler et al. 10.3389/fcvm.2022.941890

Acetylation modifiers and net effects
on cardiac electrophysiology

Our results showed strong co-regulation of the cardiac
ion channels by HDACs, HATs (Figure 2) and by the cardiac
TFs (Figure 4). We were interested to see the effects of
these regulators on groupings of ion channels, as defined in
Table 2: genes encoding for depolarizing, repolarizing ion
channels, genes for ion channels and processes responsible for
the maintenance of the resting membrane potential, for calcium
handling or cell-cell coupling. The results of these effects, color-
coded by groupings are displayed in Figure 6 for the female
(top) and the male (bottom) models. Of particular interest is
if a certain perturbation may bias the net effect (positive for
net depolarizing effect, negative—for net hyperpolarizing effect).
As expected, most of the individual perturbations by HDACs,
SIRTs, HATs, and cardiac TFs leave minimal (close to zero) net
effect. For the mitochondrial SIRTs and some of the positive
TFs, there is a net depolarizing effect, based on the subset of
ion channels considered here, possibly increasing excitability.
Similarly, mitochondrial SIRTs and some of the HDACs (HDAC
11, and HDAC5 for female only) plus some of the HATs (KAT2B,
HAT1, KAT5, KAT7, EP300, GTF3C1, CLOCK) have prominent
positive effect on genes related to calcium handling. Conversely,
the strongest negative regulators of calcium handling appear
to be HDAC7, KAT2A, ATF2, SIRT1 (plus HDAC9 for female
LV and HDAC10 for male LV). The impact of TFs on calcium
handling genes directly follows from the results on “positive”
and “negative” TFs as seen in the previous figures. The strongest
positive regulators of calcium handling genes in the female LV
are MEF2A, HIF1A, GATA4, NFAT5, and SOD1, while in the
male LV these are MEF2A, TBX5, GATA4, NKX25, and NFAT5.
The strongest negative regulators of calcium handling genes for
both sexes appear to be RUNX1, TGFB1, and KLF4.

Sankey plots visualizing overall
relationships Between acetylation
modifiers, transcription factors and
cardiac ion channels

To visualize the overall effects of acetylation modifiers on
cardiac ion channels via select transcription factors we used
Sankey plots, based on the B-matrix coefficients from the
PLS regression models for females (top) and males (bottom)
(Figure 7). The sign and the magnitude of the B-matrix
coefficients determine the coloring and the thickness of the
lines. Among the similarities between female and male, MEF2A
appears to be the strongest positive TF of ion channels with
a mix of positive and negative influences from HDACs and
SIRTs. The strongest negative TF of ion channels, especially
in the female LV, is RUNX1, which also gets mixed positive

and negative influences from HDACs and SIRTs. For example,
for both sexes, the mitochondrial NAD+ dependent sirtuins
SIRT3, SIRT4, and SIRT5 downregulate RUNX1, thus exerting
ultimately positive effect on the cardiac ion channels, while
HDAC7 and HDAC10 positively influence RUNX1, thus having
overall negative effect on ion channel expression. Other positive
TFs of ion channels seen here are GATA4, GATA6, SOD1,
NFAT5, TBX5, YY1. HIF1A is a significantly stronger positive
regulator of ion channels in the female LV compared to the male,
while NKX25 is stronger positive TF of ion channels in the male
hearts compared to female, in line with previous studies that
have identified NKX25 as a male-biased TF (8). HDAC2 also
appears to play more prominent role in the male LV, regulating
various cardiac TFs; SIRT1 exerts stronger (positive) influences
on cardiac TFs in the female LV. SIRT3, 4 and 5 are prominent
in both sexes, providing downregulation of the negative TFs and
upregulation of the positive TFs, thus having an overall positive
effect on cardiac ion channels.

Discussion

In this study we considered quantitative links between
acetylation modifiers (HDACs and HATs) and the transcription
of ion channels in the human heart based on the GTEx dataset.
Their canonical role of histone acetylation/deacetylation and
controlling the compactness of chromatin is better understood
for genes controlling growth or cell death (26, 46–48), often
in the context of cancer. Their effect on bioelectricity-related
genes is much less studied (33). Cell excitation and calcium
handling, as metabolically demanding processes, may be
considered positively regulated during growth and hypertrophy,
and downregulated during ischemia or other conditions when
conservation of resources is needed. The prominent role
played by sirtuins, especially the NAD+ dependent SIRT3-5 in
regulating cardiac ion channels (Figures 2, 3, 4, 7), reflects their
role as linkers between metabolic state and post-translational
modifications to control transcription according to available
resources (49, 50).

Non-histone effects of HDACs and HATs have major
impact on cell function through acetylation of cytoplasmic
proteins, e.g., alpha-tubulin by HDAC6, or direct acetylation
of transcription factors, such as those from the MEF2
family, GATA and others. Among the non-histone effects of
HDACs and HATs are impact on protein aggregation, protein
clearance/degradation, autophagy, DNA repair capabilities,
oxidative stress, anti-inflammatory action, control of chaperone
proteins, anti-viral roles, circadian rhythm, and other key
cell functions (24, 25, 51). Beyond cancer, these acetylation
modifiers have been shown to be impactful through their histone
and non-histone action in cardiovascular health, especially
related to development, hypertrophy/heart failure, metabolic
state, and cardiac aging (52–55).
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The models, presented here, linking the gene expression
of acetylation modifiers to the expression of cardiac ion
channels via select cardiac transcription factors, do not aspire
to distinguish a mechanism of action, i.e., they are admittedly
not mechanistic. A strong effect between an HDAC, HAT and
an ion channel based on gene expression alone may result from
any of the direct or indirect ways of histone or non-histone
action. As the GTEx dataset is still with a limited number
of samples (a total of 242 analyzed here), the applicability of
some machine learning methods that thrive on large datasets
is limited. We chose to use partial least-squares regression
(PLS-R) in this study to quantify these relationships and to
explore potential sex differences in them. PLS-R was developed
by Wold et al. (36), Abdi (37), and Wold (38) to deal with
noisy and collinear variables. It is most closely related to
Principal Component Regression (PCR). Both methods remove
the multicollinearity between samples by projecting them into
a latent space. As PCR maximizes the variance explained for
the new latent variable, it may overlook the possibility that
the latent variable may not explain the predicted variable. This
leads to using many more components then needed to predict
the outputs. PLS-R, used here, on the other hand, maximizes
the covariance between the input and output variables, and
therefore maximizes the predictability of the inputs-to-outputs
links. This connection between the inputs and outputs makes
PLS-R a desirable method for examining RNA-seq data for
specific relationships. This method is interpretable, and it holds
causal power (beyond simple correlation) if large portion of the
variance in the experimental data can be explained by the model
(36, 38, 56). When interpreting the results of the PLS-R analysis
here, we assume certain simplified and directional input-output
structure, which in reality may be more complex. For example,
gene regulatory networks, GRNs, may involve bidirectional
dependences and regulatory loops, the reconstruction of which
would require dedicated new experimental data collection.

In Figures 2, 3, 4 we show how acetylation modifiers may
link to cardiac ion channels via cardiac TFs. It is important that
some of the key results could be corroborated by prior research,
mostly done in rodents, where transgenic models can be used
to delete genes of interest and dissect functional impact. One
of the main results in this study is the tight co-regulation of
genes encoding cardiac ion channels by the acetylation modifiers
and by the cardiac TFs. This is seen as clustering and co-
alignment of the ion channel genes in the PLS output biplots
in Figures 2, 4, with the male hearts exhibiting tighter clusters
compared to the female. These results are in agreement with a
recent report (57), showing highly coordinated transcriptional
control of cardiac ion channels in the ventricles, but not in the
atria. This may be due, at least in part, to the reported synergistic
action of positive TFs in the heart (34, 58)—collaboration
between MEF2A, GATA4, TBX5, NKX25 and the HAT EP300,
identified based on chromatin co-occupancy through Chip-seq
analysis of mouse heart tissue. Furthermore, GATA4 has been
linked to chromatin acetylation state (H3K27ac) in facilitating

gene expression in the (mouse) heart. In the current report,
using human RNAseq data, we see similar synergism between
these strong positive TFs, including GATA4, in the regulation
of cardiac ion channels. Furthermore, strong negative TFs
mediating the effect of HDACs/SIRTs/HATs on cardiac ion
channels, such as identified here RUNX1, have been reported in
recent studies as well (59, 60). Specifically, these reports showed
adverse cardiac effects, including suppressed calcium handling
by RUNX1 after myocardial infarction (59, 61), in line with our
results. Another strong negative TF shown here is KLF5, closely
co-aligned with RUNX1. KLF5 has recently been identified as
a key negative regulator in ischemic cardiomyopathy in mouse
and human hearts (62, 63) and has been suggested as a potential
therapeutic target for drug development.

A recent study (14) combined meta-analysis of human
RNAseq datasets, computational modeling of cardiac
electrophysiology and in vitro experiments with human induced
pluripotent stem cell derived cardiomyocytes (iPSC-CMs) to
show a strong correlation between CACNA1C and KCNH2
and better stability of cardiac electrical activity (robustness
and protection against arrhythmias) for high co-expression/co-
regulation of these two genes. In our results, CACNA1 and
KCNH2 are perfectly co-aligned/co-regulated by HDACs/SIRTs
(Figure 2B) and by cardiac TFs (Figure 4C) in the female
LV, and less so in the male LV. If these sex differences are
confirmed in further experiments in human cardiac cells and
tissue, they could be partially contributing to higher resistance
to arrhythmias in female hearts.

The co-regulation of ion channels controlling depolarization
and repolarization implies that the HDACs/SIRTs/HATs and
cardiac TFs are likely to leave mostly net zero effect in
terms of excess depolarization or excess hyperpolarization
in the heart, as seen in Figure 6. This is important for
overall electrical stability. It may also explain the relatively
low cardiotoxicity of HDAC inhibitors (29). Even if the
effects of HDACs/SIRTs/HATs and cardiac TFs do not create
net depolarization/hyperpolarization, a concerted significant
upregulation of ion channel genes can lower cell/tissue
impedance; conversely, a concerted downregulation of ion
channels will increase tissue impedance. The former will make
it harder to excite or for an extra beat to propagate; while the
latter may increase the risk for an aberrant beat to propagate.
These more subtle effects of HDACs/SIRTs/HATs modulating
cardiac ion channels, in tandem, may impact how epigenetic
modulation alters arrhythmia propensity (30–33).

A distinct orthogonal regulation of ATP1A1 (with respect
to the rest of the cardiac ion channels) was seen by the
HDACs/SIRTs/HATs and by the cardiac TFs (Figures 2, 4). This
may be a way to compensate for altered impedance (see above),
as ATP1A1 encodes for the Na/K pump, a major determinant of
the resting membrane potential. It has been shown previously
that higher level of excitatory activity and higher calcium
release in neurons regulate ATP1A1 transcription toward such
compensatory effect (64). HIF1A has been identified as a
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TF closely linked to ATP1A1 regulation (64), and our data
corroborate that, as seen in Figure 4C for both female and male.

Sex differences in transcriptional processes related to
membrane ion transport, excitability and interaction with drugs
(7), as well as in chromatin regulation and epigenetic influences
(21, 65) have been previously reported for various organs.
In the heart, the consequences of such sex differences may
be of prime importance when developing and testing new
drug compounds, including HDAC inhibitors. Recently, cardiac
simulations showed that models integrating male-based data
underestimated the risk for lethal arrhythmias, such as Torsade
de Pointes, in females (18). To aid the comprehensive preclinical
analysis of drug action, transcriptional and other relevant data
need to be viewed in a stratified manner, with considerations of
the target demographics, including sex (6). In the current study,
we show several distinct sex-dependent patterns of regulation
of the acetylation modifiers and their action on cardiac ion
channels. Specifically, we showed that male-trained PLS models
may underestimate the effects of HDACs/SIRTs/HATs on certain
ion channel related genes, including SLC8A1, KCNJ2, and
KCNH2 (Figure 5). Other insights from the PLS analysis,
including sex differences in the tightness of cardiac ion channel
co-regulation, the more prominent role of NKX25 in the male
LV, and stronger effects of RUNX1 in the female LV, need to be
confirmed as larger human datasets become available, as well as
tested explicitly experimentally.

The analysis provided here has certain limitations—we
worked only with gene expression data and without the
ability to induce controlled perturbations in the effectors of
interest (acetylation modifiers). Mechanistic understanding of
the complex action of acetylation modulators will require
information from additional sources, including chromatin
accessibility assays and quantification of protein acetylation at
large. Such data can help distinguish between histone and non-
histone action of the HDACs and HATs on the ion channels.
Furthermore, while PLS-R may suggest input-output causality,
ultimately such relationships need to be tested experimentally,
with proper input functions. For example, Perturb-seq (66, 67),
using interference CRISPR to perturb the genes of interest
(HDACs, HATs) and follow up scRNA-seq to quantify the
response, including all TFs and ICs of interest, would be a way to
experimentally test some of the predictions here and to establish
causality, in general. In its current simplified form, our model
data corroborate some previously reported relationships, but
also show new interactions that need to be tested experimentally.
Larger datasets are likely to help better model development and
to increase the confidence in model predictions. Our current
analysis was done on bulk tissue RNAseq data and cannot
differentiate if sex differences may be due to differences in cell
type composition. Recent studies have suggested sex-distinct cell
type composition, including a larger fraction of myocytes in the
female LV compared to the male LV (68), which may explain
certain sex differences in transcriptional regulation. Ideally,

single-cell or spatial transcriptomics data (69), combined with
the framework developed here, can improve the mechanistic
understanding of the action of histone acetylation modifiers in
the heart. Moreover, a small selection of genes was analyzed
(number of genes smaller than the number of samples) in
this study, however, PLS can further be utilized with the full
transcriptome. For cases where much longer list of genes is
considered—longer than the number of samples, a “sparse PLS”
can be used as a dimension-reduction and a parameter selection
tool (70).

Conclusion

In conclusion, we present a framework that aims to help
the better understanding of how acetylation modifiers may
alter cardiac electrophysiology based on RNAseq data from
human hearts. With the rapid growth and availability of such
data it is possible to refine computational models to reliably
predict responses to various epigenetic modifiers in a stratified,
personalized manner.
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