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Genome size variation and hybridization occur frequently within or between plant species

under diverse environmental conditions, which enrich species diversification and drive

the evolutionary process. Elymus L. is the largest genus in Triticeae with five recognized

basic genomes (St, H, P, W, and Y). However, the data on population cytogenetics of

Elymus species are sparse, especially whether genome hybridization and chromosomal

structure can be affected by altitude are still unknown. In order to explore the relationship

between genome sizes, we studied interspecific hybridization and altitude of Elymus

species at population genetic and cytological levels. Twenty-seven populations at nine

different altitudes (2,800–4,300m) of three Elymus species, namely, hexaploid E. nutans

(StHY, 2n = 6x = 42), tetraploid E. burchan-buddae (StY, 2n = 4x = 28), and E. sibiricus

(StH, 2n = 4x = 28), were sampled from the Qinghai–Tibetan Plateau (QTP) to estimate

whether intraspecific variation could affect the genomic relationships by genomic in situ

hybridization (GISH), and quantify the genome size of Elymus among different altitude

ecological groups by flow cytometry. The genome size of E. nutans, E. burchan-buddae,

and E. sibiricus varied from 12.38 to 22.33, 8.81 to 18.93, and 11.46 to 20.96 pg/2C

with the averages of 19.59, 12.39, and 16.85 pg/2C, respectively. The curve regression

analysis revealed a strong correlation between altitude and nuclear DNA content in three

Elymus species. In addition, the chromosomes of the St and Y genomes demonstrated

higher polymorphism than that of the H genome. Larger genome size variations

occurred in the mid-altitude populations (3,900–4,300m) compared with other-altitude

populations, suggesting a notable altitudinal pattern in genome size variation, which

shaped genome evolution by altitude. This result supports our former hypothesis that

genetic richness center at medium altitude is useful and valuable for species adaptation

to highland environmental conditions, germplasm utilization, and conservation.
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INTRODUCTION

Strong correlations between variation in genomic attributes
and species diversity across the plant tree of life suggest
that polyploidy or other mechanisms of genome size change
confer selective advantages due to the introduction of genomic
novelty (Barrett et al., 2019). Genome size and nuclear
DNA content are both important biodiversity characteristics,
which provide a practical and predictive element in biology
(Höfer and Meister, 2010; Sliwinska, 2018). Determination of
genome size in species is of great significance not only for
molecular and cell genetics, but also for plant genomics and
evolution study. Numerous correlations between genome size
and physiologically or ecologically relevant phenotypes have
been observed, including nucleus size (Baetcke et al., 1967),
plant cell size (Pegington and Rees, 1970), seed size (Beaulieu
et al., 2007), body size (Gregory et al., 2000), and growth rate
(Cavalier, 1978). Adaptive models of genome size evolution
suggest that positive selection drives genome size toward an
optimum due to selection on these or other traits and that
stabilizing selection prevents expansions and contractions away
from the optimum (Gregory and Hebert, 1999; Müller et al.,
2019). Correlations between intraspecific variation in genome
size and other phenotypes or environmental factors have been
observed (Long et al., 2013; Kang et al., 2015; Hoang et al.,
2019), suggesting the possibility that some of the observed
variationsmay be adaptive.Much of the discussion about genome
size variation has focused on variation among species, and
intraspecific variation has often been downplayed as the result
of experimental artifacts (Hoang et al., 2019) or argued to be
too small to have much evolutionary relevance (Hannes et al.,
2021). However, there is substantial controversy about the genetic
process that controls the size of plant genomes (Pellicer et al.,
2014), but most researchers believed that the main mechanism
that drives the rapid amplification of plant genomes is polyploidy
or transposable elements (TEs), especially transposons (Pellicer
et al., 2014). Recent research has suggested that genome size
varies many orders of magnitude across species, due to changes
in both ploidy and haploid DNA content, and we still know
relatively little about the makeup of many eukaryote genomes,
the impact of genome size on phenotype, or the processes that
govern variation in repetitive DNA and genome size among taxa
(Wendel et al., 2016; Li et al., 2020).

Genome size can be an important feature that predicts the
response of different species to climate and environmental
changes. Meanwhile, genome size has a significant influence on
some epigenetic traits and plant growth and development (Müller
et al., 2019). During the last decades, flow cytometry became the
preferred method for genome size measurement in plants. Flow
cytometry is a powerful technology, and cells and particles can
be analyzed in a cell nuclei suspension because of its precision,
high speed, objectivity, and relative simplicity (Yumni et al.,
2021). Species relationships can be elucidated by correlating the
chromosome numbers with genome sizes (Huang et al., 2013).
The application of flow cytometry has been well-documented for
the determination of the accurate nuclear DNA contents, adding
hints on the ploidy status and the evolutionary pattern in the

varying genome sizes (Saha et al., 2017). Besides the easiness
of sample preparation and high throughput, the capability to
estimate genome size, nuclear replication state, and ploidy and
endopolyploidy levels is an advanced feature of this method
compared with other approaches such as Feulgen densitometry
or genome sequencing. Flow cytometry has been extensively used
in plant genetics, plant physiology, and other fields (Ochatt,
2008). Genomic in situ hybridization (GISH) has been considered
to be an effective and illustrativemethod for the rapid and reliable
identification of genomic homology in allopolyploid and related
species, alien chromatin in interspecific and intergeneric species,
and identification of genetic constitution on chromosome level
in polyploid species (Qie et al., 2007; Badaeva et al., 2021; Chaves
et al., 2021).

The genus Elymus comprises ∼150 species in the Triticeae
tribe of the grass family (Poaceae) and is widely distributed
throughout the Tropics. Asia is an important center of origin
and diversity of the perennial species in the Triticeae (Sun,
2002), where more than half, ∼80, of the known Elymus
species have originated (Dewey, 1984). Cytogenetic analyses
have identified that all Elymus species include the St genome
in combination with one or more of four other genomes (H,
Y, P, and W). The St, H, P, and W genomes are known to
be denoted by Pseudoroegneria (Nevski) Á, Löve Hordeum
L., Agropyron Gaertn., and Australopyrum (Tzvelev) Á. Löve,
respectively (Jensen, 1990; Torabinejad and Mueller, 1993).
However, the origin of genome Y has always been controversial.
The Elymus genus, tetraploid E. burchan-buddae (StY), E.
sibiricus (StH), and hexaploid E. nutans (StHY) have similar
morphologies, different genome constitutions, and overlapping
habitats (Sun and Salomon, 2009), which display a continuous
distribution at different altitudes on the Qinghai–Tibetan
Plateau (QTP) of western China. An altitudinal gradient, as an
important index of spatial niche measurement, greatly affects
the distribution range and pattern of organisms. Intense stresses
(low temperature, low oxygen supply, and high UV radiation)
caused by high-altitude environments may result in noticeable
genetic adaptations in native species (Beall, 2014). Recently,
several studies have reported differences in the genome size and
evolutionary processes driving the adaption of alpine plants along
altitudinal gradients, and an adaptation of genome size to an
unknown ecological parameter connected to altitude (Hämälä
and Savolainen, 2019; Bohutínská et al., 2021). Savas et al.
(2019) also determined that a geographical origin (localization,
altitude) had a statistically significant effect on genome size.
Our previous study showed significant correlations between
altitude and morphological traits, and tetraploid Elymus species
had a higher sensitivity to altitude than hexaploid E. nutans
(Chen et al., 2015). The variation in intraspecies genome size is
especially obvious when the geographical distance is relatively
long or the climatic conditions are quite different. As an
important ecological factor, altitude has an obvious influence on
ecological factors such as temperature and moisture and thus
affects genetic variation and population differentiation (Buehler
et al., 2012). For example, a positive correlation was detected
between genome size and growing altitude in wild populations
of Corchorus olitorius (Benor et al., 2011). A variation in genome
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size along altitudinal gradients has also been reported in maize
(Díez et al., 2013), showing that altitude affects genomic variation
and population differentiation possibly due to the dramatic
influence on ecological factors including temperature and
moisture. However, potential geographical patterns of genome
size variation with the increase in altitudinal gradients are still not
explicit. The limited number of reports on the genome size and
chromosome counts is controversial for the rarely studied species
of Elymus. We aim to explore how Elymus has adapted and
evolved to the highly heterogeneous environments in QTP. Thus,
we hypothesize that genome size is reduced in populations at high
elevations. The objectives of this study were: (1) to estimate the
nuclear DNA content in allohexaploid hexaploid E. nutans (StHY,
2n = 6x = 42), allotetraploid burchan-buddae (StY, 2n = 4x =

28), and E. sibiricus (StH, 2n = 4x = 28), (2) to investigate the
genomic constitution and genomic homology between the St, H,
and Y genomes, and (3) to examine the pattern between genome
size and altitude to preliminary explore altitude change affecting
the adaptability, fitness, competitiveness, and colonizing ability
in Elymus species.

MATERIALS AND METHODS

Plant Materials
Seeds from three Elymus species, namely, E. nutans, E. sibiricus,
and E. burchan-buddae, were sampled at nine different locations
across the QTP at varying altitudes from 3,000 to 4,300m within
a small geographical scope of 60 km between 34◦28

′
26.2“N

and 34◦40
′
43.7” N of latitude and from 100◦22.1

′
42.6“E to

100◦40
′
33.9” E of longitude (Figure 1, Supplementary Table 1).

Three Elymus species were sampled at the same field at
each altitude level, and 10 individuals were sampled for each
population with individuals at least 10m apart. The seeds were
stored in the Animal Forage Laboratory of Henan Agricultural
University. Morphological traits of each individual, including
plant height, flag leaf length and width, spike weight and length,
glume length and width, lemma length and width, palea length
and width, floret number, and awn length, were determined
(Chen et al., 2015). According to the required standards of
Dolezel (2003), barley (Hordeum vulgare L.) was chosen as an
internal reference standard, which was provided by Xiong Da-
Bing at the National Engineering Research Center for Wheat.
Plants of Elymus and barley were grown from seeds in an optical
incubator at 25◦Cwith a photoperiod of 12 h and 15◦C in the dark
per day, and their fresh tender leaves were collected within 2 to 3
weeks after planting.

Preparation of Nuclei Suspension
The 50-mg fresh leaves were sampled from each individual of
E. nutans, E. burchan-buddae, and E. sibiricus, then washed
with distilled water, dried with filter paper, and placed in a
plastic Petri dish containing 250 µl of precooled extraction
buffer. After vertically fast shredding with a sharp single-edge
blade (maintaining equal weight to protect the organization
from adhesions), 250 µl of extraction buffer was added, and the
tissues were filtered through a 30µmfilter head (Celltrics, Partec,
Germany) into a 1.5-ml centrifuge tube. Following filtration, the

samples were centrifuged at 11,000 rpm at 4 ◦C for 15–20 s. The
supernatant was discarded, and the nuclei were resuspended in
500 µl of a solution containing propidium iodide (PI) staining
solution (0.02 mg/ml RNase solution+0.02 mg/mL PI solution).
The nuclei suspension ofHordeum vulgare L. was obtained using
the same method and mixed with the nuclei suspension of three
Elymus species individually by the same volume. The samples
were incubated at a low temperature in the dark for∼30–60 min.

Genome Size Evaluation by Flow
Cytometry Measurement
The nuclear DNA content was determined using a flow cytometer
(CyFlow R© Cube8, Partec, Germany). The excitation wavelength
was set at 488 nm at 270V, the excitation FL2 fluorescence
channel was collected, and the propidium iodide (PI) emission
fluorescence intensity was detected. A minimum of 10,000 nuclei
per sample were analyzed. Three measurements were obtained
for each sample, while 10 replications were determined for each
population per species. The nuclear DNA content was calculated
as follows: sample nuclear DNA content (pg/2C)= [(mean value
of the sample peak)/(mean value of the internal standard)] ×
known nuclear DNA. The mean genome sizes were presented as
1C value in picograms (pg) or megabase pairs (1 pg = 978 Mbp)
(Dolezel, 2003).

Preparation of Root tip and Mitotic
Chromosome
Root tips were pretreated in ice-cold water at 0–4◦C for 20–
24 h and placed in 2mM of 8-hydroxyquinoline (Sigma) at room
temperature (25◦C) under dark treatment for 2–4h. After being
washed with distilled water for 15min, they were dried with filter
paper, fixed in ethanol–glacial acetic acid (3:1, v/v) for 24 h at
room temperature, and then stored at 4◦C in a refrigerator for
2–4 days. Again, they were washed two times with distilled water
for 5min and transferred to a EP tube filled with 4% cellulose–
pectinase [2.7% Cellulase Onozuka R10 (Phytotech, USA) and
1.3% pectolyase (Sigma, Germany), pH 4.8] at 37◦C for 1–2 h.
After the unnecessary enzymolysis liquid was removed carefully
using a pipette, they were washed with distilled water for 10min,
transferred onto slides with distilled water, and covered with
the cover glass. Each root tip was squashed in a drop of 45%
acetic acid. The slides with well-spread chromosomes were kept
in a freezer at −80◦C for more than 30min, and the slides were
air-dried for GISH.

Probe Preparation
Pseudoroegneria strigosa and Hordeum bogdanii Wilensky were
grown about 3 weeks in pots for probe preparation. The total
genomic DNAs of P. strigosa and H. bogdanii were extracted
by the CTAB method (Murray and Thompson, 1980). Before
labeling, the total genomic DNA was randomly fragmented into
a size of 100–500 bp by DNase I (Sigma, Germany). The treated
genomic DNAs of P. strigosa and H. bogdanii were labeled
with biotin-11-dUTP (Thermo, USA) and digoxigenin-11-dUTP
(Roche, Switzerland), respectively, by a nick translation method
and used as probes in GISH analyses.
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FIGURE 1 | Geographical distribution of the nine sampling sites and genome size of three Elymus species (E. nutans, E. burchan-buddae, and E. sibiricus, the

detailed altitudes are given in Supplementary Table 1). (A) Sampling location at the Qinghai–Tibetan Plateau center of China. (B) The geographical location of the

population sampled. The crook lines indicate various sizes of national highways; the pizza charts show the genome size of three Elymus species; and the numbers in

the charts represent the population number.

Genomic in situ Hybridization
The slides were re-fixed in ethanol–glacial acetic acid (3:1, v/v)
for 30min, washed two times for 10min in ethanol, and dried
at 37◦C for over 24 h. Chromosomes were denatured in 70%
formamide in 2 × SSC (1 × SSC is 0.15M NaCl and 0.015M
sodium citrate) at 80–85◦C for 90 s, then dehydrated through
an ice-cold ethanol series (50, 70, 100%) for 5min each, and
air-dried. The probe hybridization mixture [containing 100%
deionized formamide (by vol.), biotin-labeled DNA or dig-
labeled DNA, 50% dextran sulfate (by vol.), 20 × SSC, and
ddH2O] was denatured at 90◦C for 10 min.

Fluorescence Microscopy Detection
Following hybridization, the slides were removed and then placed
in 2 × SSC at room temperature for 5min and 42◦C for 5min, 1

× TNT [0.1M Tris, 0.15M NaCl, 0.05% Tween-20 (by vol.)]. The
slides were placed in a mixture of 1×TNB buffer [containing 1M
Tris (pH 7.5), 3M NaCl, blocking reagent], ddH2O, streptavidin–
Texas red (Invitrogen, USA), or anti-DIG-fluorescein (FITC)
(BOSTER, USA), hybridized in a humidified box at 37◦C for
1 h, then washed three times with 1×TNT at room temperature
for 5min, and air-dried. After that, a drop of 4′,6-diamidino-
2-phenylindole (DAPI) was placed on each slide. Fluorescence
was viewed with a double rotary laser confocal imaging real-time
analyzer (PerkinElmer, UltraVIEW VoX, USA).

Data Analysis
Statistical Analysis
The CyViewTM Cube software was used for flow cytometry/FCS
analysis, and histograms with a coefficient of variation (CV)
above 5% were rejected. Statistical analyses were performed
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FIGURE 2 | Curve regression analyses of three Elymus species: (A) E. nutans, (B) E. burchan-buddae, and (C) E. sibiricus; (D), polynomial regression analyses of

three Elymus species.

using a one-way ANOVA (SPSS 20.0.) with least significant
difference (LSD) and Duncan’s multiple comparisons to
evaluate significance within and among populations of three
Elymus species.

Curve Fitting Analysis
In order to explore the specific varying pattern between altitude
and nuclear DNA content of each population, curve regression
analysis was used. The regression analysis was performed by
Curve Expert Professional 2.3.0 to estimate the relationship
between nuclear DNA content and altitude. The curve regression
of three Elymus species is shown in (Figure 2), where the
independent variables X and Y represent the altitude and the
nuclear DNA content, respectively, and the r-value represents the

correlation between two quantities. The curve regression analysis
between altitude and nuclear DNA content estimated by flow
cytometry of PI-stained samples showed a strong correlation with
r values of 0.963, 0.987, and 0.998 of E. nutans, E. burchan-
buddae, and E. sibiricus, respectively, which accounted for an
obvious biological significance.

RESULTS

Altitudinal Variation in Nuclear DNA
Content of Three Elymus Species
The mean 2C nuclear DNA of E. nutans, E. burchan-buddae,
and E. sibiricus was in the range of 12.38–22.33, 8.81–18.93,
and 11.46–20.96 pg/2C with averages of 19.59, 12.39, and 16.85
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TABLE 1 | Nuclear DNA content (pg/2C) of three Elymus species in nine altitudes (between 3,098 and 4,203m).

Species Altitude Minimum Maximum Average ± SE CV (%) Species Average

E. nutans 3,098 18.18 21.94 20.63ab ± 0.53 7.24 19.59

3,238 16.14 21.89 19.97ab ± 0.73 10.36

3,385 21.17 22.33 21.69a ± 0.15 1.96

3,501 16.80 20.43 18.62b ± 0.46 6.99

3,709 17.81 21.52 19.72ab ± 0.53 7.65

3,889 17.59 21.66 19.73ab ± 0.52 7.42

4,075 12.38 20.21 16.79c ± 0.83 13.91

4,115 16.90 21.79 19.54b ± 0.56 8.04

4,203 17.38 21.09 19.59b ± 0.71 5.12

E. burchan-buddae 3,098 11.13 16.53 12.82ab ± 0.60 13.34 12.39

3,238 10.73 13.89 12.64ab ± 0.41 9.19

3,385 11.10 14.11 12.67ab ± 0.38 8.39

3,501 8.81 12.63 11.18b ± 0.58 14.70

3,709 10.71 13.36 11.75b ± 0.39 9.40

3,889 11.45 18.93 14.06a ± 1.15 20.00

4,075 10.36 15.71 12.62ab ± 0.66 14.88

4,115 9.10 15.69 11.47b ± 0.77 19.10

4,203 10.73 14.08 12.71ab ± 0.49 10.98

E. Sibiricus 3,098 11.76 17.51 14.65c ± 0.83 15.94 16.85

3,238 13.61 19.11 16.58bc ± 0.58 9.81

3,385 12.74 19.31 16.37c ± 0.88 13.13

3,501 11.46 19.62 16.51bc ± 0.92 15.76

3,709 17.50 20.96 19.17a ± 0.42 5.77

3,889 12.79 18.72 15.52c ± 0.73 13.33

4,075 14.86 18.53 16.58bc ± 0.48 8.18

4,115 16.70 20.74 19.11a ± 0.45 6.69

4,203 17.56 20.17 18.87ab ± 1.30 9.78

Average, mean of nuclear DNA content (pg/2C) of 10 individuals in each population; Minimum, the minimum of nuclear DNA content (pg/2C) of 10 individuals in each population;

Maximum, the maximum of nuclear DNA content (pg/2C) of 10 individuals in each population; the different letters indicate the significant differences (P < 0.05); SE, standard error; CV,

coefficient of variation; Species Average, mean of nuclear DNA content (pg/2C) of all individuals of each species.

FIGURE 3 | Frequency distribution of the genome size of three Elymus species: (A), E. nutans; (B), E. sibiricus; and (C), E. burchan-buddae. Internal standard:

Hordeum vulgare L.
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pg/2C, respectively (Table 1). The largest nuclear DNA content
in E. nutans was observed for the population at an altitude of
3,385m (22.33pg/2C), while the smallest was at an altitude of
4,075m (12.38 pg/2C). For E. burchan-buddae, the population at
an altitude of 3,889m (18.93 pg/2C) and an altitude of 3,501m
(8.81 pg/2C) showed the largest and the smallest DNA content,
respectively (Table 1). The largest and the smallest nuclear DNA
content of E. sibiricus appeared at altitudes of 3,709m (20.96
pg/2C) and 3,501m (11.46pg/2C), respectively (Table 1).

The coefficient of variation ranges of E. nutans, E. burchan-
buddae, and E. sibiricus were 1.96–13.91, 8.39–20.00, and 5.77–
15.94%, respectively (Table 1). The largest CV values of E.
nutans, E. burchan-buddae, and E. sibiricus were 13.91, 20.00,
and 15.94% at 4,075, 3,889, and 3,098m, respectively (Table 1).
Hexaploid E. nutans showed a larger variation at 3,000–3,400m;
a high variation of tetraploid E. sibiricus occurred at 3,400–
3,900 and 3,900–4,300m; and E. burchan-buddae showed a high
variation at 3,400–3,900 and 3,000–3,400m. For hexaploid E.
nutans, the nuclear DNA content was high in populations at
3,000–3,400m, while the nuclear DNA content of tetraploid
E. burchan-buddae and E. sibiricus was high in populations
at 3,400–3,900 and 3,900–4,300m, respectively (Table 1). There
was a negative correlation between genome size variation and
altitudinal gradient in E. nutans, while no correlation was
found in E. sibiricus and E. burchan-buddae, which expounded
significantly complex evolutionary of genome size of Elymus
along an altitudinal gradient (Figure 3; Supplementary Table 2).
The plant height (r = 0.394, p < 0.05) and palea length (r =

−0.720, p < 0.05) were correlated with genome size in E. nutans
(Supplementary Table 2).

Hybridization Between Elymus Species
and Genome Donor Species
Genomic relationships of 27 populations (10 individuals for
each population) among three Elymus species, namely, hexaploid
E. nutans, tetraploid E. burchan-buddae, and E. sibiricus, at
nine different altitudes were estimated by GISH with a total
genomic DNA from P. strigosa labeled with biotin-11-dUTP and
detected with a streptavidin Texas-Red conjugated antibody and
a total genomic DNA from H. bogdanii labeled and detected
with an anti-DIG-fluorescein (FITC). GISH clearly classified
all chromosomes into three subgenomes, namely, H, St, and
Y. Sequential GISH permitted the identification of individual
chromosomes within each subgenome (Figure 4).

After DAPI staining, 28 chromosomes of E. burchan-buddae
could be counted and showed blue fluorescence signals on
metaphase (Figure 4A). When a total DNA probe from P.
strigosa was hybridized into the chromosome of E. burchan-
buddae, the strong hybridization of red fluorescence signals
was observed on 20–24 chromosomes (Figure 4B). The same
in situ hybridization pattern was obtained when using a total
DNA probe from H. bogdanii on chromosomes of E. burchan-
buddae; 8–12 chromosomes showed green fluorescence signals
(Figure 4C). We found that the St genome had partial homology
to the Y genome, and the H genome possibly had some
relationship with the St or Y genome. Compared with the

two groups of hybridization, the genomes St and H could
be distinguished.

For E. sibiricus, 28 chromosomes showed blue fluorescence
signals by DAPI (Figure 4D). When total DNA probes from P.
strigosa and H. bogdanii were applied to chromosomes of E.
sibiricus, some labeling could be detected as revealed by dispersed
and spotted fluorescent signals. The major hybridization signals
were the same, and 18–22 chromosomes showed red and green
fluorescence signals (Figures 4E,F, respectively). We found that
the St genome had partial homology to the H genome. The results
verified the St genome in E. sibiricus from P. strigosa and the H
genome in E. sibiricus from H. bogdanii.

Blue fluorescence signals were observed on 42 chromosomes
of E. nutans after DAPI staining (Figure 4G). In situ
hybridization with total DNA from P. strigosa and H. bogdanii
revealed strong signals on chromosomes with 26–32 red and
20–26 green fluorescence (Figures 4H,I, respectively). The St
genome had partial homology to the H genome, and the H
genome could be distinguished. The relationship between the
St genome and the Y genome was closer than that between the
Y genome and the H genome compared with the two groups
of hybridization.

DISCUSSION

In our study, we first applied FCM to evaluate intraspecific and
interspecific genome size variations among nine populations of
hexaploid E. nutans (StHY), tetraploid E. sibiricus (StH), and E.
burchan-buddae (StY), which are morphologically very similar
and have partly overlapping distribution areas (a continuous
distribution on the Qinghai–Tibetan plateau at a certain altitude
range), different ploidy and genome combinations, and genome
presenting obvious regional differentiation (Ohsawa and Ide,
2008). It is no wonder that confusion sometimes arises during
sampling, propagating, and investigating germplasm collections.
However, based on FCM and genome sequencing, all three wild
Elymus species can be recognized easily. In addition, Hordeum
vulgare L. was considered an ideal internal standard due to its
very few secondary compounds and approximate genome size
to Elymus as well as strong genetic stability (Tuna et al., 2006;
Chang et al., 2022). The most plausible reason for interspecific
and intraspecific genome size variation was suggested to be
one or the other kind of repetitive sequences along with
complex genetic mechanisms, karyotypic, environmental, and
phylogenetic factors (Du et al., 2017). Therefore, our study
provided accurate and reliable data for assessing genome
size variation.

Intraspecific and Interspecific Variation
Among Elymus Species
Our study revealed highly statistical intraspecific variations
of genome size along altitudinal gradients in three Elymus
species despite their same geographical distribution. A significant
intraspecific variation in maize (Lai et al., 2005) and Brachionus
asplanchnoidis (Stelzer et al., 2019) was also reported. However,
the mechanism resulting in genome size variation evolution is
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FIGURE 4 | Genomic in situ hybridization on somatic metaphase cells from root tips of E. nutans, E. burchan-buddae, and E. sibiricus, with Pseudoroegneria strigosa

and H. bogdanii as probes. (A–C) E. burchan-buddae. (A) Twenty-eight chromosomes counterstained by DAPI on metaphase; (B) 24 chromosomes showed red

fluorescence when probing with St-genome DNA of P. strigosa; (C) 12 chromosomes showed green fluorescence when probing with H-genome DNA of H. bogdanii.

(D–F) E. sibiricus. (D) Twenty-eight chromosomes counterstained by DAPI on metaphase; (E) 22 chromosomes showed red fluorescence when probing with

St-genome DNA of P. strigosa; (F) 22 chromosomes showed green fluorescence when probing with H-genome DNA of H. bogdanii. (G–I) E. nutans. (G) Forty-two

chromosomes counterstained by DAPI on metaphase; (H) 32 chromosomes showed red fluorescence when probing with St-genome DNA of P. strigosa; (I) 26

chromosomes showed green fluorescence when probing with H-genome DNA of H. bogdanii.

complicated. One probable explanation is that populations of
plants in high-altitude mountainous regions are always inclined
to be geographically isolated and altitude can shape genome
size to adapt to diverse and infertile environmental conditions.
In addition, the distinct intraspecific differences observed in
genome size in this study could be attributed to its non-strict self-
pollinating in Elymus, resulting in a larger variation in genome
size than self-pollinating species and unstable genome size
(Eilam et al., 2007). Consequently, it is convincing that genome
size diverges widely in populations, indicating highly genomic
variability. No (Oney-Birol and Tabur, 2018) strong association

(positive by Šmarda et al., 2008; negative by Charles and Jeremy,
2008) between genome size and plant height was previously
reported. Different sampling strategies and plant species in these
studies would lead to various associations; however, we found
a positive association between genome size and plant height
and between genome size and ploidy level. Our finding will be
helpful in selecting germplasm with high forage productivity at
the cellular level.

Our comprehensive study discriminated a significantly large
genome size variation among the three wheatgrasses; therefore,
they can be differentiated efficiently by genome size and
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unambiguously regardless of their similar morphological features
and overlapping distributing location. Our results showed a
larger genome size in hexaploid Elymus species compared
with that in tetraploid Elymus species. Larger genomes are
considered to be more complicated with more frequency repeat
sequences, larger intergenic spacer, and more introns, which
might accelerate the evolutionary process of plant species.
Moreover, greater genome size changes in hexaploid species
demonstrated a wider genomic differentiation and indicated a
faster evolution in the hexaploid species (Abbott and Lowe,
2004; Nakano et al., 2021) than in the tetraploid species.
Large differences in evolutionary pressures, especially the
additional H genome in hexaploid E. nutans, accelerated genomic
variation, accommodating adequate adaptability and accounting
for extensive altitudinal distribution in these areas with high
altitude (Zhao et al., 2019). Besides, genome combination
differentiation between the genomes Y and H in E. sibiricus
and E. burchan-buddae can be the potential reason for an
interspecific genome size variation, which corresponds to the
previous research (Sun and Salomon, 2009). The origin of Y
genome has always been a very interesting scientific question
in wheatgrass phylogenetic studies (Sun and Salomon, 2009;
Sun and Komatsuda, 2010; Tan et al., 2022). Our data showed
that Y genome size is smaller than the H genome size, which
provides a hint for discovering the potential progenitor and
donor of the Y genome. Furthermore, interspecific genomic
changes that occurred in the formation of polyploids resulted
from hybridization, sequence rearrangements, and homologous
recombination (Han et al., 2003; Urfusová et al., 2021).

Varying Pattern Between Genome Size and
Altitude
Genome size variation of plant species has a momentous
adaptive and evolutionary significance and is always related
to environmental characteristics (Mráz et al., 2009; Meyerson
et al., 2016), including latitude, longitude, and altitude generally.
Our study claimed a wide variation of genome size among
wheatgrass populations along altitudinal gradients and revealed
a complex and strong association between altitude and genome
size. In our previous work, higher genetic diversity was
observed in populations at 3,400–3,900m (medium altitudes)
than those at 3,000–3,400 and 3,900–4,300m (low and high
altitudes, respectively) for the Elymus species (Yan et al.,
2009). Interestingly, in this study, larger genome size variations
occurred at the 3,400–3,900m regions compared with the
Elymus populations at other altitudes. The results yielded notable
genomic evolution information within and among Elymus
populations, especially at 3,400–3,900m, revealing abundant
genome size diversity. And population genetic relationships
seemed to be closer with a similar altitude, and the curve
regression analysis showed a strong association between genetic
relationships of populations and their genome size at a particular
altitude. Our study result also is consistent with that of Ohsawa
and Ide (2008). Primarily, species abundance typically peaks at
mid-altitude compared with the high- and low-altitude areas
coupled with a severe ecological environment including low

oxygen content, cold temperature, infertile soil, and water
depletion, leading to a deteriorating habitat suitability for
plants from the center to the edge (Herrera and Bazaga,
2008; Ohsawa and Ide, 2008). In addition, genetic variation
across the altitudinal ranges is often centrally distributed
and highly diverse at the mid-altitude regions in Elymus
species as well as other widespread species (Brown, 1984).
In contrast, marginal altitudes including high (3,900–4,300m)
and low (3,000–3,400m) altitudes limited the opportunities for
hybridization or gene introgression, which may narrow genomic
variation. A larger temperature variation at the 3,900–4,300m
altitude compared with the other altitudes is a possible reason
for generating more plentiful genomic variation among and
within species (Koskey et al., 2018). Under the circumstances,
a stronger plasticity and higher genomic variation at mid-
altitudes (3,900–4,300m) within Elymus populations under
varying environmental conditions are well-annotated. These
findings of the genomic variation patterns in Elymus across
altitudinal gradients are favorable to polyploidy evolution and
species formation, contributing to explaining the powerful
adaptability of Elymus to the highland environment. From the
standpoint of germplasm conservation and utilization, the mid-
altitude was the conducive locality for collecting and developing
QTP wheatgrass germplasm resources.

The Genomic Relationships Between the
St, H, and Y Genomes in Elymus Species
Genome is generally defined as a full set of chromosomes in a
haploid cell of a genome or all the genes in haploid cells as a
genome. We found 1C nuclear DNA contents (genome sizes) of
E. nutans (StHY), E. burchan-buddae (StY), and E. sibiricus (StH)
were 9.82, 6.195, and 8.425 pg/1C, respectively. The nuclear DNA
content of genome St (4.8 pg) is larger than that of genomes H
(3.625 pg) and Y (1.395 pg), whereas the nuclear DNA content of
genome Y is smaller than that of genome H. When hybridizing
the probe P. strigosa with E. burchan-buddae and E. sibiricus,
we found the relationship between the St genome and the Y
genome was closer than that between the St genome and the H
genome. Hybridization of H. bogdanii with E. burchan-buddae
and E. nutans showed that the H genome had partial homology
to the Y genome, and they are from different donors. Our results
supported the hypothesis that the Y genome evolved in a diploid
species and has a different origin from the St genome (Yan et al.,
2011). RPB2 genes and transcription elongation factor G (EF-
G) sequence analysis also indicates the Y genome has a different
origin from the St genome (Sun and Salomon, 2009; Yan et al.,
2011).

Our GISH results on Elymus showed the close homology
between Elymus and the other two species including P. strigosa
and H. bogdanii. Simultaneously, GISH data showed that the St,
H, and Y genomes were closely related, and genomic homology
was found among them. Lu and Bothmer (1990) suggested that
genomes St, H, and Y have lower homology. A certain degree
of homology of the St and Y genomes was reported in the
intergeneric hybridizations among interspecific hybrids of three
diploid species of Pseudoroegneria and four tetraploid species of
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Roegneria (StY) and with three species of Elymus (StH, StYW)
(Zhang et al., 2009). Zhang and Yan (2000) reported the St
genome and Y genome in Roegneria grandis had high homology.
We found the relationship between the St genome and the Y
genome was closer than that between the St genome and the H
genome, and the Y genome and the H genome.

CONCLUSION

An apparent genome size variation within the population of
native Elymus species was observed along the altitude on the
QTP, accounting for their strong adaptation to a changeable and
harsh highland environment. Ploidy levels are regarded as the
main biological character for genome variation, and genome size
can significantly positively influence morphological traits such as
plant height. More importantly, we found a higher chromosome
variation in the population at 3,900–4,300m. We speculated
that more complicated genomic changes were associated with
escalating altitudes in the Tibetan Plateau, and the mid-
altitude (3,900–4,300m) area fostersmore genomic variation.We
believe that this altitudinal range is ideal for the investigation,
collection, and utilization of superior plant germplasm resources.
These genomic and chromosomal changes promote the genetic
variability and enable the newly formed allopolyploids to adapt to
more changeable and harsher environments during the evolution
of polyploid species, thus facilitating their rapid and successful
establishment in nature.
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