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Energy load forecasting is a critical component of energy system scheduling and
optimization. This method, which is classified as a time-series forecasting method,
uses prior features as inputs to forecast future energy loads. Unlike a traditional single-
target scenario, an integrated energy system has a hierarchy of many correlated energy
consumption entities as prediction targets. Existing data-driven approaches typically
interpret entity indexes as suggestive features, which fail to adequately represent
interrelationships among entities. This paper, therefore, proposes a neural network model
named Cross-entity Temporal Fusion Transformer (CETFT) that leverages a cross-entity
attention mechanism to model inter-entity correlations. The enhanced attention module is
capable of mapping the relationships among entities within a time window and informing
the decoder about which entity in the encoder to concentrate on. In order to reduce
the computational complexity, shared variable selection networks are adapted to extract
features from different entities. A data set obtained from 13 buildings on a university
campus is used as a case study to verify the performance of the proposed approach.
Compared to the comparative methods, the proposed model achieves the smallest error
on most horizons and buildings. Furthermore, variable importance, temporal correlations,
building relationships, and time-series patterns in data are analyzed with the attention
mechanism and variable selection networks, therefore the rich interpretability of the model
is verified.

Keywords: integrated energy system, time-series forecasting, multi-entity forecasting, load forecasting, neural
networks, transformer network

1 INTRODUCTION

The integrated energy system (IES) is regarded as one of themost important forms ofmodern energy
systems (Tahir et al., 2021). A comprehensively optimized IES is capable of delivering considerable
energy savings, pollution reduction advantages, better system stability, etc. (Zhang et al., 2020;
Wang et al., 2022). One key specification of IES is the demand pattern of the energy end-users.
Therefore, demand forecasting can provide insights to enhance system design, scheduling strategy,
and control optimization for IES (Dittmer et al., 2021).

Statistic and machine learning techniques have long been applied for the demand forecasting of
end-users. The former techniques are straightforward strategies that focus on the target time series’
statistics. The latter techniques are trained with a period of load data accompanied with auxiliary
information before making predictions based on recent data. Typical statistic models include the
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simple linear regression model, moving average (MA) strategy,
and autoregression (AR) algorithm. Auto-Regressive Integrated
Moving Average (ARIMA) is a combination of MA and AR,
which includes stationary stochastic variables in the non-
stationary stochastic process. As a result, it is capable of
reproducing time series patterns (Newsham and Birt, 2010).
Notable traditional machine learning methods include Partial
Least Squares Regression (PLSR), Ridge Regression (RR), and
Support Vector Regression (SVR). PLSR basically uses the
covariance between the input and output variables instead of
analyzing the hyperplanes with the least variance between the
dependent and independent variables (Hosseinpour et al., 2016).
In RR models, a shrinkage estimator is added to the
diagonal elements of the correlation matrix (Sun et al., 2019).
SVR leverages kernel functions for modeling the nonlinear
transformation. These models often ignore the chronological
order of variables and struggle to properly model the temporal
features in the data.

Time-series forecasting approaches based on deep learning
have significantly grown in recent years, with the development
in neural network algorithms, available data, and hardware
power. Recurrent neural networks (RNN) (Rumelhart and
McClelland, 1987) is a category of neural network suitable
for time-series modeling. RNNs use hidden states that are
iteratively supplied back to the network for temporary time-
related information representation and storage, as implied by
the name (Tang et al., 2021). This gives the model memory for
temporal properties. However, RNN suffers from the vanishing
gradient problem (Ribeiro et al., 2020). The hidden state will
gradually degrade during simulation for long-term sequences.
To alleviate this problem, improved implementation of RNN
including Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and GRU Gated Recurrent Unit (GRU)
(Chung et al., 2014) have been proposed. These networks
introduce a gate for controlling time-series information.Thegates
assist the network in selecting critical data that requires long-term
memory. As a result, both networks can make predictions for
extended periods of time before the vanishing gradient problem
appears Ayodeji et al. (2022).

The Transformer (Vaswani et al., 2017), which employs an
attention mechanism to describe cross-time interactions for time
series, has recently become one of the most popular network
architectures.The attention module accepts all time frame inputs
and provides weights that directly map the impact of the previous
time frame on future targets. Therefore, the gradient vanishing
problem due to long-time dependence is eliminated. Another
benefit of the transformer is that the network grants better
interpretability. Natural language processing (Tetko et al., 2020)
and computer vision (Dosovitskiy et al., 2021), two of the most
important domains of artificial intelligence, have both benefited
greatly from the transformer. The better modeling capabilities
of this model, however, come at the cost of more computation.
The computational complexity of attention to explicitly simulate
the cross-time relationship is O(n2), where n is the scale of time
frames. In comparison, the computational complexity of most
neural network implementations, such as GRU and LSTM, is
O(n). Meanwhile, while the transformer solves the problem of

time dependence, it does not support input selection inside a
single time frame.

Combining LSTM and Transformer, the Temporal Fusion
Transformer (TFT) proposed by Lim et al. (2021) is a state-of-
the-time model for multi-horizon forecasting. TFT leverages a
backbone network based on LSTM layers for variable selection
and encoding. The attention module receives the output from
LSTM at all time frames as input, which addresses LSTM’s
disadvantage by efficiently modeling time dependence.

For time-series forecasting including multiple entities,
the TFT uses entity encodings to distinguish entities and
independent networks to produce predictions, without modeling
the correlation between entities. As a result, TFT may not
cope well with the correlation among entities across different
time steps, which is crucial for IES load forecasting (Feng and
Zhang, 2020; Wang R. et al., 2021).

Therefore, the Cross-Entity Temporal Fusion Transformer
(CETFT) was developed in this research as an improved
version of the Transformer structure geared to energy load
forecasting with correlations across distinct entities. The cross-
entity attention module and entity encoding networks based
on shared variable selection blocks are two innovative methods
offered to adapt the network to multi-entity prediction tasks.
This allows for simultaneous quantification of correlation across
entities and time domains. Experiments on 13 buildings on
a university campus are conducted to compare the proposed
method to existing predicting algorithms. Future analyses
are taken to comprehensively evaluate the interpretability of
the network, Including cross-time correlations, cross-entity
correlations, special attention to unconventional time-series
trends, and variable importance.

The remaining of this paper is organized as follows: Section 2
gives an introduction and mathematical definition of IES and
time series forecasting; In Section 3, the structure of the proposed
CETFT and its submodules are explained in detail; Section 4
carried out a case study based on the campus building data set
evaluating the performance and interpretability of the proposed
model; and Section 5 briefly concludes this paper.

2 PRELIMINARY

2.1 Integrated Energy Systems
The IES is mainly composed of multiple energy supply, exchange,
storage, and consumption entities (Lin and Fang, 2019). These
entities could transmit energy to each other according to a certain
scheduling strategy to achieve a balance within the system and
minimize the overall energy usage and expense. One major
concern in achieving this goal is forecasting loads of consumption
entities in advance, and the interdependence of entities is critical
to achieving this goal.

2.2 Time-Series Forecasting
As illustrated in Figure 1, the goal of load forecasting can be
framed as a supervised learning problem on time-series data.The
data are a sequence of observations with equal time intervals,
including targets and auxiliary information. The object of the
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FIGURE 1 | Demonstration of a time-series forecasting problem with multiple
entities.

problem is to forecast future target values based onhistorical data.

These data are organized in chronological order and grouped
into a series of time windows of equal lengths. Each time window
is further divided into two parts by a given forecast time frame t.
In the inference phase, it is typically sufficient to take as input data
a short period before the prediction time to encode the current
state. The length of the data window as inputs is denoted by L.
Those after the forecast time are outputs of the problem. The
forecasting horizon is given by H, which is the number of time
frames to be forecast.

In an IES, there are typically multiple entities that are
correlated to each other. Let E be the number of unique entities
in the system, e.g., different buildings on a campus, indexed by
1,2,…,E. The target is the energy load yi,t ∈ ℝ of entity i ∈ E at
time step t in the future time window [t, tF], where tF = t+H.

From the perspective of accessibility, the features χ t = [ut;xt]
are divided into known features that can be predetermined
ahead of time (e.g., calendar features) and unknown features
ut that are observed and must be predicted for future values
(e.g., meteorological information). Typically, the targets are also
a subset of the unknown features. The features χ i associated with
a certain entity i include the private property of that entity and
public features that affect the entire area.

The object of the problem is to construct a model f(⋅) to
forecast future outputs for each entity in a time period, which is
denoted by:

̂yi (t,τ) = f (τ,ytS∶t ,ztS∶t ,xtS∶tF) , (1)

where f(⋅) is the proposed prediction model. The output ̂yi(t,τ) is
the forecast value at time t+ τ, given known variables spanning
from starting time frame tS = t− L+ 1. Finally, the output of the

model is the targets of all entities at the time frame t+ τ, which is
a set of targets ̂y(t,τ) = { ̂y1(t,τ),…, ̂yE(t,τ)}, where τ = 1,2,…,H.

3 METHODOLOGY

The basic idea of neural networks is to apply weights to inputs
through serial layers, in the form of:

Layer (z) = Activation (Wz + b) , (2)

where z ∈ ℝdinput is input of the layer,W ∈ ℝdlayer×dinput is weight, b ∈
ℝdlayer is bias, andActivation(⋅) is a proper activation function that
enhances the otherwise linear matrix multiplication and addition
operation with non-linearity. Typically, the training process of
neural networks is to optimize the weights and biases to fit the
training data set and minimize metrics or losses. Usually, a batch
of input vectors will be stacked into a matrix and processed at the
same time, and b will be horizontally broadcast to fit the shape.

The weights are hard parameters that only change during
learning and are insistent during inferences. In contrast, recently
developed neural networks tend to utilize “soft” weights to
simulate the cognitive attention to inputs, of which a typical
example is the attention mechanism (Vaswani et al., 2017).These
networks leverage additional branch layers to adaptively calculate
weights from inputs, which are again multiplied by the inputs at
the layer at the main route.

The proposed CETFT utilizes two of these modules. First
is the cross-entity attention module, which builds associations
between each entity at different times. The second is the variable
selection network (Lim et al., 2021) used for entity encoding,
which simulates the importance of features for understanding the
state of each entity at each time. In this paper, both thesemodules
have been improved to adapt to the cross-entity situation. This
sectionwill provide a detailed definition of these two keymodules
and also the overall architecture of the network.

3.1 CETFT Architecture
The CETFT can be roughly separated into three sequential
submodules, as shown in Figure 2: 1) the cross-entity attention,
2) the entity encoding network, and 3) the output layers. Gated
residual networks are used to connect adjacent sub-modules and
further process intermediate variables. These modules will be
defined in this section.

3.2 Cross-Entity Attention
In order to model the correlation among entities as well as
time steps at the same forecast time, A cross-entity attention
mechanism is employed for the temporal fusion transformer.The
attention module receives encoded vectors from entity encoding
networks and generates temporally enhanced feature vectors
for the output layer. Before the module, an encoded vector
of dinput will be generated for all entities from all times. For
a system with E entities, L encoder length, and H decoder
length, the number of vectors available is E(L+H). The attention
module receives twomatrics as input:Z1 ∈ ℝ

dinput×E(L+H) composed
of all encoded vectors stacked, and Z2 ∈ ℝ

dinput×EH within the
predicted time period. Adapted from the implementation of
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the attention mechanism called scaled dot-product attention
(Vaswani et al., 2017), the process is represented as:

CEAttention (Q,K ,V) = Softmax(
QKT

√dk
⊙ M̃)V (3)

QT =WQZ2, (4)

KT =WKZ1, (5)

VT =WVZ1, (6)

where Q ∈ ℝEH×dk , K ∈ ℝE(L+H)×dk , and V ∈ ℝE(L+H)×dv are the
query, key and value matrices, respectively, and WQ ∈ ℝ

dk×dinput,
WK ∈ ℝ

dk×dinput, WV ∈ ℝ
dv×dinput, are learnable weights. The ⊙

symbol denotes Hadamard product, and the mask matrix M̃ ∈
ℝEH×E(L+H) provides information accessibility control for the
module, which will be defined later The Softmax function is a
function that scales a input vector z ∈ ℝdinput into the range (0,1),
and keeps the sum of the elements equal to 1:

Softmax(z)j =
exp(zj)

∑dinput
i=1
exp(zi)
, (7)

where exp(⋅) is the power with natural base. The output of the
whole module is with dimension EH× dv.

The process can be interpreted as a weighted sum of the
features. The weights are calculated by multiplying the keys from
all time and queries within the prediction horizon. The module
scale the feature vectors according to the relationship among time
frames and scale the input according to the estimated attention.

For time series forecasting, a decoding mask M should be
applied to define the causal relationships between embeddings
(Li et al., 2019).The encoding embeddings, however, are available
to all time frames.Therefore, themask for a single-entity attention
mask is shaped like a right-angled trapezoid. The lengths of the
top base and the bottom base are equal to the size of encoder
embeddings and the size of all embeddings, respectively. The
mask is described as a matrix M ∈ ℝH×(L+H), where its elements
are:

Mi,j = {
1 j ≤ L+ i
−∞ j > L+ i , for 1 ≤ i ≤H,1 ≤ j ≤ L+H. (8)

Themaskmatrix is illustrated in the left sub-figure inFigure 3.
To adapt to a multiple-entity application, the attention mask

should be repeated by the number of entities both horizontally
and vertically, which is illustrated in Figure 3. Mathematically,
the cross-entity mask is defined as:

M̃i,j = {
1 jmod (L+H) ≤ L+ imodH,
−∞ otherwise,

for 1 ≤ i ≤ EH,1 ≤ j ≤ E (L+H) .
(9)

Furthermore, to increase the representative capability of the
attention mechanism, it is common to stack multiple attention
heads into a multi-head attention module, which is defined as:

MultiHead (Q,K ,V) =Wh [H1;…;Hmh
] , (10)

Hh = CEAttentionh (Q,K ,V) , (11)

where h is the index of attention head,mh is the number of heads,
andWh ∈ ℝmhdv×dv is a weight parameter matrix.

3.3 Entity Encoding Networks
The entity encoding modules are a set of networks for producing
encoded vectors from raw inputs, which are passed to the
attention layer.The network consists of two components in series.
Firstly, the shared variable selection network filters important
variables in the input, and then the LSTM layers will initially
extract the time information.

3.3.1 Shared Variable Selection
At different times, the variables that have the main impact on
the forecast are different. The variable selection networks are
intended to screen valuable variables and apply weights to those
variables based on their projected importance.

The inputs will be categorized according to distinct entities
initially, as indicated in Figure 2. Each input will be sent into a
single variable selection network at each time frame. All of these
networks’ outputs will be collected and organized in the same
hierarchy as their inputs.

Before being fed into the networks, the numerical inputs
are normalized. The categorical inputs will be encoded using a
normalized vector whose length is determined by the number of
available values. After this process, it makes no difference to the
network whether the input is continuous or discrete, except that
discrete variables are represented as a vector rather than a single
value. Without loss of generality, the following definition will be
based on a single continuous variable.

In practice, the variable selection network modules can be
reused if the same features are shared across time or entities,
which is similar to how themodules were shared for encoders and
decoders in the original TFT model. Different from the original
TFT implementation, the variable selection networks are shared
among entities to reduce the complexity of the network. These
networks rely on the idea of a Gated Residual Network (GRN)
defined by Lim et al. (2021) as follows:

GRNω (z3) = LayerNorm(z3 +GLUω (η1)) , (12)

η1 =W1,ωη2 + b1,ω, (13)

η2 = ELU(W2,ωz3 + b2,ω) (14)

where ω is an identifier of the network that corresponds to a
certain input element, LayerNorm is a standard layer normalizer
by Ba et al. (2016), and η1, η2 ∈ ℝ

dlayer are intermediate variables,
W1,ω, W2,ω, b1,ω, b2,ω are learnable weights and biases of the
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FIGURE 2 | CETFT architecture. Entity encoding networks receive inputs directly related to theirs corresponding entity, and the outputs are concatenated
chronologically. The cross-entity attention integrates information from all entities and time frames. Gated residual layers provide enhancement to skip connections.
Dense layers generate forecasting results.

FIGURE 3 | Left: The original self-attention mask for TFT. Right: The cross-entity attention mask for CETFT, generated by repeating the single-entity attention mask
by E times both horizontally and vertically.

layers, and Exponential Linear Unit (ELU) is a type of activation
function defined as (Clevert et al., 2016):

ELU = {x if x > 0
exp (x) − 1 if x ≤ 0, (15)

The Gated Linear Unit (GLU) is (Dauphin et al., 2017):

GLUω (z) = σ (W3,ωz + b3,ω) ⊙ (W4,ωz + b4,ω) , (16)

where σ(⋅) is the sigmoid function and⊙ is Hadamard product,
W3,ω.W4,ω, b3,ω, b4,ω are learnable layer parameters.

In practice, individual shared variable selection networks
are built for each element in the model input. Let χj,t be j-th
normalized or encoded input variable at time frame t, the variable
selection layer is:

vχj,t = Softmax(GRNvχj
(χj,t)) , (17)

where vχj,t identifiers the networkwith parameters for j-th variable
at given time t.

On the other hand, the input χj,t is handled by an extra GRN
layer associated with itself:

̃χj,t = GRN ̃χj,tχj,t , (18)

Individual variable selection networks corresponding to the
inputs connected with a certain entity are collected based on pre-
defined entity attributes, and their outputs are aggregated into a
single vector. LetV i

t be the set of variables associated with entity i
at time t, and the variable selection network for entity i produces
the following output:

̃χit = ∑
j∈V i

t

vχj,t ̃χj,t (19)
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TABLE 1 | Building categories and energy load patterns.

No. Category Pattern

B1 Administration Varies from 8 a.m. to 5 p.m.
B2 Lecture hall Relatively small but chaotic load
B3–B7 Classroom/Lab Varies from 8 a.m. to 10 p.m.
B8 Library The largest and most stable load
B9 Parking structure with photovoltaic panels Negative load during the daytime
B10–B13 Student residence hall Diverse load

Note that aside from inside the entity encoding networks, the
GRN blocks also act as connectors of the main modules in the
CETFT network.

3.3.2 LSTM Layers
LSTM layers are a type of RNN layers that receive inputs of
the current time and also hidden inputs from past time. The
mathematical definition of LSTM can be found in the paper by
Hochreiter and Schmidhuber (1997). The LSTM layers generate
two parts of return values, namely the output vector and the
hidden vector. The output vector, as indicated by the name, is the
variable passed to other modules. On the other hand, the hidden
vector is passed back to the layer.

In CETFT, the LSTM layers are used to further process the
features of each time output by the variable selection network
to initially extract the time information. The past inputs ̃χitS∶t
are fed into LSTM encoders to get output and hidden vectors
for each frame, and the latter is further inputs ̃χit+1∶tF to LSTM
decoders. The outputs of LSTM encoders and decoders are
grouped chronologically into a vector ̃χ i. Finally, the outputs from
all entities are aggregated and flattened into a big vector, which is
the attention layer’s input, to align with the cross-entity attention
module.

FIGURE 4 | Pearson correlation of building loads.

3.4 Output Layer
The outputs of the attention module will pass through another
GRN before a set of dense layers are introduced to generate
quantile outputs for the model. The model will generate multiple
outputs corresponding to the forecasted values of each entity
at each prediction time. In addition, the quantile loss by
Sharda et al. (2021) summed across all outputs is used to train
CETFT.

4 CASE STUDY

4.1 Dataset and Evaluation Setting
The data set is a collection of energy loads of 13 buildings at
the University of Texas at Dallas, accompanied by 21 columns
of auxiliary variables including meteorological records and
calendar information1. The recordings span from January 2014
to December 2015 with a 1-h sample interval, providing a total of
17,520 records.

The buildings can be separated into six categories, as listed in
Table 1. B9 is a site equipped with photovoltaic panels, whose
load drops to negative numbers during the daytime. B2 is a
lecture hall. Its load is relatively small and drops to 0 about 30%
of the time. All other buildings have higher loads during the
day and lower loads at night, but their load patterns vary with
different categories. The correlations among these buildings can
be clearly seen fromPearson analysis illustrated in Figure 4. A list
of auxiliary features and their accessibility and types are shown
in Table 2. The correlations among meteorological variables are
illustrated in Figure 5. The heat map indicates high correlations
among the variables related to irradiance and temperature, while
they share a negative correlation with the solar zenith angle and
relative humidity.

The categorical inputs are converted to encoding vectors, while
continuous inputs are normalized.These inputs are concatenated
into a vector for each entity at each time step. The data sets
are chronologically divided into training/validation/test sets with
a ratio of 0.7:0.15:0.15. The forecast horizons are selected as
1, 6, 12, and 24 h ahead. This horizon configuration is based
on the daily periodicity of the time series and is commonly
adopted by recent works (Arsov et al., 2021; He et al., 2022). In

1The data is accessible on the website of IEEE Data Port (https://dx.doi.org/
10.21227/jdw5-z996).
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TABLE 2 | Feature and target specification in the UTD dataset.

Variable Accessibility Type

Holiday Predetermined Categorical
Day Predetermined Categorical
HOD (Hour of Day) Predetermined Categorical
DOW (Day of Week) Predetermined Categorical
MOY (Month of Year) Predetermined Categorical
Cloud type Unknown Categorical
DHI (Diffuse Horizontal Irradiance) Unknown Continuous
DNI (Direct Normal Irradiance) Unknown Continuous
GHI (Global Horizontal Irradiance) Unknown Continuous
Clearsky DHI Unknown Continuous
Clearsky DNI Unknown Continuous
Clearsky GHI Unknown Continuous
Dew point Unknown Continuous
Temperature Unknown Continuous
Pressure Unknown Continuous
Relative humidity Unknown Continuous
Solar zenith angle Unknown Continuous
Precipitable water Unknown Continuous
Wind direction Unknown Continuous
Wind speed Unknown Continuous
Load Target Continuous

the test data set, there are 1460 and 846 missing data of buildings
B2 and B9 out of 2628 records, respectively, and therefore the
two buildings are excluded from forecast targets during model
evaluation.

The hyperparameters CETFT and TFT are tuned with
the Optuna framework (Akiba et al., 2019). The range of the
hyperparameters are: network layer size range in [8, 256],
attention head size in [1, 16], learning rate range in [1e-5,
0.1], dropout range in [0.1, 0.3]. The model is optimized based
on the loss on the evaluation set, and the optimized model
is further evaluated on the test set. The Ranger optimizer is

FIGURE 5 | Pearson correlation of meteorological variables. CDHI, clearsky
DHI; CDNI, clearsky DNI; CGHI, clearsky GHI; DP, dew point; T, temperature;
P, pressure; RH, relative humidity; SZA, solar zenith angle; PW, precipitable
water; WD, wind direction; WS, wind speed.

adopted for training, with the batch size equal to 128 and a
max epoch of 300. The learning rate is divided by 10 if the
evaluation loss has stopped reducing for 4 epochs, and the
training will early stop after 10 epochs without performance
improvement.

The models to be compared are roughly divided into
three categories: identification-based methods, of which a
representative algorithmARIMA; traditional statistical methods,
including PLSR, RR and SVR; and deep-learning-basedmethods,
including LSTM, GRU and TFT. The metric used for evaluation
is Symmetric Mean Absolute Percentage Error (sMPAE) which is
commonly used in time-series forecasting in the field of energy
(Demir et al., 2021; Meira et al., 2021; Putz et al., 2021):

sMAPE = 1
n

n

∑
i=1
|

yi − ̂yi
(yi + ̂yi)/2

| (20)

where n is the amount of prediction made. A smaller value of the
metric indicates a better performance of the model.

4.2 Comparison With Baseline
Table 3 collects the sMAPE error of all testing scenarios, covering
different horizons, models, and buildings. The best model is
marked in bold in each line. It can be seen that CETFT has
achieved the best performance in 37 tests out of 44.The remaining
best results were achieved by TFT, RR, and ARIMA, respectively.
From an architectural point of view, CETFT achieves the best
results for all horizons with the exception of B1, B5, and B8. In
terms of computational complexity, our network takes 3 h and
27 min to train, while TFT takes 1 h and 25 min on an Nvidia
A100 GPU with 40 GiB memory.

All models’ predictive power declines as the horizon lengthen,
which is to be expected given the limited amount of information
available for future forecasts. ARIMA is the model that suffers
the most as the horizon lengthens. Although ARIMA performed
best on B8 when horizon = 1, it quickly became the model with
the biggest error as the horizon was extended. When the horizon
is increased from 12 to 24, however, the ARIMA error does not
greatly rise, which can be explained by the cyclical pattern of
energy usage throughout the day.

Statistical machine learning models including PLSR, RR, and
SVR have obtained similar results. The RR model’s accuracy
gradually drops as the horizon lengthens, whereas PLSR and
SVR remain reasonably stable. When horizon = 1, however,
the latter two already have bigger errors. As a result, the RR
model has a superior overall performance. There is a more
remarkable phenomenon regarding these models, that is, their
performance on buildings B12 and B13 is rather poor. These
statistical models may fail to capture special patterns related
to certain entities in the time series, resulting in inaccurate
forecasts.

LSTM and GRU, the two RNN-based models, have relatively
similar model performance. The accuracy of these two models
is relatively little influenced by the prediction horizon. These
two models outperform statistical machine learning techniques
for B10–B13 prediction, but they don’t have any evident
advantages in other buildings. In general, neither of these
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TABLE 3 | SMAPE on the UTD dataset.

horizon = 1

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 3.73% 7.87% 4.73% 8.65% 6.99% 6.38% 3.80% 3.13%
 B3 5.28% 11.47% 7.95% 10.51% 8.25% 6.83% 5.92% 4.93%
 B4 3.05% 4.78% 2.45% 6.38% 4.79% 3.89% 2.88% 2.12%
 B5 3.89% 7.21% 3.59% 6.50% 9.38% 8.65% 6.86% 6.79%
 B6 5.17% 8.55% 5.14% 8.92% 8.95% 6.91% 4.96% 3.27%
 B7 9.18% 15.14% 8.63% 14.05% 12.88% 8.55% 6.59% 3.92%
 B8 1.35% 2.85% 1.77% 3.42% 3.47% 2.68% 2.40% 1.72%
 B10 6.93% 11.64% 7.10% 11.90% 6.43% 6.98% 5.44% 4.79%
 B11 7.38% 11.70% 6.50% 14.13% 8.37% 7.34% 7.60% 6.41%
 B12 6.76% 30.21% 18.98% 30.49% 7.38% 7.70% 6.27% 5.60%
 B13 15.28% 42.78% 25.13% 39.11% 9.34% 10.19% 7.79% 6.06%

horizon = 6

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 10.67% 9.18% 6.04% 9.11% 7.68% 7.90% 4.94% 3.88%
 B3 17.62% 12.10% 7.35% 10.93% 8.98% 8.89% 7.05% 5.66%
 B4 10.62% 5.58% 3.48% 6.74% 5.45% 5.35% 3.60% 2.44%
 B5 9.85% 8.88% 7.07% 7.95% 10.62% 9.80% 7.45% 7.41%
 B6 15.60% 9.48% 5.07% 9.40% 10.12% 9.88% 6.39% 4.00%
 B7 31.97% 16.20% 10.08% 14.34% 13.17% 12.11% 7.06% 4.34%
 B8 2.95% 3.19% 2.38% 3.60% 3.73% 3.49% 2.60% 1.82%
 B10 13.80% 12.79% 9.40% 12.24% 7.86% 9.19% 6.73% 5.66%
 B11 13.22% 12.19% 9.56% 14.37% 8.60% 7.70% 7.80% 6.83%
 B12 13.34% 30.95% 28.21% 30.88% 8.46% 9.42% 7.39% 6.51%
 B13 29.73% 44.31% 24.39% 40.14% 10.37% 14.15% 10.05% 7.85%

horizon = 12

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 16.52% 9.67% 7.70% 9.31% 8.93% 8.98% 4.49% 4.94%
 B3 28.70% 12.45% 8.55% 11.10% 10.33% 10.41% 6.59% 6.49%
 B4 18.15% 5.97% 4.47% 6.87% 6.57% 5.99% 3.03% 2.79%
 B5 14.47% 9.66% 8.58% 8.78% 11.49% 10.84% 7.67% 8.12%
 B6 25.18% 9.82% 5.95% 9.64% 12.29% 11.74% 5.73% 5.10%
 B7 51.33% 16.57% 11.44% 14.51% 15.34% 14.62% 6.56% 5.39%
 B8 3.93% 3.32% 2.71% 3.68% 3.88% 3.81% 2.62% 2.02%
 B10 19.33% 13.52% 10.71% 12.56% 8.54% 8.47% 7.14% 6.93%
 B11 17.82% 12.44% 10.16% 14.53% 8.68% 7.98% 8.08% 7.16%
 B12 18.91% 31.42% 29.24% 31.23% 9.52% 9.05% 8.25% 7.80%
 B13 41.54% 46.41% 29.22% 41.23% 12.04% 13.22% 10.71% 10.14%

horizon = 24

 Entity ARIMA PLSR RR SVR LSTM GRU TFT CETFT

 B1 17.64% 10.03% 8.52% 9.61% 9.52% 9.19% 4.95% 5.03%
 B3 31.18% 12.86% 9.26% 11.29% 10.66% 10.30% 6.74% 6.14%
 B4 20.25% 6.25% 4.74% 7.02% 6.00% 5.96% 3.07% 2.65%
 B5 15.53% 10.13% 9.31% 9.43% 11.53% 11.87% 7.87% 8.40%
 B6 26.50% 9.85% 6.33% 9.86% 11.84% 11.44% 6.05% 4.38%
 B7 51.93% 17.26% 12.25% 14.75% 14.82% 13.48% 6.34% 4.83%
 B8 4.36% 3.48% 2.96% 3.76% 4.00% 4.07% 2.64% 2.15%
 B10 20.27% 14.51% 12.25% 13.07% 8.48% 8.66% 7.73% 7.08%
 B11 17.96% 12.64% 10.49% 14.79% 8.66% 9.16% 8.15% 7.91%
 B12 20.38% 31.90% 30.43% 31.81% 9.47% 9.78% 8.94% 8.73%
 B13 48.58% 49.93% 35.14% 43.14% 12.52% 13.14% 11.49% 11.01%

The best model in each row is marked in bold.
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two models may be particularly favorable for multi-entity
forecasting.

The TFT is the closest to the proposed CETFT in terms
of performance. But on most buildings, especially buildings
including B6 and B7, CETFT still shows a clear advantage, where
the error is reduced by about 1–2 percentage points. When the
horizon is smaller, CETFT offers more visible advantages than
TFT. This reflects CETFT’s superiority over TFT in extracting
information from entities. In general, CETFT delivers the best
overall forecasting performance by combining the advantages of
TFT for time-series forecasting with advances based on multi-
entity forecasting.

4.3 Model Interpretability
It is feasible to interpret the model by examining the runtime
weights during prediction thanks to the incorporation of two
soft-weight-based network structures, namely the cross-entity
attention module and shared variable selection network. Both
of these networks will assign bigger weights to the more
important inputs each time the model makes a prediction
(Ding et al., 2020; Niu et al., 2021). As a result, a probabilistic
assessment of the contribution or importance of a particular
object (i.e., a variable/entity/time frame) to the prediction can
be made by aggregating the soft weights pertaining to that object
across the whole data set (Lim et al., 2021).

Several use cases, including 1) variable importance
assessment, 2) cross-entity relationship evaluation, 3) cross-time
relationship evaluation, and 4) time-series pattern identification,
will be exhibited in this section to evaluate the model’s
interpretability.

4.3.1 Variable Importance Assessment
By aggregating the weights of the shared variable selection
networks, it is possible to assess the importance of different
variables to the network. The importance of all variables
and known variables can be determined by aggregating the
weights of the variable selection network in the encoder and
decoder sections, respectively. The two classes of importance
are normalized so that their sum is equal to 1, and the result
is recorded in Tables 4, 5. In these two tables, the importance
percentages greater than 5% and 10% are, respectively marked in
bold, indicating key variables for encoding and decoding.

Holiday, day, HOD, GHI, clearsky DHI, clearsky GHI,
Pressure, precipitable water, and load are critical factors in the
encoder stage, according to the model. Because the load has a
clear daily periodicity and is considerably affected by holidays,
the impact of holidays and hours on the forecast is interpretable.
The variables related to sunlight are strongly correlated, and the
importance of clearsky GHI is the highest for all variables, but
someof the variables are of low importance.This could be because
the variable selection network identifies redundant features and
reduces dimensionality. It is worth noting that the importance of
the load itself is not at its peak. This illustrates the importance of
auxiliary variables in load forecasting.

On the decoder side, Holidays and hours still have a very
important impact on the prediction. However, the rank of date
and DOW is the opposite of those of the encoder. This may

TABLE 4 | Importance of variable importance for past inputs.

Variable Importance

Holiday 7.66%
Day 5.90%
HOD 7.71%
DOW 2.45%
MOY 4.78%
Cloud type 2.71%
DHI 3.38%
DNI 3.39%
GHI 7.37%
Clearsky DHI 6.10%
Clearsky DNI 3.29%
Clearsky GHI 9.18%
Dew point 2.76%
Temperature 1.99%
Pressure 5.40%
Relative humidity 3.19%
Solar zenith angle 1.03%
Precipitable water 8.13%
Wind direction 4.69%
Wind speed 3.40%
Load 5.48%

Aggregation of variable selection network weights and normalized to sum to 1.
Percentages greater than 5% are marked in bold.

TABLE 5 | Importance of variable importance for future inputs.

Variable Importance

Holiday 26.77%
Day 7.66%
HOD 50.13%
DOW 11.78%
MOY 3.67%

Aggregation of variable selection network weights and normalized to sum to 1.
Percentages greater than 10% are marked in bold.

be due to the fact that the information of DOW is partially
contained in the Day variable, and the network decreases the
dimensionality of the two and retains the influence of one
of the variables for the same reason as the sunlight-related
variables.

4.3.2 Cross-Entity Relationship Evaluation
The cross-entity relationship is evaluated by aggregating and
normalizing the weights of the attention module per entity, as
illustrated in Figure 6. The figure maps the normalized attention
from different buildings to predicate to the encoded feature
vectors of different buildings. High, medium, and low attention
are indicated by the colors red, white, and green, respectively.
Note that the attention is not necessarily synced with correlation,
as the former more likely represents the model’s assessment
of causality between variables (Wang X. et al., 2021; Yang et al.,
 2021).

It can be seen that B9 has received the most attention from
other buildings. This makes sense because B9 has photovoltaic
panels installed, which is the only building with electricity
generating capacity, and its energy consumption pattern differs
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FIGURE 6 | Heatmap of attention weights aggregated per entity. The
horizontal axis represents the entity being input, and the vertical axis denoted
the entity being predicted.

FIGURE 7 | Heatmap of attention weights aggregated per time. The
horizontal axis represents the entity being input, and the vertical axis denoted
the entity being predicted.

significantly from the others. Higher weights are given to three
classroom/lab buildings (B3, B5, and B7), as well as two student
living halls (B11, B13). This reflects the model’s selection of
variableswith a similar pattern.The administration building (B1),
the lecture hall (B2), and the library (B8) are three structures

that are reasonably independent or utilize a consistent amount of
energy. As a result, their contribution to the prediction is minor.

4.3.3 Cross-Time Relationship Evaluation
Similar to the cross-entity relationship, it is also possible to
identify the cross-time relationship by aggregating the attention
weights per time. The heatmap is shown as Figure 7. This
relationship is expressed in relative time rather than absolute
time, and the axis tick tables represent hours relative to the
current time.

A diagonal line running from the upper left to the lower
right is clearly visible in the figure. This shows that the
network is mostly interested in information from the same
hour the day before. Each time frame’s attention in the
encoder peaks right of the diagonal line, then gradually
decreases and again increases in chronological order. This
is primarily owing to the variable’s periodic character. The
majority of inputs of interests occur at the same time the
day before, as well as a few hours ahead of the prediction
time.

This figure also demonstrates the difficulty in long-term
series forecasting. While the attention mechanism can directly
model correlations across time frames, the amount of attention
the network can provide diminishes over time. Maximum
attention is given to the first prediction, while the attention level
becomes increasingly distracted over time. As a result, longer-
period projections are still insufficiently informative and perform
poorly.

4.3.4 Time-Series Pattern Identification
Attention weights can also be aggregated in terms of absolute
time frames. This allows time-series pattern identification by
providing a picture of how much each actual time frame
contributes to the model output.

Figure 8 uses the attention provided at different past times
collected from building B4, B5, B6, and B12 for demonstration
of this capability of the network. The horizontal axis represents
the number of hours elapsed since Sunday, 13 September 2015,
which is the first day in the test data set. The load of B6 is shown
in red, while the overall attention is shown in cyan. It can be
seen that loads of the four buildings all show obvious periodic
characteristics within a cycle of 24 h. For B4, B5, and B6, the loads
show consistent behavior duringworkdays, but a different pattern
occurs eachweekend.The first such change occurs at about 100 h.
Therefore, there is also a cyclical feature with a period of a week
(i.e., 168 h). Simultaneously, the network’s attention has shown a
similar periodicity, with a notable spike over the weekend. The
time-series pattern for B12 is a bit different. The load for B12
does not show a clear periodicity based on weeks. Instead, the
load generally shows an upward trend over time. Corresponding
to this characteristic, the attention to B12 experienced a rise
when the load dropped. These analyses demonstrate how the
attention module reacts to the input time-series patterns and
pays particular attention to particular changes. This provides
insight for automatic analysis of the time-series characteristics
and significant events.
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FIGURE 8 | Load and normalized attention to building (A) B4, (B) B5, (C) B6, and (D) B12 for 500 h since 13 September 2015.

5 CONCLUSION

This paper presents a deep-learning-based model named
CETFT for multi-entity energy load forecasting. Entity
encoding networks and a cross-entity attention module
are defined. In a case study involving 13 buildings on
a university campus, the proposed model achieves the
minimum errors on all buildings given different prediction
horizons. Further analyses are performed to assess the model’s
interpretability, revealing the relevance of variables, linkages
between entities and time frames, and time-series features.
The concept of selection networks could be used in future
work to address the complexity of cross-entity attention
processes and strike a balance between model correctness and
computation overhead, along with improved fine-grained input
categories for better adaption to a wider variety of time-series
data.
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NOMENCLATURE

τ prediction time offset

χt initial input

ω shared variable selection network identifier

b layer bias

dinput input dimension

dlayer layer dimension

dk dimension of key

dv dimension of value

E number of entities

f(⋅) prediction model

H attention head

H prediction Horizon

i entity index

K key matrix

L encoder length

M attention mask matrix

M̃ cross-entity attention mask matrix

mh number of attention head

n amount of predictions

Q query matrix

t time frame

tF end of future time window

tS starting time of input

ut observed input

V value matrix

v input identifier

W layer weight

xt predetermined input

yi actual target value

̂yi predicted target value

z layer input vector

Z layer input matrix
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