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A B S T R A C T   

Electricity has a prominent role in modern economies; therefore, ensuring the availability of electricity supply 
should be a top priority for policymakers. The joint assessment of reliability, robustness, and resilience can be a 
useful criterion to characterise different topologies and improve the security of supply. This paper proposes a 
novel integrated analysis of these three attributes to quantify the security of power grid topologies. Hence, eight 
case studies with different topologies created using the IEEE 24-bus reliability test system were analysed. Reli
ability was evaluated by applying the sequential Monte Carlo approach, robustness was evaluated by simulating 
cascading failures, and resilience was evaluated by analysing recovery curves. The different indicators associated 
with each of the three evaluations were then calculated. The results obtained were discussed both graphically 
and quantitatively in a novel three-dimensional representation, where the importance of joint analysis was also 
highlighted. The proposed method can serve as an additional tool for planners to identify possible investments or 
improvements in power system topologies.   

1. Introduction 

Electrical power systems should be reliable, robust, and resilient. In 
the current decarbonisation process in modern societies, they have 
become increasingly important for the continuous operation of daily 
activities. Thus, threats and disruptions to electricity security are 
increasing and evolving at the same rate as in the power grid [1]. 
Therefore, more studies are required to analyse the associated attributes, 
ensure that systems are increasingly secure on a daily basis, and track 
the changing patterns of systems under different threats that affect the 
sector. 

The distinction between the concepts of reliability, robustness, and 
resilience in a power system is clearly defined in the scientific literature 
[2]. According to Georges Zissis’s message in the IEEE Industry Appli
cations Magazine [3], “reliability is the probability that a system will 
perform in a satisfactory manner for a given period when it is used under 
specified operating conditions”. This attribute evaluates the network 
performance in the event of a loss of one or two assets. In contrast, 
“robustness is the ability of a system to avoid malfunctioning when a 
fraction of its elements fail, or the ability of a system to perform the 
intended task under unexpected disturbances” [4,5]. More aggressive 

than reliability, this attribute considers the elimination of multiple as
sets and quantifies the network performance in the event of cascading 
failures. Finally, “resilience is a system’s ability to withstand, adapt, and 
absorb from a major disruption within acceptable degradation param
eters and recover within a satisfactory timeframe”. This concept 
generally analyses HILP events, such as extreme natural disasters [6–8]. 
These three joint attributes are currently known as the “R3 concept” [3]. 
Fig. 1 outlines as an example of the R3 concept. 

Currently, there is a strong desire to improve the performance and 
quality of electrical networks. 

This desire results from the development and transformation of more 
sustainable, resilient, and carbon-free societies. The R3 concept is a field 
of research that requires the proposal of new integrated methodological 
frameworks to study the different interrelated attributes that encompass 
reliability, robustness, and resilience. The scientific literature describes 
methods to study some of these attributes [10]; for example, previous 
studies used energy hub-based methods, models order reduction, met
aheuristic searching genetic algorithms, multicriteria decision analysis, 
advanced intelligent strategies, and linear programming [11–16]. 

However, one of the largest challenges in studying R3 concept is 
cascading failures. These events are complicated to study because they 
can result from countless reasons or causes; thus, studying them is 
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unfeasible. Hence, the complex network theory (or graph theory) may 
be suitable for modelling the dynamic behaviour, analysing the propa
gation of disturbances, and quantifying the structural robustness of a 
system [17–20]. Furthermore, note that this technique has the potential 
to identify both critical assets and the events that can trigger cascading 
failures [21–26]. 

Some studies more focused on extreme disturbances have indicated 
that both reliability and robustness studies should consider the impact of 
weather conditions because they can severely impact the system and 
sectors linked to it. Under this premise, some studies proposed metrics, 
protection strategies, and theoretical frameworks to analyse this prob
lem in detail [27–29]. 

Resilience is an entirely new area of research that encompasses 
procedures and techniques to solve problems associated with protecting 
and restoring the services provided by a power system. Some academics 
have evaluated the resilience of networks considering the strengths and 
weaknesses of both the topology and power transfer capacities of 
transmission lines under different disturbances, such as natural di
sasters, earthquakes, and floods [30–32]. Owing to the increase in dis
ruptions, it is important to evaluate the resilience of a network after a 
high-impact disturbance [33,34], which is related to the concept of 
resilience. Therefore, some researchers have proposed procedures to 
plan the iterative recovery of a system after a disruptive event [35–37]. 

Another factor considered in some combined robustness and resil
ience studies is the fundamental change in the structure and generation 
mix of power systems. For example, some articles have reviewed cutting- 
edge practices, whereas others have offered integrated analyses of 

Nomenclature 

Abbreviations 
DC Direct current 
DFS Depth-first search algorithm 
HILP High-impact low-probability 

Indices 
n, m Nodes or buses 
d Loads 
g Generators 
i Islands 
j Number of closed power lines 
k Lines 
p Disruption 
q Year 
r Recovery stage 
s Steps 

Variables 
Δn Voltage angle at node n [radians] 
Pk, Pg, Pn Power flow through line k, power of the generator g, and 

power demand at node n [MW] 
μk Binary variable indicating the open or closed state of the 

power line (open, μk = 0, closed, μk = 1) 
Di Demand on each island i [MW] 
SDs Satisfied demand in step s [p.u] 
RDr Recovered demand in stage r [p.u] 
MTTF Meantime to failure [h] 
MTTR Meantime to repair [h] 
TTR Time to repair [h] 
TTF Time to failure [h] 
r Random number uniformly distributed between [0,1] 
ADLC Average duration of load curtailment [h/outage] 
Dd Duration of disruption [h] 

E Energy not supplied for reliability assessment [MWh] 
EDNS Expected demand not supplied [MW] 
EENS Expected energy not supplied [MWh/yr] 
EFLC Expected frequency of load curtailment [outages/yr] 
ENS Energy not supplied for resilience assessment [MWh] 
LOLE Loss of load expectancy [h/yr] 
LOLP Loss of load probability [%] 
N Number of disruptions 
RD Recovered demand [p.u] 
SD Satisfied demand [p.u] 

Parameters 
Pmax

k , Pmin
k Maximum and minimum capacity of the power line k 

[MW] 
Pmax

g , Pmin
g Maximum and minimum capacity of the generator g 

[MW] 
Δmax

n , Δmin
m Maximum and minimum voltage angle at node n 

[radians] 
Ny Number of simulated years 
Bk Susceptance of the power line k [p.u] 
Nc Maximum number of power lines to be closed 
αk Overload tolerance parameter of the power line k 
λ Failure rate of the assets 
μ Repair rate of the assets 

Sets 
D System loads 
E Isolated elements 
G Generators 
I Islands 
K Power lines 
L Closed power lines 
M Nodes or buses  

Fig. 1. Schematic representation of the R3 concept [9].  
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decision-making [38,39]. The main aim is to analyse the different 
reconfiguration options and select the optimal solution for its imple
mentation. Additionally, other studies have provided definitions, met
rics, guidelines, practical challenges, and technical problems related to 
the attributes of resilience [40–43]. 

In summary, the following deficiencies can be identified in the 
existing literature related to the reliability, robustness, and resilience of 
power systems:  

1. No related articles has proposed an integrated study of the three 
concepts on the topology of power systems. Most existing publica
tions correspond to the study of these concepts individually, and very 
few others correspond to the analysis of only two of the concepts [2, 
7,11,27,44]. All the studies examined different problems from the 
one proposed in this paper.  

2. The concepts of reliability, robustness, and resilience are used to 
evaluate power systems from different perspectives; therefore, the 
conclusions of the studies already published can be expanded and 
improved by considering a joint and integrated vision.  

3. The characteristics and relationships between the concepts must be 
explored; for example, identifying how a certain improvement in one 
indicator does not necessarily imply improvements in the other in
dicators. Published studies did not address this problem. 

Reliability, robustness, and resilience are discussed in several aspects 
and from different perspectives in the scientific literature; however, few 
studies considered these three concepts in an integrated manner. The 
latter motivated the specific objective of this study, which was to 
develop a theoretical and data-based methodological framework to 
explore the characteristics and relationships between all concepts in an 
electrical power system. Combined studies of reliability, robustness, and 
resilience could better reflect the performance of a network. Including 
the three attributes in a joint analysis can be an incentive for future 
research in this area. However, it is important to note that this document 
does not discuss how to improve the study of these attributes but rather 
emphasises the critical role of these concepts in an electrical network. A 
reliable power system may not be robust or resilient to other threats or 
disturbances; therefore, the task of ensuring electricity security should 
be a priority for decision-makers. 

The main contributions of this article can be summarised as follows:  

1. An integrated reliability, robustness, and resilience assessment is 
performed to quantify the security of the power system topologies.  

2. A novel three-dimensional representation is proposed to represent 
the integrated results and provide an additional strategy to the 
traditional procedures. Here, we seek to provide a visual represen
tation of the relationship between these concepts.  

3. Different case studies with different topologies are analysed to 
demonstrate the performance of the proposed approach and to 
obtain integrated results. 

Based on the above and the provisions and guidelines in the scientific 
literature, the reliability assessment was performed by applying the 
sequential Monte Carlo technique and measuring the indices of EENS, 
EDNS, EFLC, LOLE, LOLP, and ADLC. The robustness evaluation was 
completed by simulating cascading failures and quantifying the SD 
index at each stage of system disintegration. This iterative procedure 
eliminates an asset, quantifies the power flows in the network, removes 
the system’s overloaded links, and identifies and balances the resulting 
subsystems to determine whether a cascading event continues or ends. A 
resilience study was performed using a mixed-integer optimisation 
problem, where the integer variables represent the operational state of 
the power lines, and the real variables represent the scheduled dispatch 
of the generators. This procedure uses the system’s state of disintegra
tion at the end of the cascading failure as input data and determines the 
power lines that must be closed iteratively and the redispatch of 

generation plants for the optimal recovery of network connectivity. The 
RD index was measured at each recovery stage, whereas the ENS index 
was measured at the end of the recovery process. 

The three previous procedures use a standard model of DC power 
flows because they yield rapid solutions. While other methods can be 
used depending on the required accuracy sought in the results, the only 
objective here was to establish an integrated framework for future 
development; therefore, this model is adequate. The proposal made here 
is novel and original in the field of power system security. The reli
ability, robustness, and resilience procedures were programmed using 
MATLAB R2021a platform. The different results obtained were dis
cussed both graphically and numerically in a sequential study frame
work. Subsequently, a joint analysis of the three concepts was presented. 
The proposed approach can significantly positively impact the perfor
mance and quality of a power network, improve consumer satisfaction, 
and inform planners in the decision-making process for better invest
ment in network topologies. Numerical tests to investigate the similar
ities and differences between the concepts were conducted in eight case 
studies based on the IEEE 24-bus reliability test system (RTS) [45]. 

The remainder of this article is organised as follows: Section 2 de
scribes the reliability, robustness, and resilience procedures used to 
evaluate of a power system in an orderly and systematic manner. Section 
3 presents case studies based on a well-known IEEE 24-bus RTS. Section 
4 discusses the simulation results obtained by applying the procedures 
described above. Finally, Section 5 summarises the main conclusions of 
this study. 

2. Reliability, robustness, and resilience methodologies 

In this section, the procedures used to evaluate the reliability, 
robustness, and resilience of an electrical power system are described. In 
general terms, the reliability is evaluated by applying the sequential 
Monte Carlo technique, the robustness is evaluated by simulating 
cascading failures, and the resilience is evaluated by developing a 
mixed-integer optimisation problem. These three procedures follow the 
foundations of scientific literature. 

2.1. Reliability procedure 

Reliability is divided into two areas that are well established in the 
scientific literature: adequacy and security. On the one hand, adequacy 
evaluates whether the generation capacity adjusts to the demand and 
constraints of the system. On the other hand, security studies focus on 
the performance of a power system against the outage of one or two 
components. This study focused on the security of power systems. This 
type of evaluation can be performed from an analytical or simulation 
perspective. The first one requires initial assumptions to simplify the 
problem and produce an analytical; hence, the resulting analysis may 
lose its relevance. The second one simulates the random behaviour of the 
system through multiple experiments and considers all possible con
tingencies in the network. The Monte Carlo technique is a simulation 
approach [46,47]; therefore, it was used in this research work. In the 
Monte Carlo technique, two main techniques, non-sequential and 
time-sequential, are used. The former considers each time step or system 
state independently, whereas the latter realistically simulates both the 
actual chronological process and the random behaviour of the system 
[48,49]. This study used the sequential Monte Carlo technique for reli
ability assessment because it is flexible, accurate, and enables the 
calculation of different indicators. For a more detailed description, 
please refer to Refs. [46,47]. The implementation of the sequential 
Monte Carlo technique for the reliability analysis is presented in Algo
rithm 1. 

Algorithm 1. Reliability  
Input: technical data of the power system and N. 

(continued on next page) 
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(continued ) 

Output: statistical indicators EENS, EDNS, EFLC, LOLE, LOLP and ADLC. 
Step 1. Start: establish the operational state of the assets, that is, normal or failure. 
Step 2. Modelling of outages: these events are modelled using the MTTF and MTTR 

indices. These indicators are inversely related to λ and μ of the assets,  

MTTF=
1
λ
; (1)    

MTTR=
1
μ; (2)   

Step 3. Time between states: quantify the time that the assets spend in normal and 
failure state, that is, TTR and TTF,  

TTR= − ln(r) × MTTR; (3)    

TTF =
− ln(r)

λ
× 8760; (4)   

This step is repeated for a specific time, frequently one year. 
Step 4. Overlapping time: calculate the overlapping times of failures of the elements 

(when several components are simultaneously out of service) for a temporal 
resolution of 1 h in a time horizon of 1 year, that is, 8760-time steps of 1 h each. 

Step 5. Power flows: conduct a DC power flow study considering the operational state 
of the components throughout the year. 

Step 6. Reliability indicators: evaluate the security of the power system through 
reliability indices (5)–(10), using the results from Step 5.  

EENS=
∑Ny

p=1
∑Nq

q=1Ep,q

Ny
; (5)    

EDNS=
EENS
8760

; (6)    

EFLC=

∑Ny
p=1Np

Ny
; (7)    

LOLE=

∑Ny
p=1

∑q
q=1Ddp,q

Ny
; (8)    

LOLP=
LOLE
8760

; (9)    

ADLC=
LOLE
EFLC

; (10)   

Step 7. Iterations: repeat the previous steps until a covariance of less than 6% is 
obtained for the EENS index [50].  

Generally, this procedure assumes that each asset of an electrical 
system can have two states: operational and failure. It is assumed that 
the residence time of the component is exponentially distributed and 
that the state transition is determined by both its current state and the 
transition rates. The transition rates between the two states are the 
failure and repair rates of the components. The random samples of the 
state of each component are statistically dependent, that is, they are 
related to the previous sample. Subsequently, when the overlapping 
times are determined, it executes the DC power flows and calculates the 
reliability indicators of the studied electrical system. According to pre
vious studies [50,51], this procedure is repeated several times until the 
covariance of the EENS indicator is less than 6%. 

2.2. Robustness procedure 

The robustness of power systems, including cascading phenomena, is 
an active field of research. Most of the contributions in the literature 
evaluate the robustness of the power grid with respect to the modelling 

and analysis of cascading failures, in particular for cascading effects due 
to line overloads under faults or targeted attacks [11,17–19,21,52]. 
Blackouts are disastrous events generally caused by cascading failures, 
which includes a series of iterative events that can include voltage 
problems and the disconnection of power lines and loads. These events 
are complicated to model because they encompass hundreds of highly 
dynamic events. However, it is important to analyse and model them 
because they affect hundreds of thousands of people and cause enor
mous economic losses [17]. In this study, the robustness was measured 
in operational areas both before and after cascading failure [53]. The SD 
index was used to measure the functionality of an electrical power sys
tem during such disturbances. This index varies between 1 and 0 and is 
measured according to the assets isolated during the disintegration of 
the network. As the SD index decreases, the impact on disconnected 
loads increases. Algorithm 2 describes the ordered and systematic steps 
used to model cascading failures in an electrical power system. 

Algorithm 2. Robustness  
Input: technical data of the power system and α. 
Output: degradation of the electrical power system. SD in s, I, E, and μk, i.e. open or 

closed. 
Step 1. Start: SDbase = Dload, I = { ⋅} and E = { ⋅}. At the beginning, all the power lines 

are operational. 
Step 2. DC power flows: calculate P in each k within the network and determine Pmax

k 
of the lines using (11).  

Pmax
k =αk × Pk; (11)   

Step 3. Initiating event: randomly remove an asset from the system. The latter 
represents the event that triggers the cascading failure. 

Step 4. Increase or decrease flows: determine the increases or decreases in each power 
line; initialise s = 1 as the first disintegration stage. 

Step 5. Triggering of switches: evaluate the condition 
⃒
⃒Ps

k
⃒
⃒ < Pmax

k in all power lines of 
the system. Remove all overloaded links, i.e. 

⃒
⃒Ps

k
⃒
⃒ > Pmax

k , and go to Step 6; 
otherwise, go to Step 10. 

Step 6. Transversal graph algorithm: use DFS to determine I and E formed after the 
activation of the switches. 

Step 7. Energy balance:  
a) for each island Ii with generators g ∈ Ii evaluate  

• if 
∑

g∈Ii
Pg <

∑

d∈Ii
Pd, then do Ds

Ii =
∑

g∈Ii
Pg in stage s.  

• if 
∑

g∈Ii
Pg >

∑

d∈Ii
Pd, then do Ds

Ii =
∑

d∈Ii
Pd in stage s.  

b) for each subnet Ii without generators g ∈ Ii; do Ds
i = 0, respectively. 

Step 8. Satisfied demand: calculate (12),  

SDs =

∑
i∈IDs

Ii

SDbase
in s; (12)   

Step 9. Iterations: iterate s = s + 1 and go to Step 4. 
Step 10. End: if 

⃒
⃒Ps

k

⃒
⃒ < Pmax

k ∀k, the algorithm ends.  

The procedure begins by collecting the technical data of the elec
trical network and calculating the power flows to determine the 
maximum transfer capacity of the lines. Next, it randomly removes an 
asset, determines the changes in the flows, and removes all overloaded 
power lines resulting from the redistributed network flows. Note that the 
cascading failure initiation event is random, such as involuntary human 
errors or technical failures in the equipment and hardware. The constant 
tripping of protection mechanisms in the power lines resulting from the 
propagation of the cascading failure can result in the formation of 
different islands in the system. Therefore, this procedure incorporates a 
transversal graph algorithm to identify subsets formed during the 
disintegration stages. The DFS algorithm was used here to simplify the 
resolution of this problem [54]. This technique is widely recognised as 
an effective tool for solving various graphs problems. The algorithm 
starts at the root node and scans each branch before backtracking. Fig. 2 
shows the tree structure of the cascading failure process used in Algo
rithm 2. Islands without generators are considered dead and are marked 
in red, while islands with generations are marked in green. The inter
mediate islands where cascading failure continues are marked in blue. 
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The tree structure shows how an island can undergo changes during the 
process and disintegrate into more islands, where some remain opera
tional and others are deeply affected. Cascading failure continues on all 
intermediate islands in blue. The constant redistribution of flows can 
cause further overloads on other links; thus, each intermediate island 
can result in an additional group of islands where the cascading event 
also continues simultaneously. Thus, each time one or more power lines 
are disconnected during the disintegration stage, the DFS algorithm 
identifies and orders each island for a correct simulation. Similarly, 
these islands must comply with the balance between demand and gen
eration; thus, load shedding is used to satisfy the energy balance. Iso
lated elements or subnets without generation are considered unsatisfied 
loads during the disintegration process. The iterative procedure con
tinues until no overloaded elements remain or all assets are isolated. 

2.3. Resilience procedure 

After a major disturbance, the degradation of an electrical system is a 
function of robustness; thus, resilience depends on both the robustness 
and rapid recovery of the disconnected load. Therefore, a mixed-integer 
optimisation problem is proposed to recover both the loads and con
nectivity of the system after cascading failure. The optimisation output 
is the quantified optimal resilience characteristic and state of the 
transmission lines. For demonstration, the RD index is used to represent 
the resilience of the system. The optimisation objective is to maximise 
this resilience metric after the cascading failure is modelled using Al
gorithm 2. This optimisation problem is subject to several constraints. 
Algorithm 3 describes the iterative procedure for determining the power 
lines that must be closed in each recovery stage of the power system. 

Algorithm 3 uses the final disintegration of a power system as input 
data to initialise both the recovered demand and initial operational state 
of the power lines. Similarly, it considers the maximum number of lines 
that can be reconnected and the redispatch of generators in each re
covery stage. It then constructs an optimisation problem based on the 
standard DC power flow equations and establishes the minimum and 
maximum thresholds for the different equations. The maximum 
threshold of the power lines is calculated using Algorithm 2. When the 
set of equations is constructed, the objective function for the corre
sponding recovery stage is maximised. The output consists of the 
recovered demand and power lines, which must be closed during the 
restoration stage. Finally, these results are saved, and new closed power 

lines are set in their corresponding equations. If all power lines are 
closed, the algorithm ends; otherwise, the algorithm repeats the pro
cedure until all remaining lines are closed. 

Algorithm 3. Resilience  
Input: outputs of Algorithm 2, i.e., SD in the last s, I, E, and μk. Similarly, Nc in each r. 
Output: recovery of the electrical power system. RD and μk in each r. 
Step 1. Start: initialise RDr = SDsfinal and μk = 1 for closed lines and μk = 0 for open 

lines at r = 1. The initial satisfied demand and the states of the lines correspond to 
the final disintegration state obtained with Algorithm 2. 

Step 2. Optimisation problem based on the standard model of DC power flows: 
consider (13) to (21)  

max (RDr − RDr− 1) (13)   

subject to:  

Pmin
g ≤Pr

g ≤ Pmax
g ∀g ∈ G (14)    

Pmin
k ⋅ μr

k ≤ Pr
k ≤ Pmax

k ⋅μr
k ∀k ∈ K (15)    

Δmin
n ≤Δr

n ≤ Δmax
n ∀n (16)    

−
∑

k∈K
Pr

k −
∑

g∈G
Pr

g −
∑

d∈D
Pr

d = 0 ∀n (17)    

Bk
(
Δr

n − Δr
m

)
− Pr

k ≥ 0 ∀k (18)    

− Bk
(
Δr

n − Δr
m

)
− Pr

k ≤ 0 ∀k (19)    

∑

k∈K
μr

k ≤ Nc (20)    

RDr =
∑

Pr
n ∀n (21)   

The maximum thresholds of (15) are initially determined in Algorithm 2. 
Step 3. Solve the optimisation problem: maximise (13), subject to constraints (14)– 

(21) in each r. 
Step 4. Solution: save the results of RDr and μr

k; set the variables μr
k restored as 

constants μr
k = 1 for all subsequent iterations. 

(continued on next page) 

Fig. 2. Tree structure of the cascading failure process.  
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(continued ) 

Step 5. Evaluation: if ∀k ∈ (K − k′

): μs
k = 1 go to Step 7; otherwise, go to Step 6. 

Step 6. Iterations: iterate r = r +1 and go to Step 3. 
Step 7. End: if ∀k ∈ (K − k′

): μs
k = 1; the algorithm ends. 

Step 8. Energy not supplied: calculate the ENS index for the resilience curve, i.e. the 
area above the curve.   

3. Case studies 

This section describes the IEEE 24-bus RTS through which eight case 
studies with different topologies were constructed [45]. That is, the 
original system was used, and lines were added to obtain different net
works for comparison. First, the case studies are presented, and then the 
guidelines followed for the reliability, robustness, and resilience simu
lations are described. 

3.1. Test system 

Fig. 3 shows the IEEE 24-bus RTS. This network is composed of 24 
buses, 33 generators and 38 power lines, and transformers. The 
maximum demand is 2850 MW. The parameters of the lines, load 
characteristics, and input data for the stochastic failure model for the 
buses, transformers, and lines are described in Ref. [45]. This test 
network has been well documented in the scientific literature. 

Eight different case studies based on the previous system were used 
to assess reliability, robustness, and resilience. The case studies included 
adding and combining three different power lines to the original system 
(14–15, 14–24, and 6–9). The objective was to obtain different topol
ogies of the same system and to perform comparative evaluations be
tween them. The lines added to the original system satisfied type n-1 and 

n-2 contingencies according to the provisions provided in Ref. [55]. 
Considering the representation of the test system shown in Fig. 3, the 
eight case studies were as follows:  

• Case 1: the original system.  
• Case 2: addition of line 14–15 to the original system.  
• Case 3: addition of line 14–24 to the original system.  
• Case 4: addition of line 6–9 to the original system.  
• Case 5: addition of lines 14–15 and 14–24 to the original system.  
• Case 6: addition of lines 14–15 and 6–9 to the original system.  
• Case 7: addition of lines 14–24 and 6–9 to the original system.  
• Case 8: addition of lines 14–15, 14–24, and 6–9 to the original 

system. 

3.2. Simulation guidelines in the analysis of reliability, robustness, and 
resilience 

Different guidelines were followed when applying Algorithms 1, 2, 
and 3 to the eight case studies described above to perform a compre
hensive and accurate analysis of the different indicators studied. As 
reliability evaluation is a classic analysis in power systems, this study 
followed the already published studies in this field of research. That is, 
1500 one-year iterations were executed in each network, obtaining 
covariance values lower than 6% in all cases [44]. 

Robustness evaluation is a complex procedure that involves different 
parameters and characteristics of the studied system. For example, an 
electrical system can have different levels of robustness depending on 
where the initial failure occurs, level of congestion of the lines, opera
tional assets, load level, etc. Therefore, some researchers prefer to 
characterise robustness from a topological and structural perspective; 
thus, it is invariant to other factors that occur in the network [56]. This 
type of analysis is also advantageous because it offers another perspec
tive on the system. To conduct a complete evaluation of robustness, in 
this study, we eliminated the lines adjacent to the buses (except for buses 
6, 9, 14, 15, and 24 because new lines were added) to begin the network 
disintegration process. 

Furthermore, because the system had a constant load, we also 
considered different levels of overload in the links for the same scenario 
to obtain different states of disintegration for the initiating event. 
Therefore, 114 scenarios were executed with α = 1, 1.1, 1.2, 1.3, 1.4, 
and 1.5 in each case study, that is, a total of 912 simulations for the eight 
cases. Finally, the robustness of each case was measured by averaging 
the set of results obtained, which provided an overview of system 
performance. 

In contrast, the resilience evaluation was performed from the aver
aged states of disintegration of the eight cases after applying the 
robustness procedure. We assumed that the maximum number of lines 
that could change state in each recovery stage was three. The number of 
lines that can operate to recover a collapsed electrical system depends on 
the physical characteristics of the network and the procedures applied 
by each control centre. In this study, only three power lines were used 
for simulation. Finally, the ENS index was calculated for each case, 
assuming that each interval of redispatch and reconfiguration required 
approximately 15 min on average, because it was necessary to plan, 
execute, and verify the manoeuvres. Although other times could be used, 
the time between the manoeuvres and redispatch used in this study 
corresponded to a value close to reality. 

4. Simulation results 

This section discusses the simulation results obtained after the reli
ability, robustness, and resilience were evaluated in the eight case 
studies described above. The three procedures were programmed in 
MATLAB R2021a and executed on a personal computer with a 3.40 GHz 
Intel® Core™ i7 CPU and 16 GB of RAM. The run times for the reli
ability, robustness and resilience studies were 294.99 h, 167.91 s, and 

Fig. 3. Topology of the IEEE 24-bus RTS. The lines in blue represent the 
additional power lines. 
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31.81 s, respectively. 
Table 1 shows the different reliability indicators calculated for the 

eight cases after applying Algorithm 1, and Fig. 4 presents the conver
gence results of the EENS indicator. Case 6 was the best case, in which an 
improvement of 2.19% was obtained compared with Case 1. Note that 
Case 5 also had a very similar percentage improvement to Case 6, 
although owing to decimal point values, this case was positioned after 
Case 6. In Case 8, the improvement was 1.86% over that of the original 
system, indicating an improvement in the system performance. How
ever, Cases 2 and 7 had EENS values very close to each other, although 
Case 7 was more connected than the others. This was because line 14–15 
reduced the congestion of two lines adjacent to bus 14. This line also 
coincided with Case 6. The same occurred when line 6–9 was added in 
Case 6, which was the most reliable case. However, the focus was on line 
14–15 because it decongested the links adjacent to the generator con
nected to bus 15. The remaining indicators exhibited similar behaviours 
to the analysis performed previously. The results showed that the reli
ability was improved by adding lines to the original system; however, 
certain lines located on buses with poor connectivity exhibited better 
results. From highest to lowest, the reliability was in the order of Cases 
6, 5, 8, 2, 7, 4, 3, and 1. 

Fig. 5 shows the dispersion of the last value of the robustness indi
cator SD after applying Algorithm 2 and the mean values obtained in the 
eight cases. The mean values of the SD index for Cases 1–8 were 0.34, 
0.38, 0.34, 0.35, 0.40, 0.39, 0.35, and 0.40 p.u, respectively. The plotted 
results show that the cases had different satisfied demand values at the 
end of the network collapse, indicating that the redistributed flows after 
the initial disturbance differed in each case. However, when averaging 
the set of results for each case, the robustness of Case 8 improved by 
9.43% compared with that of Case 1. That is, the most connected case 
was the most robust to cascading failures. This was reasonable as the 
power lines were less congested. The results also showed that all the 
cases in which one or two lines were added improved the robustness of 
the original system. Cases 3 and 4 had improvements of 0.52% and 
1.17%, respectively, when considering less-connected cases compared 
with Case 1. However, Case 2 improved by 5.71% compared with the 
original system and was even better than Case 7 with two lines. Note that 
Case 2 corresponded to the addition of line 14–15, which was also 
identified as an asset that improved the reliability of the system. The 
robustness of the cases was ordered, from highest to lowest, as Cases 8, 
5, 6, 2, 7, 4, 3, and 1. These findings suggest that complex meshed to
pologies are more robust against the propagation of cascading failures 
than less meshed topologies, provided that there are vital assets that 
increase the energy transfer or reduce link congestion. 

The curves in Fig. 6 illustrate the general concept and demonstrate 
the advantages of the restoration strategy proposed in Algorithm 3. The 
cases started began with different values of satisfied demand and 
different states of disintegration for greater realism. Numerically, Cases 
1 and 5 began from topologies in which 27 and 32 power lines were lost, 
respectively. The results indicated that each system recovered its dis
rupted loads; however, some of them were superior because they 
required fewer manoeuvres to restore the load more promptly. The ENS 
indices for Cases 1–8 were 3277.82, 2108.23, 3701.65, 2233.49, 
2564.52, 2371.71, 2110.90, and 1359.00 MWh, respectively. Consid
ering this indicator, Case 8 was the most resilient because it improved by 

58.53% compared with Case 1, whereas Case 3 was the least resilient 
because it worsened by 12.93% compared with Case. 1. Cases 2 and 7 
improved by 35.68% and 35.60%, respectively, compared with the 
original system, which placed them in the second and third positions, 
respectively. The cases can be ordered from highest to lowest resilience 
as Cases 8, 2, 7, 4, 6, 5, 1, and 3. Note that the order of the cases is not 
directly related to the meshing of the network as it is to the robustness, 
although Case 8 with the addition of three links was the most resilient, 
and Case 3 with the addition of a single link was the least resilient. As far 
as this study is concerned, the cases had between 32 and 33 

Table 1 
Reliability results.   

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

EENS 127,285.95 124,988.11 125,259.72 125,258.70 124,504.17 124,504.00 125,029.97 124,921.43 
EDNS 14.53 14.27 14.30 14.30 14.21 14.21 14.27 14.26 
EFLC 19.07 18.93 19.06 19.05 18.93 18.93 18.83 18.97 
LOLE 731.41 721.78 726.59 726.60 720.12 720.13 720.79 723.20 
LOLP 8.35 8.24 8.29 8.29 8.22 8.22 8.23 8.26 
ADLC 38.35 38.14 38.13 38.13 38.03 38.03 38.28 38.12  

Fig. 4. Convergence of the EENS indicator for the eight cases.  

Fig. 5. Dispersion of the robustness results for the eight cases.  
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disconnected lines, but their combinations were completely different in 
each case; thus, the subsequent reconnection strongly influenced both 
the recovery and ENS index. This appeared to indicate that resilience can 
be influenced by several factors, such as the topological state of disin
tegration, load distribution, energy transfer limits, and loss of critical 
assets. Therefore, it is reasonable that the order of the cases obtained 
here was different, which again confirmed the requirement for joint and 
integrated studies to characterise the behaviour of power system to
pologies. The resilience evaluation demonstrated that the network to
pology influenced the recovery of the system. For example, Cases 1 and 3 
had different recovery curves, although they began from similar values 
of satisfied demand. In other words, the topology has a fundamental role 
in the design of resilient systems. 

Examining the results more comprehensively, Table 2 shows the 
improvement percentages of the EENS, SD, and ENS indices for reli
ability, robustness, and resilience evaluations. These values are 
expressed as percentages of the increases or decreases compared with 
the original system (Case 1). Fig. 7 shows a three-dimensional repre
sentation of these results. On the one hand, the results indicated that 
most of the topologies improved on reliability, robustness, and resil
ience, except for Case 3, which exhibited the worst performance in terms 
of resilience. Similarly, the topology of Case 8 was the most robust and 
resilient of all the systems but slightly less reliable than the topologies of 
Cases 5 and 6 because it had 0.33% more ENS. The topologies of Cases 2, 
5, and 6 were intermediate among the three attributes. On the other 
hand, although the topologies of Cases 4 and 7 exhibited good perfor
mance in terms of reliability and resilience, they had a slightly poor 
performance in terms of robustness because their improvement per
centages were minimal compared with the more robust topologies. 
However, the performance of these two topologies was superior to that 

of Case 3. 
The results integrated into the R3 concept also demonstrated that the 

addition of lines mostly had a positive impact on the operating condi
tions of the original system because they enabled an increase in the 
power transfer capacity between different zones and reduced congestion 
in the power lines. They also aided in the adaptation to the different 
disturbances simulated in the network and facilitated optimal resource 
management during the recovery process. Generally, and corresponding 
with other related publications, reliability is improved by adding more 
power lines and meshing the network; however, the network can 
become less robust because it is more exposed to cascading failures. 
Similarly, a less robust system implies greater disintegration because of 
a cascading event, which directly influences resilience. However, it is 
important to note that some lines were more beneficial than others; thus, 
the R3 concept can offer a better compromise solution for the design of 
electrical power systems. 

Finally, the results obtained in the R3 framework can be used to 
make investment decisions or improvements in the power grid topology 
from an integrated perspective of the three concepts. For example, a 
decision-maker can determine a compromise solution for a power sys
tem by weighing reliability, robustness, and resilience in an integrated 
manner, as considering the concepts separately can result in contradic
tory views on the problem and, to some extent, impact the security of 
supply. Note that these conclusions do not invalidate other transmission 
network planning strategies under other criteria for improving system 
capacity to ensure optimal technical and economic performance. This is 
because the conclusions reached in this manuscript do not replace the 
conclusions obtained with the methods of analysis widely used and 
recognised in the industry, mainly focused on traditional adequacy and 
security criteria. Instead, the R3 framework can be an additional strat
egy for the traditional tools already used in power systems. 

Additionally, renewable energy sources are an integral part of the 
current process of decarbonisation of power systems and, as such, recent 
articles consider these assets in their studies. Here, the results could be 
different depending on how the simulation is performed, what guide
lines are considered, or even what percentage of renewable resources 
are available in each case study. For example, in terms of reliability, the 
case study with renewables would be expected to be less reliable than 
the case study with fossil generation, mainly due to the stochastic nature 

Fig. 6. Optimal recovery curves for the eight cases.  

Table 2 
Percentages of increase in the EENS, SD and ENS indicators in the reliability, 
robustness, and resilience evaluations compared with Case 1.   

Reliability [Δ EENS 
(%)] 

Robustness [Δ SD 
(%)] 

Resilience [Δ ENS 
(%)] 

Case 1 0.00 0.00 0.00 
Case 2 1.81 5.71 35.68 
Case 3 1.59 0.52 − 12.93 
Case 4 1.59 1.17 31.86 
Case 5 2.19 8.61 21.76 
Case 6 2.19 7.58 27.64 
Case 7 1.77 2.02 35.60 
Case 8 1.86 9.43 58.52  

Fig. 7. Results obtained integrated into an R3 concept.  
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of renewable resources. In terms of robustness, the case studies with and 
without renewables could have similar behaviour because cascading 
events can happen irrespective of the type of generation, as they are 
influenced by the operation of the protection devices. However, it would 
be important to note that synchronous generators can remain connected 
during and after a fault; in contrast, challenges arise in maintaining 
adequate frequency response as the share of inverter-based renewables 
increases. In terms of resilience, the case study with renewables could 
recover the load of the system faster than the case study with fossil 
generation because the first one could have distributed generation to 
restore inoperative areas (if sufficient wind or solar resources were 
available). Nevertheless, renewable energy sources do not represent any 
obstacle in the proposal presented here, as it is possible to consider them 
[57,58]. 

Other areas for improvement in this research include the following:  

1. The robustness study could be improved with a more complex 
methodology to capture both the frequency dynamics and the trig
gering mechanisms of the protection devices in a cascading event. 

2. The integration of indicators could be further extended by consid
ering multi-criteria techniques for a better ranking of network 
topologies. 

5. Conclusions 

This paper proposes a methodological framework based on data to 
analyse the reliability, robustness, and resilience of a power system from 
an integrated perspective. A sequential Monte Carlo technique was 
applied to evaluate the reliability, a cascading failure procedure was 
used to quantify the robustness, and a recovery procedure based on a 
mixed-integer optimisation problem was used to calculate a resilience 
metric. For this analysis, eight case studies were used based on the well- 
known IEEE 24-bus RTS, in which different indicators of reliability, 
robustness, and resilience were calculated. The results obtained were 
presented both graphically and numerically and were comprehensively 
discussed in a three-dimensional representation that considered the 
ranking of each case in each concept. This representation demonstrated 
the advantage of representing the three concepts in an integrated 
manner rather than separately. The findings showed that most meshed 
topology of an electrical system cannot always be guaranteed as the best 
from the perspective of each criterion, but generally, it offers the best 
optimal results for the security of supply. For example, the reliability 
study indicated that Case 6, with only two lines, was more reliable than 
Case 8 with three lines by 0.33% in relation to the ENS index. Although 
this is a small value, the unavailability of energy has strong economic 
repercussions in modern economies. In contrast, Case 8 was more robust 
and resilient than Case 6 by 2.50% and 42.70%, respectively, which 
could indicate that a meshed topology has advantages because it enables 
higher demand to be satisfied in the event of disturbances or failures and 
the power supply to be restored earlier. The results also showed that a 
power line can have a favourable impact on the security of supply, as 
demonstrated by Cases 1 and 2, where Case 2 had improvements of 
1.81% in reliability, 10.53% in robustness, and 35.68% in resilience. 
The findings presented here clearly and accurately demonstrated the 
requirement for more integrated studies to obtain a much broader view 
of the operational behaviour of power systems. A planner can perform 
this procedure and run it to identify possible investments or improve
ments in the power system topology. A power system planner can use 
these results to identify possible investments or improvements in power 
system topology. This paper is a starting point for future developments. 
Future work will incorporate other methods of analysis and consider 
other strategies for integrating indicators. 
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[30] T. Tapia, Á. Lorca, D. Olivares, M. Negrete-Pincetic, A.J. Lamadrid L, A Robust 
Decision-Support Method Based on Optimization and Simulation for Wildfire 
Resilience in Highly Renewable Power Systems, Eur. J. Oper. Res. (2021), https:// 
doi.org/10.1016/j.ejor.2021.02.008. 

[31] A. Shahbazi, J. Aghaei, S. Pirouzi, T. Niknam, M. Shafie-khah, J.P.S. Catalão, 
Effects of resilience-oriented design on distribution networks operation planning, 
Elec. Power Syst. Res. 191 (2021), 106902, https://doi.org/10.1016/j. 
epsr.2020.106902. 

[32] N. Zhao, et al., Full-time scale resilience enhancement framework for power 
transmission system under ice disasters, Int. J. Electr. Power Energy Syst. 126 
(2021), 106609, https://doi.org/10.1016/j.ijepes.2020.106609. 

[33] G.E. Alvarez, A novel strategy to restore power systems after a great blackout. The 
Argentinean case, Energy Strategy Rev. 37 (2021), 100685, https://doi.org/ 
10.1016/j.esr.2021.100685. 

[34] H.H. Alhelou, M.E. Hamedani-Golshan, T.C. Njenda, P. Siano, A survey on power 
system blackout and cascading events: Research motivations and challenges, 
Energies 12 (4) (2019) 1–28, https://doi.org/10.3390/en12040682. 

[35] C.W. Zobel, C.A. MacKenzie, M. Baghersad, Y. Li, Establishing a frame of reference 
for measuring disaster resilience, Decis. Support Syst. 140 (2021), 113406, https:// 
doi.org/10.1016/j.dss.2020.113406. 
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