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A B S T R A C T   

Climate services are attracting growing attention and interest as instruments to promote climate change adap
tation. The transparent assessment of the potential value brought by the services can play a major role. It can 
foster the commitment of the user towards a co-generation process increasingly central to climate services 
creation, can provide developers important information to better tailor the service to the user needs, and can 
finally increase recognition of the value of the service boosting confidence and trust in the tool. 

This study presents and then demonstrates the applicability of an evaluation methodology based on the 
Bayesian framework derived from the information value theory. The specific case study is the Smart Climate 
Hydropower Tool (SCHT), a climate service designed to support management decisions in hydropower gener
ation. The service uses freely available seasonal forecasts and machine learning algorithms to predict incoming 
discharge to hydropower reservoirs. The user is ENEL Green Power Italy, and the testing environments are two 
water basins in Colombia. 

The study defines the expected value of perfect information, the expected value of the information currently 
used by the hydropower producer and the expected value of the service information. It then discusses pros and 
cons of the applicability of the method.   

1. Practical implications 

The “partial” or “relative” nature of the evaluation process and the 
related caveats will be highlighted in the methodological part. This 
section discusses some further challenges and opportunities emerged 
during the evaluation phase that are worth considering when similar 
exercises are conducted. 

Definition of the payoffs. The procedure is based on the possibility to 
evaluate the gains for the user enabled by the availability of different 
information sets. This requires that the whole process, from the acqui
sition of the information to the decisions, and the identification of the 
outcomes of the decisions, are clearly identifiable. This is not always 
possible: the decision process can be not well structured or defined, and/ 
or the user may find it difficult to isolate the role of the information in 
leading to the result. Furthermore, in the case of private companies, 
gains expressed in terms of economic performances can be sensitive data 
hard to share and disclose. The only way to address these difficulties is to 

engage in an effective co-design-creation process with the user. The user 
has anyway the best knowledge of the environment in which operations 
take place to indicate the payoff measure which is more informative and 
adherent to the reality. This however requires a non-negligible level of 
commitment in reciprocal listening and learning by the evaluator, and 
the user of the service. 

Definition of the decision process. Often, the decision process enabled 
by the availability of service-generated information and that currently 
followed by the user are quite different. So, it may be difficult for the 
user to clearly identify what could be effectively done when the service 
is accessible and compare the two situations. This is particularly true 
when decisions are complex with many possible “states of the world” 
and uncertainty sources. Nonetheless, the reconstruction of the alter
native decision processes is crucial. Once again, the collaboration be
tween the evaluators and users of the service is the only way to address 
the complexity, reduce it to a level that is manageable, but still sufficient 
to produce an informative evaluation. Interestingly, during the 
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exchange, the user, forced to think in a structured way to the decision 
process, can sometimes get a better understanding and awareness about 
the procedures usually implemented and can find room for 
improvements. 

Definition of the application domain. Climate services are rather new 
and not yet of widespread use in many contexts. This lack of practice 
may originate gaps between the functionalities the service develops and 
their direct usability. Similarly, potential users of the service may lack 
awareness about the full range of its applications. In the present context, 
for instance, the initial focus is on the enabled efficiency gains in hy
dropower production. Benefits from the service can however be 
extended to a broader context, for instance, considering reduced costs 
from “wrong” production prediction when buying and selling contracts 
to dispatch agreed energy volumes are concluded. The difficulty to 
define the application domain of the service may neglect important 
sources of value. Once again, a structured thinking of the decision 
process “from the cradle to the grave” is the solution to minimize this 
risk. 

The role of the service producer. A proactive involvement by the ser
vice producer is fundamental for a successful evaluation. In the present 
case, the availability of technical competence for the hindcasting exer
cise and the determination of the skill of the service were necessary for 
the implementation of the whole procedure. Participating to the co- 
evaluation process, although engaging, can offer important opportu
nities to the service producer. He can gain important information to 
better tailor the service to the user needs, understand where to invest in 
improvement, and, sometimes, get a better awareness of the real rele
vance of the product it delivers. The interaction with the users can 
improve trust and facilitate the uptake of the service. 

2. Introduction 

Major international agendas like, for instance, the 2030 Agenda for 
Sustainable Development, the Paris Agreement, the Sendai Framework, 
call explicitly for communities, critical infrastructure, businesses, and 
ecosystems more resilient to climate impacts (World Meteorological 
Organization (WMO) (2017); UNFCCC, 2017). Since the launch of the 
Global Framework for Climate Services (GFCS) in September 2009, 
there has been a growing interest in promoting the use of climate ser
vices in support of climate risk management in many areas: agriculture, 
disaster risk reduction, health, water management, energy, and a variety 
of other climate-vulnerable sectors (Vaughan and Dessai, 2014; World 
Meteorological Organization (WMO) (2016); Street et al., 2019; Hewitt 
et al., 2020). The demand for products delivering that information will 
continue to grow in the years to come driven by both concerns over 
climate change and the occurrence of extreme events such as heat 
waves, storms, flooding, and drought. It will also reflect the need to 
respond to new human-induced vulnerabilities such as the growth of 
megacities and coastal developments (Lugen, 2016; World Meteoro
logical Organization (WMO) (2016)). Nonetheless, the GFCS mission to 
strengthen the production, availability, delivery and application of 
science-based climate prediction and services is not yet accomplished. 
There has been little progress in providing evidence on the value added 
from tailored climate information once conveyed to users-decision 
makers (Tall et al., 2018; Vaughan et al. 2018). World Meteorological 
Organization (WMO) (2015) is a milestone in climate service evaluation 
with its compendium of methods used to obtain the end value of climate 
and weather information for the end user. Nonetheless, monitoring and 
evaluation of the value of specific services remains a significant 
challenge. 

Climate services are decision support tools, based on a process of 
transforming climate-related information (i.e., science based) into 
advisory services that assist decision-making by individuals and orga
nizations of a society (i.e., user- specific) (Pope et al., 2017). They assist 
policymakers and decision-makers operating in climate-sensitive sectors 
to take practical actions based on the best available climate-related 

information (from climatic as well as other relevant scientific and socio- 
economic research). In this way, climate services can also help society to 
become more resilient and to cope with the growing impacts of climate 
change. Practically, climate services have been defined in multiple ways 
(Hewitt, Mason and Walland, 2012; Perrels et al., 2013; Vaughan and 
Dessai, 2014) but in a broad categorization we could identify opera
tional climate services, which support short-term operations, and 
“adaptation climate service”, that with a longer time horizon, supports 
adaptation planning and strategies. Here, with the term “climate ser
vice” we mainly refer to seasonal climate service, as we tailor our 
assessment on a service of this type. 

Clearly identifying benefits for final users and profits for the pro
viders is fundamental to support the development of climate services 
and to mainstream their utilization. An inclusive, flexible, and collab
orative evaluation procedure is particularly decisive to support the co- 
generation process (Vincent et al., 2018), increasingly central to 
climate services creation, where developers and users collaborate to 
maximize services utility and uptake in investment and decision plan
ning (Clements et al., 2013; von Flotow and Ludolph, 2013). During a 
collaborative evaluation process the developers can better understand 
how their services enter in the user decision process and which of the 
services’ features are the most relevant to the generation of value. This 
provides important information to better tailor the service to the user 
needs reducing the usability gap (Lemos et al., 2012). The user, on its 
turn, by directly participating and understanding how the assessment 
evolves, increases its awareness and recognition of the value of the 
service boosting confidence and trust in the tool. 

In what follows, we apply a Bayesian framework derived from the 
information value theory (Winkler et al., 1983; Wilks, 2014) to the 
evaluation of climate services. The methodology appears quite flexible 
to be applied for services in different sectors. In this vein, for instance, 
Hamlet and Huppert (2002) evaluated that the use of long-lead stream 
flow forecasts in the management of hydroelectric dams on the 
Columbia River could increase energy production by 5.2 million MWh 
per year, resulting in a US$153 million increase in net revenues. Meza 
and Wilks (2004) estimated the value of perfect sea-surface temperature 
anomaly forecasts for fertilizer management for potato farmers in Chile 
to be between $5 and $22 per hectare, compared to a no forecast 
context. Berrocal et al. (2010) found that the use of probabilistic 
weather forecasts for predicting ice conditions reduced costs for the 
Washington State Department of Transportation by 50 %. However, as 
surveyed in Bruno et al. (2018), there is a variety of methodologies to 
assess the value of climate services, from ex-ante to ex-post, and applied 
to a variety of sectors (agriculture, energy, water management, and 
transportation). Related to hydropower generation, there are studies 
applying simulation models. Maurer and Lettenmaier (2004) demon
strated that that use of climate forecast information can improve the 
hydropower production with a maximum achievable benefit of $25.7 
million, and $6.8 million when realistic streamflow predictability is 
used. Block (2011) found that using forecasts to manage hydropower 
operations in the upper Blue Nile basin (Ethiopia) produces cumulative 
decadal benefits between $1 and $6.5 billion, compared to a climato
logical based approach. Other studies focused on cost models, such as 
Graham et al. (2022), who assessed the value added in Scotland of 7-day 
forecasts ranging between £ 2.20/MWh and £ 1.40/MWh, and between £ 
2.70/MWh and £ 1.10/MWh for 2-week forecasts with different time- 
lead (2 and 6 weeks, respectively). Analysis of the value added for the 
hydropower sector in Colombia could be found in Poveda et al. (2003), 
although the retrospective analysis is based on a rather old period 
1977–1992 and associated to the incorporation of ENSO in the forecasts. 
In this case, they suggested savings in operating costs ranging between 
35 % and 40 % for the hydroelectric plant at Guatapé. 

Currently, however, most of the assessment of the economic benefit 
of integrating climate services into decision making processes focuses on 
the agricultural sector in developing and least developed countries 
(Vaughan et al., 2019a; Vaughan et al., 2019b). The need to gather 
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funding to establish operational climate services forces the providers to 
demonstrate their potential value added. 

Here we implement the methodology to quantify the value of a hy
dropower generation related climate service: the “Smart Hydropower 
Climate Tool”, hereto SCHT (www.https://gecosistema.com/climate- 
tools/scht-smart-climate-hydropower-tool/ and Essenfelder et al., 
2020) examined within the CLARA H2020 project (www.clara-project. 
eu). Our purpose is to demonstrate the viability of the method, sug
gest a procedure that can be replicable in different contexts and even
tually discuss its pros and cons. 

The methodology enables us to extract two values for the service: the 
“maximum potential value” and the “effective expected value”. These 
two notions play a role at different stages of the co-generation phase. 
The “maximum potential value” intervenes at the beginning of service 
development. It represents the gain a hypothetical perfect forecast may 
convey to the specific user. It is a sort of benchmark that indicates the 
potential contribution of the service as a production factor in the user 
production process. The “effective expected value” stands at the end of 
the service production process and gives the final user’s specific value. 

The paper is structured as follows. Section 3 illustrates the method
ology and introduces the case study. Section 4 shows and discusses the 
results of the evaluation. Section 5 concludes. 

3. Material and methods 

3.1. The conceptual framework 

The methodology applied for the evaluation of the economic benefit 
of SCHT in this pilot case study is a Bayesian probabilistic framework 
that compares the value of alternative information sets (with and 
without climate service) in the context of decision making. Here, not 
only the ability of the information to convey the exact forecast matters, 
but also the “direction” of the possible mistake. Indeed, from the point of 
view of the end-user, underestimating or overestimating the frequency 
or magnitude of an event has different consequences in terms of de
cisions and payoff. The expected value of the service information, which 
coincides with the value of the service, is computed in relative terms. 
Once, the gains or payoff from the gain-maximizing (or cost-minimizing) 
action associated with each information source are determined, the 
expected value of the information is obtained by comparing the ex
pected payoff of using the climate service against the alternative 
business-as-usual knowledge. The added value of the service informa
tion is given by the difference of the two (for a mathematical description 
of the methodology see Appendix A). 

In the application of the methodology the collaborative approach 
among the actors involved, namely evaluator, service provider, and end 
user, is fundamental both to improve the evaluation itself and in gath
ering the input data needed. Their roles interconnects at different layers, 

as Fig. 1 shows. 
The analysis develops along different phases. The first collects time 

series on effective realizations, climatological and climate service-based 
forecasts of inflows that could feed the simulation model and be trans
lated into states of the world. In this phase, statistics on the forecasts 
enable the computation of the skill of the alternative knowledge sources. 
This information is primarily produced by the climate service providers 
and the end user. Secondly, a simulation model translates the forecasts 
into energy production according to the “technical” knowledge of the 
reservoir features and its management rules. This is the fundamental 
contribution provided by the end user and, at the same time, private and 
sensitive data that could be not disclosed plainly and simply. Thirdly, 
the end user also provides the information on actions that would be 
taken on the basis of the prediction and their skill. Fourthly, each 
combination of action and probability of the forecasts to fail is associ
ated to a payoff. The core work of the evaluator is finally to apply the 
Bayesian framework using all the information acquired. 

3.2. The case study 

The case study concentrates on the SCHT experimental service 
developed to explore added value of seasonal forecasts for ENEL Green 
Power (EGP) hydropower producer in two reservoirs in Colombia: 
Betania and Guavio feeding ENEL power plants. 

All the information has been collected through interaction between 
service developers and EGP. This includes collecting monthly river 
discharge records to the reservoirs and setting up an efficient manage
ment and production scheme, based on the hydropower plant charac
teristics and regulation capabilities. A detailed description of the SCHT 
service is presented in Appendix B. 

Information on water volumes is necessary to plan the energy pro
duction. For each reservoir, the manager seeks to maximize the pro
duced energy supposing it has a constant level during the whole month. 
Furthermore, for each catchment the manager should consider the next 
month incoming water volume (forecasted), the volume at the beginning 
of present month, the ecological runoff, and finally decide how much 
energy generate, according to each plant production scheme, to keep the 
reservoir storage in a reasonable working range at the end of the month. 

A simple simulation model for production has been setup with EGP to 
translate forecast information of incoming discharge in operational de
cisions (“actions”) on how much energy to produce, according to the 
technical characteristics of the plant (such as reservoir storage curves, 
number and efficiency of the turbine groups) and optimal operational 
management rules. Feeding this production model with different fore
casts generates different operational decision, and subsequently 
different production values and reservoir volumes at the end of the 
forecast period (“states of the world”). 

In practice, we first identify the possible states of the world. In this 

Fig. 1. Workflow of the methodology and role of the key actors.  
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application, they are possible water volumes in each basin that can fall 
under three cases: the water volume is inside (I), above (A) or below (B) 
the “normal range”. 

The second step is to identify actions. These are three different 
production/pumping regimes decided monthly, that depend upon the 
specific plant regulation capabilities and the expected reservoir water 
volume at the end of the incoming month. The operational rules respond 
to “water thresholds” that have been defined by EGP basing on historical 
values of production. 

Operational rules definition entails in-depth knowledge of the plant- 
reservoir system including commercially sensitive technical and finan
cial information. For this reason, ENEL directly took care of setting up 
the rules. For the purposes of the present paper the management rules 
could be briefly described in:  

- Considering the forecast incoming discharge in the incoming period.  
- Targeting to keep the reservoir in a “normal” range between a 

maximum and a minimum acceptable value, in this case 10 % and 90 
% of reservoir exploitable volume (such optimal thresholds have 
been identified by EGP basing on simulations of productions in the 
period 2001/2010). 

- Activating one or more different production groups to use all avail
able discharge according to predictions, while keeping the expected 
reservoir level at the end of the forecast period inside the range (this 
decision once taken cannot be reversed until the end of the forecast 
period). Regulation capabilities of a real plant are still limited and 
minimum flow (corresponding to one single group running) and 
maximum flow (all groups running) may lead to impossibility of 
achieving the desired optimal result.  

- Checking “a posteriori” with real observed values if the target has 
been reached or not and moving to the next forecast period. 

Finally, the payoff matrix in Table 1 reports the gain the energy 
producer gets given the combination action (rows) and effective reali
zation of the state of the world (columns). Clearly there are actions that 
are the best match for each state of the world. These are indicated in the 
main diagonal of Table 1 that reports the highest payoffs. Reading the 
cells by rows, out of diagonal, indicates payoff associated to the “wrong” 
actions. Note that cell entries can be also interpreted in terms of payoff 
induced by right or wrong predictions (or perfect, higher, lower skill of 
the information/service). 

Since an explicit monetary indication of the payoff is function of the 
decision-making process and it is not already in place as the service is 
not applied yet, values are substituted by a more generic “performance 
indicator index” ranging from 0 to 10, that anyway correctly reflects the 
payoff ranking across decisions. Furthermore, the performance relates to 
energy potentially produced and not to “money” directly. The payoff 
matrix is the same for both reservoirs. 

Assigned payoffs corresponds to the following qualitative judgments 
discussed with EGP on possible consequences and related feasible 
countermeasures of acting upon forecast knowledge:  

- In case of correct forecast (effective realization correspond to the 
forecast, i.e. values along diagonal of the matrix), higher values are 
assigned to the better situation, lower ones to the less appealing. 

Such values are still higher than those assigned in case of incorrect 
forecast, given the chance of setting up countermeasures (i.e., 
financial energy buy/sell operations to balance shortage of produc
tion) for less than optimal, but correctly predicted, conditions.  

- In case of incorrect forecast worst conditions (reservoir out of 
optimal range in the exact opposite situation than what has been 
forecasted) 0 points have been assigned given the arguable difficulty 
in compensating such unexpected event with reasonable counter
measures. Predicting to be in the range (row 1 in the table) and 
ending with more water in the reservoir is less dramatic than the 
opposite (leading for example to waste of water for reservoir over
topping instead of water scarcity and impossibility to match energy 
demand). In the same way (Column “I” in the table), forecasting 
shortage and ending with more resource is still more favourable than 
the other way round. 

The exercise then consists in assessing three different values: the 
“maximum potential expected value” of the climate service, corre
sponding to a perfect forecast able to correctly predict water volumes in 
the two basins; the “effective expected1 value” of (the information 
provided by) SCHT based on its estimated skill, and the “effective ex
pected value” of an alternative information set. This last is the observed 
climatic trend over the 30-year period. This is the standard information 
set that the energy producer uses to form predictions on water volumes 
in the basins. Evaluations are based on a sample from 2000 to 2019; the 
period 2000–2016 is the “training set”. That means the machine 
learning has been fed with historic observations of that period and 
trained to replicate them. The period 2017–2019 is the test set. Thus, for 
the economic evaluation the training set is the period where the skill of 
the service is computed, while we consider the test set as the effective 
evaluation period. This avoids an “overfitting issue” (i.e. model opti
mally performing in the training and poorly in the test), that could 
generate a high total value biased by the training set, although such a 
service should have a zero value. Eventually, the sample to assess the 
economic potential and effective value of SCHT is limited to 36 monthly 
observations. 

Data for the assessment thus include the effective probabilities of the 
states of the world in the reference period, the skills of the service and of 
the historic based knowledge. This last coincides with that of the cli
matic trends. The skill of the service is determined by values from the 
training set period. 

Table 2 shows the expected performance (or skill) of the historic 

Table 1 
Payoff Matrix.   

Effective 
realization I 

Effective 
realization A 

Effective 
realization B 

Action I according to 
prediction I 

10 5 3 

Action A according to 
prediction A 

3 8 0 

Action B according to 
prediction B 

5 0 6  

Table 2 
Skill of the historic based knowledge in Betania and Guavio reservoirs.    

Effective realizations   

I A B 

Betania reservoir 
Historic based knowledge predictions I  0.41  0.00  0.00 

A  0.21  1.00  0.00 
B  0.38  0.00  1.00 

Guavio reservoir 
Historic based knowledge predictions I  0.63  0.00  0.00 

A  0.15  1.00  0.00 
B  0.21  0.00  1.00  

1 The possibility to observe what effectively happened in the 2017–2019 
period enables also to test the payoff performance that would have been 
enabled in practice by the service. In this case we would shift from an expec
tation to a fully deterministic context. It can thus occur that in a specific time 
frame, a service that performs better than an alternative information set “on 
average”, in fact performs worse. For completeness, we report the results of this 
additional analysis in the supplementary material. 
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knowledge (past climate average) in predicting water volumes in Beta
nia and Guavio reservoirs in 2017–19. In both reservoirs, when states of 
the world A and B occur, they are also predicted. Nonetheless, state I is 
correctly predicted 63 % of times in Guavio reservoir and only 41 % of 
the times in Betania. 

Table 3 reports the expected performance (or skill) of the SCHT 
climate service. The prediction performance of state of the world I im
proves for both reservoirs (from 41 % to 60 % in Betania and from 63 % 
to 72 % in Guavio). Predictions of A and B remain the same in the Guavio 
basin. A predictability decreases slightly in the Betania basin. 

Apparently high values along the diagonal for A and B cases (in italic 
in the previous tables) shall not be misunderstood, as, by construction of 
the optimization model, those are rare cases referring to extreme 
working conditions of the reservoirs (very small samples number). It is 
much more significative to evaluate results in column “I”, corresponding 
to most of real observable situations. 

4. Results and discussion 

This section assesses the value of the three different information sets. 
The first, ideally, would enable perfect forecasts of water volumes in the 
basins in the test period. This would correspond to the value originated 

by “perfect information” or, in other words, by a service with 100 % 
skill. The second refers to the historical experience, that in the present 
exercise corresponds to the information set that the energy producer is 
using to form his forecasts and plan energy production in the absence of 
the climate service. The third is what expected by SCHT. 

4.1. The added value of perfect information in 2017–2019 

Fig. 2 reports the payoffs originated by a perfectly forecasting 
climate service (the blue lines), that by history-based forecasts (the red 
lines), and the difference of the two showing the added value of the 
former against the latter (the grey bars). By construction, the former is 
also the maximum value an information set can provide, of course 
against an history-based knowledge with the specific skill reported in 
Tables 2 and 3. As already evident examining these tables, the history- 
based knowledge is a quite a good predictor of states A and B in both 
basins and rather good of I in Guavio. This reservoir is indeed charac
terized by a low variability in water volumes in the 3-year period 
considered. Thus, gains from perfect information mostly depend upon 
the ability to predict I and can be expected to be higher in the more 
volatile Betania reservoir. 

On a yearly average basis, the improvement in the performance 
index enabled by perfect information is 4.42 % in the Guavio basin and 
5.96 % in the Betania reservoir. The last is mostly concentrated in 2017, 
a year where the I state occurred more frequently and the production 
performance could have been increased by 9.04 %. 

4.2. SCHT expected value in 2017–2019 

Fig. 3 adds to Fig. 2 the expected performance enabled by the SCHT 
service. In the Guavio reservoir, in the specific period considered, the 
expected value of the service information almost coincides with that of 
the history-based forecast. This may seem counterintuitive given that 
the service better predicts state of the word I. However, the gain for the 
energy producer in adopting the action associated to I 72 % rather than 
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Fig. 2. Yearly expected value of information: payoffs from historical- based forecast and perfect information in Guavio (left) and Betania (right).  

Fig. 3. Yearly expected value of information and maximum potential value: payoffs from historical- based forecast and perfect information in Guavio (left) and 
Betania (right). 

Table 3 
Skills of SCHT hindcasted values in Betania and Guavio reservoirs.    

Effective realizations   

I A B 

Betania reservoir 
SCHT hindcasted values’ predictions I  0.60  0.08  0.00 

A  0.12  0.92  0.00 
B  0.28  0.00  1.00 

Guavio reservoir 
SCHT hindcasted values’ predictions I  0.72  0.00  0.00 

A  0.12  1.00  0.00 
B  0.16  0.00  1.00  
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63 % of times of I occurring, is negatively compensated by the service 
suggestions of A and B 12 % and 16 % of times respectively in the 
presence of I rather than the 15 % and 21 % suggested by the historic 
experience. In other words, according to the payoff matrix, when the 
service is “wrong” mistakes are more costly than when the history-based 
experience is “wrong”.2 In determining this outcome, a role is played by 
the stability of the water volumes over time that makes the past a good 
predictor of the future. 

Conversely, the more volatile water volumes of Betania reservoir 
originate a larger expected value of service information. This is mostly 
due to the SCHT predictive performance in 2017 where the service en
ables a production performance index 3 % larger than that of the 
historic-based information (or just 4.7 % lower than that enabled by a 
perfect information). 

These results confirm that there is a positive expected gain and thus 
value in using forecast provided by SCHT respect to use the climato
logical mean-based information. The utility of the service clearly mag
nifies in those situations of “higher” variability, like in the Betania 
reservoir in our case study, where “the past” or “experience” cannot be 
used as a good predictor for the future. Considering that the evaluation is 
heavily dependent upon the choice of the test period of three years only, 
and that the climatic variability is very likely to increase, there are good 
reasons to believe that, over time, the service can offer a valuable 
contribution to improve the energy producer performance even though 
we cannot present a real economic value of the service, but just order of 
magnitudes in payoff improvements. Moving from these results to an 
economic quantification is quite straightforward when data on gains and 
losses in monetary terms are available. 

5. Conclusions 

This paper presents one practical application of the value of infor
mation theory, to the estimation of the value of a specific climate ser
vice. The cases study is the “Smart Hydropower Climate Tool” (SCHT) 
designed to support with seasonal forecasts hydropower producers. The 
value of the service is tested on two Colombian water reservoirs and 
catchments in the period 2017–2019 in collaboration with ENEL Green 
Power company. 

The case study demonstrates that SCHT service has a positive ex
pected value against what currently used by the hydropower producer. 
It would allow a 3 % increase in the expected production performance in 
the Betania basin, while in Guavio, given the intrinsic characteristics of 
the reservoir, the two forecasting systems are practically equivalent. 
Results suggest that increasing variability in hydrological conditions due 
to climate change should generate a higher value of the service. This is 
implicitly evident comparing the two reservoirs: Betania – higher service 
value – has a higher variability in its responses to hydrological condi
tions, Guavio – lower service value – has a more stable behavior because 
of the characteristics of the basin- reservoir combination. They could be 

examples of “high variability conditions” and a “low variability condi
tions”, respectively. 

The methodology is particularly useful as it also highlights the 
maximum gains that the service can potentially generate. This infor
mation is useful either to the producer or the user of the service. The 
former can use it to understand where it would be more efficient to 
concentrate effort to improve the service performance, and better meet 
the user needs, the latter can get an immediate measure of the added 
value the service can produce and a transparent description of its 
functioning. 

The methodological steps suggested can be rather easily extended to 
different contexts and in relation to different reservoirs. Indeed, the 
methodology could be applied in case of multi-objective reservoirs with 
more than one constraint and/or generating benefits for many end users. 

Nonetheless, the viability of the evaluation method crucially de
pends upon the proactive engagement of the users, the producer, and the 
evaluators of the service. On the one hand this is challenging. It requires 
a non-negligible investment of time, open minded thinking, and avail
ability to share transparently information. On the other hand, it can 
produce benefits that go well beyond the evaluation itself improving 
trust and uptake of the service. 
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Appendix A. : Mathematical formulation 

The mathematical explanation of the methodology is presented using a simplified example (similar to Murphy, 1993; Katz and Murphy, 1997), 
where a decision maker (the climate service user) faces a state space X which summarizes mutually exclusive future states of the world. To simplify 
these are x1 and x2, occurring with probabilities p(x1) and p(x2) = 1 − p(x1), respectively. 

Differently from standard examples when the value of perfect and imperfect information is assessed, it is assumed that the true values of p(x1) and 
p(x2) are not known to the decision maker3. 

She anyway faces a decision space A, where only two options are available: A1and A2. Each of them is associated to x1 or x2 in a payoff matrix 

2 As an example, in Guavio when the state of the world I is predicted by the historic-based forecast, the expected payoff related is 17.40 while the same com
bination using SCHT gives an expected payoff of 19.73. Nonetheless the historic-based forecast suggests more often than SCHT to take the “wrong” production 
decision related B when I occurs that, albeit being wrong, gives a higher payoff than the still wrong production decision related to A when I occurs.  

3 In the standard framework, the value of perfect information is associated to the payoff the decision maker can get resolving in advance the uncertainty about the 
future states of the world, while endowed with perfect knowledge of the probabilities of states. 
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(Table A1). Payoffs, πn, are “exits”, function of the states of the world and actions πn(An,xn). Typically, on the main diagonal of the payoff matrix the 
“best” or “correct” combination of action and event is reported.   

Table A1 
2×2 Payoff (cost/loss) matrix   

Event x1 Event x2 

Action A1 π(A1,x1) π(A1,x2)

Action A2 π(A2,x1) π(A2,x2)

A rational decision maker decides the action that maximizes her payoff (minimizes costs or maximizes revenues) given her knowledge, in our example 
referring to probabilities p(x1) and p(x2). This on its turn can derive from some previous information set (y1) already available to the decision maker, 
such as for instance experience from past climatology or past observation, or from information (y2), brought by a climate service. Both information sets 
are not able to perfectly predict future states of the world and can induce some mistakes. 

In our set up, the value of the information sets y1 and y2 coincides with the expected gains each can bring to the user. Said differently, y1 and y2, the 
pre-existing knowledge and “climate service knowledge”, will suggest different actions to the decision maker, with different expected payoffs. 

These are higher the better prediction of the true state of the world the information sets allow. The ability to predict, or the skill of the information 
sources, can be computed retrospectively comparing predictions with the effective weather/climate realizations in a given time period. 

Then, if the skills stay constant, and associating the payoff of the course of action that would have been suggested by y1 and y2, it is possible to 
assess the expected added value of one against the other4. 

Furthermore, it is also possible to use the value associated to (originated by) the knowledge of effective weather/climate realization as the 
benchmark that defines what we call the Expected Value of Perfect Information EVPI. It represents the case when a knowledge source always correctly 
predicts the occurrence of the uncertain events and enables, accordingly, the best response. In the framework of Table A1, EVPI is computed summing 
the products of the minimum loss times the frequency of the event: 

EVPI =
∑2

n=1
minnp(xn)π(An, xn) A1 

Being based upon the best available knowledge, EVPI also represents the maximum value an information set can originate. The performance of the 
alternative information sets depends on their skill, or, in other words, on the ability of the respective forecasts (hereto X1 and X2)to correctly predict 
the events. The skills of each information set can be represented by a contingency matrix (Table A2) where its performance is reported in terms of 
numbers N of correct forecasts, misses and false alarms.   

Table A2 
Contingency matrix.   

Event x1 Event x2 

Forecast X1 N1,1 N1,2 

Forecast X2 N2,1 N2,2  

From the contingency matrix it is possible to derive the skill in predicting any state of the world x1 , x2 as “conditional probability”, here is the 
“Bayesian” part of the method, from two data: the real frequency of an event (Nn/N) and the frequencies of the forecasts (Nn,m/Nn). From Table A2, 
there are four conditional probabilities: 

Pn(xn|Xn) =
Nn,m/N

( ( ∑2
n=1Nn,m

)/
N
) A2 

(A2) expresses the probability the information set yn correctly predicts (predicted) xn, or tells us how many times xn effectively occurs when it is 
forecasted by yn. 

In this illustrative case, the two sources of knowledge y1 and y2 (say accumulated experience observing historical climate trend, and the climate 
service) originate specific conditional probabilities, P1(xn|Xn) and P2(xn|Xn), respectively. Both convey “imperfect information” as some mistakes in 
prediction are possible. 

Denote as py1 (x1) and py1 (x2) the predicted frequency of the events based on historical record, hence the Expected Value of Historical Information 
(EVHI) is: 

EVHIy1 =
∑2

n=1
py1,n(Xn)minA

∑2

n=1
π(An, xn)Py1,n(xn|Xn) A3 

With py2 (x1) and py2 (x2) the predicted frequency of the events based on the climate service. 
The Expected Value of the Climate Service information (EVCS) is: 

EVCSy2 =
∑2

n=1
py2,n(Xn)minA

∑2

n=1
π(An, xn)Py2,n(xn|Xn) A4 

Equations A3 and A4 state that the value of the information associated with y1 and y2 depends upon the fixed payoff, the probabilities pyn , and a 
third factor, the conditional probability, that measures the skill of the information, accounting for its “imperfection”. 

4 In this setting the value of information can be assessed only in relative terms comparing if, how and with what consequences “new” or “different” information 
change the behavior of the information recipient. This requires a comparison with what she is doing which is on its turn determined by a pre-existing information set 
or knowledge. Thus, having just one information set would not enable the evaluation process. At least one alternative needs to be specified. 
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The value of the information embedded in the historic-based knowledge and in climate services can be also expressed in terms of difference with 
the Expected Value of Perfect Information (equations A5 and A6 respectively). 

ValueHistoricInformation = EVHI − EVPI A5  

ValueClimateServiceInformation = EVCS − EVPI A6 

The correct interpretation of the results from the application of this method requires some disclaimers. Firstly, it is focused on quantifying the value 
of information provided by “the climate service”. The cost of producing this information, whether and how much a potential user is willing to pay for it 
is not pertinent for this analysis. Secondly, the evaluation of the service is “user-focused”. Thus, it can vary according to her/his characteristics. Some 
of these, although individual, can be “objective” such as what she/he already knows the gains and losses stemming from the different decisions, while 
other can be subjective, such as different degrees of risk aversions. Even though we do not consider subjectivity, our evaluation remains relative and 
not absolute. Thirdly, by the same token, the evaluation does not measure the total value of the service but refers to the value that the service can 
originate for one or a group of identified users in each time period. Fourthly, this assessment does not consider the feedback, or second order effects 
triggered by the decisions the informed user takes. On the one hand, it neglects potential “imitation processes” by other users, on the other hand it 
assumes that the fact that potentially a large number of agents act according to the information received does not “rebound” on their payoff. 

Appendix B. : Smart Climate Hydropower Tool 

To produce SCHT forecasts, the service is based on two sets of information:  

(i) Seasonal meteorological forecasts (monthly precipitation and temperature) were provided by the Centro Euro-Mediterraneo sui Cambiamenti 
Climatici (CMCC) since the service was developed before the Copernicus Climate Data Store (CDS) became operative.  

(ii) “Seasonal forecast monthly statistics on single levels” were downloaded from the dedicated CDS page5. It has been selected due to both availability 
by the time of this research, and time scale of interest. This “product” provides worldwide seasonal forecasts (from 1 to 6 months lead time) 
operated at forecast centers in several European countries. For this application, used data include 2m temperature (◦K) and Total precipitation 
(m s-1) at the horizontal resolution of 1◦ x 1◦. The data include forecasts created in real-time (since 2017) and retrospective forecasts 
(hindcasts) initialized at equivalent intervals during the period 1993-2016. Such forecasts use ensembles (51 members) to reflect a distribution 
of outcomes and provide statistical variability. Nonetheless, in the current application a deterministic output of discharge is requested. 
Accordingly, the ensemble forecast, or ensemble mean, has been used. For further details on used meteorological forecast see the dedicated CDS 
page. Forecast meteorological variables have been extracted as separate time series for each pixel inside every plant upstream catchment (15 to 
20 pixels per catchment).  

These inputs were used in the Machine Learning algorithm as depicted in Fig. B1. Firstly, the forecast ML algorithms have been trained using as 
input features historical values of target variables, i.e. time series of monthly river discharge (up to the day of forecast) and seasonal monthly pre
cipitation and temperature (P-T) hindcasts from Copernicus Climate Data store (CDS). This is possible as CDS provides forecasts in real-time (since 

Fig. B1. Training – testing workflow for discharge forecasting.  

5 https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-monthly-single-levels?tab=overview 
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2017) and retrospective forecasts (hindcasts) initialized at equivalent intervals during the period 1993-2016. 
Thus, the hindcast period 2000- 2016 is the “training set” used to train the machine learning algorithms. To complete the training phase, the time 

series of input features (hindcast of P-T for the incoming months for each of the 15-20 pixel inside the catchment extracted from CDS, plus discharge at 
catchment output up to the current month provided by ENEL) have been normalized and analyzed through AutoML algorithms (in this case using the 
ones available in H2O platform6) in order to rank them and select a subset of informative features (roughly half of the original input set). Then, 
multiple algorithms have been trained, using the same AutoML platform, on the train dataset and leaderboard on the separate test set to select best 
performing ones. 

An ensemble of 3 to 4 best algorithms for each catchment, ranging from regressors to neural network families, is the final trained ML model used for 
setting up the forecast. 

The forecast period 2017- 2019 is instead the “test set” used to get realistic performance of the trained forecast algorithm. This ML model, launched 
with the same input features, but from the test set period, provides the forecasts used for the proposed analysis. 

No observed value of P or T has been used for training nor testing; and no further bias correction has been applied to forecast. The ML model has 
been trained on hindcasts (ensemble mean) and then launched using forecast (again ensemble mean). 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cliser.2022.100335. 
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