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1 Introduction

We consider the multi-unit assignment problem and focus on the course allocation problem in
which course schedules are assigned to students based on student preferences and course priorities
(see Sonmez and Unver, 2010; Budish, 2011; Kojima, 2013). Our results can also be applied to
problems such as the time scheduling problem and the assignment of landing slots (see Schummer
and Vohra, 2013; Schummer and Abizada, 2017).

Two issues arise in the allocation of course schedules. First, the allocation must be fair in
the sense that it must respect both student preferences and course priorities. Failing to satisfy
this requirement generates two unintended consequences: the existence of student-course blocking
pairs and empty seats. The former generates post-allocation appeals that need to be resolved. The
latter is wasteful. Both problems are usually solved by either an administrative allocation or a
post-allocation adjustment mechanism. Second, eliciting student preferences over course schedules
is difficult (see Budish et al., 2017). Even if we focus on stable (which is fair) allocations, no
stable and strategy-proof mechanism exists for multi-unit assignment problems.! Additionally, the
combinatorial nature of the course allocation problem requires students to form preferences on a
large set of course schedules.

To overcome the impossibility of implementing stable allocations in dominant strategies, we
relax the equilibrium concept and focus on the implementation in Nash equilibrium (NE). Addi-
tionally, we want to design mechanisms that are natural and in which students provide as little
information as possible to mitigate the complexity of the strategy space. Therefore, we study
mechanisms used in practice.

We start analyzing the student optimal stable (SO) mechanism (Gale and Shapley, 1962),
widely employed in many-to-one assignment problems (see Abdulkadiroglu and Andersson, 2022;
Roth and Peranson, 1999). However, the N E outcome of the SO mechanism produces unstable
allocations as Nash equilibrium outcome (see Roth and Sotomayor, 1990; Haeringer and Klijn,
2009). We prove that the NE of the game induced by the SO mechanism are stable if and only if
the priorities satisfy essential homogeneity. This is a demanding requirement since it is equivalent
to require strategy-proofness (see Kojima, 2013). We thus explore the immediate acceptance
(I A) mechanism, which generalizes to the multi-unit case the so-called “Boston mechanism” (see
Abdulkadiroglu and Soénmez, 2003) introduced in the school assignment problem. We show that
the 1A mechanism implements the set of stable allocation in Nash equilibria under slot-specific
priorities (see Kominers and Sénmez, 2016).? Thus, our results extend to the multi-unit assignment

problem previous implementation results by Alcalde (1996) and Ergin and Sénmez (2006) for the

LA similar result holds even if we focus on efficient and individually rational allocations (see Sénmez,1999).

2Slot-specific priorities model situations in which a subgroup of students is given priority for a portion of the
seats that are otherwise assigned according to a given criterion. For example, slot-specific priorities allow the
introduction of diversity in the classroom (see Dur et al., 2016, 2018 for applications to school choice). Slot-specific
priorities also encompass approaches such as majority quotas as defined in Kojima (2012) and minority reserves
introduced by Hafalir et al. (2013).



marriage and school admission problems, respectively. There are situations where a more general
priority structure is necessary. This is the case, for example, if the optimal class size is smaller than
the course capacity. Substitutable priorities are compatible with the existence of stable allocations
in this setting. However, under substitutable priorities the N F of the I A mechanism can result in
unstable allocations. To extend the preference and priority domains we introduce the conditional
acceptance (C'A) mechanism. The C'A mechanism implements the set stable of allocations in Nash
equilibrium and undominated Nash equilibrium under substitutable preferences and priorities. To
the best of our knowledge, this is the first paper to consider substitutable priorities in the course
allocation problem (see Marutani, 2018, for the use of substitutable priorities in the school choice
problem).

The C'A mechanism combines characteristics of A and SO mechanisms. Like the I A mecha-
nism, the C'A mechanism assigns seats at courses to students who rank them first and then to those
who rank them second, and so on. Similar to the SO mechanism, student can lose a (tentatively)
assigned course. The C'A mechanism allows students to express the intensity of their preferences.
By ranking a course higher, a student increases her chances of being admitted. Therefore, students
have incentives to strategize.

Notice that the different results produced by the SO, IA, and CA mechanisms come from
whether each assignment is tentative and whether students can request another course after they
lose one. In the SO mechanism, students are assigned tentatively and can apply for a different
course if they lose one. In the case of the A mechanism, allocations are definitive and students
can apply for course schedules in different stages. In the C'A mechanism, the students can lose an
assigned course, and they obtain courses in, at most, one stage.

In the SO, I A, and C'A mechanisms out-of-equilibrium play is wasteful and costly for students.
In practice, this problem is dealt with through a post-allocation adjustment. Consider, for example
the Supplemental Offer and Acceptance Program in the National Resident Matching Program or
NRMP.3 We show that the design of a post-allocation adjustment mechanism can affect the
strategic properties of the main mechanism if it is not stable or if it allows students to drop
courses (see Example 4). We propose to allocate the vacant seats using additional rounds of
the CA mechanism until there are not more seats to be distributed, or no student who wants

* We call this mechanism the extended conditional acceptance (ECA) mechanism. The

them.
ECA mechanism mitigates the cost of out-of-equilibrium play while preserving incentives and
implements the set of stable allocation in SPN E when preferences and priorities are slot-specific.

Finally, there are practical situations where students have simpler preferences. For example,
in the first years of several B.A. programs, students must take compulsory courses divided into

sections that are, usually, held simultaneously. Another example are graduate seminars, courses

3https://www.nrmp.org/residency-applicants/soap/ Accessed 31/08/2022
4The idea of allocating the remaining courses using the same mechanism is not new. For example, it was proposed
by Coles et al. (2010) for the NRM P.



organized by local libraries, or elective courses at small community colleges and universities where
there are not overlapping time slots. In all those cases, we can represent student preferences using
slot-specific preferences.® When student preferences are slot-specific it is easy to adapt the CA,
ITA, and EC'A mechanisms to elicit preferences over individual courses. In this case, it is possible

to simplify the student strategy space while preserving the incentives of the mechanisms.

1.1 Applicability of our results

In this subsection, we present three mechanisms that share features with the CA and EC' A mecha-
nisms. Our first example is the course allocation mechanism at University of Pennsylvania (UPenn).
At Upenn undergraduate courses are treated as separated objects. Students have an adjusting pe-
riod called “advance registration.”® In the advance registration period, students are encouraged
to use the information available as: “Strategically selecting and prioritizing courses increases the
likelihood of receiving a favorable schedule, but there is no guarantee that students will be enrolled
in all of their requested courses.”” When the advance registration period ends, preferences become
final and courses are allocated.

In the UPenn’s allocation process, the order matters. In fact, the importance of the first
choices is clearly stated to the point that students are encouraged to submit “an alternate request,
especially for their top two choices.” The role of the alternate request is that “if the primary
request is not available, the alternate is treated with just as high a priority (better than if listed
as #2).” After the allocation, a post-allocation adjustment round allows students to drop courses
and register new ones. Our results, in particular Example 4, show that the possibility of dropping
courses in the post-allocation adjustment round prevents UPenn’s mechanism implementing stable
allocations.

A similar mechanism is used at E6tvos Lorand University in Hungary (see Rusznak, Bir6, and
Fleiner, 2021). In this case, students first submit a preregistration course schedule that helps the
university to estimate demand for each course and give students information on their chances to
be admitted. Later there is a formal registration process where students register different courses
before the capacity limits are imposed. Finally, an allocation is selected.

At the Department of Political Science in Aarhus University in Denmark, enroll its master’s
degree students using a mechanism similar to FC'A with two rounds where students submit an
application with a course schedule. If they are not allocated a seat on one or more of their desired

courses, they must register anew in the second registration period. Also, “(a)ll students who have

5In particular, responsive preferences are slot-specific. The assumption of responsive preferences is common
in the literature on course allocation and is used, among others, in Budish and Cantillon (2012), Kojima (2013),
Kojima and Unver (2014), and Dogan and Klaus (2018).

6The “Course selection starts about two weeks after advance registration ends and lasts approximately two and
a half weeks. During the Course Selection Period, students move in and out of courses by adding and dropping on
Penn InTouch. https://www.college.upenn.edu/registration-tips. Accessed 31/08/2022.

Thttps://www.college.upenn.edu /registration-tips.



been registered in their selected courses are bound by their choice. This means that you will not
be able to cancel or change your registration for elective courses once the deadline for registration
has expired, and the elective course is a binding part of your study programme.”® Aarhus’s design
evidences that in environments with almost complete information course allocation can be made

by declaring just one course schedule.

1.2 Alternative approaches to course allocation

The allocation of course schedules to students has been widely analyzed both in theory and in prac-
tice. It is sometimes conducted by a first-come-first-serve mechanism. This method is problematic.
The students’ rush to be first can overload the system (see Aziz et al., 2019) and produce unfair
allocations. Another method commonly used is a serial dictatorship (SD) based on a particular
criterion such as a random draw or the student average grade (see, among others, Papai, 2002;
Ehlers and Klaus, 2003). The SD is group-strategy-proof and efficient. Under priorities, a SD
mechanism produces stable allocations if all students are acceptable and there is a unique priority
order for all the courses. The SD mechanism results in allocations where students with high pri-
ority systematically obtain their favorite schedules in detriment of the students with low priority
(see Budish and Cantillon, 2012). An advantage of the SD mechanism is that it minimizes the
need for reassignment after the initial allocation. However, this property depends on the practical
implementation of the rule.’

Course schedules can also be allocated using bidding mechanisms. In these mechanisms, each
student allocates fake money among the courses she wishes to register. Sénmez and Unver (2010),
studies bidding mechanisms used in several business schools. They propose the Gale-Shapley
Pareto-dominant market mechanism that assigns priorities to courses to break ties, based on
students’ bids, and execute the SO mechanism. This mechanism can dominate the bidding mech-
anism.

Budish (2011) proposes the use of pseudo-markets to allocate course schedules without prior-
ities. It introduces the approximate competitive equilibrium from equal incomes (A — CEFEI).
The A — CEFEI is efficient and approximately strategy-proof in large markets. Unfortunately,
unstable allocations can survive even in large markets, maintaining the tension between efficiency
and fairness (see Budish and Cantillon, 2012). The A — CEFEI bounds absolute envy, but this
weak fairness concept is compatible with the existence of multiple blocking pairs. In addition, the
implementation of the A — CEET is complex and computationally demanding (see Budish et al.,
2017). Kornbluth and Kushnir (2021) present the Budget-Adjusted Pseudo-Market mechanism.

8See https://studerende.au.dk/en/studies/subject-portals/political-science/teaching /registration-for-
courses,/ registration-for-masters-courses. Accessed 02/09/2022

°The Universidad Carlos III de Madrid allocates course schedules using a SD based on the student average
grade. More than 1200 students appeal academic course to change their schedule (personal communication with
Raul Blanco, head of the student office. School of Social Sciences and Law at Universidad Carlos IIT de Madrid).



This mechanism introduces priorities in the A — CEFEI and preserves its properties. It also pre-
vents justified schedule envy, a weaker fairness concept that guarantees that each student does not
prefer the schedule of a lower priority student to her own.

The paper is organized as follows. Section 2 introduces the model and notation. Section 3
presents our results with one-shot mechanism. Section 4 presents our proposal for post-allocation
adjustment. Section 5 presents simplified versions of the mechanisms, and Section 6 concludes.

The proofs are in the Appendix.

2 The Model

There is a finite set of courses C and a finite set of students S, with C' NS = (). Each course ¢ has
priorities over subsets of students. Priorities are described by a choice function Ch, : 25 — 25,
where Ch.(S") C S’ for all S/ C S.1° We assume that the choice function is substitutable.
Formally, it " C S, s,s' € S\ S" and s ¢ Ch.(S"U{s}), then s ¢ Ch.(S"U {s,s'}). In words,
Ch, is substitutable if, whenever the course c rejects a student from a given subset of students, it
rejects her when more students become available. We also assume that Ch, satisfies irrelevance
of rejected students.!! Formally, if S’ C S and s ¢ Ch.(S"U{s}), then Ch.(S'U{s}) =
Ch.(S"). Rejected students do not affect courses’ choices. If Ch,. is substitutable and satisfies
the irrelevance of rejected students, then it is rationalizable by a linear order on 2°, P., which is
Ch. (S") = maxp, {S" | S” C S’} = Ch.(S', P.) for all S" C S (see Alva, 2018). A priority profile
is a list Che = (Che),e 01, equivalently, Po = (P.)..o,» where P, rationalizes Ch, for all ¢ € C.
When there is not ambiguity about P., we write Ch. (S’) instead of Ch.(S’, P.). A particular
class of substitutable priorities is the class of slot-specific priorities introduced by Kominers
and Sénmez (2016). Under slot-specific priorities, each course ¢ € C' has a finite set of slots, 3,
with generic element 0. Each slot ¢ has a priority order >, which is a strict, complete, and
transitive binary relation over SU{(}, where {(}} represents the possibility of maintaining the slot
empty. The higher a student is ranked under >, the stronger the claim that she has for slot ¢ in
the course c. If ) =, s, student s is not acceptable for slot o. If () =, s, for all slots o, student s is
not acceptable to c. If s >, () for some o then student s is acceptable to c. We denote by A, (P.)
the set of acceptable students for c¢. The total supply of course cis q. = |X.|. Let us define ¢ as the
vector of supplies for the various courses X, ¢ = (¢)cec. We assume that the slots are numbered
according to a linear order of precedence >.. Given two slots 0,0’ € X, 0 >, ¢’ means that
slot o is to be filled before the slot ¢’ whenever possible. For each course ¢, we assume that slots in
Y. are ordered in such a way that o' >, 0% >, --- >, 0%. Let S C S. The choice of school ¢ from

S’, denoted by Ch, (S"), is obtained as follows: slots at school ¢ are filled one at a time following

OGiven a set X, by 2% we denote the set of the subsets of X.
"The condition has been previously studied as “irrelevance of rejected contracts” in Aygiin and Sénmez (2013) for
models of allocation with contracts and as “irrelevance of rejected items” in Alva (2018) for general choice models.



the order of precedence. The highest-priority acceptable student in S’ under =1, for example,

! of school ¢; the highest-priority acceptable student in S’ \ {s'}

student s', is chosen for slot o
under > 1, for example, student s2, is chosen for slot o2 of school ¢, and so on. The choice function
Ch, satisfies substitutability (see Kominers and Sénmez, 2016; Hatfield and Kominers, 2017; and
Chambers and Yenmez, 2018) and irrelevance of rejected students. A slot-specific priority profile
is a tuple <q, (Ec, (=0)pes. » I>c)c60>'

Each student s € S has a strict preference relation P, over the set of subsets of C, 2¢. For
each C' C C and each s € S, we denote by Ch,(C’) the choice set of student s, which is
her favorite combination of courses among the ones belonging to C’. Formally, Ch, (C', Ps) =
maxp, {D | D C C'}. When there is not ambiguity about Py, we write C'h, (S”) instead of Chg (S’, Ps).
A subset of courses C' C C'is not acceptable to student s when  P,C". We assume that the choice
set induced by each P; is substitutable as previously defined for priorities. Let P be the set of
substitutable preferences on 2¢. A more restrictive condition is responsiveness. We say that P,
is responsive (see Roth, 1985), with supply ¢s if, for each " C C and for all ¢,¢ € C\ (',
the following holds: (1) if |C'| < ¢, then C"U{c} P,C"U{} if and only if {c} P {c'}, (2) if
|C’| < gs, then C" U {c} P,C" if and only if {c} P,0, and (3) if |C’| > ¢,, then O P,C".

For each 5" C S, set Psr = (P),.q-. For each s € S, set P_y, = Pg\(53. Given a preference
relation P on 2¢, the restriction of P to C' C C, denoted by P, is a preference that ranks all
subsets in 2¢" as P does and ranks all other subsets of courses as not acceptable. Formally, Pcris
such that, for all Q,T C C', QP T if and only if QPT and for all Q € C’, 0P Q.

An allocation is a function ;1 : C' U S — 2¢ U 2% such that, for each s € S and each ¢ € C,
p(s) €29 p(c) € 2% and ¢ € p(s) if and only if s € p(c). The set of all allocations is denoted
by M. Allocation p is individually rational for v € C'U S if Ch(u(z)) = p(x). Allocation p
is blocked by a pair (¢,s) € C' x S'if s ¢ p(c), ¢ € Chs(u(s)U{c}), and s € Ch. (p(c) U {s}).
Finally, an allocation p is stable for (S, C, Ps, Ch¢) if it is individually rational for all x € C'U S
and there exists no pair blocking it. If Ps and C'he are substitutable and Che satisfies irrelevance
of rejected students, then a stable allocation exists (see Echenique and Oviedo, 2006).

A mechanism is a function ¢ that associates an allocation to every preference profile for
students, P = (Ps),cqs
each P. A mechanism is strategy-proof if ¢ (P) Ryp (P., P_) for each P, s € S, and P., where

¢ : P15l — M. A mechanism is stable if ¢ (P) is a stable allocation for

R, denotes the weak preferences associated to P;. Given a priority profile C'he and a preference
profile P € P, a mechanism ¢ induces a normal form game G (P) = (S,P'S‘,QO,P), where
S is the set of players, PIS! is the cross-product of students’ strategy spaces, ¢ is the outcome
function, and P is the profile of student preferences. Let ® : Pl = M be a correspondence.
We say that ¢ implements ® in Nash equilibrium if, for each P € P®l, the set of Nash
equilibria of G (P) = (S, PISI o, P), NE (P) coincides with ® (P). We say that ¢ implements ®
in undominated Nash equilibrium (UNE) if, for each P € P!¥l, the set of undominated Nash
equilibria of G (P)=(S,P¥l, ¢, P), UNE (P) coincides with ® (P).

7



3 One-shot mechanisms

In this section, we characterize preference domains in which the SO, and I A mechanisms implement
stable allocations in the course allocation problem. Then we present the C'A mechanism that

extends the preference and priority domains in which we can implement the set of stable allocations.

3.1 The student optimal stable mechanism

Given priorities, the student optimal stable allocation associate to each substitutable profile of
preferences Ps = (P,), ¢ is the stable allocation p which is optimal for all students. This is the
stable allocation such that Chg (u(s)Uv (s)) = p(s) for all s € S and all stable allocations v.
Given preferences P, we denote by SO (P) the student optimal stable allocation. In the multi-unit
assignment case, the student optimal stable mechanism is not strategy-proof. Furthermore, the

SO mechanism yields unstable allocations as N FE outcomes.

Example 1 Let S = {s1, 59,83} and let C = {c1,ca}. Let preferences and priorities be as follows:

P81 : {Cla 02} ) {02} ) {Cl}; P82 : {Cl} {CQ}; Pcl : {51} ) {82}; PCQ : {82} ) {Sl}'

There exists a unique stable allocation in the market (C,S,P), wu in which pu(s1) ={c1},
p(s2) = {ca}, p(s3) = 0.

Let P, : {ca},{c1}; P, : {1}, {co}. Strategy profile P' = (Psli)i:LQ is a NE of the game
induced by the student optimal stable allocation yielding allocation v, in which v (s1) = {c2},

v (sy) ={c1}, v(s3) =0, which is unstable since it is blocked by (cz, $1).

In the Example 1, the NE outcome g is Pareto optimal and Pareto dominates the student

optimal stable allocation. This is not always the case, as we show in the Example 2.

Example 2 Let S = {s1, 2, 53,54} and let C = {c1,ca,¢3,¢4}. Let preferences and priorities be
as follows:

Py i {en, o} A} Aals Py, {a} {e}ds Py 2 {add Aeshs Poy 2 {es} {eads Py 2 {s1} {2}
Pt {s2h o {1k Py L} {0k Pow Lo} {1

There are two stable allocations p and v in which: pu(s1) = {c1}, p(s2) = {2}, p(s3) = {cs},
p(sa) =A{cs}, p(s1) ={er}, p(s2) ={ca}, p(s3) = {cs}, p(s3) = {es}, p(s4) = {ea}

Let P} :{co},{c1}; Pi, : {1} {ce}s Pi, i {cs}; P., : {ca}. Strategy profile P' = (Psli)izl,Q,ZS is
a NE of the game induced by the student optimal stable allocation yielding allocation v, in which
v(s1) ={c}, v(se) ={ar}, v(s3) = {es}, v(s4) = {cs}, which is unstable since it is blocked by
(c1,81). It is also not Pareto optimal since it is dominated by T, in which T (s1) = {co}, 7 (s2) = {1},

7 (s3) = {cs}, 7 (s4) = {ca}. In addition, it does not Pareto dominate stable allocation fu.

Notice that, in Examples 1 and 2 there is a cycle which helps sustain the NFE yielding v as
an outcome: {s1} P., {s2} P., {s1}. Due to this cycle if student s; ranked {c;, co} first, she would

8



block the admission of student s, to course ¢;. Student s, having lost course ¢; would block the

admission of student s; to course cy. Thus, this kind of deviation would not be profitable to s;.
In general, in multi-unit assignment models, a cycle can be formed with the lowest ranked

students that can be admitted to two courses. If the priorities satisfy essential homogeneity (see

Kojima, 2013) this potential cycle is prevented.

Definition 1 Priorities (FP.) .. satisfy essential homogeneity if there is no ¢y, c; € C' such that:

o {s1} P, {s2} and {s2} P., {s1};

o there exist Se,,Se, CS\ {s1, 52} such that |Se,| = qe; — 1, |Sey| = ey — 1, {s} P., {$2} for each
s € S.,, and {s} P., {s1} for each s € S,,.

Essential homogeneity allows variation in priorities on the top ¢. students for course c¢. Those
students are admitted to course ¢ whenever they apply, so their relative ranking does affect the

N E outcome.

Proposition 1 The SO mechanism implements the set of stable allocations in NE if preferences

are substitutable and priorities are responsive and essentially homogeneous.

Kojima (2013) proves that under essential homogeneity the SO mechanism is strategy-proof
if and only if the priorities of the courses are responsive and essentially homogeneous. It follows
from Kojima (2013) Theorem 1 and our Proposition 1 that to require stability to NE outcomes

of the SO mechanism is equivalent to impose strategy-proofness.

3.2 The immediate acceptance mechanism

The many-to-many version of the classic /A mechanism goes as follows. First, each student
submits her preferences. In the first stage, the favorite set of acceptable courses of each student is
considered. Among the students claiming a course, those with the highest priorities for any given
course are assigned to it. At the end of this stage, all students assigned to at least one course
and all assigned seats are removed. At the n'* stage only the n'* choice in the preference list of
the remaining students is considered. We repeat the procedure until no more seats or students
remains.

Let P = (Ps),cq

and let Cp_be the " ranked acceptable course schedule according to P, if one exists. Let C}, be

be a preference profile. Let s € S and let 7 be an integer such that 1 < r < 2!/,

empty otherwise.

Given a priority profile (F.) . and a preference profile (P) the following procedure de-

ses?
scribes the immediate acceptance mechanism.



Step 1: For each course c, let S! be the set of students who selected ¢ among their first choices.
Formally, S! = {s€ S|ce Ch}. Define pu' (c) = Ch.(S!). Every student in u'(c) is
definitively enrolled in course c. Every student s € |J .. p' (¢) and every student s such that
C}, =0 is removed. Set T' = S. Let T be the set of remaining students.

Step r, » r > 2: Only the r*" choices, among acceptable courses, of the students in 7" are
considered. For each course ¢ let ST = {s€T"|c€ Cy } be the set of students in 77
who selected ¢ among their r* choices. Let " (¢) = maxp, {u" ' (c)U S’ | 8" C ST}. Every
student s € |J,.o 1" (¢) and every student s such that C}, = () is removed. Let 7" be the

set of remaining students.

The procedure stops when all students have been removed. Formally, it stops at r* = min {r | 77! = 0}.
Let IA(P) = ™ be the outcome. Notice that a student never loses the seat at a course she has
been assigned to at some step of the mechanism, but she can be moved to seats of different
precedence along the mechanism if the priorities are slot-specific.

Under substitutable preferences, all stable allocations are Nash equilibrium outcomes of the I A
mechanism. However, not all Nash equilibrium outcomes are stable allocations. This is because
not all outcomes of the mechanism are individually rational for courses, as we show in the Example
3.

Example 3 Let C' = {¢1,¢2} and S = {s1, 89, 83,54}. FEach student wants to enroll in exactly
one course. The maximal number of students ¢y can enroll is three, but the ideal number is two.
Let preferences and priorities be as follows: Ps, : {ca},{c1}; Ps, : {c1}; Psy : {c1}; Ps, : {2}
Pep +{s1, 83}, {s1, 52,83}, {s2, 83} . {s1, 2} . {s1} . {ss} . {s2}; Py - {sa} . {s1} . {s2} . {3}

All priorities are substitutable. Truth telling results in allocation p, where p(cy) = {s1, s2, 3} and
p(ca) = {s4}, which is not individually rational because Che, (pu(c1)) # p(c1). However, truth
telling is a Nash equilibrium of the I A mechanism because any student but s, is assigned to her

preferred course, and s has no profitable deviations.

The instability of N E allocations under the I A mechanism comes from the fact that acceptances
are definitive. In the Example 3, when s;’s application arrives, course c;’s priorities prescribe the
rejection of the student’s application, but the I A mechanism does not allow it.

When priorities are slot-specific, this situation is not a concern because all outcomes of the I A
mechanism are individually rational for the courses. In Lemma 2 we show that each student can
obtain any course schedule that can be an outcome of the mechanism, ceteris paribus, by ranking

it in first place.

Lemma 1 Let P = (P,),.q be a preference profile for students and let p = IA(P). For each
s€S and C' C pu(s) C' =1A(Pycr, Py).

This result allows us to prove Theorem 1.
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Theorem 1 The [ A mechanism implements the set of stable allocation in N E if preferences are

substitutable and priorities are slot-specific.

The equilibrium strategies defined in part (ii) of the proof of Theorem 1 are undominated.

Thus, we obtain Corollary 1.

Corollary 1 The I A mechanism implements the set of stable allocation in UNE if preferences

are substitutable and priorities are slot-specific.

3.3 The conditional acceptance mechanism

The results in Subsections 3.1 and 3.2 show that the [ A mechanism implements the set of stable
allocation in richer preference and priority domains than the SO mechanism. The conditional
acceptance mechanism extends this implementation domain. It exploits the structure of the A
mechanism to provide students with incentives to acquire and exploit the information about courses
priorities and students’ preferences. In the C'A mechanism, the message space for each student is
the set of preference profiles on course schedules. In the first stage, only the schedule that each
student presents as her best is considered. Among the students demanding a given course, the
group with the highest priority is chosen. At the end of this stage, all students assigned to at
least one course and those students not demanding any course are removed. At the r'* step of
the mechanism, only the 7" choice in the preference list of the remaining students is considered.
Each course considers the students already assigned to it and the new students claiming a seat
and allocate seats to the subset with the highest priority. All students who have been assigned at
least one course at this stage are removed, together with the students not demanding any course.
The mechanism stops when all students have been removed.

Let P = (P;),.q be a preference profile. Let s € S and let r be an integer such that 1 < r < 2151,
and let C';_be the r** ranked acceptable course schedule according to P, if one exists. Let Ch, be
empty otherwise.

Given a priority profile (P.).. and a preference profile for students (P;) the following

s€Sy
procedure describes the conditional acceptance mechanism.

Step 1: Only the top choices of the students among acceptable courses are considered. For each
course ¢, let S! be the set of students who selected ¢ among their first choices. Formally,
St ={seS|ceC}}. Define p'(c) = Ch.(S}). Every student in x' (c) is enrolled in
course ¢. Every student s € J,. p' (¢) and very student s such that Cp = 0 is removed.
Set T' = S. Let T? be the set of remaining students.

Step r, » > 2: Only the r** choices of students in 7" are considered. For each course c, let
Sr=put (c)U{s € T" | c € C} } be the set of students enrolled at c at the end of stage r and

of the remaining students ranking a set containing ¢ in the 7 place. Let u" (¢) = Ch, (S7).
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Every student s € |J .o ¢ (¢) and every student s such that C}, = 0 is removed. Let 77!

be the set of remaining students.

The procedure stops when all students have been removed. Formally, it stops at 7* = min {r | 77! = 0}.
Let CA(P) = u” be the outcome. Notice that the mechanism produces an outcome even when
preferences are not substitutable.

The C'A mechanism has characteristics of both the 1A and SO mechanisms. Students are
accepted by courses at most once like in the /A mechanism and courses can replace previously
accepted students with new ones.

We can think of an alternative version of the C'A mechanism where students are asked each step
for a unique course schedule. In this alternative version, our results follow with minor adaptation
on the proofs. Lemma 2 illustrates that in the C'A mechanism a student can obtain any of the

possible outcomes of the mechanism by ranking them in the first place.

Lemma 2 Let P = (P,), g be a preference profile for students and let p = CA(P). If the
priorities are substitutable, for each s € S and C' C p(s), C' = CA (Pycr, P-) ().

An immediate implication of Lemma 2 is that each student can obtain her favorite outcome of
the mechanism by listing a a single course schedule.

The possibility to adapt the C'A mechanism for students to declare a course schedule every
round and the fact, that students can submit just one course schedule shows that the C'A mecha-
nism simplifies the problem of preference elicitation.

We present our main result in Theorem 2.

Theorem 2 The C'A mechanism implements the set of stable allocations in N E if preferences and

priorities are substitutable.

In the C'A mechanism, unstable allocations are ruled out by the strategic behavior of the
students. From Lemma 2, it follows that if pair (¢, s) blocks an outcome allocation , Py\chy (u(s)uie))
is a profitable deviation for s.

Notice that the equilibrium strategies defined in part (i) of the proof of Theorem 2 are un-

dominated. Thus, we present the following result.

Corollary 2 The C'A mechanism implements the set of stable allocation in UNFE if preferences

and priorities are substitutable.

4 The extended conditional acceptance mechanism

The incentives used in the C'A mechanism to induce stable allocations have a cost in case of out-

of-equilibrium play. This is because any student who loses a course at any stage of the game will
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not be able to register an alternative course. In general, the problem of students with incomplete
course schedule is solved either by an administrative allocation or by a new allocation procedure
in which they can complete their course schedule. We call this stage post-allocation adjustment.
Usually, in post-allocation adjustments, students are allowed to drop courses and register new ones.
Example 4 shows how the addition of a post-allocation adjustment can distort the implementation

of stable allocations.

Example 4 Let S = {s1, 59, 53,54} and let C = {cy, ¢, c3,c4}. Students can apply for more than

one course. Let preferences and priorities be as follows:

Py, i{an} {esh {ea} el Py {ea} {a} {ea}s Py {ea} e} {an} {ea}s Py {eals

Pep+{sa}, {ss}, {s2}, {s1}; Py o {sa} - {ss} {so} . {s1}; Py - {1} {sa} {85} Poy + {sa}, {sa}, {2}, {83}

There is a unique stable allocation in the market (C, S, P), w in which p (s1) = {cs}, pu(s2) = {ca},
p(ss) = {ear}, pu(sa) = {ca}. Notice that the strategy profile in which each student declares her
course under p as her unique acceptable course is a NE of the one-shot game for each student both
under SO and under C'A mechanisms.

Now assume that seats are assigned employing the C' A mechanism and there is a post-allocation
adjustment where the students can drop courses and register new ones with empty seats. Those
empty seats are assigned employing the CA mechanism as well. The game has a SPNE that does
not have p as an outcome: students play P, :{cs,c3}; P, :{co}; P., : {c1}; Pi, : {ca} in the first
stage. This profile gives the allocation v: v (s1) ={cy, 3}, v (s2) = {ca}, v (s3) = {c1}; v (s4) = {0}.
In the second stage, all students play their best response. This results in student sy dropping
course ¢y, students sy and student s3 ranking co and ¢y first, respectively, and agent sy not ranking
any course. The described strategy constitutes a SPNE yielding v' as an outcome, in which
V' (s1) ={e3}, V' (s2) ={ca}, V' (s3) ={c1}; V' (s4) =0, which is wasteful and thus unstable in
(C, S, P). Matching V' is an equilibrium outcome also if C'A repeats multiple times and students
are allowed to drop courses and register only to empty seats. It is indeed easy to construct a SPNE
in which students play as above in the first stage and in which student s, drops course cy only at
the last stage, preventing sy to register any course.

If the post-allocation adjustment consists in allowing students to trade courses, there are two
additional SPNE. The first equilibrium consists in students playing P; : {cs,cs}; Pi, : {c2};
P, {ca}, P, : {ci} in the first stage. Then s, and s3 trade c4 for c1 and sy drops c3. The
second equilibrium consists in playing P, : {cs}; P., : {c2}; P, : {c1}; Pi, : {ca} in the first stage.
Then sy and s3 trade ¢y for ci. In both cases the outcome is matching V", in which v" (s1) ={c1},

V' (s9) = {ea}, V' (s3) = {ca}; V' (s4) = 0 which is unstable.

We introduce the extended conditional acceptance mechanism, a repeated version of the C' A
mechanism. The ECA models the post-allocation adjustment by repeating the C'A mechanism as

many times as needed with the students that still have courses to register and the courses that
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remain with empty seats. The assignment made at each C'A stage is definitive and students cannot
drop any of the courses they have obtained.
Given a priority profile (P.). and a preference profile for students (P), 4, the following

procedure describes the extended conditional acceptance mechanism.

Step 1: Students submit a preference profile P* = (P}),_s.

e Set pu' (P')=CA(P'). For each s € S,
set Pl ={P,|ce A, (P})=c¢ A, (P,)}.

Step r+1: Students submit a preference profile P"™ = (PI) o € [[,.sPr. Set AT ((Pi);_,) =

s

Ui_, As (P?). Define priorities Pr*! on S as follows. For §', 8" C S\ " (¢) , S'Pr+1S" if

and only if u" (¢) U S"P.u” (¢) U C”. Define CA™ (P™1) as the result of the conditional

acceptance mechanism with priorities (P *!) .. under profile of preferences P"*'.

e Set u (P = " UCA" (P™1). For each s € S,
set Prt ={P,|ce AL ((P}),_,) = c¢ A, (P")}.

The procedure stops at the lowest r* such that P7" = P *! for all s € S. Set ECA = u".
The procedure ends in a finite time since P71 C Pr thus r* < |S||C| = R*. Given a profile of
preferences, the FC'A mechanism induces an extensive game of complete information (see, among
others, Maschler et al. 2013). A SPNE is a profile of strategies that induce a NE in each
subgame. We focus on the pure strategy SPNFE of the games induced by the FC'A mechanism.
Notice that the extensive form game induced by the extended conditional acceptance mechanism,
can be stopped after R* stages. Let P = (Ph) be a strategy profile for students in which H is
the set of non-terminal histories of the game mduced by the EC' A mechanism, let EC' A (P) be the
outcome allocation when students play profile P, and let ECA; (P) = ECA(P)(s) for all s € S.

Lemma 3 Let P = (Ph)hEH be a strateqy profile for students and let p = FCA(P). Let s€ S
and let C" C EC A (P). Let hg be the Stage 1 history in which student s moves. If the priorities
are slot-specific, for each s € S, C' = ECA, ((P’hs,Pfs)hEH), in which P is responsive and
ranks C' acceptable and at the top of the list and P™, = 0 if h follows h,, P" = P" for all h not

following h,, and P! =0 for all h following hs.

Theorem 3 shows that the FC' A mechanism implements the set of stable allocation when both

preferences and priorities are slot-specific.'?

Theorem 3 The EC A mechanism implements the set of stable allocation in SPNE if preferences

and priorities are slot-specific.

12The definition of slot-specific preferences is analogous to the definition of slot-specific priorities.
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Thus, the FC'A mechanism maintains the strategic properties of the C'A mechanism. If a
student employs a non-equilibrium strategy, the penalty will be softened by the participation to
a post-allocation adjustment. The addition of a post-allocation adjustment does not distort the

strategic properties of the C'A mechanism if preferences and priorities are slot-specific.

5 Simpler environments

Both the C'A and I A mechanisms implement stable allocation under substitutable and slot-specific
priorities, respectively. However, the complexity of the strategy space might hinder their practical
implementation (see Budish et al., 2017). We concentrate on slot-specific preferences. Analogously
to slot-specific priorities, slot-specific preferences generalize the assumption of responsive prefer-
ences, which is standard in the course allocation literature (see Sénmez and Unver 2010; Budish,
and Cantillon, 2012; or Aziz, et al., 2019).

We introduce two mechanisms derived from the C'A and IA mechanisms where students a
list of courses ordered by preference. Let s € S. Assume that message for student s is my =
(Zs, (>U)U€ES , DS). Let M, be the set of messages for student s. Given message m, let P, =
P, (mg). For each s € S, let my; € M, and let P, = Ps(mg) be preferences that rationalize
ms (see Theorem 1 in Alva, 2018). Given a priority profile (Ch.).. and a profile of messages
(mys),eg, the simplified the C'’A mechanism (SCA) is defined by the following outcome function
SCA ((ms)ses) =CA (PS (ms)ses). In words, in the SC'A, students play the game induced by the

corresponding mechanism with preferences that rationalize the message of each student.!

Proposition 2 Assume that the preferences are slot-specific and priorities are substitutable. The

SCA implements the set of stable allocations in Nash equilibrium.

We can also define a simplified version of the I A mechanism as follows. Given a priority profile
(Che) e and (>4, qs) g, the simplified A (STA) mechanism is defined by the following outcome
function STA (<m5)s€S) =1A ((PS (ms))ses)~

Proposition 3 Assume that preferences and priorities are slot-specific. The SIA implements the

set of stable allocations in Nash equilibrium.

The proof of Proposition 3 is similar to the proof of Proposition 2 and thus omitted.
The version of EC' A under slot-specific preferences or simplified EC'A (SEC A) is natural after

defining the SC' A and Proposition 4 is a direct consequence of Theorem 3.

Proposition 4 Assume that the preferences and priorities are slot-specific. The SECA mecha-

nism implements the set of stable allocation in SPNE.

13If the preferences can be assumed as responsive which is if =,=>, for all o, 0’ € X, for all s € S, the message
can be simplified to (gs,>s) in which ¢4 is the demand of courses of student s and > is a ranking of individual
course, in an obvious way.
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6 Conclusions

In this paper, we present a mechanism to allocate courses to students based on of preferences
and priorities, the conditional acceptance mechanism or C'A. Under substitutable preferences and
priorities, the C'’A mechanism implements the set of stable allocation in Nash equilibrium and
in undominated Nash equilibrium. The mechanism produces allocations that are fair, and its
practical implementation is not computationally demanding. The C'A mechanism is based on the
I A mechanism but allows courses to reject students tentatively accepted to preserve individual
rationality. This makes our new mechanism a hybrid between the I A and SO mechanism. out-of-
equilibrium play in the C'A mechanism is wasteful. To reduce the cost that incentives impose we
introduce the FC'A mechanism. This mechanism is based on the repetition of the C'A mechanism
and implements the set of stable allocation in SPN E under slot-specific preferences and priorities.
Our findings suggest that the post-allocation adjustment mechanism should not allow students to
drop courses.

We conclude our analysis studying the design possibilities in markets with less complex pref-
erences. Overall, our results proof the feasibility to design a mechanism that motivates students
to acquire information and use it strategically to overcome the intrinsic difficulties present in the
course allocation problem. Our findings support the design features present in mechanisms used

in practice and point to the potential weaknesses of others.

Appendix: Proofs

Proof of the results in Subsection 3.1

Consider substitutable profiles of preferences P = (P;),.q and priorities Po = (P.),. Given
D = (Dy),.q € 2, define D, = Unen,, {s'}, for each ¢ € C. For each s € S, define F (D, P) =
{c|3h e H,seC.(D.U{s})}. Foreach D = (Cy).q € 25, let by (D, P) = Ch, (F, (D, P), P.)
and let R, (D, P) = S\ F, (D). Finally, define B, (D, P) = b, (D, P) U R, (D, P). Set D® = ) for
all s € S and define D™ (P) = B, (D! (P)) es -
the “cumulative offer algorithm”. From Proposition 6 in Romero-Medina and Triossi (2022) there
exists ¢, such that D, (P) = D! = D! for all s € S and SO (P) (¢) = C. (Ds (P),) for all c.

P) for all £ > 1. This sequence is a realization of

Lemma 4 Let Py = (P;), g be a profile of substitutable preference, let Po = (P.).co be a sub-
stitutable profile of priorities, and let P = (Ps, Pc). Let p = SO (P). If the priorities are
substitutable, for each s € S and C' C p(s), C' = SO (Pycr, P-y) (s).

Proof. Both Py, and Py are substitutable. First, notice that u(s) = SO (Psm(s),P,S) (s).
Let v = SO (Pycr, P—s) (s). Notice C' C v (s). We complete the proof of the claim, showing by
contradiction, that v (s) C C’. Assume there exists c € C' \ v (s).

16



Let P’ = (Ps\cu P_s). Let v = SO (Ps\ch_s). Let D! = D! (P), let F! = F, ((Dﬁ,)
for all t > 1. Let D" = D'**1(P'), let F.' = F, ((D!),P') for all s € S and all t > 1.

Since both Py|,s) and Pyjcr are substitutable, we have (see the proof of Proposition 6 in Romero-
Medina and Triossi, 2022).

P)

s'eS

o FIf' C F and F/*' C F forall t > 0 and all s’ € S;

o F', CF' forallt >1and s € S\ {s}.

Thus, for ¢ large enough, pf = p and v' = v and Chy (F, UF",) = Chy (F.}) for all ¢t > 1
and s’ € S\ {s}. This implies Chy (u(s)Uv(s)) =v(s). Let c € C" C u(s). If c € v(s)\
p(s) for some s € S\ {s}, then ¢ € Chy (uu(s') U{c}). Since u is stable s’ ¢ C.(u(c)U{s'}).
Because s’ € v (c) and because preferences are substitutable s ¢ C.(u(c) Uv (c)). This implies
Ce(p(c)Uv(c)) = p(c). Since s € p(c), s € Ch. (v (c)U{s}). Since C' is individually rational
for s, c € Chg (v (s) U{c}), thus pair (¢, s) blocks v, which yields a contradiction. m

Proof of Proposition 1. The proof of the claim is in two parts. First, we prove that all NE
outcomes are stable allocations and then we prove that any stable allocation is a NE outcome of

the game induced by the SO mechanism.
(1) Let P* be a NE of the game induced by the SO and let u = SO (P*) when the profile of

preferences is P = (Ps), g be the preference profile of the students. By definition, allocation
is individually rational for each course. Next, we prove by contradiction that p is individually
rational for students. Assume Ch (u(s)) # p(s) for some s € S. Then, from Lemma 4
Ps*|0h3( (5) is a profitable deviation for student s, which yields a contradiction.

Finally, we prove by contraction that there is no course-student pair blocking p. Assume (c, s)
blocks . It follows that P does not rank Chg (1 (s) U {c}) above pu(s). Now, consider the
following preferences for student s: P, = Py, (us)ufep) and P = P Let P’ = (P., P*,)
and let P = (P, P*).

We first prove that yp = SO (P*) = SO (P"). Notice that p is individually rational in for P”
as well. Also, s is not part of any pair blocking p in the market (C, S, P”) because p (s) R/C’
for all C" € 2¢. No other pair (c,s'), s’ # S blocks u in (C,S, P") because P”, = P*_. Tt
follows that  is stable in the market (C, S, P”). We prove by contradiction p = SO (P”). Let
v =S80 (P"). Assume that v (s') Pu (s) for some s" and observe that v (s) = p (s) because
1 (s) RIC' for all C" € 2€. Then, v is not stable in the market (C,S, P*). Since v Pareto
dominates for students u, >¢ is essentially homogeneous, which yields a contradiction. Thus,
p= SO (P"). Since SO (P*) (s) RsSO (P., P*) (s) = SO (P'), SO (P’) is stable in the market
(C, S, P"), thus, u Pareto dominates SO (P'). Since p is not stable in the market (C, S, P"),

because (c, s) blocks it, »=¢ is essentially homogeneous, which yields a contradiction.

(i) Let p be a stable allocation. Consider the following strategy profile: (PSW(S))SGS' The
stability of p implies that the strategy profile is a NF.
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Proof of the results in Subsection 3.2

Proof of Lemma 1. Let s € C and let C" C p(s). Let ¢ € ', let r(c) be the step of the
I'A mechanism at which ¢ has been assigned to s, and let r (¢) = min, <~ {r | s € u" (¢)}. Notice
r(c) =r(d) for all ¢, € C'. Let o be the seat to which s is assigned at stage r (¢). Thus, the
student s is the highest priority student for seat o among the ones in u" (¢) who are not assigned
to a seat preceding o. Formally, for each c € C'; r < r(c), if & € u" (¢) and s’ >, s, there exists a
seat o/ € X, 0/ >, o such that s =, s. Thus, C' = ]A( sjc s P ) [ ]

Proof of Theorem 1. The proof of the claim is in two parts. First, we prove that all NE
outcomes are stable allocations and then we prove that any stable allocation is a N E outcome of

the game induced by the /A mechanism.

(i) Let P* be a NE of (S,PIS|/TA, P) and let p = IA(P*). As observed, y is individually
rational for each course. We prove by contradiction that p is individually rational for stu-
dents. Assume Chg(u(s)) # p(s) for some s € S. Let P, = Pycn,(u(s), by Lemma 1:
TA(P.,P,) (s) = Chy (1 (s)). Thus, the deviation is profitable to s, Wthh yields a contra-
diction. Assume that there exists a pair blocking p, (c,s) € C' x S. Let P' = Pycn, (u(s)u{e})-
Because s € Ch, (1t (c) U {s}), the deviation is profitable to s, which yields a contradiction.

Because p is individually rational and cannot be blocked by a pair, p is stable.

(it) Let p be a stable allocation. For each s, let P} = Py, ). Set P* = (P}),.q. We have
TA(P*) = u. We prove by contradiction that P* is a Nash equilibrium. Assume that s € S
has a profitable deviation, P/, and let y/ = IA (P, P*,). Let ¢ € Chy(pu(s)Up' (s))\
p(s). Because P; is substitutable, ¢ € Chg(pu(s)U{c}). Let P! = Pycn,(u(s)u{c}), then
TA (P!, P*,) (s) = Chy(u(s) U{c}). It follows that (c,s) blocks p, which yields a contra-

diction.

Proof of the results in Subsection 3.3

Proof of Lemma 2. Tet s € S and let C" C pu(s). Let ¢ € (', let r(c) be the step of the
C'A mechanism at which ¢ has been assigned to s for the first time along the mechanism, and let
r(c) = min,<~ {r|s e pu (c)}. Notice that r(c) = r () for all ¢, € p(s) and that p" (s) = 0
for all » < r(c). The substitutability of C’h implies that C 'P,C"; otherwise, s € u" ( ) for
some r < r(c). For all i < r(c), let P be a preference proﬁle over 2¢ such that C" ,(L) =

C’, and for j # r(c): C™¢ 7(0) C’fg if Cj # (" and Cﬂm = C’T(C if C’] = ('. Notice that
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CA <P;(C), P_S> (s) = C". For all i, i <r(c), let P! be a preference over 2¢ such that C%, = C’,
and for j # i: C;sj = Cptif Cgil # C’ and C;g. = j;}il if Ogil = (. Intuitively, each PJ lifts
C' to place j in the preference of s without changing the ranking above the ;™ place.

We prove by contradiction that CA (P P ) (s) = CA(P,,P_,)(s) =C' forall i, 1 <i <
7 (c). For every preference on 2¢, Q,, let ,u]Q be the outcome at the stage j of the C'A mech-
anism when preferences are (Q,, P_;). Notice that pf = u;j for all i, j, 2 < i < j < r(c).
Thus, to prove that CA (P71, P_,) (s) = CA (P!, P_,) (s) for all i < r(c), it suffices to show that
s € Che (/ﬂgl (c)U {s €S| ce U,y C};}} U {s}) for all 4, 2 < ¢ < r(c). By contradiction,
assume that it is not the case, and let j be the maximum integer such that
s ¢ Ch, (,ugl (c)U {S €S |celUyy C’};}} U {s}) and
s € Che (,uf;s (c)U {s €S |ce€ Uy C’};—/l} U {s}) Because P, is substitutable, s € Ch, (,uzps (c) U{s}).
The j™ step of the mechanism when preferences are (P, P_,) yields ,u;g (¢) to course c¢. We have
s & Ch, (ugl (c)U {s €S|ece Uy CE}} U {5}) = ugg (c). Trrelevance of rejected students
implies that
Ch. (,ugl (c)U {s €S| ce Uy CE/I} U {S}) = Ch, (,uf% (c)U{s}) = ,uf% (¢). In particular,
s ¢ Che (u{;s (¢) U{s}), which yields a contradiction. Thus CA (P}, P_,) (s) = C". It follows that
CA (Ps|0/, P_s) (s) = C’, which concludes the proof. m

Proof of Theorem 2. The proof of the claim is in two parts. First, we prove that all NE
outcomes are stable allocations and then we prove that any stable allocation is a N E outcome of

the game induced by the C'/A mechanism. Fix preferences P = (F), g

(i) Let P* be a NE of the game induced by the CA and let u = CA(P*). Allocation p
is individually rational for each course by definition. We prove by contradiction that pu
is individually rational for students. Assume Ch (u(s)) # p(s) for some s € S. Let
P} = Pych,(us)- Because P, is substitutable, P; is substitutable as well. By Lemma 2:

CA (P, P*,) (s) = Chy(p(s)). Thus, the deviation is profitable to s, which yields a contra-

diction. Assume that there exists a pair blocking p, (c,s) € C' x S. Let P' = Pycn, (u(s)ufc})-

Because s € Ch, (1 (¢) U {s}), the deviation is profitable to s, which yields a contradiction. It

follows that allocation p is individually rational and cannot be blocked by any course-student

pair; thus, it is stable.

(it) Let p be a stable allocation. For each s, let P} = Py, ). Set P* = (P}),.q. We have
CA(P*) = u. We prove by contradiction that P* is a Nash equilibrium. Assume that s € S
has a profitable deviation, P/, and let p/ = CA(P., P*,). Let ¢ € Chy(p(s)Up' (s))\
t(s). Because P, is substitutable, ¢ € Chy(u(s)U{c}). Let P! = Pycn,(us)ufc}), then
CA (P!, P*,) (s) = Chy (u(s) U{c}). It follows that (c,s) blocks y, which yields a contra-

diction.
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Proof of the results in Section 4

Proof of Lemma 3. TLet r > 1. Consider a stage r + 1 history, say h. Assume that in all
histories following h student s does not receive any additional course. Along the path leading
to h, let C? be the set of course in C’ that student s receives at stage d < r + 1. Observe that
C' = ZS = C%and C¥NCY = () for d # d'. Let P4 = P! for all stage d histories preceding h and
forall s € S,1<d<r,andlet P4 =0 forall s € S. Let P = (Psd’)s/es and let h¢ be the stage d
predecessor of h. Let u? be the allocations obtained at stage d along the path leading to h and let
p’ = 0. We have ™ = " UCA (P") and " = " P UCA (P™'). We have C" C CA(P7). Let
P, be a responsive profile of preferences listing as acceptable only the courses in CA (P™1) U C"
and ranking C'A (P™1) U C" as a most preferred subset of courses. Not all seats in the courses in
CA (P 1)U C" had been assigned in the histories preceding h”. Also, they had not been ranked
as acceptable by s in the histories preceding h”. Tt follows that P, e 722;1, where R}, is the set of
responsive preferences that does not list as acceptable courses ranked as acceptable in the histories

_ i\ WEH _pr— N - ;.
preceding h"~!. Consider following strategy for student s, ( P:) . P = P,, PV = PN if

S S

h' # h™=! and R/ is not a successor of h™ !, 15:/ = () if 1/ is a successor of h"~!. Employing strategy

s

_,\ WeH
< Ph) g yields p” (s) UC”, from Theorem 2. Similarly, proceeding backwards for all 1 < d < r
se

one stage at a time yields the claim. m

Proof of Theorem 3. The proof of the claim is in two parts. First, we prove that all NE
outcomes are stable allocations and then we prove that any stable allocation is a NE outcome of

the game induced by the FCA mechanism. Let P be a profile of slot-specific preferences.

(i) Let P* be a NE of the game induced by the ECA and let n = ECA(P*). Allocation
i is individually rational for each course by definition. We prove by contradiction that pu
is individually rational for students. Assume Chg (u(s)) # p(s) for some s € S. Since
Chs (1 (s)) € p(s), by Lemma 3 there exists a strategy profile which yields Chg (1 (s)) to
student s. It follows that student s has a profitable deviation from the equilibrium strategy
P*, which yields a contradiction.

Next, we prove by contradiction that pu has no blocking pairs. Assume that there exists a
pair blocking p, (¢,s) € C x S. Notice that student s has never ranked ¢ as acceptable.
Let r, be the first stage of the game, such that, along the equilibrium path, student s
ranks as acceptable a course in ji(s) \ Ch, (1 (s) U{c}) and let p" be the initial allocation
of that history, say h. Then, consider, P, = (Psh)heH in which 132 = HlChs (u(s)u{ch)\u" (s)s
Pt = P if h # h and h is not a successor of h, PZL = () if h is a successor of h. We have
ECA, (P, P*,) = Ch (1(s) U{c}), thus P

< 1s a profitable deviation to s, which yields a
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contradiction.

Let 41 be a stable allocation. Let h; be the initial history. For each s, let PM* = s|a(s) -
Let h be any history belonging to stage r + 1, in which » > 1. Let u* be the “provisional”
allocation from which the corresponding subgame starts. Let (Pch)cec = (PI*1) .o be the
“stage-priorities” at at stage r 4+ 1 for history h as in the definition of the EFC'A mechanism
at stage. Let C" be the set of courses to which student s has not applied to in the history
preceding h. For all s in S, let P" a strict order defined on 2¢ such that, for all ¢ € C,
C',C" CC: (a)ifc ¢ ChU{d} and c € C", OP*C" ; (b) if C,C" C CM\ ph (s) and C" =" C" if
and only and (u"" (s) U C") P, (" (s) U C”). Since P, is slot-specific, then P! is slot-specific
as well. Let p" be a stable allocation for market (C,S, P*) where P" = (PSh’PCh)SES,cEC'
From Theorem 2 it follows that (Psh)ses is a SPNE of the game starting at h yielding v U "
as an outcome. The stability of 1 implies that the described strategy is a SPNE yielding pu

as an outcome.

Proof of the results in Section 5

Proof of Proposition 2. The proof of the claim is in two parts. First, we prove that all NE

outcomes are stable allocations and then we prove that any stable allocation is a N E outcome of

the game induced by the SC'A mechanism.

(7)

(i)

Let m* = (E:, <>—2)0622 ; >:> be a NE of the game induced by the SCA when student
preferences are given by (PS)S;S and let = SC'A (m*). Allocation p is individually rational
for each course. We prove by contradiction that p is individually rational for students.
Assume that g is not individually rational for student s € S. Let P, = Cs(u(s), Ps).
Preferences P. are slot-specific as well. Let m/ = (2’8, (&)oes: Ds) in which ¥/ is the
set of slots for student s under P., >, is the order of precedence of the slot in ¥ according to
P! and for all o € 3, >, is the order induced by P! for slot o, for every o € ¥;. By Lemma
2, m/, is a profitable deviation for student s, which yields a contradiction. We next prove by
contradiction that p is not blocked by any pair. Assume that there exists a pair blocking
u, (¢,s) € C x S. Let m, = <Z’8, ("0) e » I>S>SGS obtained as above from the restriction
of Ps to the individual courses in C; (1 (s) U {c}, Ps). Because s € Ch, (u(s) U {c}, Ps), the

deviation is profitable to s, which yields a contradiction.

Let 1 be a stable allocation. For each s, Let ¢ = maxp, {|C’| | C" C C,C'P,0}. Let m, =

(Es, (™ 0)pess 5 DS) be derived from the restriction of P to the individual courses in p (s).
s s€

Notice that (m), ¢ yields p as an outcome. We prove by contradiction that (m;), g is a

Nash equilibrium. Assume that student s has a profitable deviation, (m/), and let 1’ be the
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outcome of such a deviation. Let ¢ € Chy (p (s) U i’ (s), Ps (ms)) \ p (s). Because Py (my) is
slot-specific, ¢ € Chg (1 (s) U{c}, Ps (ms)). Let m” be derived from the restriction of Ps to
the individual courses of Chg (1 (s) U {c}, Ps (ms)). Then, (m”) is a profitable deviation as

well, yielding Chs (p (s) U{c}, Ps). Thus, the pair (¢, s) blocks allocation p, which yields a

contradiction.
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