ESTIMATION OF EXCITATION DENSTITY OF REPORTED TWO-PHOTON PHOTOLUMINESCENCE INTENSITY DISTRIBUTIONS AT A DISLOCATION IN AN n-GaN LAYER ON A M-3D SUBSTRATE

Kazuhiro Mochizuki[#], Hiroshi Ohta, Fumimasa Horikiri¹, Tomoyoshi Mishima Research Center of Ion Beam Technology, Hosei University, 3-7-2, Kajino-cho, Koganei, Tokyo 184-8584, Japan ¹SCIOCS Co. Ltd., 880, Isagozawa-cho, Hitachi, Ibaraki 319-1418, Japan

We estimated the excitation density of the reported two-photon photoluminescence from an n-GaN layer on an M-3D substrate by fitting the intensity distributions at a dislocation. We found that all the data points of the intensity distributions were reproduced with the effective dislocation radius of 8 nm. Considering the range of the excess hole concentration (Δp) within which almost all data points fell, we estimated Δp to be $10^{16\pm1}$ cm⁻³.

I. Introduction

Development of high-quality GaN substrates has made it possible to easily fabricate vertical p⁺n diodes on free-standing substrates. A record high breakdown voltage of 5 kV has been achieved in combination with a low on-resistance R_{on} of 1.25 m Ω cm² at a forward voltage of 5 V.¹) The quality of substrates has also been improved. For example, low-dislocation-density ($N_{dis} \le 4 \times 10^5$ cm⁻²) GaN substrates became available via hydride vapor phase epitaxy (HVPE) and a maskless 3D (M-3D) method.²) To suppress propagation of dislocations from the seed crystal, the M-3D method avoids *c*-plane growth; namely, the initial three-dimensional growth is followed by two-dimensional growth in which growth temperature and partial pressures of gallium chloride and ammonia are changed.²)

On M-3D substrates, as well as on conventional substrates by the void-assisted separation (VAS) method,³⁾ Ohta et al. fabricated GaN p⁺n diodes and observed a positive correlation between R_{on} and N_{dis} .⁴⁾ They also observed two-photon photoluminescence (2PPL) from an 8-µm-thick n-GaN (donor density N_D : 1×10^{16} cm⁻³) layer on an M-3D substrate and identified dislocations as dark spots.⁴⁻⁷⁾ The ambipolar lifetime τ_a determined by 2PPL, however, depends on the excitation density, which was not clear with respect to their 2PPL measurement. Accordingly, in this paper, we estimate τ_a and the excess hole concentration (Δp) in the 2PPL measurement reported in Ref. 4.

II. Analysis

The diffusion and recombination of electrons and holes generated by the source $Q(\mathbf{r})$ are described by the following three-dimensional equation

$$D_{a} \Delta n(\mathbf{r}) - n(\mathbf{r}) / \tau_{a} + Q(\mathbf{r}) = 0, \qquad (1)$$

[#] e-mail: kazuhiro.mochizuki.66@hosei.ac.jp

where D_a is the ambipolar diffusivity. τ_a is expressed from charge neutrality as

$$\tau_{a} = \tau_{po} \left[1 + \{ \Delta p / (N_{D} + \Delta p) \} \right], \tag{2}$$

where τ_{po} is the hole lifetime under low-injection conditions. Based on anode-radiusdependent forward current/voltage characteristics of GaN p⁺n diodes on an M-3D substrate, Mochizuki et al. extracted Shockley–Read–Hall lifetime τ_{SRH} of 11 ns.⁸⁾ τ_{SRH} is expressed as

$$\tau_{\rm SRH} = (\tau_{\rm no} \, \tau_{\rm po})^{0.5},\tag{3}$$

where τ_{no} is the electron lifetime under low-injection conditions. Here τ_{po} and τ_{no} are given as

$$\tau_{\rm po} = (N_{\rm t} \, v_{\rm thp} \, \sigma_{\rm p})^{-1}, \tag{4}$$

$$\tau_{\rm no} = (N_{\rm t} \, v_{\rm thn} \, \sigma_{\rm n})^{-1}, \tag{5}$$

where N_t is the concentration of a non-radiative recombination center, v_{thp} and σ_p are, respectively, the thermal velocity and capture cross section of holes, and v_{thn} and σ_n are, respectively, the thermal velocity and capture cross section of electrons. At 300 K, σ_p , σ_n , v_{thp} , and v_{thn} , were reported, by Chichibu et al.,⁹⁾ Maeda et al.,¹⁰⁾ and Saini et al.,¹¹⁾ to be 7×10^{-14} cm², 3×10^{-13} cm², 2.38×10^7 cm s⁻¹, and 2.43×10^7 cm s⁻¹, respectively. Putting these values into Eqs. (3)–(5) results in the following relation:

$$\tau_{\rm SRH} = 0.48 \, \tau_{\rm po.}$$
 (6)

The influence of surface recombination can be ignored because the excitation energy in 2PPL is smaller than the bandgap of n-GaN.¹²⁾ The flux to the cylindrical surface of a dislocation can thus be simply calculated. When the carrier-recombination velocity at a dislocation with the effective radius R is S, the normalized photoluminescence intensity at a distance r from a dislocation, I(r), is expressed as¹³⁾

$$I(r) = 1 - K_0 (r/(D_a \tau_a)^{0.5}) / [K_0 (R/(D_a \tau_a)^{0.5} + (D_a/RS)],$$
(7)

$$D_{\rm a} = [N_{\rm D} + \Delta p + (n_{\rm i}^2/N_{\rm D}) + \Delta p] D_{\rm e}D_{\rm h} / \{D_{\rm e}(N_{\rm D} + \Delta p) + D_{\rm h} [(n_{\rm i}^2/N_{\rm D}) + \Delta p]\},$$
(8)

where K_0 is the zeroth order modified Bessel function of second kind, n_i is the intrinsic carrier concentration, D_e is the electron diffusivity, and D_h is the hole diffusivity. D_h was reported to be anisotropic; namely, a ratio of 1.17 for diffusivity perpendicular and parallel to the c-axis.¹⁴⁾ Hall measurement of a *c*-plane GaN layer is thus suited for determining diffusivity perpendicular to the *c*-axis. We carried out Hall measurement of a 1×10^{18} cm⁻³ doped p-GaN layer on an M-3D (0001) substrate and found that the majority hole mobility μ_h was 29 cm²V⁻¹s⁻¹. Since μ_h is typically constant at [Mg] < 1×10^{18} cm^{-3 15)} and the minority hole mobility was reported to agree with $\mu_{h,}^{16)} D_h$ was calculated from the Einstein relation to be 0.75 cm²s⁻¹ at 300 K. With respect to *S*, a constant value was assumed by Conolato in their dislocation model of semiconductors.¹⁷⁾ Although this is the case under low excitation conditions, modeling *S* is complex under high excitation conditions. Here we simply assume *S* to be as large as the thermal velocities of carriers.¹¹⁾

 τ_a and D_a saturate when Δp is less than 10^{13} cm⁻³ or larger than 10^{19} cm⁻³. As shown in Figs. 1(a) and 1(c), some data points are not within $\Delta p = 10^{16\pm3}$ cm⁻³ under the assumption of R = 6 or 10 nm. In contrast, all data points fall within $\Delta p = 10^{16\pm3}$ cm⁻³ when we assume R of 8 nm [Fig. 1(b)]. Considering the Δp range within which almost all data points fall, we estimated Δp being $10^{16\pm1}$ cm⁻³.

III. Conclusions

Bv fitting intensity the distributions at a dislocation in an n-GaN layer on an M-3D substrate, we estimated the excess hole concentration during reported two-photon the photoluminescence measurement to be $10^{16\pm1}$ cm⁻³.

Acknowledgement

This work was supported in part by the "Project of GaN technology innovation for enabling decarbonized society and lifestyle" funded by the Ministry of the Environment Government of Japan.

Fig. 1. Measured (symbols)⁴⁾ and fitted (lines) distributions of 2PPL intensity at a dislocation in an n-GaN layer on an M-3D substrate. R: effective dislocation radius; Δp : excess hole concentration.

References

- H. Ohta, K. Hayashi, F. Horikiri, M. Yoshino, T. Nakamura, and T. Mishima, Jpn. J. Appl. Phys. 57, 04FG09 (2018).
- 2) T. Yoshida and M. Shibata, Jpn. J. Appl. Phys. 59, 071007 (2020).
- Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).
- 4) H. Ohta, N. Asai, F. Horikiri, Y. Narita, T. Yoshida, and T. Mishima, Jpn. J. Appl. Phys. 59, 106503 (2020).
- N. Gmeinwieser, P. Gottfriedsen, U. T. Schwarz, and W. Wegscheider, R. Clos, A. Krtschil, and A. Krost, A. Weimar, G. Brüderl, A. Lell, and V. Härle, J. Appl. Phys. 98, 116102 (2005).

- J. Wang, H. You, H. Guo, J. Xue, G. Yang, D. Chen, B. Liu, H. Lu, R. Zhang, and Y. Zheng, Appl. Phys. Lett. 116, 062104 (2020).
- 7) D.-S. Jiang, D.-G. Zhao, and H. Yang, Phys. Stat. Solidi (b) 244, 2878 (2007).
- 8) K. Mochizuki, H. Ohta, F. Horikiri, and T. Mishima, https://doi.org/10.1002/pssb.2021002
- 9) S. F. Chichibu, A. Uedono, K. Kojima, H. Ikeda, K. Fujito, S. Takashima, M. Edo, K. Ueno, and S. Ishibashi, J. Appl. Phys. **123**, 161413 (2018).
- 10) T. Maeda, T. Narita, H. Ueda, M. Kanechika, T. Uesugi, T. Kachi, T. Kimoto, M. Horita, and J. Suda, Jpn. J. Appl. Phys. **58**, SCCB14 (2019).
- 11) D. K. Saini, Degree Thesis, Wright State University, Ohio, USA, July, 2015.
- 12) T. Tanikawa, K. Ohnishi, M. Kanoh, T. Mukai, and T. Matsuoka, Appl. Phys. Express 11, 031004 (2018).
- 13) K. K. Sabelfeld, V. M. Kaganer, C. Pfüller, and O. Brandt, J. Phys. D: Appl. Phys. 50, 405101 (2017).
- 14) P. Ščajev, K. Jarašiūnas, Ü. Özgür, H. Morkoç, J. Leach, and T. Paskova, Appl. Phys. Lett. 100, 022112 (2012).
- 15) M. Horita, S. Takashima, R. Tanaka, H. Matsuyama, K. Ueno, M. Edo, T. Takahashi, M. Shimizu, and J. Suda, Jpn. J. Appl. Phys. **56**, 031001 (2017).
- 16) K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, Appl. Phys. Lett. 86, 052105 (2005).
- 17) C. Donolato, J. Appl. Phys. 84, 2656 (1998).