Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN BUSINESS ENGINEERING PROFESSIONAL FOCUS IN DATA SCIENCE

Benchmarking data augmentation techniques for credit
scoring data

VAN HERREWEGHE, Lotte

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Dec. 2022

https://researchportal.unamur.be/en/studentTheses/cbcc9c15-9d7e-45f0-86c0-b2c950be79f7

UNIVERSITE
DE NAMUR

Benchmarking data augmentation techniques for credit
scoring data

Lotte Van Herreweghe

Directeur: Prof. |. Linden

Mémoire présenté
en vue de l'obtention du titre de
Master 120 en ingénieur de gestion, a finalité spécialisée
en data science

ANNEE ACADEMIQUE 2021-2022

Université de Namur, ASBL
Faculté des Sciences économiques, sociales et de gestion — Département des Sciences de gestion

Rempart de la Vierge 8, B-5000 Namur, Belgique, Tel. +32 [0]81 72 49 58/48 41

KU LEUVEN

FACULTY OF ECONOMICS
AND BUSINESS

Benchmarking data augmentation techniques for credit
scoring data

Master thesis

Lotte Van Herreweghe

Thesis submitted to obtain
the degree

MASTER IN BUSINESS AND INFORMATION
SYSTEMS ENGINEERING
Data Science

Promotor: Prof. Dr. Baesens Bart
Co-promotor: Prof. Dr. Linden Isabelle
Supervisor: Vanderschueren Toon

A mi r: 2020-2021

Contents

Abstract
Acknowledgements

1 Literature study

1.1 What is data augmentation? L.
1.2 Why data augmentation? Lo o
1.2.1 Class imbalance and different costs
1.2.2 Avoid overfitting oo
1.2.3 Privacyreasons Lo o e
1.2.4 Next sections e
1.3 Sampling new instances oL
1.3.1 Mature techniques
1.3.2 Potential techniques 0oL
1.4 Changing existing instances L L.
1.4.1 Mature techniques
1.4.2 Potential techniques,
Experiments
2.1 Method e
2.1.1 Datao
2.1.2 Data augmentation techniques
213 Models
2.14 Metrics
2.2 Results. e
2.2.1 Imserting noiseo o
2.2.2 Data Swappingo
223 SMOTE e
224 CTGAN
225 PrivBayes
2.3 Conclusion
2.4 Discussion e

iii

A 43

Appendix 43
A1 Appendix 43
A.1.1 Graphs SMOTE 43

A.1.2 Graphs CTGAN 45

A.1.3 Graphs PrivBayes 47
Bibliography 49

Leuven, 18/05/2022.

Abstract

Data augmentation has proved useful in training machine learning models for images or
natural language processing. For tabular data, however, the existing data augmentation
algorithms are much less numerous and well known. Nevertheless, most of the available
data is tabular and existing DA techniques have already demonstrated that data aug-
mentation can also improve the performance of classifiers here. Therefore, the purpose
of this thesis is, on the one hand, to create a taxonomy of both mature and potential
techniques. With the latter being techniques that are nowadays mainly used for other
types of data, but have the potential to achieve good results on tabular data. On the
other hand, the performance improvement offered by data augmentation is tested on
credit scoring data. For this reason, 5 mature techniques are selected (insertion of noise,
data swapping, SMOTE, CTGAN and PrivBayes), one from each category of the es-
tablished taxonomy. Empirical results show that no algorithm consistently scores best.
The classifier with which the DA technique is combined also has a major impact on
performance. Moreover, a large variety of algorithms in terms of complexity is found.
The most complex algorithms turn out to require a lot of time, processing power and
understanding of the algorithm. Depending on the purpose for which DA is used, it
may be permissible to use the extra time and computing power. But if, in the future, a
company were to use DA by default on its data, for example, there are other alternatives
that require fewer resources. Although no clear winning strategy is found, this thesis
provides gainful insights in which techniques and models to combine when making pre-
dictions on credit scoring data. Furthermore, a clear taxonomy that can be consulted
in need for an overview of existing DA techniques has been created and suggestions for
research into other techniques have been done.

Acknowledgements

First of all, I would like to thank my promoter for giving me the opportunity to immerse
myself in this subject. My supervisor, for the biweekly meetings in which I was always
given good advice. My co-promoter, for the warm welcome in Namur. Fien, for being
my Beta reader and putting the dots after the Dr. And last but not least, my family
and friends for their continuous support.

Chapter 1

Literature study

1.1 What is data augmentation?

The term data augmentation originates with Tanner and Wong (1987). Nowadays, the
definition is much broader and data augmentation refers to strategies for increasing
the diversity of training examples without explicitly collecting new data (Feng et al.,
2021). Generally speaking, there are two kinds of data augmentation. One way to
inflate a dataset, is to take an instance from it, alter that instance slightly in one or
multiple ways and add it to the original dataset. Modifying an existing instance can be
label-preserving or not. The other option is to create synthetic samples by learning the
distribution of the original dataset and then sampling from that distribution.
Furthermore, a distinction needs to be made between online and offline augmentation.
Offline augmentation means the data are augmented and then stored to be loaded again
when the model is trained. Online augmentation refers to augmenting the data as a new
batch of original data is loaded to be used to train the model (Shorten, Khoshgoftaar &
Furht, 2021). Both have advantages and disadvantages. Offline augmentation will likely
be faster at training time, but online augmentation is typically more powerful.

Apart from increasing the performance of machine learning and deep learning models,
data augmentation can also be used to tackle class imbalance, avoid overfitting or for
privacy reasons.

While data augmentation is almost standard when deep learning algorithms are used,
as is the case in a computer vision or natural language processing environment, data
augmentation is not yet often applied when it comes to tabular data. However, the vast
majority of available data is tabular and the possibilities are also promising there.

1.2 Why data augmentation?

In recent years, machine learning has seen enormous growth (Sestino & De Mauro, 2021),
helped by the availability of much more computing power and data. However, not all
classifiers are robust, resulting in a bad performance when they are deployed on real-life
data that is just a little bit different than the training data. This problem can be solved

6 CHAPTER 1. LITERATURE STUDY

by providing the algorithm with more data (Carmon, Raghunathan, Schmidt, Liang &
Duchi, 2022), but in some cases it is impossible or expensive to obtain additional data.
That is where data augmentation becomes useful. Rebuffi et al. (2021) show that data
augmentation improves the robustness of classifiers and thus improves performance. For
this reason, data augmentation is often used for deep learning and machine learning
models. The next paragraphs will go into further detail about the contexts in which
data augmentation can be particularly useful.

1.2.1 Class imbalance and different costs

Class imbalance is the main reason why data augmentation is used on tabular data today.
It is said that two classes are imbalanced, when one of them, the majority class, counts
far more examples than the other, the minority class. There are numerous examples of
class imbalance in real-life problems. The number of spam emails one receives is typically
far lower than the number of wanted emails. Of all MRI scans that are taken, a lot of
the patients will be healthy, while only a small number of patients is really ill. A dataset
containing transactions will only contain a few fraudulent ones and an event log might
only contain a few error events.

This causes problems because most data mining techniques do not handle this im-
balance well. The reasons are multiple and have already been listed by Weiss (2004).
Weiss indicates that not all evaluation metrics can handle class imbalance equally well,
that the divide-and-conquer approach often used by data mining algorithms is also not
robust against class imbalance and that the presence of noise can also be a disruptive
factor. A brief summary will be given below, but for a more extensive overview listing
examples and different kinds of solutions, we refer the reader to the original work.

Firstly, not all evaluation metrics tackle class imbalance very well. One of the most
used metrics is classification accuracy for example. Classification accuracy measures how
many examples were classified correctly. But this evaluation metric is biased towards the
majority class (Hossin & Sulaiman, 2015). A classification accuracy of 50% means that
50% of the examples were classified correctly. This is the accuracy expected of a random
classifier. Thus, when a classifier achieves a 99% accuracy, it seems to be doing very
well. Only given class imbalance, it might be the case that the majority class covers 99%
of the examples and the classifier is always predicting the majority class. The question
is then: is this classifier really better than one with a lower accuracy that does predict
the minority class sometimes?

It is also worth noting, that the minority class is often the one of interest and higher
costs will be allocated to misclassifying a minority class example than a majority class
example. This is the case for credit scoring data.

A second problem may be that the data mining algorithm employs a divide-and-
conquer approach, meaning that the original problem is split up into smaller problems
(Friedman, Kohavi & Yun, 1996). As a consequence, the few minority examples that
are already present are split up among different partitions. This process leads to data
fragmentation and this causes troubles since regularities can only be found when enough
data are present.

1.2. WHY DATA AUGMENTATION? 7

The last reason that will be highlighted in this paper is the classifier’s behaviour
towards noise. Most classifiers are taught to generalize well to avoid fitting noisy data
(Rivera, 2017). For this reason, small disjuncts are often eliminated because they are
seen as insignificant. Given class imbalance, it is very hard to determine which small
disjuncts are significant and which are not. As a consequence, both might be discarded,
throwing away useful information in the process. Moreover, when the minority class
counts few examples in the absolute sense and not only relative to the majority class,
noise affects the ability of a classifier to learn the class concept of the minority class
properly. Given that there are not many examples, the classifier will be much more
likely to fit the noisy ones as well.

The next reason for data augmentation links seamlessly with this.

1.2.2 Avoid overfitting

The goal of training a classifier is to learn the pattern underlying the data (Ying, 2019).
Noise can, however, obscure this pattern. The classifier will then learn the noise instead
of the pattern. A typical symptom is that the classifier performs well on the training set,
but not on the test set. This means it is overfitting. A good machine learning algorithm
should be able to discern the useful data from the noisy data, but when the model is
too complex or flexible it memorizes the noise instead of the underlying pattern. When
choosing a certain model to fit the data, it is important to keep Occam’s razor to always
choose the simplest model in mind.

This does not mean that the simplest model should always be chosen, but that given
the performance of the models, there is no point in using an overly complex model
when a less complex model performs (almost) as well. This is part of the bias/variance
tradeoff. On a spectrum with bias at one end (strong prior models or models with
strong hypotheses) and variance at the other end (weak prior models or models that put
forward few hypotheses), a point must be chosen between the two so that the model is
neither underfitting (too strong bias) nor overfitting (too strong variance) (Briscoe &
Feldman, 2010). The optimal point depends on the patterns to be learned.

Because model training is essentially a tuning of parameters, data augmentation is
a possible solution to prevent overfitting (Ying, 2019; Zhong, Zheng, Kang, Li & Yang,
2020; Shorten & Koshgoftaar, 2019; Lee, Zaheer, Astrid & Lee, 2020). Well-tuned
parameters implement a good balance between training accuracy and regularity which
ensures overfitting and underfitting are avoided. The more examples a machine learning
model has to learn from, the better its parameters will be tuned. But, getting more
data is not always possible. That is where data augmentation comes in useful. Data
augmentation renders it possible to enlarge a dataset without needing more data by
changing existing examples or sampling from the learned distribution of the dataset.

There are other solutions for overfitting such as early stopping, pruning or regu-
larisation. Readers can consult (Ying, 2019) for more information. However, data
augmentation tackles the problem from the root: the training dataset. That is why
in computer vision, where machine learning algorithms have to deal with various issues
such as viewpoint, lighting, scale, background and more, data augmentation is often used

8 CHAPTER 1. LITERATURE STUDY

to handle overfitting (Shorten & Khoshgoftaar, 2019). In Natural Language Processing
(NLP) high frequency numeric patterns in token embeddings or particular forms of lan-
guage that do not generalize are often learned by the machine learning models (Shorten,
Khoshgoftaar & Furht, 2021). Data augmentation can prohibit overfitting here as well.

1.2.3 Privacy reasons

While not the focus in this thesis, another reason to apply data augmentation could to
protect the privacy of the subjects of the dataset. Medical datasets for example, can
often not be shared because of privacy reasons. Data augmentation can then help to
create an entirely new dataset based on the examples in the original one. Furthermore,
data augmentation can protect the dataset from disclosure risk. Datasets are often de-
identified using generalisation or randomisation. The generalised or randomised dataset
is called the protected dataset. Disclosure risk means that an attacker would be able
to use a protected dataset to derive information about instances in the original dataset
(Domingo-Ferrer, 2009).

There are two main kinds of disclosure (Choi et al., 2018): attribute disclosure and
presence disclosure. Attribute disclosure happens when an attacker can derive additional
attributes about an instance, based on information they already have on that instance.
Presence disclosure happens when an attacker is already in the possession of the original
dataset and can derive whether instances from this original dataset are in the machine
learning model’s training set by observing it. This is also called a membership inference
attack. However, data augmentation is only useful in this context when the mapping
between the generated data and the original data is not one-to-one. Successful examples
have been implemented already (Choi et al., 2018) and will be discussed in more detail
later on in this paper.

For the reasons above, fully synthetic datasets are often created. This is not the
focus of this thesis. Yet it is wise to include these applications: the techniques used to
create these synthetic datasets can just as well be used to enrich datasets.

1.2.4 Next sections

The next section will outline the different techniques available for data augmentation.
The rest of the literature review is divided into two parts. The first section contains
techniques that sample new instances. A further subdivision was made into techniques
that are already often used for tabular data and techniques that are not yet (often) used
for tabular data, but are used for other kinds of data such as images or textual data. The
first category includes Generative Adversarial Networks or GAN and Bayesian Networks.
Variational autoencoders are discussed in the second category.

In the second main part of the literature study, the focus is on techniques that change
existing instances. Here, too, the subdivision was made between techniques that are and
are not often used with tabular data. In the first category, we find SMOTE and simple
operations to slightly modify the data. In the second, adversarial attacks.

1.3. SAMPLING NEW INSTANCES 9

—

Sampling new Changing existing
instances instances
N —

o e -
~ - ~
. - Y

/
/
/
/
/

e
-
e
-
&

A

Mature techniques

A

{ Potential techniques [Mature techniques L Potential techniques

» GAN > VAE —» Intrapolation/ > Adversarial
extrapolation attacks
, Bayesian Simple
Networks " operations

Figure 1.1: Taxonomy of the techniques that will be discussed in the next section.

1.3 Sampling new instances

1.3.1 Mature techniques
GAN

GAN stands for Generative Adversarial Networks. When working with GANs, two
models are always trained: a generator and a discriminator. A generative model learns
the distribution of the model and can tell how likely a given example is. It is used to
generate new, realistic data instances. A discriminator tells how likely a label is given
an example. (Dhariwal et al., 2020). In this context, the two have opposing objectives
(Goodfellow et al., 2014). The generator wants to generate new instances that resemble
the original ones as good as possible. These generated instances are then fed to the
discriminator together with samples from the original dataset. The discriminator now
has to try to distinguish fake and real instances (fake instances being the ones created by
the generator). Thus, the generator wants to maximise the chance that the discriminator
makes a mistake, while the discriminator itself wants to minimise this chance. This is
actually a minimax two-player game. Both models will get better and better at their
jobs as they receive feedback and there is only one unique and stable solution at the end:
the generator discovers the data distribution and all instances are classified as having a
50% percent chance of being real or fake.

An analogy often made is that of a cop and counterfeiter. The counterfeiter will
create false bills, which the cop will recognise. After learning why the cop recognises the
bills, the counterfeiter creates better fake bills, until the cop can no longer distinguish if
they are real or false.

GANS can be used to generate tabular data. DOPING, for instance, oversamples
infrequent normal samples (rare normal events) to reduce false positive rates (Lim et
al., 2018). The method is used in anomaly detection settings, where the ubiquity of
false positives is one of the main challenges. DOPING is a form of unsupervised data

10 CHAPTER 1. LITERATURE STUDY

augmentation (UDA), a method of semi-supervised learning that reduces the need for
labelled examples (Xie, Dai, Hovy, Luong & Le, 2020). The adversarial autoencoder
(AAE) variant of GAN is used to transform the data distributions. The AAE is trained
on the entire dataset without labels and makes use of general knowledge of the latent
distribution to generate samples.

Another example is medGAN, a combination of GAN with an autoencoder to learn
the distribution of discrete features of patient records (Choi et al., 2018). MedGAN, in
contrast to DOPING, is used in a multilabel setting and introduces a new method to
tackle mode collapse, a known problem when dealing with GAN, is also introduced in
this paper: minibatch averaging. Mode collapse happens when the generator learns a
specific and very plausible solution. If the next generation of discriminators do not learn
to always reject this solution, the generator will start producing the same output over
and over again, no matter the input it is given (Thanh-Tung & Tran, 2020). To resolve
this, minibatch averaging takes the average of a minibatch of m samples and provides
this to the discriminator. The discriminator can now calculate the distance from the
samples it is given to the minibatch average. Thus, the generator is forced to generate
diverse examples, otherwise it will be too easy for the discriminator to spot the fake
samples (Choi et al., 2018).

Badu-Marf, Farooq and Paterson (2020) present the Composite Travel Generative
Adversarial Network for learning the joint distribution of tabular travel attributes and
sequential trip chain locations. The last feature makes it unique in this list.

TGAN (Xu & Veeramachaneni, 2018) is used for generating relational tables con-
taining discrete and continuous variables and does not focus on learning a specific type
of data or a specific class, unlike the previous GAN. Effectively generating discrete vari-
ables is done by putting noise and Kullback-Leibler divergence into the loss function. On
the other hand, to deal with the multimodal distributions of continuous data, the numer-
ical variables are clustered. CTGAN (Xu, 2020) builds upon TGAN and is trained by
re-sampling the data and uses reversible data transformations. This way it can address
common problems with tabular data such as mixed data types, gaussian or multimodal
distributions or high dimensionality of the data. To address data imbalance in columns
of the table, a conditional generator is used. CTGAN also works with a critic instead of
a discriminator.

And lastly Table-GAN (Park et al., 2018) adds some extra elements to the classic
GAN architecture: a third neural network is added and instead of only minimising the
‘original loss’, there is also an information loss and classification loss function. The third
neural network is a classifier that will increase the semantic integrity of the records,
meaning that the record and the label it gets should be compatible. The information
loss function makes sure the mean and standard deviation of the distributions match
and the classification loss function maintains the semantic integrity.

Bayesian Networks

A Bayesian network is a directed acyclic graph, which means that it is a specific type of
graph that contains no cycles and has only directed edges between nodes (Stephenson,

1.3. SAMPLING NEW INSTANCES 11

2000). The directed edges indicate which variables depend on others. In a Bayesian
network, the joint probability of all variables is equal to the product of probabilities of
each variable given the value of its parent(s).

PrivBayes (Zhang, Cormode, Procopiuc, Srivastava & Xiao, 2017) is used to anonymise
data. It first creates a Bayesian network that allows to model the correlations among
the features of the data and to approximate the distribution of the data. Next, noise is
injected to ensure differential privacy. Leaving out the noise, PrivBayes just learns the
distribution of the data and then samples instances from it and thus, could certainly be
used as a data augmentation technique.

Kaur et al. (2020) try to create synthetic datasets of health data by using Bayesian
networks and compare the results with those of medBGAN (Baowaly, Lin, Liu & Chen,
2019). Their model can handle both numerical and categorical features and the authors
find that their method outperforms medBGAN. Young, Graham and Penny (2009) on
the other hand, try to create synthetical data from institutional care datasets. Sun and
Erath (2015) focus on population synthesis given microsamples of this population and
the complementary marginal information on the features and Gogoshin, Branciamore
and Rodin (2020) focus on synthetic biological data. They use Bayesion networks to
reflect the underlying networks of biological relations.

In other words, there are many possible scenarios in which Bayesian networks can
be used.

1.3.2 Potential techniques
VAE

A VAE or variational autoencoder (Kingma & Welling, 2014) is a special type of au-
toencoder. An autoencoder consists of an encoder that compresses the input data to a
latent space and a decoder that reconstructs the original data from the latent space as
good as possible. What is different for a variational autoencoder is that it also tries to
find a distribution in the latent space.

Variational autoencoders can be used for a wide range of applications, including
generating images (Razavi, van den Oord & Vinyals, 2019; Gulrajani et al., 2016; Lu &
Xu, 2018; Pu et al., 2016) or text classification where the VAE also learns to generate
small sentences (Xu, Sun, Deng & Tan, 2016). Variational autoencoders can also be
combined with GAN (Li, Huang, Luo, Zhang & Zha, 2021) or be used for speaker
verification (Wu, Wang, Qian & Yu).

Although they have proven to be very successful in a very broad range of problems,
variational autoencoders have not yet been used much to augment tabular data. Only
recently the technique has been picked up to augment traffic data (Huang et al., 2019;
Boquet, Morell, Serrano & Vicario, 2020; Islam, Abdel-Aty, Cai & Yuan, 2021), sales
data of properties (Lee, 2021), or basic demographic data (Li, Tai & Huang, 2019).

12 CHAPTER 1. LITERATURE STUDY

1.4 Changing existing instances

1.4.1 Mature techniques
Interpolating

SMOTE was introduced by Chawla, Bowyer, Hall and Kegelmeyer in 2002 and has been a
standard in research on data augmentation for tabular data ever since. SMOTE stands
for Synthetic Minority Over-sampling Technique. Previous to SMOTE, oversampling
often happened through replacement. SMOTE will take each minority example and
look at its k nearest neighbours. Depending on the oversampling rate, one or more
nearest neighbours are selected. Then, the difference between the feature vector in
question and its nearest neighbour is taken. This difference is multiplied by a random
number between zero and one and then added again to the feature vector in question.
Thus, the decision region of the minority class becomes more general which improves
the performance of decision tree classifiers.

Since 2002, many extensions have been proposed to alter SMOTE for specific prob-
lems such as multi-label settings (Charte, Rivera, del Jesus & Herrera, 2015), combined
SMOTE with other techniques such as SVMs or boosting (Liang, Jiang, Li, Xue, &
Wang, 2020; Chawla, Lazarevic, Hall & Bowyer, 2003) or just tweaked the algorithm
to, for example, stop using noisy minority examples to generate synthetic samples from
(Batista, Prati & Monard, 2004). For further information, the reader is referred to the
15-year anniversary article of SMOTE (Fernandez, Garcia, Herrera & Chawla, 2018) in
which the original authors provide an extensive overview of all existing techniques.

Also making use of minority over-sampling is SIMO (Piri, Delen & Liu, 2018) or
a synthetic informative minority over-sampling algorithm. SIMO first partitions the
dataset into test and training dataset with the same imbalance as the original dataset.
Next, they train a support vector machine (SVM) and select the minority examples that
are closest to the SVM border as informative minority examples. Then, the nearest
neighbours, only informative minority examples, of these examples are taken. The se-
lected informative minority example will now be interpolated with a number of randomly
chosen nearest neighbours to create synthetic examples. These examples are added to
the dataset and a new SVM is generated. The steps are repeated until the imbalance gap
is gone. As such, SIMO tackles one of the major drawbacks of SMOTE: overgeneralisa-
tion. SMOTE does not consider that majority examples might be closest located to the
minority examples when generating synthetic examples. This might lead to overlapping
between classes.

ADASYN stands for Adaptive Synthetic Sampling Approach (He, Bai, Garcia & Li,
2008) for Synthetic Learning and also extends SMOTE by distinguishing minority class
examples that are easier or harder to learn. More synthetic examples are then generated
for the latter. It does so by using a density distribution to automatically determine the
number of synthetic samples that have to be generated for each minority data example.
In this way the classifier decision boundary is more focused on hard to learn examples.
This improves learning performance.

1.4. CHANGING EXISTING INSTANCES 13

Simple Augmentations

Many augmentations that are simple for images, such as just rotating images, deleting
random parts or adding noise are not possible or difficult to implement. There are a few
that can be used nonetheless.

Similar to computer vision, where random parts of an image can be erased, the blank-
ing technique can be used for tabular data. Vincent, Larochelle, Bengio & Manzagol
(2008) worked with denoising autoencoders to fill in zeros for values that have to be
masked. The only problem with this is that a zero actually might have some meaning.
It would be better to use a value that does not have a meaning (Marais, 2019).

Another possibility is to add noise to the data. One possibility is to use the EZS
noise method (Evans, Zayatz & Slanta, 1996). When using EZS, a single pure noise
factor is generated for each record. This can, for example, be a multiplier. Furthermore,
each record has a weight. The perturbed values are then calculated with the noise factor
and the weight of the record (Massell, Zayatz & Funk, 2006). The MCF approach on the
other hand allows you to choose from which distribution the noise should be sampled: a
Gaussian distribution, Poisson distribution or Laplace distribution to transform values
(van der Maaten, Chen, Tyree & Weinberger, 2014). It is also possible to create a
completely synthetic dataset generated by posterior predictive models (Zayatz, 2007).
The original data is used to develop a model for a certain variable and then that model
is used to impute for each record a value for that variable.

It is also possible to combine adding noise and blanking values (Flossmann & Lechner,
2006). The technique was used to limit data disclosure, but the data still needed some
processing afterwards to reduce bias due to measurement errors.

Mixing images has also proven to be a successful technique to augment images.
Tabular data can be swapped or shuffled. Swapping implies that the attribute values
are exchanged whereas with shuffling, the record 7 takes the attribute value of record j,
which takes the attribute value of record k and so on (Muralidhar, Sarathy & Dandekar,
2006). Kosar and Scott (2018) introduced the hybrid bootstrap, another swap noise
method that works in a similar manner to dropout but resamples values from other
training points instead of replacing them by zeros. They ensure the corrupted values
are valid attribute values. Mixup (Zhang, Cisse, Dauphin & Lopez-Paz, 2018) can be
applied to images and tabular data alike and makes convex combinations of records.

Lastly, SubTab is a technique that the authors describe as similar to cropping for
images (Ucar, Hajiramezanali & Edwards, 2021). The algorithm learns from a multi-
view representation of the data by dividing the variables into subsets. Each subset is
considered to be another view.

1.4.2 Potential techniques
Adversarial attacks

Adversarial examples are inputted to cause machine learning models to make mistakes.
Changing a few pixels in images may lead a classifier to misclassify while the image does

14 CHAPTER 1. LITERATURE STUDY

not seem any different to the human eye. Adding a few “good words” to an email or
misspelling “bad words” might lead a spam email to get past the filters.

Altering tabular data in this manner is more complex than just interchanging pixels
and also easier to detect if there are no coherence constraints. Since all pixels have values
between 0 and 255, this is not an issue in the image domain. Finally, an expert will not
look at all the data when trying to classify an instance, but rather at a subset he deems
important (Ballet et al., 2019). Thus adversarial attacks have not been used much for
tabular data yet.

Ballet et al. (2019) tried to create adversarial examples to be able to get a loan.
They defined their algorithm as an optimisation problem whose minimum is found using
a gradient descent approach. Furthermore, they took the importance of features into
account. Perturbing features that were more likely to be checked is penalised.

PermuteAttack on the other hand (Hashemi & Fathi, 2020) uses a gradient-free
genetic algorithm to generate adversarial credit scorecards. Random features of the
instances are permuted by choosing another possible value for the feature that is present
in the training set. Perturbed instances are then scored with the help of a fitness
function, the higher the obtained score, the likelier that the instance will be part of the
next generation. The authors also propose a post-processing algorithm to ensure that
the generated examples are realistic.

Cartella et al. apply adversarial attack on fraud detection (2021). They also make use
of a generic algorithm, but implement a similarity function, which can not be higher than
a certain threshold, to make sure the generated examples are realistic. The authors also
introduce editability constraints. Since there are certain personal details the financial
institutions always have at their disposal, these features can not be edited. Again,
permuting important features is penalised.

Lastly, Miot (2021) introduces adversarial trading. The author first creates a model
to predict if the market will move up and down. Next, the adversarial samples are
generated using the fast gradient sign method (FGSM) and lastly an adversarial agent
is created to make sure the generated examples are realistic. The author came to the
conclusion that the adversarial examples cause a different outcome, but the benefits do
not go to the agent who introduces them.

Chapter 2

Experiments

In this chapter, the data augmentation techniques will be tested on credit scoring data
datasets. The goal is to find out which data augmentation techniques work best for credit
scoring datasets and with which models they should be combined to obtain the best
results. In the first part, the method used is explained: the datasets, data augmentation
methods, models and metrics that were used. In the second part, the results for all
data augmentation techniques, which are listed from very simple to state-of-the-art, are
explained.

2.1 Method

2.1.1 Data

Three credit scoring datasets were used. The first dataset contains 5960 records and
12 features, the second contains 18918 records and because the attribute Days_late was
deleted, eventually 18 features. Days_late was dropped because it correlated directly
with the target variable in the dataset. In this dataset, it was assumed that if a person
was more than 45 days late paying, they would default. The third dataset contains
30000 records and 23 features. The datasets were all cleansed in the following way: first,
the duplicates were dropped. Furthermore, records where more than half of the features
had missing values were also dropped. For the rest of the missing values, the mean was
imputed in the case of numeric variables and the most frequent answer in the case of
categorical variables. The possibilities for categorical data were also all put in lower
case. Afterwards, weight of evidence encoding was applied to the categorical variables
and the numerical variables were standardised.

2.1.2 Data augmentation techniques

Five data augmentation techniques will be tested, namely the inserting of noise, data
swapping, SMOTE, CTGAN and PrivBayes. This means that all types of techniques
that are currently used for tabular data are represented. The first two are simple aug-

15

16 CHAPTER 2. EXPERIMENTS

mentation techniques, SMOTE belongs in the category of extropolating/intrapolating,
CTGAN is a GAN and PrivBayes is a Bayesian network.

2.1.3 Models

The DA techniques will be combined with six models. First, three basic models: logistic
regression, decision trees and KNN. These models are very different from each other
and are often used together because they can give very different results (Bichler &
Kiss, 2004; Shah, Patel, Sanghvi & Shah, 2020; Kulyukin, Mukherjee & Amlathe, 2018).
Furthermore, XGBoost, random forests and multi-layer perceptron neural networks were
also implemented because these techniques are more state-of-the-art than the previous
three. The XGBoost classifier was implemented through the xgboost package in Python,
the other classifiers were part of the sklearn package.

2.1.4 Metrics

The results will be compared using the accuracy, F1 and AUC metrics. All metrics are
calculated as the mean after stratified 5-fold cross validation.

2.2 Results

2.2.1 Inserting noise

To insert noise, the following formula was used: the user inputs a value between zero
and one for the parameter alpha. For each column, this parameter alpha is multiplied
by the standard deviation of the column and a randomly generated vector that is the
same length as the column and has values between zero and one. This result is then
added to the original column. Higher values for the parameter alpha will result in more
noise being added.

In order to find out which value for alpha works best, a loop was implemented that
calculates the results of the three metrics for each value of alpha between zero and one,
with step size of 0.01.

The rest of this section will look more closely at how each classifier reacts to noise
insertion and whether the same results are achieved for all datasets. At the end, general
conclusions are drawn about the usefulness of noise insertion.

Logistic Regression

Here (see figure 2.2) it can be seen that the values for the accuracy and the AUC measures
remain more or less the same. The values for F1 do show a slight decrease. A possible
explanation for the fairly stable course of the curves may be that the parameters of a
logistic regression curve are estimated on the basis of the maximum likelihood estimator
(MLE). This takes into account the presence of noise in the data.

2.2. RESULTS 17

Decision trees

In the first data set in particular, there is a clear increase in accuracy (see figure 2.3)
when alpha is between 0.15 and 0.20. The AUC curve is also at its highest point then,
even though the increase there is much smaller. The F1 measure has a small dip at the
beginning, but rises briefly around the same values for alpha, after which it drops again.
The accuracy continues to rise, but as both the values for the AUC and the F1 measure
fall as alpha increases, alpha is best kept between 0.15 and 0.20.

In the other two datasets, we see much less effect. For dataset 2, it can still be said that
there is a small increase in the F1 measure, again for alpha between 0.15 and 0.20. But
dataset 3 is very stable.

KNN

Adding noise does not help a KNN classifier (see figure 2.4). Although the accuracy
remains stable, the F1 and AUC values over all datasets decrease to a greater or lesser
extent as more noise is added. The KNN classifier does not appear to be robust against
noise and it is logical that this is therefore most evident in the smallest dataset (dataset

1).

XGBoost

The first dataset (Figure 2.5) clearly shows the same trend as the decision trees (Figure
2.3). For alpha values between 0.15 and 0.20 the accuracy, F1 and AUC increase. In
datasets two and three, however, there was already only a slight increase noticeable for
decision trees, but this has now completely disappeared. However, there is no harm in
adding noise to the data since the measures are very stable, independent of alpha.

Random Forest

With random forests (Figure 2.6), again more or less the same trends can be seen as
with decision trees and XGBoost. Here, however, it is more difficult to say whether the
data augmentation technique was successful. In dataset 1 we again see an increase in all
metrics, although the necessary value of alpha is slightly higher than in decision trees:
approximately between 0.20 and 0.25 (instead of between 0.15 and 0.20). In the third
dataset, the insertion of noise has neither a positive nor a negative effect. But in the
second dataset, the F1 value has already fallen significantly when alpha reaches 0.20.
The AUC value has also fallen there, but to a much lesser extent.

Multilayer Perceptron

The introduction of noise does not improve the performance of the MLP classifier on any
of the datasets (Figure 2.7). From the moment alpha takes on a value greater than 0.25,
the F1 value actually decreases substantially across all datasets. The AUC, although

18 CHAPTER 2. EXPERIMENTS

also decreasing, is more stable, as is the accuracy. This might be the case because
backpropagation deals well with noisy data.

General conclusions

All models are quite robust, even when a lot of noise is added. Only the F1 metric suffers
more from a lot of noise and dares to drop sharply. Given that there is imbalance in the
datasets, a stable AUC means the predictions for majority class (here: people who will
not default) are robust, while a deteriorating F1 means the predictions for the minority
class (here: the people who will default) are not robust. Furthermore, especially decision
trees, XGBoost and random forest classifiers benefit from adding a little noise. This is
logical since both XGBoost and random forests are also based on decision trees.The
effect is always largest on the smallest dataset. In general, the best value for alpha can
be found between 0.15 and 0.25, depending on the classifier and dataset.

BEST ALPHA VALUES WHEN INSERTING NOISE

Model Dataset 1 Dataset 2 Dataset 3
Logistic Regression 0 0 0
Decision Tree 0.15 0.19 0.05

KNN 0 Q 0.02
XGBoost 0.20 0.01 0.54
Random Forest 0.24 0 0

MLP 0.1 0.04 0

Figure 2.1: The alpha values that generated the best results according to classifier and
dataset.

2.2. RESULTS 19

Dataset 1: Logistic Regression

0,9
0,8
0,7
0,6
0,5

04 = e e - = = = =

0,3
02
0,1
0
O S 0 N O AN & 00N O < & 0 N W O s 0 N O 0 & 0 N O
o ddo NN g NN gL NS XX
o O O O o O O O o O © O o O O O o © O O
Accuracy == == F1 AUC
Dataset 2: Logistic Regression
0,9
0,8
0,7
06
0,5
0,4
0,3
0’2——
0,1 T T s - . - ==
0
O S 0N O AN < 00N O < < 0NN O O S 0N O 00 S 0 N WO
SoddgAANMMIITINMNSREERNRN SRR A
o O O O o O O O o O O o o O O o o O O o
Alpha
Accuracy == == F1 AUC
Dataset 3: Logistic Regression
0,9
0,8
0,7
06
0,5
0,4_
0,3 i ST S —
0,2
0,1
0
O S 0N O AN & 00N O & < 0 NN W O s 0N O 0 & 0 N O
o ddoddaMN oS SN g QO NN o R R0 9
o O O O o O O O o O O O o O © O o O O o
Alpha
Accuracy == == F1 AUC

Figure 2.2: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by a logistic regression classifier on dataset 1, 2 and 3.

20 CHAPTER 2. EXPERIMENTS

Dataset 1: Decision Tree

0,9
0,8
07 T
0,6
R r——
04 T T e -
0,3
0,2
0,1
0
C33HA3IRARIIIARSTERREIIBI R
o © O o o © O O o O O o o O O o o O O o
Alpha
Accuracy == == F1 AUC
Dataset 2: Decision Tree
0,9
0,8
0,7
0,6
0,5
0,4
03 o e e === === === = = - = — — _
0,2
0,1
0
C3892333X3ARIIINRSTERRSIEASR
o O O o o O o o o O o o o O o o o O O o
Alpha
Accuracy == == F1 AUC
Dataset 3: Decision Tree
0,9
0,8
0,7
0,6
0,5
L A R B .
0,3
0,2
0,1
0
CEEURSRANNRIIIARIIBERRSERS S
o O O O o O O O o O O O o O © O o O o o
Alpha
Accuracy == e= F1 AUC

Figure 2.3: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by a decision tree classifier on dataset 1, 2 and 3.

2.2. RESULTS 21

Dataset 1: KNN

0,9
0,8
0,7
0,6
0,5

0,4 - e s e
0,3
0,2
0,1
0
°S82A33XRARIITNRZIIBERRIZIZG &
o O O O o O O O o O © O o ©O O O o © O O
Alpha
Accuracy == == F1 AUC
Dataset 2: KNN
0,9
0,8
0,7
0,6
0,5
0,4
03 _ _
0,2 T T T T T T s s e e - — - - -
0,1
0
C838H9A33ANRIIINRITERRII LS
o O O O o O © O o O © o o © O o o © O o
Alpha
Accuracy == == F1 AUC
Dataset 3: KNN
0,9
0,8
0,7
0,6
0,5
04 = T T T T T T oSS s s - - - -
0,3
0,2
0,1
0
CE8U233RARIIIARITERRZILS R
o O O o o O © o o © O o o © O o o O O o
Alpha
Accuracy == == F1 AUC

Figure 2.4: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by a k-nearest neighbour classifier on dataset 1, 2 and 3.

22 CHAPTER 2. EXPERIMENTS

Dataset 1: XGBoost

0,9
08
0,7
0,6
05 T T T T S e -
04 T s == -
0,3
0,2
0,1
0
C23H23RXINRIIINRZIIERRZIIRSSR
o O ©O o o ©O © o o © O o o © O o o ©O O o
Alpha
Accuracy == == F1 AUC
Dataset 2: XGBoost
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
01 = = T T S S s s e -, . ———m - e = — —
0
C289233XNRIITNRZIITIBRRZIIRSSR
o ©O ©O o o ©O © o o © O o o © O o o © O o
Alpha
Accuracy == == F1 AUC

Dataset 3: XGBoost

Figure 2.5: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by an XGBoost classifier on dataset 1, 2 and 3.

2.2. RESULTS 23

Dataset 1: Random Forest

0,9
08
0,7
06 o o
05 i
04 - =
0,3
0,2
0,1
0
C33H23AXARIIETNRSITIERREIESSR
o O o o o O O o o O O o o O o o o O o o
Alpha
Accuracy == == F1 AUC
Dataset 2: Random Forest
0,9
0,8
0,7
0,6
0,5
0,4
03
02 N
0,1 e SN —
0
C38HASIXARIILENARSIEIRREIBSSR
o O O o o O O o o O O O o O o o o O o o
Alpha
Accuracy == == F1 AUC
Dataset 3: Random Forest
0,9
0,8
0,7
0,6
05 — — — o - = = = = = = = = = =
04 - =
03
0,2
0,1
0
C38H233XARIIINRSTERRSIER
o O O o o O O o o O o o o O o o o O o o
Alpha
Accuracy == == F1 AUC

Figure 2.6: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by a random forest classifier on dataset 1, 2 and 3.

24 CHAPTER 2. EXPERIMENTS

Dataset 1: MLP

0,9
08

07

06

05 T T T T s, - o _
04

03

0.2

01

Accuracy == == F1 AUC

Dataset 2: MILP

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Accuracy == == F1 AUC

Dataset 3: MILP

0,9
0,8
0,7
0,6
0,5

0,4____————____-——_—_———

0,3
0,2
0,1

Accuracy == == F1 AUC

Figure 2.7: The accuracy, F1 and AUC values after noise insertion for all possible values
of alpha as predicted by a multilayer perceptron classifier on dataset 1, 2 and 3.

2.2. RESULTS 25

2.2.2 Data Swapping

To swap the data, the user must first enter a value between zero and one. That is
the percentage of values that will be swapped in each column. Then for each column
two vectors are generated that consist of indexes. The numbers in the column with an
index from the first column are replaced by the numbers that belong to the indexes from
the second column. The number of columns in which data must be swapped can also
be specified, but in this thesis the data augmentation technique was kept as simple as
possible. Given that all categorical data have been converted using weight-of-evidence
encoding, and that all variables have been standardised, it is possible to swap data in
all columns.

Logistic Regression

While the accuracy and AUC remain quite stable even when all columns are completely
shuffled, the same can not be said for the F1 measure. For the third dataset, it is only
when more than 75% of the instances per column are swapped, that the F1 curve starts
to decline. But for the other two datasets this is not the case, as can clearly be seen in
the graphs (Figure 2.9). The F1 curves decline almost immediately.

Decision Trees

Unlike when noise is added, the decision trees experience no positive effect from swapping
the data. The difference here could be due to the fact that when swapping data, the
boundaries of the various values are not shifted. When, for example, noise is added to
the highest column value of a class, a decision tree must take this into account. The data
will, after the addition of noise, also contain values which were not previously present in
the data set. This is not the case when the data is simply swapped. The decision tree
classifiers are more robust than the logistic regression classifiers.

KNN

In the case of the KNN classifiers, we can see the same trends arise when instances are
swapped as when noise is inserted. Again, KNN classifiers cannot handle the data aug-
mentation. The reason for this could be that while the other techniques try to generalize
trends across all instances, KNN tries to find the most alike instances. By perturbing
feature values, other neighbours will be selected, which leads to an underperforming
model.

XGBoost

XGBoost also does not benefit from data swapping data augmentation. The same ten-
dencies can be seen here (Figure 2.12) as with decision trees. It is remarkable that in
the first data set, the accuracy increases as soon as more than 65% of the instances are
swapped.

26 CHAPTER 2. EXPERIMENTS

Random Forest

Also for random forest classifiers, the same trends can be seen as for decision trees and
XGBoost. The accuracy of dataset one increases very slightly from the beginning. With
datasets two and three, however, this trend is not visible.

Multilayer Perceptron
The MLP classifiers are again very stable. Only the F1 curve is falling slightly.

General conclusions

None of the models perform better after the data swapping procedures. Nevertheless,
most models are quite robust, even when swapping many instances. The graphs show
that the first and thus the smallest dataset is most affected by data swapping. The
third dataset on the other hand, is least affected by the perturbations of the data set.
Moreover, the F1 measure is sensitive to data swapping, more so than the other two
metrics. The table underneath shows the percentages of swapped data that obtained
the best result per model and dataset. Most values are 0 (no swapped instances) or close
to zero and even when the percentage is not equal to zero, the difference in performance
is minimal.

BEST PERCENTAGE OF FEATURES TO SWAP

Model Dataset 1 Dataset 2 Dataset 3
Logistic Regression 0 0 0
Decision Tree 0.03 0 0.09

KNN 0 0 0
XGBoost 0.05 0 0.15
Random Forest 0 0 0.01

MLP 0 0.01 0

Figure 2.8: The percentage of swapped features that obtained the best performance per
model and dataset.

2.2. RESULTS 27

Dataset 1: Logistic Regression

0,9
0,8
0,7
06
05
04 _
- e o e
03 -——-—-—o
—

02 -—————
01

0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4
0,44
0,48
0,52
0,56

0,6
0,64
0,68
0,72
0,76

0,8
0,84
0,88
0,92
0,96

% swapped instances per column

Accuracy == == F1 AUC

Dataset 2: Logistic Regression

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

- = =
01 e

0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32

0,4

©
«
o

% swapped instances per column

Accuracy == == F1 AUC

Dataset 3: Logistic Regression

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

% swapped instances per column

Accuracy == == F1 AUC

Figure 2.9: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by a logistic regression classifier on dataset 1, 2 and 3.

28 CHAPTER 2. EXPERIMENTS

Dataset 1: Decision Tree

08
0,7 M=

0,6

05 ¥ T T T S S = e
0,4

0,3

0,2

0,1

0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4
0,44
0,48
0,52
0,56

0,6
0,64
0,68
0,72
0,76

0,8
0,84
0,88
0,92
0,96

% swapped instances per column

Accuracy e == F1 AUC

Dataset 2: Decision Tree

0,9
0,8
0,7
0,6
0,5
0,4
0,3

- een an en an e e e
0,2 e . e, —— - - - o

0,1

0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4
0,44
0,48
0,52
0,56

0,6
0,64
0,68
0,72
0,76

0,8
0,84
0,88
0,92
0,96

% swapped instances per column

Accuracy == == F1 AUC

Dataset 3: Decision Tree

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0,04
0,08
0,12
0,16

0,2
0,24
0,28
0,32
0,36

0,4
0,44
0,48
0,52
0,56

0,6
0,64
0,68
0,72
0,76

0,8
0,84
0,88
0,92
0,96

% swapped instances per column

Accuracy == == F1 AUC

Figure 2.10: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by a decision tree classifier on dataset 1, 2 and 3.

2.2. RESULTS

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Dataset 1: KNN

29

O < 0 N O N < 0N O < < 0 N O O S 0 N O 0 S 0 N O
Qe dd o NANMMN g TN Qe NN g XX 9
o O O o o O © o o O © o o © O o o © O o

% swapped instances per column
Accuracy == == F1 AUC
Dataset 2: KNN

O S 0 N O AN < 0N O < < 0 &N O O < 0 N O 0 S 0 N O
Qe ddocNANMMN o ITNNgQenNNg RN
o O O o o O © o o ©O © o o © O o o © O o

% swapped instances per column
Accuracy == == F1 AUC
Dataset 3: KNN

- e e e e e e e e e - e e e o ———

O S 0N W AN S 00N O < < 0NN O W S 0N O 0 < 0 N WO
Qo ddogo N ANMMN g ITNNogQeNNog XX
o O O o o O © O o ©O O o o © O o o © O O

% swapped instances per column

Accuracy == e= F1 AUC

Figure 2.11: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by a k-nearest neighbour classifier on dataset 1, 2 and 3.

30

0,9
0,8
0,7
0,6
0,5

0,3
0,2
0,1

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

CHAPTER 2. EXPERIMENTS

Dataset 1: XGBoost

- e e e = -

-
-———
O S 0N OW N S 00N O < < 60NN O O S 0N O 0 S 0 N O
QO A dooNANMM oI ILNNogReNNg XX 9
o O ©O o o ©O © o o © O o o © O o o © O o
% swapped instances per column
Accuracy == == F1 AUC
Dataset 2: XGBoost
- e
T e, e, e, e e - e - - - - - -
O S 0 N VW AN < 600N O < < 0NN O O S 0N W 0 < 0 N W
QO ddocANMM g ILNNgOeNNg XX
o ©O © o o © O o o © O o o © O O o ©O O o

% swapped instances per column

Accuracy == = F1 AUC

Dataset 3: XGBoost

—_ e, e, e, e et -
O % 0 N W N T WON O T 0N OO S O N O I 0N O
Qo ddg A AMMN g I NN g O™ g RN RN
S o oo o o oo S oo o S oo o S o oo

% swapped instances per column

Accuracy e = F1 AUC

Figure 2.12: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by an XGBoost classifier on dataset 1, 2 and 3.

2.2. RESULTS 31

Dataset 1: Random Forest

0,9
0,8
0,7
0,6 [
0,5 R
-_— e
0,4 = -
0,3
0,2
0,1
0
O < 0 N O N < 0N O < < 0 N O O S 0 N O 0 S 0 N O
Qe dd o NANMMN g TN Qe NN g XX 9
o O O o o O © o o O © o o © O o o © O o
% swapped instances per column
Accuracy == == F1 AUC
Dataset 2: Random Forest
0,9
0,8
0,7
0,6
0,5
0,4
0,3
02 = = =
0,1 T e e, - - - - - - o
0
O S 0N W AN < 00N O < < 0NN O O < 0N O 0 < 0 N O
Qe ddo N ANMMN g ITNNcQLeNNog XX
o O O O o O © o o © O o o © O O o O O o
% swapped instances per column
Accuracy == == F1 AUC
Dataset 3: Random Forest
0,9
0,8
0,7
0,6
0’5—-—--——--—
04 T T e -
0,3
0,2
0,1
0
O S 00N O N < 00N O < < 0N W O S 0N W 0 < 0 N W
e ddocd M g ST NNgLe NN o XX N
o O O O o O O O o O ©O O o O © o o © O o
Accuracy == == F1 AUC

Figure 2.13: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by a random forest classifier on dataset 1, 2 and 3.

32 CHAPTER 2. EXPERIMENTS

Dataset 1: MILP

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

0,36
04
44
48
52
56
0,6

6 i
% swapped instances per column

Accuracy == == F1 AUC

Dataset 2: MLP

0,9
0,8
0,7
0,6
0,5
0,4

0,3--———_____

R
0,2 - -
0,1
0
O < 00 N O N < 00N O < < 0 N O O < 0N W 0 < 0 N W
SO A docNNNMSIINNGSEONKNGRR D q
o © O O o O O o o O O O o O O O o O O O

% swapped instances per column

Accuracy == = F1 AUC

Dataset 3: MLP

0,9
08
0,7
0,6
0,5
0,4
03
0,2
01

% swapped instances per column

Accuracy == == F1 AUC

Figure 2.14: The accuracy, F1 and AUC values after data swapping for all possible values
of alpha as predicted by a multilayer perceptron classifier on dataset 1, 2 and 3.

2.2. RESULTS 33

2.2.3 SMOTE
What is SMOTE again?

SMOTE stands for Synthetic Minority Over-sampling Technique (Chawla, Bowyer, Hall
& Kegelmeyer, 2002). SMOTE will take each minority example and look at its k nearest
neighbours. One or more of these neighbours are then selected depending on the over-
sampling rate. Then the difference between the chosen minority example and its nearest
neighbour is taken, multiplied by a random number between 0 and 1 and added to the
chosen example. In this way, the decision region of the minority class becomes more
general.

Implementation

SMOTE was imported from the imbalanced learn (imblearn) over_sampling library. The
algorithm is an implementation of the original article by Chawla, Bowyer, Hall and
Kegelmeyer. It is possible to oversample only the minority class, but also to oversample
all classes. Since, in this case, the setting of the parameter made no difference, only the
results for minority class over-sampling are shown below.

How to read the results?

Results are shown in the tables below. For each dataset, two columns are shown. One
containing the performance values of the models when no data augmentation is applied
and one containing the performance values of the models after applying data augmenta-
tion. When the second value is lower than the first, it is put between brackets. Further-
more, this value is put in bold when the difference, positive or negative, in performance
before and after data augmentation is larger than 5%. Since all values are the mean
of the results after stratified 5-fold cross validation, an ANOVA, with alpha equal to
0.05, was performed to test the significance of the differences. When the difference is
significant, these values are written in italic and underlined. Tables showing results after
applying CTGAN and PrivBayes are constructed in the same way.

Results

When comparing the three metrics, it is immediately noticeable that the performance
after SMOTE is much lower with regard to accuracy and much higher for the F1 and
AUC metrics. The accuracy is lower for all datasets and all models after the application
of SMOTE than before. The F1 and AUC values, however, are almost always higher
after data augmentation.

For dataset 1, the accuracy decreases the least dramatically after applying SMOTE,
but the F1 and AUC values also increase the least compared to the other datasets.
Relatively speaking, SMOTE is most successful on the second dataset. The difference
between the F1 and AUC metrics before and after data augmentation is greatest for
the second dataset. SMOTE was also successfully applied on the third dataset, but the

34 CHAPTER 2. EXPERIMENTS

differences are not as large and/or significant as for dataset 2. This can also be seen on
the graphs in the appendix (see figure A.1).

What can be seen even more clearly on these graphs is that the largest differences in
performance, both in a negative sense for the accuracy and in a positive sense for F1 and
AUC, are achieved with the logistic regression and MLP classifiers. These models per-
formed poorly before data augmentation was applied, but are among the better models
after data augmentation. It makes sense that both models behave in the same way since,
in the abstract, MLP can also be seen as a regression model with many intermediate
steps. XGBoost also gets quite good results, but the difference in performance there
depends a bit more from dataset to dataset. Finally, the KNN classifier performs very
well for the first dataset, but not for the others. This is logical since KNN performs best
on small datasets.

SMOTE : accuracy

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,833741 | {0,764406) | 0,831307 | (0,659441) | 0,809678 | {0,679927)
Decision Tree 0,727339 | (0,685374) | 0,809316 | (0,758353) | 0,796062 | {0,727482)
KNN 0,852633 | (0,820392) | 0,810848 | (0,697029) | 0,795428 | {0,678191)
XGBoost 0,740687 | (0,729066) | 0,832417 | (0,752167) | 0,821225 | (0,789288)
Random Forest 0,744328 | (0,730108) | 0,826866 | (0,812434) | 0,815685 | (0,794794)
MLP 0,833048 | (0,756439) | 0,832258 | (0,697401) | 0,815852 | {0,752178)

SMOTE : F1

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,363554 | 0,497629 0,085017 | 0,424255 0,35434 0,472256
Decision Tree 0,529902 | (0,505227) | 0,264381 | 0,338358 0,433687 | 0,449096
KNN 0,571273 | 0,613233 0,263193 | 0,366092 0,427678 | 0,44503
XGBoost 0,539208 | 0,581844 0,130967 | 0,423764 0,469158 | 0,530593
Random Forest 0,582282 | (0,569138) | 0,213791 | 0,327838 0,470623 | 0,501411
MLP 0,414962 | 0,513856 0,164856 | 0,451543 0,452441 | 0,522497

SMOTE : AUC

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,610142 | 0,701505 0,518974 | 0,690587 0,604462 | 0,667514
Decision Tree 0,676846 | 0,700657 0,570145 | 0,603391 0,637506 | 0,646867
KNN 0,720794 | 0,777491 0,568223 | 0624823 0,634561 | 0,644157
XGBoost 0,67391 0,734447 0,531429 | 0,667084 0,65512 0,699291
Random Forest 0,704954 | 0,718829 0,555141 | 0,598839 0,656314 | 0,677075
MLP 0,633151 | 0.716714 0,540397 | 0.706355 0,646919 | 0.701486

Figure 2.15: The accuracy, F1 and AUC values for all datasets as predicted by the
models on the datasets with and without SMOTE data augmentation. Legend: (...):
negative difference i.e. the models perform worse after data augmentation - Bold:
the difference in performance before and after data augmentation is larger than 5%
- underlined and in italics: the difference is found to be significant after performing an
ANOVA with alpha equal to 0.05.

2.2. RESULTS 35

2.24 CTGAN
What is CTGAN again?

CTGAN is a Generative Adversarial Network. As explained before, two models are
always trained when working with GANs, a generator to learn the distribution of the
model and a discriminator to discern whether a given instance belongs to the original
dataset or was created by the generator (Goodfellow et al., 2014). CTGAN (Xu, 2020),
that was based on the previous work TGAN (Xu & Veeramachaneni, 2018) works with
a conditional generator to address data imbalance in columns of the table and a critic
instead of a discriminator that just tries to make the output bigger for real instances
than for fake instances, without using the 0.5 threshold.

Implementation

The installed CTGAN implementation is part of The Synthetic Data Vault Project, a
project from DataCebo to which Xu contributed. The code for this repository can be
found on GitHub and the repository can easily be installed using a pip command.

500 epochs

What is immediately noticeable is that the performance after data augmentation with
CTGAN is almost always lower than before. Upon closer inspection, it can be seen that
especially the F1 values drop significantly. This is where most of the strong negative
differences can be found, which also often turn out to be significant after the ANOVA
test. The AUC values are also considerably lower after data augmentation, although the
largest differences can mostly be seen for the first data set. It was also more difficult for
the GAN to get good results on the first dataset since the values for the metrics were
the highest here anyway.

Relatively speaking, the accuracy is less affected. This suggests that CTGAN can repli-
cate certain classes very well and other classes less so. In this case, it could be further
investigated whether there are large differences in accuracy between the different classes.
As far as the accuracy is concerned, the best results are obtained with the first data set
as opposed to the F1 and AUC measures. The difference here is even positive for half of
the models: the decision tree, XGBoost and random forest models. The latter two are
based on decision trees and it is therefore logical that these models perform in the same
line.

However, since no line can be drawn in the results of the models across the datasets,
it is too early to make any confident statements about the differences in performance
between the models. While the first dataset scores well on accuracy and poorly on F1
and AUC, the results of the second and third datasets are much more aligned across the
three metrics. The second scores very evenly and although never good, the results after
data augmentation are almost never more than 5% or significantly worse. In the third
dataset, the results fluctuate a bit more across the models, with the models based on
decision trees doing poorer here.

36 CHAPTER 2. EXPERIMENTS

CTGAN 500 : accuracy

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,832701 | (0,820042) | 0,831835 | (0,826707) | 0,810189 | (0,798988)
Decision Tree 0,727339 | 0,770978 0,809316 | (0,8026) 0,794121 | (0.753378)
KNN 0,851247 | (0,800448) | 0,81661 (0,807199) | 0,795586 | (0,772953)
XGBoost 0,742074 | 0,79837 0,833104 | (0,831835) | 0,820193 | (0,798254)
Random Forest 0,744328 | 0,798196 0,826866 | 0,828875 0,816758 | (0,79442)
MLP 0,833221 | (0,824549) | 0,832258 | (0,826866) | 0,816892 | (0,797922)

CTGAN 500 : F1

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,397325 | (0,343271) | 0,164479 | (0,15159) | 0,358506 | (0,404033)
Decision Tree 0,529902 | (0,275808) | 0,264381 | (0,22617) 0,441702 | (0,383419)
KNN 0,547654 | (0,342638) | 0,237954 | (0,19656) | 0,422608 | (0,407351)
XGBoost 0,546553 | (0,239161) | 0,164602 | (0,12925) | 0,464416 | (0,416247)
Random Forest 0,582282 | (0,19612) 0,213791 | (0,13303) 0,466201 | (0,405058)
MLP 0,414544 | (0,37131) 0,167482 | (0,15077) 0,458435 | (0,424154)

CTGAN 500 : AUC

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,625977 | (0,606486) | 0,540142 | (0,53744) | 0,60611 | (0,625344)
Decision Tree 0,676846 | (0,566342) | 0,570145 | (0,553092) | 0,64176 | (0,609714)
KNN 0,705048 | (0,603536) | 0,560021 | (0,545806) | 0,632021 | (0,624384)
XGBoost 0,677734 | (0,56156) 0,54152 (0,531833) | 0,653 (0,631887)
Random Forest 0,704954 | (0,546896) | 0,555141 | (0,532287) | 0,654249 | (0,626352)
MLP 0,632928 | (0,619543) | 0,541142 | (0,536914) | 0,649854 | (0,635182)

Figure 2.16: The accuracy, F1 and AUC values for all datasets as predicted by the
models on the datasets with and without CTGAN data augmentation with 500 epochs.
Legend: (...): negative difference i.e. the models perform worse after data augmentation
- Bold: the difference in performance before and after data augmentation is larger than
5% - underlined and in italics: the difference is found to be significant after performing
an ANOVA with alpha equal to 0.05.

1000 epochs

The results after data augmentation using CTGAN with 1000 epochs are somewhat
surprising. The results for the first and second datasets are on average higher, as might
be expected, but the results for the third dataset are lower than for 500 epochs. For the
first two datasets, the results are in the same line as above. Dataset 1 scores particularly
well on accuracy and less so on F1 and AUC, although the results are not as dramatic
as for CTGAN with 500 epochs. In the second dataset, only the scores on accuracy are
slightly lower, but the F1 and AUC values are clearly higher than above. With dataset
3, an opposite trend is visible: the accuracy is slightly higher while the F1 and AUC
measurements are a lot lower.

After data augmentation, the decision tree, XGBoost and random forest classifier again
give good results in terms of accuracy for dataset 1. However, these results cannot be

2.2. RESULTS 37

extended across datasets or metrics. In dataset 2, the random forest and MLP classifiers
perform slightly less with respect to F1 and AUC; in the third dataset, the MLP classifier
together with the KNN classifier performs slightly better. Which classifiers are better
or worse in combination with CTGAN therefore strongly depends on the dataset used.

CTGAN 1000 : accuracy

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without | With DA Without With DA

DA DA DA
Logistic Regression | 0,833741 | (0,822124) | 0,832205 | (0,806935) | 0,809678 (0,792792)
Decision Tree 0,727339 | 0,817962 0,809316 | (0,768026) | 0,796062 (0,767929)
KNN 0,852633 | {0,793697) | 0,812223 | (0,779498) | 0,795428 (0,781445)
XGBoost 0,740687 | 0,830097 0,832417 | (0,809156) | 0,821225 (0,800367)
Random Forest 0,744328 | 0,828363 0,826866 | (0,809473) | 0,815685 (0,796663)
MLP 0,833048 | (0,82316) 0,820206 | (0,793508) | 0,815852 (0,802002)

CTGAN 1000 : F1

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,363554 | (0,261513) | 0,15752 | 0,2255 0,35434 | (0,22933)
Decision Tree 0,529902 | (0,41832) 0,264381 | 0,29437 0,433687 | (0,318554)
KNN 0,571273 | (0,388854) | 0,259978 | 0,2868 0,427678 | (0,342219)
XGBoost 0,539208 | (0,418081) | 0,130967 | 0,20521 0,469158 | (0,318125)
Random Forest 0,582282 | (0,379136) | 0,213791 | (0,21326) | 0,470623 | (0,290587)
MLP 0,414962 | (0,363868) | 0,310667 | (0,3039) | 0,452441 | (0,33501)

CTGAN 1000 : AUC

Model Dataset 1 Dataset 2 Dataset 3

Without With DA Without With DA Without With DA

DA DA DA
Logistic Regression | 0,610142 | (0,574394) | 0,538254 | 0,559555 0,604462 | (0,56371)
Decision Tree 0,676846 | (0,640605) | 0,570145 | 0,579077 0,637506 | (0,586025)
KNN 0,720794 | (0,621852) | 0,567312 | 0,575306 0,634561 | (0,59832)
XGBoost 0,67391 (0,64317) 0,531429 | 0,551197 0,65512 {0,595946)
Random Forest 0,704954 | (0,624222) | 0,555141 | (0,552506) | 0,656314 | (0,586225)
MLP 0,633151 | (0,616034) | 0,592964 | (0,588081) | 0,646919 | (0,602503)

Figure 2.17: The accuracy, F1 and AUC values for all datasets as predicted by the
models on the datasets with and without CTGAN data augmentation with 1000 epochs.
Legend: (...): negative difference i.e. the models perform worse after data augmentation
- Bold: the difference in performance before and after data augmentation is larger than
5% - underlined and in italics: the difference is found to be significant after performing
an ANOVA with alpha equal to 0.05.

Conclusion

In this case, the use of CTGAN data augmentation yields lower performance far more
often than higher performance. Moreover, it is impossible to estimate in advance which
combination of models and metrics will best respond to the data augmentation as this is
different for each dataset. Here, of course, a maximum of 1000 epochs were run. Perhaps
the results would improve with a higher number of epochs. But that would require a lot
of processing power and/or time. Furthermore, only the number of epochs was adjusted,

38 CHAPTER 2. EXPERIMENTS

the algorithm itself was not changed. Tuning the algorithm to the datasets could also
be a possibility for improvement.

2.2.5 PrivBayes
What is PrivBayes again?

PrivBayes (Zhang, Cormode, Procopiue, Srivastava & Xiao, 2017) creates a Bayesian
network that is used to model the correlations among the features and approximate the
distribution of the data. Normally, noise is injected afterwards to ensure differential
privacy. But, since the goal of this thesis is not to secure the data for privacy reasons,
but merely to augment the data, no noise will be added.

Implementation

To implement PrivBayes, the DataSynthesizer package was used (Ping, Stoyanovich &
Hoye, 2017). Their package works in three different modes: random mode, independent
attribute mode and correlated attribute mode. The last mode implements PrivBayes.
The implementation of this package can be found on GitHub as well. Two parameters
could be set: epsilon, to define how much noise should be inserted and the degree of the
Bayesian network, to define how many parents each attribute has. Epsilon was put to
zero so that no noise was added. The degree of the Bayesian network was put to two
because of constraints concerning computing power.

Results

PrivBayes does not offer good results. The values of the metrics are almost always
lower after applying PrivBayes. The largest differences can be seen in the first data set.
There the difference in accuracy is actually positive a number of times. Before data
augmentation, the decision tree, XGBoost, and random forest classifiers did not get very
good results compared to the other three, but after applying PrivBayes, the results of
the six models are much more in line. However, this trend does not extend to the F1
and AUC values. There, the differences are always negative and the logistic regression,
decision tree and MLP classifier decrease the least and thus obtain the best results. In
the second and third dataset, the results after data augmentation are always just below
the original results and more or less the same trend line is followed (see also figure A.4).
The differences are smallest for the third dataset. This is also the largest dataset. It is
possible that PrivBayes still needs quite a lot of data to be trained properly. But the
purpose of data augmentation is precisely to augment small data sets in a realistic yet
cheap way. However, only as many instances were sampled after PrivBayes as were in
the original dataset. So, it could be tested whether adding sampled instances to the
original dataset or just using larger datasets gives better results for this technique.
Looking at the various metrics, it turns out that the F1 measure suffers the most. On
average, the classifiers perform worse on F1 after data augmentation, across all datasets,
compared to the other two measures.

2.3. CONCLUSION 39

PrivBayes : accuracy

Model Dataset 1 Dataset 2 Dataset 3
Without With DA Without With DA Without With DA
DA DA DA
Logistic Regression | 0,833741 | (0,814844) | 0,832153 | (0,829826) | 0,809678 | (0,804939)
Decision Tree 0,727339 | 0,803749 0,809316 | (0,799641) | 0,796062 | (0,777807)
KNN 0,852633 | (0.8138) 0,812223 | (0,803341) | 0,795428 | (0,794594)
XGBoost 0,740687 | 0,821953 0,832417 | (0,828611) | 0,821225 | (0,818321)
Random Forest 0,744328 | 0,820219 | 0,826866 | (0,825491) | 0,815685 | (0,793492)
MLP 0,833048 | (0,821257) | 0,820206 | (0,814072) | 0,815852 | (0,812148)
PrivBayes : F1
Model Dataset 1 Dataset 2 Dataset 3
Without With DA Without With DA Without With DA
DA DA DA
Logistic Regression | 0,363554 | (0,209747) | 0,157064 | (0,075647) | 0,35434 | (0,32235)
Decision Tree 0,529902 | (0,372222) | 0,264381 | {0,192422) | 0,433687 | (0,421217)
KNN 0,571273 | (0,312144) | 0,259978 | (0,138574) | 0,427678 | (0,352207)
XGBoost 0,539208 | (0,326174) | 0,130967 | {0,040575) | 0,469158 | (0,456055)
Random Forest 0,582282 | (0.334727) | 0,213791 | (0,048975) | 0,470623 | (0,438886)
MLP 0,414962 | (0,30105) 0,310667 | (0,14058) 0,452441 | (0,43512)
PrivBayes : AUC
Model Dataset 1 Dataset 2 Dataset 3
Without With DA Without With DA Without With DA
DA DA DA
Logistic Regression | 0,610142 | (0,555019) | 0,538098 | (0,516095) | 0,604462 | (0,592079)
Decision Tree 0,676846 | (0,612292) | 0,570145 | (0,538016) | 0,637506 | (0,630374)
KNN 0,720794 | (0,588096) | 0,567312 | (0,520756) | 0,634561 | (0,600715)
XGBoost 0,67391 (0,597131) | 0531429 | (0.507421) | 0,65512 (0,64872)
Random Forest 0,704954 | (0,598384) | 0,555141 | (0,507527) | 0,656314 | (0,640769)
MLP 0,633151 | (0,585836) | 0,592964 | (0,526102) | 0,646919 | (0,638494)

Figure 2.18: The accuracy, F1 and AUC values for all datasets as predicted by the
models on the datasets with and without PrivBayes data augmentation. Legend: (...):
negative difference i.e. the models perform worse after data augmentation - Bold:
the difference in performance before and after data augmentation is larger than 5%
- underlined and in italics: the difference is found to be significant after performing an
ANOVA with alpha equal to 0.05.

2.3 Conclusion

The two simplest techniques to implement and to understand were tested first in this
section. There is one technique that certainly never works: data swapping. The perfor-
mance was invariably lower after applying this technique. Adding noise to the data, on
the other hand, could produce interesting results. Decision trees, XGBoost and random
forests in particular benefited from this technique. However, the results depended on
the dataset used, with the smallest dataset achieving the best results.

The best known data augmentation technique for tabular data proved why it is a stan-
dard within this research area. Although the accuracy is lower after applying SMOTE;,
the performance in terms of F1 and AUC is much higher. The classifiers that bene-
fit most from SMOTE are the logistic regression and MLP classifiers. Using a logistic

40 CHAPTER 2. EXPERIMENTS

Best combinations of models and DA techniques
Logistic Decision KNN XGBoost Random MLP
Regression Tree Forest
Noise X V* X V¥ V* X
Data Swapping X X X X X X
SMOTE \ X V* V- X \
CTGAN Indeterminate
PrivBayes Indeterminate

Figure 2.19: Table showing the best combinations of DA techniques and models for credit
scoring datasets. Legend: X: This combination does not work - V: This combination
works - V*: This combination works optimally for small datasets - V-: This combination
works, but is not optimal relative to the others - Indeterminate: No conclusions could
be drawn based on the research done here.

regression model has the advantage of using a simple, easy and quickly implementable
model, but the disadvantage is that this model is not as powerful as the others. So
although these classifiers benefit greatly from the application of SMOTE, this does not
automatically mean that they are the best performing. An MLP classifier on the other
hand is very high-performing but also requires the most time and computing power to
implement. So depending on the available capacity, it can also be useful to implement
for example an XGBoost classifier. Relatively speaking, the results increase less, but
this is a high-performance classifier that still requires less time and processing power
than an MLP model. When working with small datasets, the KNN classifier also proved
a valid option.

Although the latter two techniques are the most state-of-the-art, little benefit has been
gained from them. With CTGAN, the reason might be that the algorithm was not run
with enough epochs. From 500 to 1000 epochs, there was a noticeable improvement in
the results. PrivBayes did best with the largest data set. From this we can cautiously
conclude that this technique needs quite a lot of data to be trained, which somewhat
contradicts the purpose of data augmentation. In any case, these techniques are more
difficult to implement and tune and require a lot of time to run. Depending on the
context and the company that wants to implement them, it might be better to go for a
slightly simpler technique.

2.4 Discussion

Due to a lack of time and computing power, not all algorithms were implemented op-
timally. For example, PrivBayes could be tested with different degrees in the Bayesian
Network and CTGAN could be run with even more epochs. Furthermore, analysing
the results gave rise to other ideas: instead of using only the samples generated by the
CTGAN or PrivBayes algorithm, these could also be added to the original dataset. The
code of these algorithms could also be adapted to better fit specific (types of) datasets.
Different techniques could also be combined: noise or SMOTE could be implemented
first and a more complex technique afterwards. Furthermore, only techniques that are

2.4. DISCUSSION 41

already quite well-known within this research area have been implemented here, but
other techniques such as VAE or adversarial attacks also offer possibilities that have not
been explored here.

42

CHAPTER 2. EXPERIMENTS

Appendix A

A.1 Appendix
A.1.1 Graphs SMOTE

43

44 APPENDIX A.

SMOTE: accuracy

09
0,85
-t e, — = —-—
08
e Dataset 1, no DA
e Dataset 1, with DA
075 = = Dataset 2, no DA
= == Dataset 2, with DA
------ Dataset 3, no DA
------ Dataset 3, with DA
0,7
0,65
0,6
Logistic Regression oT KNN XGBoost Random Forest MLP
SMOTE: F1
0,7
0,6
0,5
e Dataset 1, no DA
04 Dataset 1, with DA
== == Dataset 2, no DA
Dataset 2, with DA
03
«seees Dataset 3, no DA
)————- §
~ «ssees Dataset 3, with DA
4 N
02 / N SO~
/ N 'l S o
g ~
/ N -,
/ N o
/
0,1 7
0
Logistic Regression DT KNN XGBoost Random Forest MLP
SMOTE: AUC
038
0,75
0,7
= Dataset 1, no DA
Dataset 1, with DA
0,65 == == Dataset 2, no DA
== == Dataset 2, with DA
«sseee Dataset 3, no DA
«+eees Dataset 3, with DA
0,6
————-
e - -
~ - -
0,55 o S _- ~<Z
, S - -
, ~
4
0,5
Logistic Regression DoT KNN XGBoost Random Forest MLP

Figure A.1: The accuracy, F1 and AUC given for all models and datasets before
after applying SMOTE.

and

A.1. APPENDIX

A.1.2 Graphs CTGAN

CTGAN 500: accuracy

0,86
0,84
S T e oen g e o
0,82 SeeeterTereiitssessuees
0,8 . < ¥ cffeeee
0,78
0,76
0,74
0,72
0,7
Logistic DT KNN XGBoost Random MLP
Regression Forest
e Dataset 1, no DA Dataset 1, with DA == <= Dataset 2, no DA
Dataset 2, with DA se«+«« Dataset 3, no DA +ee-e« Dataset 3, with DA
CTGAN 500: F1
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
Logistic DT KNN XGBoost Random MLP
Regression Forest
e Dataset 1, no DA Dataset 1, with DA Dataset 2, no DA
Dataset 2, with DA eeceee Dataset 3, NnODA cceccece Dataset 3, with DA
CTGAN 500: AUC
0,75
0,7
0'65 e®®%seee, .--""'."
;;..-.,'."'” Ceeeen S e e e sttt et tieieiaaaaaneee
0,6 :
0,55 - - = -
0,5
Logistic DT KNN XGBoost Random MLP
Regression Forest

e Dataset 1, no DA Dataset 1, with DA == == Dataset 2, no DA

Dataset 2, with DA «e++«+ Dataset 3, no DA «ee«e+ Dataset 3, with DA

45

Figure A.2: The accuracy, F1 and AUC given for all models and datasets before and

after applying CTGAN with 500 epochs.

46 APPENDIX A.

CTGAN 1000: accuracy

0,88
0,86
0,84 ,
0,82 ’
0,8 ..
0,78 :
0,76
0,74
0,72
0,7
Logistic DT KNN XGBoost Random MLP
Regression Forest
e Dataset 1, no DA Dataset 1, with DA == == Dataset 2, no DA
Dataset 2, with DA ese+e+ Dataset 3, no DA «e-e++ Dataset 3, with DA
CTGAN 1000: F1
0,7
0,6
0'5 EEEEEE R R R RN
0’4 ._.,.----.......-.o-"
0,3
0,2
0,1
0
Logistic DT KNN XGBoost Random MLP
Regression Forest
Dataset 1, no DA Dataset 1, with DA == <= Dataset 2, no DA
Dataset 2, with DA e¢+«++ Dataset 3, no DA eesee+ Dataset 3, with DA
CTGAN 1000: AUC
0,75
0,7
0,65--"'---..............,.
0,6,.o""
o ...-..-""’ - an o= oy - - - -
,55 - ST -=-
0,5
Logistic DT KNN XGBoost Random MLP
Regression Forest

e Dataset 1, no DA

Dataset 1, with DA == == Dataset 2, no DA

Dataset 2, with DA e«+++« Dataset 3, no DA «e+-e« Dataset 3, with DA

Figure A.3: The accuracy, F1 and AUC given for all models and datasets before and
after applying CTGAN with 1000 epochs.

A.1. APPENDIX

A.1.3 Graphs PrivBayes

PrivBayes: accuracy

0,86
0,84
0,82

0,8
0,78
0,76
0,74
0,72

0,7

Logistic Decision Tree KNN XGBoost Random MLP
Regression Forest

e Dataset 1, no DA Dataset 1, with DA == <= Dataset 2, no DA

Dataset 2, with DA ee+++« Dataset 3, no DA e+eeee Dataset 3, with DA

PrivBayes: F1
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Logistic Decision Tree KNN XGBoost Random MLP
Regression Forest

e Dataset 1, no DA Dataset 1, with DA == == Dataset 2, no DA

Dataset 2, with DA ee+++« Dataset 3, no DA ++eee+ Dataset 3, with DA

PrivBayes: AUC

0,75
0,7
0,65
0,6
0,55
0,5
0,45
0,4

Logistic Decision Tree KNN XGBoost Random MLP
Regression Forest

e Dataset 1, no DA

Dataset 1, with DA == == Dataset 2, no DA

Dataset 2, with DA se++«« Dataset 3, no DA e+« Dataset 3, with DA

47

Figure A.4: The accuracy, F1 and AUC given for all models and datasets before and

after applying PrivBayes.

48

APPENDIX A.

Bibliography

Badu-Marfo, G., Farooq, B., & Paterson, Z. (2020). Composite travel generative
adversarial networks for tabular and sequential population synthesis.
arXiv:2004.06838 [cs, stat]. http://arxiv.org/abs/2004.06838

Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., & Detyniecki, M.
(2019). Imperceptible adversarial attacks on tabular data. arXiv:1911.03274 [cs,
stat]. http://arxiv.org/abs/1911.03274

Baowaly, M. K., Lin, C.-C., Liu, C.-L., & Chen, K.-T. (2019). Synthesizing
electronic health records using improved generative adversarial networks. Journal
of the American Medical Informatics Association, 26(3), 228-241.
https://doi.org/10.1093 /jamia/ocy142

Batista, G. E. A. P. A, Prati, R. C., & Monard, M. C. (2004). A study of the
behavior of several methods for balancing machine learning training data. ACM
SIGKDD Explorations Newsletter, 6(1), 20-29.
https://doi.org/10.1145/1007730.1007735

Bichler, M., & Kiss, C. (2004, december). A Comparison of Logistic Regression,
k-Nearest Neighbor, and Decision Tree Induction for Campaign Management .
AMCIS 2004 Proceedings. Americas Conference on Information Systems (AMCIS).

Boquet, G., Morell, A., Serrano, J., & Vicario, J. L. (2020). A variational
autoencoder solution for road traffic forecasting systems: Missing data
imputation, dimension reduction, model selection and anomaly detection.
Transportation Research Part C: Emerging Technologies, 115, 102622.
https://doi.org/10.1016/j.trc.2020.102622

Briscoe, E., & Feldman, J. (2010). Conceptual complexity and the bias/variance
tradeoff. Cognition, 118(1), 2-16. https://doi.org/10.1016/j.cognition.2010.10.004
Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., & Duchi, J. C. (2022).
Unlabeled data improves adversarial robustness. arXiv:1905.13736 [cs, stat].
http://arxiv.org/abs/1905.13736

Cartella, F., Anunciacao, O., Funabiki, Y., Yamaguchi, D., Akishita, T., &
Elshocht, O. (2021). Adversarial attacks for tabular data: Application to fraud

detection and imbalanced data. arXiv:2101.08030 [cs].
http://arxiv.org/abs/2101.08030

49

20

BIBLIOGRAPHY

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). MLSMOTE:
Approaching imbalanced multilabel learning through synthetic instance
generation. Knowledge-Based Systems, 89, 385-397.
https://doi.org/10.1016/j.knosys.2015.07.019

Chawla, N. V., Bowyer, K. W.; Hall, L. O., & Kegelmeyer, W. P. (2002). Smote:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16, 321-357. https://doi.org/10.1613/jair.953

Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). Smoteboost:
Improving prediction of the minority class in boosting. In N. Lavrag, D.
Gamberger, L. Todorovski, & H. Blockeel (Red.), Knowledge Discovery in
Databases: PKDD 2003 (pp. 107-119). Springer.
https://doi.org/10.1007/978-3-540-39804-212

Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., & Sun, J. (2018).
Generating multi-label discrete patient records using generative adversarial
networks. arXiv:1703.06490 [cs]. http://arxiv.org/abs/1703.06490

Data augmentation in python: Everything you need to know. (2020, oktober 20).
Neptune.Ai. https://neptune.ai/blog/data-augmentation-in-python

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, 1. (2020).
Jukebox: A generative model for music. arXiv:2005.00341 [cs, eess, stat].
http://arxiv.org/abs/2005.00341

Domingo-Ferrer, J. (2009). Disclosure risk. In L. Liu & M. T. Ozsu (Red.),
Encyclopedia of Database Systems (pp. 848-849). Springer US.
https://doi.org/10.1007/978-0-387-39940-91506

Evans, T., Zayatz, L., & Slanta, J. (1996). Using Noise for Disclosure Limitation
of Establishment Tabular Data. Annual Research Conference and Technology
Interchange.

Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., &
Hovy, E. (2021). A survey of data augmentation approaches for nlp.
arXiv:2105.03075 [cs|. http://arxiv.org/abs/2105.03075

Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). Smote for learning
from imbalanced data: Progress and challenges, marking the 15-year anniversary.
Journal of Artificial Intelligence Research, 61, 863—905.
https://doi.org/10.1613/jair.1.11192

Flossmann, A., & Nolte (Lechner), S. (2006). Combining blanking and noise
addition as a data disclosure limitation method (SSRN Scholarly Paper ID
929429). Social Science Research Network.
https://papers.ssrn.com/abstract=929429

Friedman, J. H., Kohavi, R., & Yun, Y. (1996). Lazy Decision Trees. AAAI-96
Proceedings. AAAIL

BIBLIOGRAPHY 51

Gogoshin, G., Branciamore, S., & Rodin, A. S. (2020). Synthetic data generation
with probabilistic Bayesian Networks [Preprint]. Systems Biology.
https://doi.org/10.1101/2020.06.14.151084

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks.
arXiv:1406.2661 [cs, stat]. http://arxiv.org/abs/1406.2661

Google Developers. (2020) Common problems — generative adversarial
networks. Retrieved 12 november 2021, van
https://developers.google.com/machine-learning/gan /problems

Google Developers. (2021) Background: What is a generative model? —
generative adversarial networks. Retrieved 4 april 2022, van
https://developers.google.com/machine-learning /gan /generative

Greene, W. H. (2003). Econometric analysis (5th ed). Prentice Hall.

Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., &
Courville, A. (2016). Pixelvae: A latent variable model for natural images.
arXiv:1611.05013 [cs]. http://arxiv.org/abs/1611.05013

Hashemi, M., & Fathi, A. (2020). Permuteattack: Counterfactual explanation of
machine learning credit scorecards. arXiv:2008.10138 [cs, stat].
http://arxiv.org/abs/2008.10138

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive Synthetic
Sampling Approach for Imbalanced Learning. 2008 TEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), 1322-1328. https://doi.org/10.1109/IJCNN.2008.4633969

Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data
classification evaluations. International Journal of Data Mining & Knowledge
Management Process, 5(2), 01-11. https://doi.org/10.5121/ijdkp.2015.5201

Huang, D., Song, X., Fan, Z., Jiang, R., Shibasaki, R., Zhang, Y., Wang, H., &
Kato, Y. (2019). A variational autoencoder based generative model of urban

human mobility. 2019 IEEE Conference on Multimedia Information Processing
and Retrieval (MIPR), 425-430. https://doi.org/10.1109/MIPR.2019.00086

Islam, Z., Abdel-Aty, M., Cai, Q., & Yuan, J. (2021). Crash data augmentation
using variational autoencoder. Accident Analysis & Prevention, 151, 105950.
https://doi.org/10.1016/j.aap.2020.105950

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes.
arXiv:1312.6114 [cs, stat]. http://arxiv.org/abs/1312.6114

Kulyukin, V., Mukherjee, S., & Amlathe, P. (2018). Toward audio beehive
monitoring: Deep learning vs. Standard machine learning in classifying beehive
audio samples. Applied Sciences, 8(9), 1573. https://doi.org/10.3390/app8091573

02

BIBLIOGRAPHY

Lee, C. (2021). Data augmentation using a variational autoencoder for estimating
property prices. Property Management, 39(3), 408-418.
https://doi.org/10.1108 /PM-09-2020-0057

Lee, J.-H., Zaheer, M. Z., Astrid, M., & Lee, S.-I. (2020). Smoothmix: A simple
yet effective data augmentation to train robust classifiers. 756-757.

Li, F., Huang, W., Luo, M., Zhang, P., & Zha, Y. (2021). A new VAE-GAN model
to synthesize arterial spin labeling images from structural MRI.
https://doi.org/https://doi.org/10.1016/j.displa.2021.102079

Li, S.-C., Tai, B.-C., & Huang, Y. (2019). Evaluating variational autoencoder as a
private data release mechanism for tabular data. 2019 IEEE 24th Pacific Rim
International Symposium on Dependable Computing (PRDC), 198-1988.
https://doi.org/10.1109/PRDC47002.2019.00050

Liang, X. W., Jiang, A. P., Li, T., Xue, Y. Y., & Wang, G. T. (2020). LR-SMOTE
— An improved unbalanced data set oversampling based on K-means and SVM.
Knowledge-Based Systems, 196, 105845.
https://doi.org/10.1016/j.knosys.2020.105845

Lim, S. K., Loo, Y., Tran, N.-T., Cheung, N.-M., Roig, G., & Elovici, Y. (2018).
Doping: Generative data augmentation for unsupervised anomaly detection with
gan. arXiv:1808.07632 [cs, stat]. http://arxiv.org/abs/1808.07632

Lu, Y., & Xu, P. (2018). Anomaly detection for skin disease images using
variational autoencoder. arXiv:1807.01349 [cs, stat].
http://arxiv.org/abs/1807.01349

Marais, J. A. (2019). Deep Learning for Tabular Data: An Exploratory Study.
Stellenbosch University.

Massel, P., Zayatz, L., & Funk, J. (2006). Protecting the Confidentiality of Survey
Tabular Data by Adding Noise to the Underlying Microdata: Application to the
Commodity Flow Survey*. In Privacy in Statistical Databases (pp. 304-317).

Miot, A. (2021). Adversarial trading. arXiv:2101.03128 [cs, g-fin].
http://arxiv.org/abs/2101.03128

Muralidhar, K., Sarathy, R., & Dandekar, R. (2006). Why swap when you can
shuffle? A comparison of the proximity swap and data shuffle for numeric data. In
J. Domingo-Ferrer & L. Franconi (Red.), Privacy in Statistical Databases (pp.
164-176). Springer. https://doi.org/10.1007/1193024215

Overfitting in machine learning: What it is and how to prevent it. (2017,
september 7). EliteDataScience.
https://elitedatascience.com/overfitting-in-machine-learning

Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., & Kim, Y. (2018).
Data synthesis based on generative adversarial networks. Proceedings of the
VLDB Endowment, 11(10), 1071-1083. https://doi.org/10.14778/3231751.3231757

BIBLIOGRAPHY 53

Ping, H., Stoyanovich, J., & Howe, B. (2017). Datasynthesizer: Privacy-preserving
synthetic datasets. Proceedings of the 29th International Conference on Scientific
and Statistical Database Management, 1-5.
https://doi.org/10.1145/3085504.3091117

Piri, S., Delen, D., & Liu, T. (2018). A synthetic informative minority
over-sampling (Simo) algorithm leveraging support vector machine to enhance

learning from imbalanced datasets. Decision Support Systems, 106, 15-29.
https://doi.org/10.1016/j.dss.2017.11.006

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., & Carin, L. (2016).
Variational autoencoder for deep learning of images, labels and captions.
arXiv:1609.08976 [cs, stat]. http://arxiv.org/abs/1609.08976

Raghuwanshi, B. S., & Shukla, S. (2020). SMOTE based class-specific extreme
learning machine for imbalanced learning. Knowledge-Based Systems, 187, 104814.
https://doi.org/10.1016/j.knosys.2019.06.022

Razavi, A., van den Oord, A., & Vinyals, O. (2019). Generating diverse
high-fidelity images with vg-vae-2. arXiv:1906.00446 [cs, stat].
http://arxiv.org/abs/1906.00446

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., & Mann, T.
(2021). Data augmentation can improve robustness. arXiv:2111.05328 [cs, stat].
http://arxiv.org/abs/2111.05328

Rivera, W. A. (2017). Noise reduction a priori synthetic over-sampling for class
imbalanced data sets. Information Sciences, 408, 146-161.
https://doi.org/10.1016/j.ins.2017.04.046

Sestino, A., & De Mauro, A. (2021). Leveraging artificial intelligence in business:
Implications, applications and methods. Technology Analysis & Strategic
Management, 1-14. https://doi.org/10.1080,/09537325.2021.1883583

Shah, K., Patel, H., Sanghvi, D., & Shah, M. (2020). A comparative analysis of
logistic regression, random forest and knn models for the text classification.
Augmented Human Research, 5(1), 12.
https://doi.org/10.1007/s41133-020-00032-0

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1), 60.
https://doi.org/10.1186/s40537-019-0197-0

Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Text data augmentation for
deep learning. Journal of Big Data, 8(1), 101.
https://doi.org/10.1186 /s40537-021-00492-0

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., & Sutton, C. (2017).
Veegan: Reducing mode collapse in gans using implicit variational learning.
arXiv:1705.07761 [stat]. http://arxiv.org/abs/1705.07761

54

BIBLIOGRAPHY

Stephenson, T. A. (Red.). (2000). An introduction to bayesian network theory and
usage. IDIAP.

Sun, L., & Erath, A. (2015). A Bayesian network approach for population
synthesis. Transportation Research Part C: Emerging Technologies, 61, 49-62.
https://doi.org/10.1016/j.trc.2015.10.010

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions
by data augmentation. Journal of the American Statistical Association, 82(398),
528-540. https://doi.org/10.1080/01621459.1987.10478458

Thanh-Tung, H., & Tran, T. (2020). On catastrophic forgetting and mode collapse
in generative adversarial networks. arXiv:1807.04015 [cs, stat].
http://arxiv.org/abs/1807.04015

Ucar, T., Hajiramezanali, E., & Edwards, L. (2021). Subtab: Subsetting features
of tabular data for self-supervised representation learning. arXiv:2110.04361 [cs,
stat]. http://arxiv.org/abs/2110.04361

van der Maaten, L., Chen, M., Tyree, S., & Weinberger, K. (2014). Marginalizing
corrupted features. arXiv:1402.7001 [cs|. http://arxiv.org/abs/1402.7001

van Dyk, D. A., & Meng, X.-L. (2001). The art of data augmentation. Journal of
Computational and Graphical Statistics, 10(1), 1-50.
https://www.jstor.org/stable/1391021

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. Proceedings of the 25th
International Conference on Machine Learning - ICML 08, 1096-1103.
https://doi.org/10.1145/1390156.1390294

Weiss, G. M. (2004). Mining with rarity: A unifying framework. ACM SIGKDD
Explorations Newsletter, 6(1), 7-19. https://doi.org/10.1145/1007730.1007734

Wu, Z., Wang, S., Qian, Y., & Yu, K. (2019). Data augmentation using variational
autoencoder for embedding based speaker verification. Interspeech 2019,
1163-1167. https://doi.org/10.21437 /Interspeech.2019-2248

Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., & Le, Q. V. (2020). Unsupervised data
augmentation for consistency training. arXiv:1904.12848 [cs, stat].
http://arxiv.org/abs/1904.12848

Xu, L. (2020). Synthesizing tabular data using conditional GAN [Thesis,
Massachusetts Institute of Technology].
https://dspace.mit.edu/handle/1721.1/128349

Xu, L., & Veeramachaneni, K. (2018). Synthesizing tabular data using generative
adversarial networks. arXiv:1811.11264 [cs, stat]. http://arxiv.org/abs/1811.11264

Xu, W., Sun, H., Deng, C., & Tan, Y. (2016). Variational autoencoders for
semi-supervised text classification. arXiv:1603.02514 [cs].
http://arxiv.org/abs/1603.02514

BIBLIOGRAPHY 55

Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics:
Conference Series, 1168, 022022.
https://doi.org/10.1088/1742-6596/1168/2/022022

Zayatz, L. (2007). New Implementations of Noise for Tabular Magnitude Data,
Synthetic Tabular Frequency and Microdata, and a Remote Microdata Analysis
System (Statistics 2007-17; RESEARCH REPORT SERIES). U.S. Census Bureau.
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond
empirical risk minimization. arXiv:1710.09412 [cs, stat].
http://arxiv.org/abs/1710.09412

Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D., & Xiao, X. (2017).
Privbayes: Private data release via bayesian networks. ACM Transactions on
Database Systems, 42(4), 1-41. https://doi.org/10.1145/3134428

Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). Random erasing data
augmentation. Proceedings of the AAAI Conference on Artificial Intelligence,
34(07), 13001-13008. https://doi.org/10.1609/aaai.v34i07.7000

31010

FACULTY OF BUSINESS AND ECONOMICS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIE

tal. +3216325612

fax+ 3216225791

info@acon kuleuvan.be

WWW 2Con Kuleuvan be

