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ARTICLE INFO ABSTRACT

Keywords: Urban population distribution maps are vital elements for monitoring the Sustainable Development Goals,
Population mapping appropriately allocating resources such as vaccination campaigns, and facilitating evidence-based decision
Global South

making. Typically, population distribution maps are derived from census data from the region of interest.
Nevertheless, in several low- and middle-income countries, census information may be unreliable, outdated
or unsuitable for spatial analysis at the intra-urban level, which poses severe limitations in the development
of urban population maps of adequate quality. To address these shortcomings, we deploy a novel framework
utilizing multisource Earth Observation (EO) information such as Sentinel-2 and very-high-resolution Pleiades
imagery, openly available building footprint datasets, and deep learning (DL) architectures, providing end-
to-end solutions to the production of high quality intra-urban population distribution maps in data scarce
contexts. Using several case studies in Sub-Saharan Africa, namely Dakar (Senegal), Nairobi (Kenya) and Dar
es Salaam (Tanzania), our results emphasize that the combination of DL and EO data is very potent and can
successfully capture relationships between the retrieved image features and population counts at fine spatial
resolutions (100 meter). Moreover, for the first time, we used state-of-the-art domain adaptation methods to
predict population distributions in Dar es Salaam and Nairobi (R> = 0.39, 0.60) that did not require national
census or survey data from Kenya or Tanzania, but only a sample of training locations from Dakar. The DL
architecture is based on a modified ResNet-18 model with dual-streams to analyze multi-modal data. Our
findings have strong implications for the development of a new generation of urban population products that
are an output of end-to-end solutions, can be updated frequently and rely completely on open data.

Earth Observation
Deep learning
Urban sustainability
Domain adaptation

1. Introduction that allow for in-depth analyses (Grippa, 2019; Linard et al., 2012).

For instance, Fig. 1 illustrates the number of years since the last census

Spatially detailed population information are necessary requisites
for a wide range of applications related to sustainability and plan-
ning, epidemiology, natural hazards (population at risk) and cru-
cial elements for the monitoring of Sustainable Development Goals
(SDG) (Wardrop et al., 2018). Population distribution information is
essential for planning the appropriate allocation of resources, with
recent examples being vaccination plans during the Ebola outbreak
in West Africa (Wardrop et al., 2018) or for the COVID-19 pandemic
currently ravaging the globe. However, their quality in data scarce
environments such as in low- and middle-income countries is often
unreliable both in terms of spatiotemporal consistency and granular-
ity (Grippa et al.,, 2019b). The disparaging effects of this data gaps
are most evident in Sub-Saharan Africa (SSA) where census data are
not easily accessible, often outdated or not available at spatial levels
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amongst African countries using 2019 as the reference date. Several
countries have not conducted a census since more than 15 years which
complicates evidence-based decision making (Wardrop et al., 2018).
International efforts such as WorldPoP (Tatem, 2017), GHS-PoP
(Freire and Halkia, 2014) and LandScan (Dobson et al., 2000) have
helped mitigate this gap by providing openly accessible, global pop-
ulation distribution products at relatively high spatial resolutions (100
m-1 km) (Chen et al., 2020). Nonetheless, their quality with respect
to the intra-urban level is limited, as they were mostly designed for
large scale analysis (i.e., global or national level). At the same time,
SSA is facing a rapid urbanization shift with current estimates placing
more than 60% of the African population in cities by 2050. This has
led to the proliferation of deprived neighborhoods that often lack basic
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Fig. 1. Number of years since the last census in African countries using 2022 as the reference date.

services and amenities such as adequate open space and access to clean
water. As recent research has shown, deprived urban communities are
vastly underestimated in current global population products (Thomson
et al., 2021), which severely hinders efforts to address the needs of
urban residents and enhance evidence-based policy making. Thus, the
need to better represent the urban population both in terms of accuracy
and spatial detail is imperative.

Unfortunately, mapping population distribution at a fine resolution,
intra-urban level is still vastly under-researched (Thomson et al., 2020).
In the past decade, machine learning (ML) techniques have been consis-
tently deployed to model population distribution as a function of Earth
Observation (EO) information (Stevens et al., 2015). Arguably, the
most common approach to do so is through top-down disaggregation
of census data (Leyk et al., 2019) where ML algorithms are used to
learn the relationship between satellite extracted information (the land
cover) and population density. Alternatively, bottom-up approaches
rely on geostatistical models between spatial layers and micro-census
surveys to extrapolate population counts across the desired area (Neal
et al., 2021; Wardrop et al., 2018). In both cases, a major limitation
of the current state-of-the-art in urban population mapping in data-
scarce environments such as SSA, is the absence of models which are (i)
generalizable and transferable, (ii) least dependent on census data and
(iii) do not require the continuous collection of accurate land-use, land-
cover and ancillary data to perform the census disaggregation. Indeed,
although recent work has demonstrated remarkable achievements in
intra-urban population mapping in SSA cities (Grippa et al., 2019b),
challenges remain, such as the lack of efforts to transfer population
models from an urban area to another, the reliance in proprietary and
costly satellite imagery, and the spatio-temporal restrictions of censuses
or the costly burden of conducting local surveys. Moreover, current ML
methods may not be adequately tailored for spatial data and as such, a
knowledge gap in the field is evident.

Emerging from the field of computer vision and image processing,
deep learning (DL) has shown a fascinating efficiency in almost all tasks
it has set its claws on, particularly on issues related to semantic seg-
mentation, object detection and scene classification (Ma et al., 2019),

through the use of several architectures, particularly of Convolutional
Neural Networks (CNN). CNN automatically extract a range of simple
to complex representational features directly from the raw image data,
alleviating the need for the handcrafting of representational features
which is common in standard ML methods (Krizhevsky et al., 2012).
Surprisingly, there have been few, significant and largescale applica-
tions of the use of CNN for population inference from remotely sensed
images. Robinson et al. (2017) used a standard CNN network, Landsat
data and census population counts to predict population distribution
across the United States at a roughly 1-km spatial resolution, with
results well-aligning with reference data, showing strong advantages
over traditional methods. Tiecke et al. (2017) used CNN architectures
to first detect settlements in remotely sensed imagery (Facebook’s High
Resolution Settlement Layer) and then distribute population at the
global level via ML methods, in a two-step procedure, with encouraging
results. Nonetheless, the focus of their validation was on the accuracy
for detecting buildings and not on the quality of the population dis-
tribution. Recently, Huang et al. (2021) demonstrated the capabilities
of DL to map population patterns in two cities in the United States
through a variety of different state-of-the-art architectures by train-
ing on existing global population grids. Consequently, while showing
some preliminary findings, the field of DL-based population prediction
through satellite images is widely open for exploration, particularly
when it comes to end to end solutions and investigating different EO
data as inputs to the models. Equally importantly, DL approaches have
not been adjusted to the peculiarities of SSA cities (i.e., limited or
absence of training data).

As such, the overarching aim of this research is to investigate and
propose a framework to efficiently couple DL and EO information for
the task of intra-urban population mapping in data scarce environ-
ments. This aim can be partitioned down to the following multifaceted
set of objectives:

1. We investigate the potential of existing gridded urban popula-
tion data derived from sub-meter, very-high-resolution (VHR) satellite
imagery to serve as training data in SSA cities. This will allow for
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Table 1
Satellite and population data used in the study.
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City Earth observation data Population data Building footprints
Sentinel-2 Pleiades Grid level Census level
(acq. date) (acq. date) (date and # cells) (date and # units)
Dakar 2015-11-25 2015-07-07 2013, 20,372 2013, 677 units Google building footprints
(100-m grid) (ANSD (Agence Nationale (Sirkgo ot al 2?)21) P
(Grippa et al., 2019a,b) de la Statistique et de la ”
Démographie), 2013)
Nairobi 2019-02-03 No data No data 2019, 111 units
(Kenya National Bureau of
Statistics, 2019)
Dar es Salaam 2016-07-10 No data No data 2012 units, 79 units

(National Bureau Statistics
Office (NBS), 2012)

the development of significantly more accurate training data than
existing global population products as well as a more adequate source
of validation.

2. We evaluate the potential of state-of-the-art DL approaches to
extract population counts at the grid level using as input multi-source
satellite imagery.

3. We unravel the potential of publicly available EO data such as
Sentinel-2 imagery to map urban population patterns in SSA cities
through a systematic comparison against VHR imagery (Pleiades) and
assess the contribution of geospatial ancillary data such as Google’s
building footprint dataset.

4. For the first time, we explore the transferability potential of
models trained in Sentinel-2 images from a single city to accurately
predict population distribution in other SSA cities where no training
data are used, through tailored domain adaptation (DA) frameworks.

2. Case studies and data

As a proof of concept, we involve data from a set of SSA cities —
Dakar (Senegal), Nairobi (Kenya) and Dar es Salaam (Tanzania). Dakar
is used as the flagship of this research due to the vast amount of
multi-source datasets and high-quality census data available, while the
other two cities are used to evaluate the transferability experiments.
All cities have exhibited strong urban transformation changes in the
last decades and provide diversity with respect to building patterns and
urban morphology. They are all heavily populated cities with intrinsic
morphological variations. For instance, Dar es Salaam is mostly infor-
mally built, while in Nairobi, more than 50% of the population resides
in about 6% of the built-up area, in slumlike conditions (Abascal et al.,
2022a). They are also climatically diverse, ranging from the Sahelian
semi-arid climate of Dakar, the sub-tropical conditions of Nairobi, to
the tropical climate of Dar es Salaam.

Table 1 documents the data used in this study. To investigate
the contribution of different EO information, we used both Sentinel-
2 MSI and VHR Pleiades imagery in Dakar (Fig. 2, panels a, b). The
Sentinel-2 MSI mission acquires optical images at 13 spectral bands
with various spatial resolutions (10-60 m). As our aim is intra-urban
population modeling and mapping, we made use of the 10 m bands
(blue, green, red and near-infrared) which are the best capable to
discriminate between variations of the urban fabric. Sentinel-2 images
are available in Google Earth Engine (GEE), a cloud-based platform for
geospatial data analysis (Gorelick et al., 2017), as analysis-read data-
cubes composed of ortho-corrected images scaled by a factor of 10,000
(UTM projection). The VHR Pleades imagery was acquired at a 50 cm
spatial resolution and the visible bands of the electromagnetic spectrum
were used.

To investigate the transferability potential, we used Sentinel-2 im-
agery in Nairobi and Dar es Salaam (Fig. 3). For Dakar and Nairobi the
top-of-atmosphere Sentinel-2 image (Level-1 A) with the lowest cloud
coverage for the respective year was downloaded from GEE. Due to
the lack of cloud-free images, a cloud-free composite was generated for

Dar Es Salaam, using cloud probability information retrieved via the
Sentinel Hub’s cloud detector for Sentinel-2 imagery.'

In all case studies, we considered building footprints as an addi-
tional input to the experiments. Buildings are an essential residential
population mapping variable, and for modeling purposes, spatially
invariant across domains. The source of the building footprints is the
Open Buildings dataset of Google (Sirko et al., 2021). The dataset
currently covers 64% of the African continent with over 500 mil-
lion building footprints produced (inference date between 2018-2021,
according to Google Earth’s historical archive).

With respect to the population information, a fine scale census
dataset was available in Dakar (Fig. 2, panel d). To create training
and validation data that are suitable for DL frameworks, we acquired a
publicly available product that is derived from the same census, using
VHR land use and land cover to distribute population counts, which is
of unparalleled quality (R? values of over 0.80 at the neighborhood
block level) at a 100-m spatial resolution (Grippa et al., 2019b). In
that way, we could train and validate the models both at the grid and
census level. The gridded map is modeled, taking under acount the
increased population density of deprived urban areas so it can truly
capture intra-urban heterogeneity. Fig. 3 illustrates the images, build-
ing footprints and census data used for the other two cities. The small
temporal mismatch between census and image data (up to 3 years)
is considered acceptable as shown in previous studies employing such
data (Georganos et al., 2021b; Grippa et al., 2019b,a; CIESIN, 2005).

3. Methods
3.1. Deep learning framework

We explore four DL approaches that use different input data in
combination with three model architectures. An overview of the model
architectures is given in Fig. 4. All models are based on residual neural
networks, commonly known as ResNets (He et al., 2016), which have
been identified as a promising architecture for EO data-based popula-
tion mapping (Zhuang et al., 2021; Huang et al., 2021). In the following
two subsections, the architectures of the fusion model (Fig. 4.b) and the
domain adaptation model (Fig. 4.c) are described.

3.1.1. ResNet-18 architecture

The original ResNet architecture, specifically ResNet-18, is shown in
Fig. 4.a. It features 17 convolutional layers with 3 x 3 kernels, followed
by an average pooling layer. After the first layer, the network is split
into four blocks, each consisting of four convolutional layers. Starting
with 64 filters, the number of filters is doubled at the first layer of each
consecutive block, while the size of the feature map is halved. Residual
shortcut connections are inserted throughout the network to avoid the
vanishing gradient problem during network training (He et al., 2016).

L https://github.com/sentinel-hub/sentinel2- cloud-detector.
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Fig. 2. Data used in Dakar, Senegal. (a) Sentinel-2 truecolour composite, (b) Pleiades truecolor composite, (c) Building footprints, (d) census administrative units and (e) gridded
population map at 100 m resolution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Data used in Dar es Salaam, (a) Sentinel-2 truecolour image, (b) building footprints, (c) population density at the census level. Similarly, for Nairobi, (d) Sentinel-2
truecolour composite, (e) building footprints and (f) population density at the census level.

Most off-the-shelf CNN architectures were designed for RGB images
having 3 input channels. However, due to the use of different inputs
with varying channel numbers (i.e., 3 channels for VHR imagery,
4 channels for Sentinel-2 MSI imagery and 1 channel for building
footprints), the first layer of the ResNet architecture was modified to
accommodate different input sizes. For single channel inputs, the first
layer was replaced with a 3 x 3 conv layer with 1 input channel
and 64 output channels, using He initialization to generate the initial
weights (He et al., 2015). The same was done for 4 input channels by
changing the input channel number accordingly. However, He initial-
ization was only used to initialize the weights for the fourth channel,
while the pretrained weights for RBG imagery were preserved for the
first three channels. Lastly, the features extracted by the ResNet en-
coder are converted to a population prediction p using a fully connected
layer, followed by the ReLu activation function to prevent negative
predictions. L2 loss is used to train the network by minimizing the error

corresponding to the sum of the squared difference between the true
population value y and the predicted value p, defined as follows:

£=Y 0’ M

i=1

where n is the number of samples.

3.1.2. Data fusion model

For the fusion of Sentinel-2 MSI data and building footprint data,
a dual-stream model consisting of two ResNet-18 networks was em-
ployed (Fig. 4.c). The ResNet networks process the different inputs
separately, before concatenating the extracted features at the decision
level (i.e., decision level fusion). Previous studies have shown that this
is an effective architectural design for the joint use of multi-modal
data (Hafner et al.,, 2022b; Hu et al., 2019). The final prediction is
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Fig. 4. Overview of the architectures of (a) the modified ResNet-18 model, (b) the dual-stream fusion model and (c) the domain adaptation model.

obtain from the concatenated features via a trainable 1 x 1 convolu-
tion layer followed by the ReLu activation function. This dual-stream
network is trained in a fully supervised fashion using L2 loss (Eq. (2)).

3.1.3. Domain adaptation model

Domain Adaptation (DA) techniques aim to transfer a model from
its training area (i.e., source domain) to new areas (i.e., target domain),
where the data in the new areas is following a different underlying
data distributions (i.e., domain shifts). To overcome domain shifts,
the remote sensing community has developed a variety of DA tech-
niques (Tuia et al.,, 2016). Consistency regularization enforces that
perturbations of a sample should not significantly change the model
output (Laine and Aila, 2016; Sajjadi et al., 2016). Inspired by the
recent success of consistency regularization for DA (French et al., 2017;
Cui et al., 2019), recent research proposed a new DA technique that
leverages unlabeled satellite data acquired by two different sensors, by
employing a separate network stream for each data modality and then
encouraging consistent predictions across them (Hafner et al., 2022a).
Therefore, multi-modal consistency regularization holds great potential
to overcome domain shifts in remotely sensed data.

The proposed DA architecture is almost identical to the architecture
used for data fusion (Fig. 4.c). It also consists of two ResNet-18 streams
that process both data modalities separately. However, unlike the fu-
sion approach, the extracted feature maps are not fused but population
predictions are directly obtained from the Sentinel-2 MSI stream (p5?2)
and the building footprints stream (p®F). To train the model, a twofold
loss function consisting of a supervised loss (£,,,) for labeled samples
and a consistency loss (£.,,,) for unlabeled samples was constructed.
The loss function is defined as follows:

L {ﬁ(p”,y)w(p”,y),
sample — 1, S2 BF
5 - L@, p70),

if y exlfts @
otherwise

The supervised loss function is composed of two sub-terms, measur-
ing the similarity between the two population predictions (p*> and p*/)
and the population label (y), where similarity for both sub-terms was
measured using L2 loss (Eq. (1)).

To adapt the model to the target domain, the proposed DA approach
leverages unlabeled data using consistency regularization. Consistency
regularization is typically implemented with a loss term measuring the
similarity between predictions obtained from different augmentations
of the same unlabeled sample (Oliver et al., 2018). The consistency

loss term is then added to the supervised loss (Bachman et al., 2014).
However, we apply a consistency loss to predictions of the sub-networks
as proposed in the DA framework for multi-modal data (Hafner et al.,
2022a). As a result, inconsistencies between the predicted population
from the Sentinel-2 and building footprint data are penalized during
training. The underlying idea of this approach is that building foot-
prints can be used to adapt the Sentinel-2 sub-network of the model
to the target domain by training both sub-networks to produce similar
population predictions from unlabeled data in the target domain area.
Once the model is trained, only the prediction from the Sentinel-2
stream is used for inference. Thus, the model does not require building
footprints data at the deployment stage.

3.2. Experimental setup

All models were trained for 20 epochs with a batch size of 8. To ac-
celerate training, AdamW (Loshchilov and Hutter, 2018) was employed
as optimizer with an initial learning rate of 10~#. As input, patches of
size 100 x 100 m were used, resulting in an input dimension of 200 x
200 pixels for the VHR imagery. The Sentinel-2 imagery was upsampled
to the same dimension using nearest neighbor interpolation, and the
building footprints were rasterized to a spatial resolution of 0.5 m, also
resulting in an input size of 200 x 200 pixels. Two data augmentation
operations were employed during model training, namely rotations and
flips, in order to enhance the training dataset by generating more vari-
ant versions. While the label remains unchanged, a rotation randomly
rotates images by an angle of k - 90°, where k € {0, 1,2,3}, and a flip
horizontally or vertically flips images with a probability of 50%. We
implemented everything in Python using Facebook’s machine learning
framework PyTorch (Paszke et al., 2019) and trained the networks on
a Nvidia Titan Xp graphics card. Code is available at https://github.
com/SebastianHafner/DDA_PopulationMapping.

3.3. Capturing the intra-urban morphology

The quality of urban population maps is a reflection of the degree
they are able to capture morphological variations of the urban forms
such as land-use. For instance, deprived urban areas (also known
as slums) exhibit higher population densities than planned neighbor-
hoods (Klemmer et al.,, 2020; Kuffer et al.,, 2020, 2016; Thomson
et al., 2021). Moreover, robust population models at fine geographical
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scales, should be able to capture non-residential built-up regions to
satisfactory degrees such as industrial, commercial and administrative
regions (Grippa et al., 2019b). To assess this aspect, we make use of var-
ious products for the three case studies. For Dakar and Dar es Salaam,
we use documented land-use maps, which is produced at the street-
block level using VHR land cover and elevation data and are publicly
available (Grippa et al., 2018; Grippa and Georganos, 2018; Georganos,
2020). In Nairobi, we made use of two datasets, (i) a public land use
product developed from the Spatial Information Design Lab, University
of Columbia (Williams et al., 2014) and a shapefile of deprived resi-
dential areas developed by Spatial Collective and was recently used to
characterize deprivation profiles in Nairobi (Georganos et al., 2021a).
We selected areas larger than 1 hectare (to exclude blocks smaller than
the resolution of the population grids) for 3 classes, namely “Deprived
urban area”, “Planned Residential” and “Administrative, Commercial
and Industrial” (ACI) and extracted the population density of the
different models. In the case of Dar es Salaam and Nairobi, we also
incorporated WorldPop data as an external comparative source.

3.4. Accuracy metrics

In Dakar, we used 70% of the census units for training and 30%
for testing (Fig. 2.d). In Nairobi and Dar es Salaam, we used all
available census units for testing. To evaluate the predictions we
make use of three commonly employed metrics in population studies,
namely the Mean Absolute Error (MAE; Eq. (3)), the Root Mean
Squared Error (RMSE; Eq. (4)) and the coefficient of determination
(R%; Eq. (5)), Linard et al. (2012) and Georganos et al. (2021b).
Additionally, to provide information at the city level for Dar es Salaam
and Nairobi, we computed the ratio between the total sums of predicted
and census population (Pop ratio) as an indicator of practical use of
these models. A value of one implies that the model corrected predicted
the total population counts, while values lower and higher than 1
indicate under- and overestimation, respectively.

3
1 n
MAE=(;)Z|y,~—xi| Q)
i=1
where x;, n is the sample size and y; is the inference.
S'Stes
R2 =1- res (5)
AN tot
where §'S,,, refers to the residual sum of squares and .S.S,,, to the total

variability of the data.

4. Results

4.1. Training

Fig. 5 illustrates the training and testing loss curves for the DL
models. Additionally, Subfigure f illustrates the loss curve for the con-
sistency term used for DA. Losses for all models converged within the
first 5 epochs of training. Furthermore, performances on the test set re-
mained stable towards the end of training (i.e., no overfitting occurred).
The consistency loss sharply increased at the beginning of training,
indicating strong disagreement between the population predictions of
the two sub-networks. However, after the initial training phase, the
consistency loss started to decrease, showing that building footprints
were successfully employed to adapt the Sentinel-2 sub-network to the
target domain.

International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103013

Table 2
MSE, MAE and R’ values at the grid and census levels in Dakar.

Pleiades Sentinel-2 Building Sentinel-2 +
footprints Building
footprints

RMSE 82.6 92.9 112.6 92.7
Grid level MAE 49.6 58.4 70.1 58.0

R? 0.79 0.71 0.59 0.73

RMSE 1773.1 2197.7 2482.2 2182.7
Census level MAE 1061.7 1313.9 1472.3 1269.7

R’ 0.84 0.67 0.59 0.73

4.1.1. Comparative analysis in Dakar

Fig. 6 illustrates the predictions of the DL models in Dakar on the
test samples at the grid level. Not surprisingly, using VHR imagery as
input produced the most accurate population predictions with a MAE
of 49.6 and an RMSE of 82.6. Notably, models using Sentinel-2 imagery
performed remarkably well (MAE = 58.4, RMSE = 92.9), highlighting
its potential for retrieving fine-scale, intra-urban predictions. Interest-
ingly, simply using building footprints as an input produces satisfactory
results with a MAE of 70.1 and an RMSE of 112.6. Combining features
from Sentinel-2 and building footprints exhibits slightly better results
than their individual use.

Aggregating the results at the census level can also be informative
and provides stronger validation as the census population counts are
official data. Fig. 7 exhibits the same type of results but aggregated at
the census level. In a similar fashion, VHR-based predictions are the
most accurate (MAE = 1061.7, RMSE = 1773.1). However, in this case,
the merits of combining Sentinel-2 imagery with building footprints are
more evident. This is most apparent when predicting low population
counts as the overdispersion is clearly reduced compared to single
building footprint or Sentinel-2 models. The results of both rounds of
comparative experiments are shown in Table 2.

4.1.2. Capturing the intra-urban morphology in Dakar

Fig. 8 exhibits the boxplots depicting the population density distri-
bution of each of the selected land use categories in Dakar. It is evident
that there is a clear separation with respect to population density
between the three classes. Encouragingly, all DL-based models appear
to capture these differences. For instance, using the VHR model, which
is the best performing model, deprived areas demonstrated significantly
higher means (mean = 342.54 people per hectare) than planned resi-
dential areas (mean = 155.04 people per hectare). Notably, the average
density within the ACI class was particularly low (average 78.23 people
per hectare) compared to the residential classes, indicating that the
models are able distinguish urban morphological variations. The rest of
the models follow similar patterns, a finding that suggests that Sentinel-
2 data can capture land-use differences and their impact on population
density in a satisfactory manner.

4.2. Transferability experiments

Using training data from Dakar, we apply the Sentinel-2 and build-
ing footprint models in Dar es Salaam and Nairobi to predict population
counts at a 100-m resolution. To validate the predictions, we aggregate
them at the finest census level available in both cities.

4.2.1. Nairobi

Fig. 9 illustrates the results in Nairobi. It is evident that when using
Sentinel-2 as input, the model is unable to capture the intrinsically
different populations distributions of Nairobi (MAE = 35488, RMSE
= 51579), even when considering the addition of building footprints
(MAE = 32503, RMSE = 46 089). The results drastically change when
we apply the consistency-based DA method where the model is also
exposed to unlabeled image and building footprint data in other cities.
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For instance, the DA-based approach consistently produced lower error

metrics (MAE = 23562 and RMSE = 35117) against the non-DA of the various experiments in Nairobi. The spatial patterns appear more

models. Additionally, the inference in the DA approach only uses realistic and aligned with the census population information in the
Sentinel-2 imagery as the building footprints are utilized only during approaches involving DA.

the training stage. Fig. 10 illustrates the gridded population products
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and (d) Sentinel-2 and building footprints. The red line indicates the 1 to 1 axis.

4.2.2. Dar es Salaam

Fig. 11 presents the result outputs for the city of Dar es Salaam. Sim-
ilar with the case of Nairobi, directly applying the Dakar-trained model
in Dar es Salaam was of limited merit both in the case of Sentinel-
2 imagery (MAE = 35693, RMSE = 43270) but also when including
building footprints (MAE = 29595, RMSE = 35147). On the other
hand, the DA-based models captured the relationships between image
and population information in a more realistic way with significantly
lower error margins and more consistent with census data (MAE =
15667, RMSE = 19655). Fig. 12 illustrates the predicted gridded out-
puts for the different experiments where the merits of DA approaches is
evidently shown, with spatial patterns aligning with census values. The
complete evaluation metrics for both cities are described in Table 3.
Notably, the Pop ratio values for Nairobi, indicate an underestimation
of the total population by all models, with the building footprint and
DA-based models being the best performing. In Dar es Salaam, all
models estimated the total population in a more precise manner, with
the building footprint models exhibiting a mild overestimation (Pop
ratio = 1.10), while the DA approach showed a mild underestimation
(Pop ratio = 0.84).

4.2.3. Capturing the intra-urban morphology in Nairobi and Dar es Salaam

As previously assessed in Dakar, Figs. 13 and 14 demonstrate the
capability of the models’ inferences to detect population variations
with respect to land use typologies in Nairobi and Dar es Salaam. To
further investigate their value for applications where no local data are
available, we additionally use WorldPoP products as a benchmark. In
the case of Dar es Salaam, it can be observed that the best performing
DL-based models, better differentiate between residential and non resi-
dential areas. For instance, the mean population density per hectare in

the DA Sentinel-2 model for the ACI class is 54.95 while the value for
planned residential areas is 131.81. The WorldPop product showcases
a diminished ability to detect these intrinsic differences (mean density
for ACI = 106.66, planned residential = 138.95). Moreover, all 3
products appear to correctly assign increased density to the highly
dense deprived residential areas. Notably, in Nairobi, the WorldPop
product exhibits a higher mean population density per hectare for non-
residential areas than residential ones. The DL models appear to better
discriminate between the two types of land use, although marginally.

5. Discussion

One of the bottlenecks in urban population mapping is the de-
pendency on reliable, local census data when performing top-down
disaggregation. In the case of bottom-up approaches, adequate num-
bers of survey (micro-census) information are necessary to develop
geostatistical models which is a tedious and costly process that is
rarely undertaken. While the literature has assessed the strengths and
limitations of both approaches (Leyk et al., 2019; Wardrop et al.,
2018), little effort has been made to assess the potential contribution of
alternative approaches. Our proposed framework suggests that DL and
EO data exhibit a tremendous potential in such direction. By utilizing
census data from a single city of a SSA country, we were able to predict
population in a satisfactory manner in cities of other SSA countries
alleviating the need of local census or survey data. The success of
this approach has important implications regarding the next stage of
global population maps and towards the ideal scenario of end-to-end,
near-real-time urban population mapping using EO information. For
instance, in rapidly urbanizing countries with outdated census data
or cases of rapid migration/displacement, conventional approaches are
likely to fail, while DL-EO methods can be highly promising.
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Fig. 8. Boxplots of population density of different built-up land use types in Dakar, derived from DL-based models using different inputs, (a) Pleiades, (b) building footprints, (c)

Sentinel-2 and (d) Sentinel-2 and building footprints.

Table 3
Accuracy metrics at the census level in Nairobi, Kenya and Dar es Salaam, Tanzania.
Building footprints Sentinel-2 Sentinel-2 + DA Sentinel-2 +
Building Building
footprints footprints
RMSE 31,046.5 51,579.5 46,089.4 35,117.3
Nairobi MAE 20,036.4 35,488.2 32,503.4 23,562.7
R 0.40 0.01 0.61 0.38
Pop ratio 0.79 0.12 0.16 0.57
Dar es RMSE 24671.4 43270.1 35147.5 19655.9
Salaam MAE 16116.6 35693.7 29595.4 15667.1
R? 0.47 0.09 0.46 0.60
Pop ratio 1.10 0.29 0.42 0.84

5.1. When local data are available

As demonstrated in the case of Dakar, when local census informa-
tion is available at a fine spatial scale, EO data with DL models can
very successfully capture the population patterns with particularly low

error rates and were able to discriminate between the various land-
use cases (i.e., residential, industrial and deprived neighborhoods).
Although in the presence of rigorous census data top-down disaggre-
gation methods are typically used, they still require high-resolution
ancillary data to drive such processes (i.e., land cover, land use) which
can be a nuisance, especially when temporal aspects are considered (Tu



S. Georganos et al.

a) Building Footprints

120000
=0.
RMSE = 31046.5
MAE = 20036.4
90000
o N M -
2
o
5 60000 .. 5 -
o . .-
o E .
30000
NP
60000 90000 120000
Observed
¢) Sentinel-2 + Building footprints
120000
R*=0.61
RMSE = 46089.4
MAE = 32503.4
90000
o
2
o
5 60000
od
o
30000
. . .
0
60000 90000 120000
Observed

International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103013

b) Sentinel-2
120000
R*-0.01
RMSE = 51579.5
MAE = 35488.2
90000
o
e
o
T 60000
o
o
30000
B B By ze el s s
60000 90000 120000
Observed
d) DA Sentinel-2 + Building footprints
120000
R*-0.
RMSE = 35117.3
MAE = 235627
90000
o
2
o .
T 60000 .
=4 - .
o g ' -
so000{ - 7/ .

30000 60000 90000 120000
Observed

Fig. 9. DL model predictions aggregated at the census level in Nairobi using different types of image inputs and architectures. (a) Building footprints, (b) Sentinel-2, (c) Sentinel-2
and building footprints and (d) domain adaptation. In (d) the predictions are made using Sentinel-2 imagery (the building footprints are used only during the training stage).

Population
w High : 655

Low: 0

Population density
(population per square km)
I 327 - 3048

I 3049 - 7937
I 7938 - 17891
[ ] 17892- 29962
[ 20963 - 44875

I 44876 - 140877

Fig. 10. Predicted population distribution maps in Nairobi, Kenya using different inputs and architectures. (a) Building footprints, (b) Sentinel-2, (c) Sentinel-2 and building
footprints, (d) domain adaptation and (e) population density at the census level. In (d) the predictions are made using Sentinel-2 imagery (the building footprints are used only

during the training stage).

et al., 2022). End-to-end approaches such as ours can easily be used
to project population evolution across decadal periods, alleviating the
need for a new census to be conducted as it only relies on EO data and
available geospatial information such as building footprints, which are
becoming globally available at a rapid pace since the past few years. In
the case of limited survey (micro-census) data, rather than complete
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census data being available, the proposed method can be of benefit
as it can make use of unlabeled image data to increase the quality of
the inferences. Census-independent DL approaches using micro-census
data were recently deployed with success (Neal et al., 2021) further
fortifying our position.
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5.2. In the face of data scarcity

Without a doubt, the most impactful aspect of this work is in urban
areas where neither census nor micro-census information is available.
In an urban context, the underlying rational is that although variable
across countries, the relationship between image features and popula-
tion density is relatively stable and can be retrieved with the help of (a)
unlabeled image data and (b) guidance from ancillary information such
as building footprints. Both types of data investigated in this work are
openly available as we made use of Sentinel-2 imagery and Google’s
building footprints data for the transferability experiments. Equally
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important, the proposed method uses Sentinel-2 data for the prediction
while utilizing the building footprints only during the training stage.
This provides solutions in the case where building footprints are also
not available, provided the network has been adequately trained in
similar areas before. Another important aspect is that the proposed
framework can be used when census data are available but unreliable
for a particular residential type. This is a common issue in deprived
urban areas (slums), where official records can be vastly underesti-
mated (Abascal et al., 2022b; Kuffer et al., 2020; Thomson et al., 2021).
Nonetheless, we have to stress the fact that the proposed framework
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Fig. 14. Boxplots of population density of different built-up land use types in Nairobi, derived from the best performing DL-based models and WorldPoP, (a) Building footprints,
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is only but a first step in evaluating the potential of DL for high-
quality population inferences. The error margins when applying the
DL-EO models in areas without local training data are not marginal
and can suffer from significant over- or underestimations, and should be
interpreted with caution and according to the specifications of each ap-
plication case. They, however, provide encouraging insights and strong
evidence to pursue large-scale training (i.e., on several high-quality
census/survey data) to create domain invariant population models at
national/continental levels. Moreover, the best performing DL-models
in Nairobi and Dar es Salaam (building footprint and DA- based) were
able to better differentiate population density between the different
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land-uses than WorldPop products without using local data at all. While
their overall accuracy can range from moderate to satisfactory it implies
that satellite features processed through DL algorithms can retrieve
intrinsic properties regarding the urban form, that might be challenging
to assemble otherwise. Nonetheless, DL-based models should not aim
to directly replace conventional geostatistical approaches, as they are
challenging to interpret, data-hungry and computationally expensive
algorithms but rather compliment them. Particularly for small-case
studies, it might be more parsimonious and efficient to undertake
standard approaches such as disaggregation from building data or land
cover maps.
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5.3. Improvements in the use of EO-derived data

In future work, additional experiments can be made with respect
to the input data. For instance, using multitemporal Sentinel-2 images
could improve the performance by reducing seasonal effects (i.e., dry
and wet season). Moreover, the potential of the cloud penetrating radar
Sentinel-1 information can be of merit, particularly in tropical regions
where the acquisition of cloud-free optical imagery is challenging.
Notably, the availability of building footprint data at large scales
is now more accessible than ever. Along with Google’s dataset that
was used in this study, Ecopia (Ecopia and Technologies, 2020), Mi-
crosoft (Microsoft, 2019) have provided building footprints at national
or almost-continental levels in Africa with unprecedented quality and
should be considered for upscaling our recommendations. Last but not
least, upcoming datasets that provide three-dimensional information on
building morphology (i.e., build height, volume) should be investigated
as means to further improve the modeling process (Esch et al., 2022),
as they can reflect key aspects of population density.

5.4. Towards the next steps in urban population mapping

Our results indicate that the next generation of urban population
products should harness the full potential of deep learning and pub-
licly available EO data, particularly in situation of dire data scarcity.
Available census datasets of fine spatial scale should be exploited as
they can provide the means towards generalizable population models,
transcending the needs for local data availability. Domain adaptation
methods are rapidly evolving but demonstrate a key element to such
attempts (Tuia et al., 2016) and should be further investigated. The
proposed framework should be expanded and evaluated in cities of
different geographical environments, configurations and morphologies.

6. Conclusions

We present an end to end deep learning-based framework to model
and map population distribution patterns in three Sub-Saharan African
cities, namely Nairobi, Dar es Salaam and Dakar. We conducted ex-
periments using very-high-resolution (Pleiades) imagery and moderate
resolution Sentinel-2 imagery, along with publically available building
footprint data. Our results demonstrated that population counts can be
retrieved with satisfactory accuracy in situations of abundant training
data and with moderate success in cases where no local data where
available at all. We dealt with the issue of data scarcity by deploying a
consistency-based domain adaptation approach that uses the building
footprints as anchor to formulate the network weights for the satellite
image part of the network. The results pave the way for consistent
and accurate solutions that overcome traditional bottlenecks on the
field such as the reliance in good quality land-cover and land-use
data, as we demonstrated that the Earth observation-based models can
understand differences in land-use such as between informal and formal
settlements, as well as non-residential neighborhoods.
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