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ABSTRACT Machine learning is a promising technique for angle-of-arrival (AOA) estimation of waves
impinging a sensor array. However, the majority of the methods proposed so far only consider a known, fixed
number of impinging waves, i.e., a fixed number of sources (NOS). This paper proposes a machine-learning-
based estimator designed for the case when the NOS is variable and hence unknown a priori. The proposed
estimator comprises a framework of single-label classifiers. Each classifier predicts if waves are present
within certain randomly selected segments of the array’s field of view (FOV), resulting from discretising
the FOV with a certain (FOV) resolution. The classifiers’ predictions are combined into a probabilistic angle
spectrum, whereupon the NOS and the AOAs are estimated jointly by applying a probability threshold whose
optimal level is learned from data. The estimator’s performance is assessed using a new performance metric:
the joint AOA estimation success rate. Numerical simulations show that for low SNR (−10 dB), a low FOV
resolution (2◦) yields a higher success rate than a high resolution (1◦), whereas the opposite applies for mid
(0 dB) and high (10 dB) SNRs. In nearly all simulations, except one at low SNR and a high FOV resolution,
the proposed estimator outperforms the MUSIC algorithm if the maximum allowed AOA estimation error is
approximately equal to (or larger than) the FOV resolution.

INDEX TERMS Angle-of-arrival estimation, number of sources detection, supervised learning, feedforward
neural network.

I. INTRODUCTION
Angle-of-arrival (AOA) estimation of waves impinging a
sensor array has been studied extensively as it has appli-
cations in various fields from array signal processing, e.g.,
wireless communications, radar and sonar [1]. In many prac-
tical applications, the number of waves impinging the array,
henceforth referred to as the number of sources (NOS), is not
constant, meaning it has to be estimated as well. Solutions
to this problem can be categorised into separable and joint
detection methods [2]. In separable detection, the NOS is
estimated before estimating the AOAs, for example through
model order estimators Akaike’s information criterion (AIC)
or the minimum description length (MDL) [3]. On the con-
trary, in joint detection the NOS and the AOAs are estimated
simultaneously.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

Conventional AOA estimators generally require an esti-
mate of the NOS prior to the AOA estimation, and hence they
correspond to the separable detection category. Beamforming
algorithms, e.g., the Bartlett and the Capon beamformers [4],
belong to this class of conventional estimators. Their reso-
lution, i.e., their ability to resolve closely spaced sources,
depends directly on the physical size of the array [1]. This
limitation does not apply to subspace-based super-resolution
algorithms like multiple signal classification (MUSIC) [5],
estimation of signal parameters via rotational invariance
techniques (ESPRIT) [6], and variants thereof like root-
MUSIC [7]. However, these algorithms require the computa-
tionally expensive eigenvalue decomposition. Moreover, the
resolution of the MUSIC algorithm deteriorates for highly
correlated signals, whereas ESPRIT and root-MUSIC can
only be applied in combination with particular array geome-
tries [1]. Maximum likelihood (ML) methods, e.g., [8],
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[9], do not suffer from these fundamental limitations, but
their computational complexity grows exponentially with
the NOS. In order to mitigate the aforementioned short-
comings, various sparsity-based approaches have been pro-
posed, e.g., [10], [11], [12]. While these methods can
handle scenarios of unknown NOSs (i.e., joint detection),
spurious sources are often present in the resulting power
spectra [13].

Recently, supervised-learning-basedAOAestimation algo-
rithms have been proposed to further improve the accuracy
and/or the computational efficiency. These algorithms learn a
mapping between array outputs and AOAs from data directly.
Hence, they do not require specific assumptions regarding
the array geometry or the data model. The majority of these
supervised-learning-based works are only applicable if the
NOS is fixed, henceforth referred to as scenario I. In other
words, they can be considered part of the separable detec-
tion category, but they do not consider the NOS detection
itself. For example in [14], the 2D AOA estimation (i.e.,
azimuth and elevation angle estimation) of a single source
is performed by combining the conventional MUSIC algo-
rithm with different learning algorithms, i.e., neural networks
(NN), Gaussian processes (GP) and regression trees (RT).
All of them consistently outperform the baseline MUSIC
algorithm in terms of the average AOA estimation error, with
improvements up to 50% for GP and RT in particular high-
SNR, low-elevation situations. Similarly, [15] considers the
2D AOA estimation of a single source through an ensemble
of five convolutional neural networks (CNNs), [16] inves-
tigates the 1D AOA estimation of two sources through a
deep neural network (DNN) and [17] proposes to emulate a
large array through a DNN, whereupon the 1D single-source
AOA is estimated using theMUSIC algorithm. In [18], multi-
source 1D AOA estimation is performed by using a separate
support vector machine (SVM) for the estimation of each
AOA. Although this implies that the NOS determines how
many SVMs are required, the NOS detection itself is not
considered.

In many practical applications the NOS is not constant
(which we refer to as scenario II in this paper), hence it is to
be estimated too. Therefore, the joint estimation of the NOS
and the AOAs, i.e., the alternative to separable detection,
is of great relevance. Clearly, an AOA estimator performing
joint estimation comeswith increased complexity, as it should
be capable of estimating a variable number of parameters.
Since this is not straightforward to implement using existing
learning algorithms, it has received less attention. Neverthe-
less, a number of solutions have been proposed. For example,
in [19], a single DNN is deployed for the estimation of both
the NOS (restricted to be between 1 and 4 by design) and
the 1D AOAs. More freedom in terms of the NOSs that can
be handled is provided by the methods presented in [20]
and [21]. There, the estimators (comprising multiple parallel
DNNs in [20] and a single CNN in [21]) are tailored to a
1D grid of search angles (1◦ resolution) within the FOV of
the sensor array. Hence, they formulate the AOA estimation

problem as a classification problem and aim to find those
search angles which represent AOAs. In [20], the predictions
for all search angles are combined into an angle spectrum,
whereupon the arguments of the highest peaks are returned
as the AOA estimates. However, it is not explained how the
estimator deals with scenarios of unknownNOSs. On the con-
trary, [21] uses a user-defined (i.e., not optimized) confidence
level to determine the NOS. Neither [20] nor [21] investigates
how the grid resolution itself affects the predictions of the
learning algorithm.

In this paper, we adopt an approach comparable to the
ones presented in [20] and [21]: we discretise the array’s
FOV, whereupon the joint AOA estimation problem is solved
through classification. The main contributions of this paper
can be summarized as follows:

- A machine learning framework (MLF) is proposed to
jointly estimate the NOS and the AOAs of waves impinging
a sensor array of arbitrary geometry. The MLF consists of
an ensemble of classifiers, trained through supervised learn-
ing, which are organized along a framework based on the
ensemble method random k-labelsets (RAkEL) [22]. Conse-
quently, the proposed MLF can, in principle, be deployed in
combination with any learning algorithm capable of single-
label multi-class classification. Modifications to the RAkEL
method are implemented to tailor it to the AOA estimation
problem.

- A peak detection algorithm is devised in order to jointly
extract the NOS and the AOAs from the probabilistic angle
spectrum. This algorithm comprises a probability threshold,
whose level is optimized based on data. The spectrum peaks
above the threshold are located, whereupon the number of
peaks and their arguments are returned as the NOS estimate
and the AOA estimates, respectively.

- The impact of the resolution of the FOV discretisation
(FOV resolution) on the predictions of the individual clas-
sifiers as well as on the final AOA estimates is investigated
through numerical simulations, using feedforward NNs as
the learning algorithm. It is shown that increasing the FOV
resolution does not necessarily improve the overall joint AOA
estimation success rate (see next point) of the MLF, depend-
ing on the signal-to-noise ratio (SNR).

- A new performance metric, the joint AOA estimation
success rate, is introduced. This metric is based on the success
rate proposed in [15], but here we adapt it to take into account
both the NOS and the AOAs, and to make it depend on a
user-defined maximum allowed AOA estimation error. Its
expected value in case of ideal classifiers is derived for the
case of uniformly distributed random AOAs.

- The MLF is compared to the conventional MUSIC algo-
rithm [5] combined with the MDL and the AIC NOS esti-
mators [3]. Numerical simulations representing a variety of
SNRs (−10, 0, 10 dB) and FOV resolutions (2◦ and 1◦) in
both scenarios I and II show that the proposed MLF achieves
a higher rate of successful joint AOA estimation than the
MUSIC algorithm if the maximum allowed AOA estimation
error is of the order of (or larger than) the FOV resolution.
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This applies to nearly all considered cases, except one at low
SNR (−10 dB) and high FOV resolution (1◦) in scenario I.
The following notations apply throughout the paper. The

transpose operator is denoted by (·)T , (·)H stands for complex
conjugate transpose and E[·] is the expectation operator.
Scalars are denoted as a or A (lightface), whereas a (boldface
lowercase) denotes a column vector and A (boldface upper-
case) is a matrix. <(·) and =(·) represent the real and imagi-
nary part of a complex variable or function, respectively. The
n×n identity matrix is denoted as In and diag(a) is a diagonal
matrix with the elements of a on the diagonal.
The remainder of this paper is structured as follows.

The data model and the problem statement are discussed
in Section II. The proposed AOA estimator is presented in
Section III, whereupon performance metrics are described
in Section IV. The conducted simulations are described in
Section V and their results are presented and analyzed in
Section VI. Conclusions follow in Section VII.

II. DATA MODEL AND PROBLEM STATEMENT
Let’s consider Q narrowband sources (i.e., incident plane
waves) in the far-field of a uniform linear array (ULA)
composed of N sensors with inter-element spacing d . It is
assumed that the sources and the sensors are all in the same
plane, such that the direction-of-arrival (DOA) of each inci-
dent plane wave can be described by a single parameter, i.e.,
an angle-of-arrival (AOA). Hence, a one-dimensional (1D)
AOA estimation problem is considered. The AOA of the qth

wave equals θq, with q = 1, . . . ,Q, and is defined with
respect to the ULA’s broadside. The problem addressed in this
paper is the joint estimation of the number of sources (NOS)
Q and the AOAs θ1, . . . , θQ given T snapshots of the sensor
array output.

The sensor array output y(t) ∈ CN×1, sampled at time
instance t , is represented by the signal model

y(t) = A(θ1, . . . , θQ)s(t)+ n(t), (1)

where s(t) ∈ CQ×1 and n(t) ∈ CN×1 represent the
signal waveforms and the element noise, respectively, and
A(θ1, . . . , θQ) ∈ CN×Q is the array manifold consisting of
Q steering vectors, i.e.

A(θ1, . . . , θQ) = [a1(θ1), . . . , aQ(θQ)]. (2)

The qth steering vector aq(θq) ∈ CN×1 describes the array
response to the qth wave and is defined as

aq(θq) =
[
1, ej

2π
λ
d sin θq , . . . , ej

2π
λ
(N−1)d sin θq

]T
, (3)

where λ is the wavelength of the transmitted signal.
In this paper, s(t) and n(t) are both assumed to be i.i.d.

zero-mean complex Gaussian random variables. Hence, the
signal covariance matrix is given by

P = E[s(t)sH (t)] = diag([σ 2
1 , . . . , σ

2
Q]

T ), (4)

where σ 2
q denotes the variance of the qth signal. It is assumed

that the noise power is equal over all sensors, such that the

noise covariance matrix is defined as

Q = E[n(t)nH (t)] = ν2IN , (5)

where ν2 is the noise variance. Hence, the covariance matrix
equals

R = E[y(t)yH (t)] = APAH
+Q. (6)

In practice, R has to be estimated from noisy array measure-
ments. For an array measurement consisting of T snapshots,
the maximum likelihood estimate, R̂, is computed as

R̂ =
1
T

T∑
t=1

y(t)yH (t), (7)

where it is assumed that the AOAs θ1, . . . , θQ (and therefore
Q as well) are identical for all T snapshots {y(1), . . . , y(T )}.

The machine learning framework developed for the joint
AOA estimation problem is presented next.

III. SUPERVISED-LEARNING-BASED JOINT AOA
ESTIMATION FRAMEWORK
The proposed learning-based estimator comprises two main
components: (I) an ensemble of learning-based classifiers
organized along a framework, and (II) a procedure to convert
the predictions of these classifiers to angle-of-arrival (AOA)
estimates. We proceed by first presenting each component
and the related aspects, followed by a description of the
deployment procedure of the estimator as a whole.

A. AOA ESTIMATION FRAMEWORK
AOA estimation in scenarios with a variable number of
sources (NOS) implies that the number of parameters to
be estimated is variable too. As this is not straightforward
to implement using existing supervised learning algorithms,
a framework is devised to recast the problem. This framework
is the core of the estimator as it defines the number of classi-
fiers in the ensemble, what their target outputs should be dur-
ing training, and how their predictions should be interpreted
and converted into AOA estimates during deployment.

1) MULTI-SOURCE AOA ESTIMATION THROUGH
CLASSIFICATION
Consider the array’s field of view (FOV) defined by the
interval [θmin, θmax). This interval is discretised into M non-
overlapping segments. Although not necessary, the presented
method is specialized to a regular discretisation. Therefore,
each segment spans 1θ degrees, where

1θ =
θmax − θmin

M
. (8)

Hence, 1θ denotes the angle resolution of the FOV discreti-
sation, henceforth abbreviated as the FOV resolution. The ith

FOV segment is defined by the interval [θi,min, θi,max), where

θi,min = θmin + (i− 1)1θ (9a)

θi,max = θmin + i1θ (9b)
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and i = 1, . . . ,M . Using the discretised FOV, we recast
the AOA estimation problem as a classification problem: the
proposed estimator aims to find those, and only those, FOV
segments which include at least one of the AOAs θ1, . . . , θQ.
This is a so-called multi-label multi-class (or simply multi-
label) classification problem [23]: M distinct labels (here,
non-overlapping FOV segments) exist, of which at most1 Q
should be assigned to a single instance (here, a collection of
T snapshots of the array output).
Multi-label classification problems have been addressed

successfully by transforming them into multiple single-label
classification problems through the random k-labelsets
(RAkEL) method [22]. This method is the basis for the AOA
estimation framework, hence we present its main principles
below.

2) RAkEL FOR MULTI-LABEL CLASSIFICATION [22]
RAkEL transforms a multi-label problem of M labels,
{λ1, . . . , λM }, into m single-label problems of 2k labels
(where k < M ) such that it can be solved by m single-
label classifiers h1, . . . , hm. This is achieved in two steps.
First, the multi-label problem is divided in m smaller (but
still multi-label) problems by generatingm subsets of k labels
(called k-labelsets). The second step is the transformation of
the smaller multi-label problems into single-label problems
via a method called label powerset (LP). The LP of k-labelset
Rj (j = 1, . . . ,M ), denoted as P(Rj), is the set containing all
2k possible subsets of Rj as its elements. For example, if k =
2 and Rj = {λa, λb}, then P(Rj) = {{}, {λa}, {λb}, {λa, λb}}.
Hence, by defining 2k new labels, each of them representing
a different element of P(Rj), the jth multi-label problem can
be solved indirectly by single-label classifier hj.
The k-labelsets can be generated via random sampling

either with or without replacement, referred to as RAkELo
and RAkELd, respectively. Here, the subscript ‘o’ stands for
overlapping and the ‘d’ for disjoint. Contrary to RAkELd,
a label could be included in multiple k-labelsets in RAkELo
in which case the final prediction on whether to assign this
label is obtained by a majority voting procedure. Averaged
over 8 datasets from different fields, RAkELo outperforms
RAkELd in terms of the F1-score, a measure for predictive
performance [22]. The authors of [22] recommend to use
RAkELo with a small k (e.g., k = 3) and M < m < 2M ,
as it is more efficient to use a large m than a large k in terms
of the computational burden.

3) COMBINING RAkELd AND RAkELo FOR AOA ESTIMATION
In this paper, RAkEL is applied for the sake of joint AOA
and NOS estimation. Hence, the labels λ1, . . . , λM represent
the FOV segments, where the ith segment is defined by
the interval [θi,min, θi,max) (9). However, rather than using
either RAkELo or RAkELd, we propose to combine both
variants, because of the following: when generating the

1The number of labels to be assigned is smaller than Q if multiple AOAs
belong to the same FOV segment.

TABLE 1. Example RAkEL-based [22] AOA estimation framework with
k = 2, M = 4, L = 2.

k-labelsets via random samplingwith replacement (RAkELo),
one cannot control the number of k-labelsets in which a
particular label is included. More specifically, as each label
is selected with equal probability, there is a probability of
((M−k)/M )m for a label not to be included in any k-labelset.
For the application addressed in this work, this implies that
certain segments of the FOV might not be considered by the
AOA estimator. This is clearly problematic as the estimator
would not be able to ‘see’ waves with AOAs within those
segments. To circumvent this problem without having to
increase m and/or k (which increases the computational
burden), it is proposed to approximate RAkELo by using L
independent ‘layers’ of RAkELd. Consequently, each label
is included in exactly L k-labelsets and the majority voting
procedure of RAkELo can be applied for all labels λ1,. . . ,λM .
The total number of classifiers in this layered framework
equals

m = LdM/ke, (10)

where d·e rounds up the argument to the nearest integer.2 It
is worthwhile to note that both increasing the FOV resolution
(i.e., decreasing 1θ ) and increasing the number of layers L
results in a larger number of classifiers in the framework.
An example of the proposed layered framework is presented
in the first 2 columns of Table 1.

B. CONVERTING CLASSIFIER PREDICTIONS TO JOINT AOA
ESTIMATES
Section III-A described how the AOA estimation problem
is decomposed into multiple single-label classification prob-
lems. Here, we present how the classifiers’ predictions are
converted to NOS and AOA estimates when the estima-
tor is deployed. To be as generic as possible regarding the
single-label learning algorithm, it is assumed that the its

2By proper choice ofM , the existence of a labelset consisting of less than
k labels can be prevented and rounding can be discarded.
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prediction comprises a set of probabilities, rather than a single
index.

1) CLASSIFIER PREDICTIONS
Let’s denote the elements of P(Rj) (i.e., the label subsets
of Rj) as R̃j,1, . . . , R̃j,2k . Hence, by definition it holds that
R̃j,k̃ ⊆ Rj ⊂ {λ1, . . . , λM }, where k̃ = 1, . . . , 2k . Further-
more, we denote any prediction of classifier hj as the set
{P̃j,1, . . . , P̃j,2k }, where P̃j,k̃ represents the probability that
there is at least one AOA within every FOV segment repre-
sented by the labels in R̃j,k̃ , according to classifier hj. Hence,
P̃j,k̃ is directly related to the label subset R̃j,k̃ , as visualised
by columns 3 and 4 of Table 1. We assume that 0 ≤ P̃j,k̃ ≤ 1

and that
∑2k

k̃=1 P̃j,k̃ = 1.
Rather than converting the probabilistic predictions

P̃j,1, . . . , P̃j,2k to Boolean variables (i.e., 1 for the highest
probability and 0 for all the others) and subsequently applying
the majority voting procedure of RAkELo, we adopt another
approach to estimate the AOAs. This approach is presented
next.

2) COMPUTING NOS AND AOA ESTIMATES
To prevent the loss of information in this stage of the esti-
mation process, all probabilistic predictions P̃j,k̃ (with j =
1, . . . ,m and k̃ = 1, . . . , 2k ) are converted to per-label-
predictions P̄i,j,k̃ (i = 1, . . . ,M ) according to

P̄i,j,k̃ =

{
P̃j,k̃ , λi ∈ R̃j,k̃ ,

0, otherwise.
(11)

An example is presented in the 4 rightmost columns of
Table 1. Then, the per-label-predictions P̄i,j,k̃ are combined
into segment probabilities P1, . . . ,PM as

Pi =
1
L

m∑
j=1

2k∑
k̃=1

P̄i,j,k̃ . (12)

The division by L in (12) guarantees that 0 ≤ Pi ≤ 1, as each
label is included in exactly L k-labelsets. Hence,Pi represents
the probability that there is at least one AOA within the ith

FOV segment, according to the L classifiers evaluating it.
Finally, we interpret the sequence of probabilities

P1, . . . ,PM as an angle spectrum, similar to the work pre-
sented in [20]. In order to jointly extract the NOS and the
AOAs from this spectrum, we propose to use a straightfor-
ward peak detection algorithm. This algorithm locates all
spectrum peaks above a threshold and returns the number
of peaks as the NOS estimate, Q̂, and their arguments as
the AOA estimates θ̂ , . . . , θ̂Q̂. This approach prevents the
existence of spurious AOA estimates at labels neighboring
a desired label.3 However, if two or more AOAs correspond
to neighboring FOV segments, they cannot be distinguished.

3Also, the proposed method accommodates the use of different FOV
discretisations (e.g., random non-uniform discretisations) for the different
framework layers. A first step in this direction is presented in [24].

FIGURE 1. Example spectrum and resulting AOA estimates.

Since each peak has a plateau width of 1θ (8) degrees
(the resolution of the discretised FOV), the centre of the
plateau is taken as the estimate. The possible AOA estimates
are therefore defined by the centres of the FOV segments
c1, . . . , cM , where

ci =
1
2
(θi,min + θi,max) = θmin + (i− 1/2)1θ. (13)

An example spectrum and its corresponding AOA estimates
are presented in Fig. 1.

C. DEPLOYMENT PROCESS FLOW
The complete AOA estimation procedure is visualised in
Fig. 2. Three stages can be identified: (I) the preparation
stage, (II) the training stage and (III) testing/estimation stage.
Details regarding each of these stages are explained next.

1) PREPARATION STAGE
The core of the preparation stage is the construction of
the RAkEL-based framework, i.e., the generation of the
k-labelsets R1, . . .Rm, as described in Section III-A. For this,
the array’s FOV and the framework’s topology need to be
defined through the parameters θmin, θmin, and L, k , M ,
respectively, whereupon the FOV resolution 1θ (8) and the
number of classifiers m (10) follow automatically.
Besides the framework construction, a number of settings

regarding the classifier training (e.g., the learning algorithm
and its corresponding design parameters) and the threshold
optimization need to be defined during the preparation stage
as well. Details are clarified below.

2) TRAINING STAGE
In the training stage, the AOA estimator is optimized based
on training data. We assume a training set of Dtrn instances is
available, where an ’instance’ is a collection of T snapshots
of the noisy array output (1), paired with the correspond-
ing AOAs (i.e., the AOAs for which these array outputs
were computed). As the training stage is composed of two
branches, (I) the classifier training branch and (II) the thresh-
old optimization branch, the training set must be split in two
(not necessarily equally large) parts.

The details of the classifier training branch depend on
the employed learning algorithm. However, in general, the
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FIGURE 2. Flowchart of AOA estimator deployment procedure.

procedure contains the following steps. First, the training data
need to be prepared such that they can be used for supervised
learning, meaning input-output pairs need to be composed.
The input component of an input-output pair, the so-called
feature vector, contains the available information based on
which the learning algorithm computes its prediction. Hence,
in the present work, the feature vector is derived from the
array data. It is worthwhile to note that every instance from
the training set (the part used for classifier training) yields m
input-output pairs, i.e., one for each classifier, all sharing the
same feature vector. After computing the feature vectors for
all instances, element-wise feature normalization is applied,
since some learning algorithms are sensitive to scale [25].
The output components of input-output pairs represent the
prediction targets. Contrary to the inputs, they need to be
computed for classifier (and each instance, clearly) individ-
ually, as each classifier is associated with its own k-labelset.
Since it is assumed that each prediction of a single-label clas-
sifier comprises 2k probabilities (Section III-B1), this must
also apply to the prediction targets. Hence, for one particular
training instance, the targets for classifier hj (j = 1, . . . ,m),
denoted as {P̃(t)j,1, . . . , P̃

(t)
j,2k }, are computed as

P̃(t)
j,k̃
=

{
1, if R̃j,k̃ = (Rj ∩ 3̄)

0, otherwise,
(14)

where k̃ = 1, . . . , 2k and Rj is the k-labelset associated with
hj, with label-subsets R̃j,1, . . . , R̃j,2k , and where 3̄ is the set
containing exactly those labels representing FOV segments
which include at least one of the instance’s AOAs. Hence, 3̄
is defined as

3̄ = {λi | i ∈ {1, . . . ,M}

∧(∃θq)[θq ∈ 2 ∧ θi,min ≤ θq < θi,max]}, (15)

where2 = {θ1, . . . , θQ}with θ1, . . . , θQ andQ being the true
AOAs and the true NOS of the instance under consideration,
respectively. After composing the input-output pairs for all
instances and all classifiers, the actual training is carried out.
As each classifier learns its own mapping, it is proposed to
track the learning progress of each classifier individually by
means of a validation set in order to determine when to stop
training.

Once the training has been terminated for all classifiers,
the threshold optimization branch is initiated. This branch
aims to optimize the threshold level (i.e., probability level)
employed in the peak detection algorithm (Fig. 1). The pro-
cess is as follows. First, feature vectors are computed for
all threshold optimization training instances. This is done
in the same way as in the classifier training branch, except
that the feature-wise normalization is done using the normal-
ization constants (feature-wise means and variances) derived
from the classifier training data. In this way, we emulate the
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estimation stage, in which one can only normalize based on
training data as well. The feature vectors are fed through
the ensemble of trained classifiers, whereupon the resulting
predictions P̃j,k̃ are converted to angle spectra according to
the procedure described in Section III-B. As these spectra (of
which there are as many as there are threshold optimization
training instances) only contain values between 0 and 1 by
definition, the optimal threshold must be between these val-
ues as well. The actual threshold optimization is a matter of
computing the AOA and NOS estimates for all spectra for
a user-defined set of threshold values (to be defined in the
preparation stage). The threshold level that maximizes the
number of spectra for which the estimated NOS Q̂ equals
the true NOS Q is considered optimal and is used within the
estimation stage.

3) TESTING/ESTIMATION STAGE
After finishing the training stage, the estimator can be applied
for AOA estimation. For each instance, the estimation pro-
cedure is identical to the one described by the threshold
optimization branch, except that the optimal threshold level
is now known and can be applied directly. To assess the
performance of the estimator, a test set of Dtst instances is
used.

IV. PERFORMANCE METRICS
In the present work, the accuracy of the estimates obtained
from the proposed joint angle-of-arrival (AOA) estimator
depends on (I) the framework topology (defined by frame-
work parameters θmin, θmax and L, k ,M ), and (II) the predic-
tive performance of the single-label classifiers usedwithin the
framework. The metrics employed to study the impact of the
above on the AOA estimates are defined below.

A. P(Q̂=Q) AND RMSE
Assuming joint AOA estimation is performed for P instances,
the probability that the number of sources (NOS) is estimated
correctly is defined as

P(Q̂ = Q) =
P′

P
× 100%, (16)

where

P′ = num(Q̂p = Qp), (17)

whereQp and Q̂p are the true and estimated NOS for instance
p (p = 1, . . . ,P), respectively, and num(x) denotes the
operation of counting the number of statements for which x
is true.

For the P′ ≤ P instances for which the NOS is estimated
correctly, the AOA estimates are evaluated by means of the
root-mean-square error (RMSE), which is computed as

RMSE =

√√√√√ 1
P′

P′∑
p′=1

[
1
Qp′

Qp′∑
q=1

(θp′,q − θ̂p′,q)2
]
, (18)

where θp′,q and θ̂p′,q are the qth true AOA and the qth AOA
estimate in instance p′ (p′ = 1, . . . ,P′), respectively, and
Qp′ represents the instance’s NOS. For each instance, the
AOAs and AOA estimates are sorted in the same order before
computing the RMSE.

B. JOINT AOA ESTIMATION SUCCESS RATE
Given that the proposedAOA estimator jointly performsNOS
detection and AOA estimation, a metric is devised which
takes into account both these aspects. It is based on the
success rate proposed in [15] and expressed as

fsr(θ̃ ) =
num

([
Q̂p = Qp

]
∩
[
|θ̂p,q − θp,q| ≤ θ̃

])
P

×100%,

(19)

where q = 1, . . . ,Qp and p = 1, . . . ,P, with Qp and P
as defined above. Hence, (19) implies that the joint AOA
estimate for the pth instance is successful only if the NOS
is estimated correctly, i.e., Q̂p = Qp, and all AOA estimation
errors |θ̂p,q − θp,q| (computed after sorting) are smaller than
or equal to the maximum allowed AOA estimation error θ̃ .
It is worthwhile to note that estimation errors up to1θ/2 are
expected due to the finite FOV resolution.

As a reference for the success rate fsr(θ̃ ), we introduce
fsr,exp(θ̃ ), which represents the success rate that would be
expected if all classifiers in the framework were ideal, i.e.,
if their predictions P̃j,k̃ equal the prediction targets P̃(t)

j,k̃
(14)

for all considered instances. Hence, fsr,exp(θ̃ ) is a measure for
success rate limitations imposed by the framework’s topol-
ogy. In the case of a regular FOV discretisation and uniformly
distributed random AOAs sharing the interval [θmin, θmax),
fsr,exp(θ̃ ) is computed as

fsr,exp(θ̃ ) =


(

θ̃
1θ/2

)Q
fsr,exp,max, if θ̃ < 1θ/2,

fsr,exp,max, otherwise,
(20)

where

fsr,exp,max =

(
M + 1−Q

Q

)
Q!
MQ × 100%. (21)

Derivations of (20) and (21) are presented in Appendix A
and B, respectively. It is worthwhile to note that (20) assumes
that the NOS Q is equal in all evaluated instances. If not,
fsr,exp(θ̃ ) is computed for all possible values ofQ individually
and a (weighted) average is applied afterwards.

C. F1-SCORE
Besides evaluating the NOS and AOA estimates directly, the
predictions of the single-label classifiers are evaluated as
well. This is done by means of the F1-score (see, e.g., [26]).
As the F1-score is computed per label and per classifier, the
notation F1(j, k̃) is used from here, where the index j =
1, . . . ,m refers to the classifier and the index k̃ = 1, . . . , 2k

to the label. The F1-score is defined as the harmonic mean
of two other metrics, precision and recall, with the subscript
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1 indicating that precision and recall both contribute with
equal weights to the mean, i.e.,

F1(j, k̃) = 2×
precision(j, k̃)× recall(j, k̃)

precision(j, k̃)+ recall(j, k̃)
. (22)

Here, precision(j, k̃) is defined as the ratio

precision(j, k̃) =
tpj,k̃

tpj,k̃ + fpj,k̃
, (23)

where tpj,k̃ and fpj,k̃ denote the number of true and false
positives for label k̃ and classifier hj, respectively.4 Hence,
precision is a measure for a classifier’s exactness. Further-
more, recall(j, k̃) is defined as the ratio

recall(j, k̃) =
tpj,k̃

tpj,k̃ + fnj,k̃
, (24)

where fnj,k̃ denotes the number of false negatives for label
k̃ and classifier hj. Hence, recall represents the fraction of
all instances of label k̃ that are actually classified as such
and is therefore a measure for a classifier’s completeness.
Consequently, it holds that 0 ≤ F1(j, k̃) ≤ 1, with a higher
value indicating a higher predictive performance.

In this work, the assessment of all classifiers yields m×2k

F1-scores. We compute averages F̄1(Qh), Qh = 1, . . . , k ,
by averaging all F1-scores (22) which correspond to labels
representing subsets R̃j,k̃ with the same subset cardinality
|R̃j,k̃ |. Hence, F̄1(Qh) is defined as5

F̄1(Qh) =
1
m

m∑
j=1

1
|Sj,Qh |

∑
κ∈Sj,Qh

F1(j, κ), (25)

where Sj,Qh is the set containing those indices k̃ that refer to
the elements of P(Rj) (the label powerset of the k-labelset of
classifier hj) whose cardinality equals Qh, i.e.,

Sj,Qh = {k̃ | k̃ ∈ {1, . . . 2
k
} ∧ |R̃j,k̃ | = Qh}. (26)

For example, if Rj = {λa, λb} (k = 2) and we denote its
subsets {}, {λa}, {λb}, {λa, λb} as R̃j,1, . . . , R̃j,4, respectively,
then Sj,0 = {1}, Sj,1 = {2, 3} and Sj,2 = {4}.

V. NUMERICAL SIMULATIONS
In this section, we describe the simulations that were con-
ducted to assess the performance of the proposed angle-
of-arrival (AOA) estimator. A summary of the simulation
parameters is presented in Table 2. Details are given below.

4Since the classifiers’ predictions are assumed to be probabilities rather
than boolean variables, true/false positives/negatives are ill-defined. For the
sake of F1-score computation, we therefore assign boolean 1 to the label
corresponding to the highest probability and boolean 0 to all the others.

5Note that if tpj,k̃ = 0, then F1(j, k̃) is not defined. In this case, this

particular F1(j, k̃) is excluded from (25) and the average is taken over all
remaining valid F1-scores.

TABLE 2. Simulation parameters.

A. SIMULATION CONDITIONS
The data for training and testing the proposed estimator
are generated synthetically using the data model presented
in Section II. Similar to [21], the simulations address two
scenarios regarding the number of sources (NOS):

(I) the NOS Q is assumed to be constant over all instances,
i.e. Q = 2, and

(II) the NOS Q varies over the different instances, i.e., Q
is assumed to be a random variable drawn from the
discrete uniform distribution Q ∼ U (1, 4), meaning up
to 4 impinging waves are considered.

The following have been assumed for both scenarios. A uni-
form linear array (ULA) of N = 8 sensors with λ/2 inter-
element spacing is considered, where λ is the wavelength
of the considered plane waves. The sources transmit uncor-
related signals of equal power, i.e., P = σ 2IQ (4). The
waves’ AOAs are assumed to be random variables follow-
ing the continuous uniform distribution, i.e., θ1, . . . , θQ ∼
U (−60◦, 60◦). The array’s field of view (FOV) is defined
by the interval [θmin, θmax) = [−60◦, 60◦). The number of
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FOV segments evaluated by each classifier, i.e., the number
of labels in a k-labelset, is set to k = 3, as suggested for
RAkELo in [22].
For both scenarios, simulations are performed to inves-

tigate the impact of the signal-to-noise ratio (SNR) σ 2/ν2,
the FOV resolution (represented by 1θ ) and the number of
layers in the framework, L. Specifically, the following values
are considered: SNR ∈ {−10, 0, 10} dB, 1θ ∈ {2◦, 1◦}
(meaning M = 60 and M = 120, respectively (8)) and
L ∈ {1, 3, 5}. Hence, 2×3×2×3 = 36 (scenarios× SNRs×
resolutions × framework layers) simulations are performed.
Here, a ’simulation’ comprises all three deployment stages
presented in Section III-C. All random variables (NOS Q,
AOAs θ1, . . . , θQ, waveforms s(t) and element noise n(t))
follow the same distributions for all instances (an instance
being a collection of T snapshots of the array output) within
a simulation, whether they are training or testing instances.
New realizations are generated for each instance (NOS and
AOAs) and for each snapshot (waveforms and element noise)
individually.

B. LEARNING-PARAMETERS AND DATA SETS
In this work, the feedforward neural network (FFNN) (see,
e.g., [27]) is employed as the single-label learning algorithm.
The FFNN is one of the simplest type of neural networks
(NNs) that exist, but still allows for sufficient design freedom
to fit in the proposed AOA estimation framework. FFNNs are
composed of an input layer, one or multiple hidden layers and
an output layer. Each layer consists of a number of neurons.
The number of neurons in the input layer is imposed by the
dimension of the feature vectors. In the present work, the
feature vector of an instance is composed as

r = [R̂1,1, . . . , R̂N ,N ,<(R̂1,2),=(R̂1,2),

<(R̂1,3),=(R̂1,3), . . . ]T , (27)

where R̂i,j is the element at row i and column j of R̂ and R̂ is
computed according to (7) using T = 100 snapshots of the
array output (1). Hence, the number of neurons in the input
layer equals N 2, with N being the number of sensors in the
array.6 Since the array data follow the Gaussian distribution,
element-wise standardization is applied as the normalization
algorithm, meaning all element-wise means and variances
equal 0 and 1, respectively [25]. The number of hidden layers
and the number of neurons in these layers were determined
using the method presented in [27]. They are different for the
different simulation scenarios, as can be seen in Table 2, with
the sequence of numbers representing the number of neurons
in the hidden layers from input-side to output-side. All hidden
layers are fully connected (i.e., each neuron is connected to
all neurons in both the previous and the next layer) and use the
ReLU activation function [28]. The number of neurons in the

6Since R̂ is Hermitian, only the diagonal elements and the elements on
the upper right half of (7) are used. In fact, in case of isotropic sensors as
considered here, the diagonal elements do not contain any information. Still,
we include them in the feature vector, such that the impact of physically more
realistic arrays can be easily investigated in the future.

output layer is imposed by the RAkEL parameter k and equals
2k . The output layer uses the Softmax activation function
(see, e.g., [28]), meaning that all 2k outputs are between 0 and
1 and add up to 1. Hence, they represent the probabilities
P̃j,k̃ (j = 1, . . . ,m and k̃ = 1, . . . , 2k ) which are converted
to AOA estimates according to the procedure described in
Section III-B.
TheNN training, i.e., the optimization of theNNs’weights,

is performed using the Adam optimizer [29] in combina-
tion with the categorical cross entropy loss function (see,
e.g., [27]). The default [29] learning rates of α = 0.001,
β1 = 0.9 and β2 = 0.999 are used and each weight update is
based on a mini-batch of 32 training instances. The training
of a particular NN is terminated if the loss on the validation
set did not decrease for 3 consecutive epochs (iterations over
the training set). All simulations are implemented in Python
using the TensorFlow machine learning library [30].

The evaluated threshold levels in the threshold optimiza-
tion branch (Section III-C) are 0, 0.01, 0.02, . . . , 1.
The training set contains Dtrn = 80000 instances for

scenario I and Dtrn = 320000 instance for scenario II. From
all training instances, 80% is used for training the classifiers,
10% for validating them (i.e., determining when to stop
training), and 10% for optimizing the threshold level. In all
simulations, the estimator is tested using Dtst = 50000 test
instances.

C. BENCHMARK ALGORITHMS
The joint AOA estimates obtained from the proposed estima-
tor are compared (using the performance metrics presented in
Section IV) to those obtained from the well-known MUSIC
algorithm [5]. Since the MUSIC algorithm belongs to the
separable detection category, a NOS estimate is required prior
to estimating the AOAs. Two NOS estimators are consid-
ered: the minimum description length (MDL) and the Akaike
information criterion (AIC) [3]. For each simulation, the
MUSIC angle spectrum is evaluated at two angle resolutions:
(I) a lower resolution, equal to the FOV resolution 1θ of
the proposed AOA estimation framework, and (II) a higher
resolution of 0.1◦.

VI. RESULTS AND ANALYSIS
In this section, simulation results are presented and analysed.
Results pertaining the fixed number of sources (NOS) sce-
nario are discussed first.

A. RESULTS SIMULATION SCENARIO I: FIXED NOS
1) NUMBER OF FRAMEWORK LAYERS AND FOV
RESOLUTION
Fig. 3 shows the joint AOA estimation success rate fsr(θ̃ ) (19)
for various values of the maximum allowed AOA estimation
error θ̃ , for all 18 simulations conducted within this scenario
(3 SNRs × 2 values for 1θ × 3 values for L). The expected
success rate in the case of ideal classifiers fsr,exp(θ̃ ) (20),
which depends on1θ but not on the SNR nor on L, is shown
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FIGURE 3. Joint AOA estimation success rate fsr(θ̃) of the proposed MLF
vs. maximum allowed AOA estimation error θ̃ for all simulations in
scenario I. See Table 2.

as a reference. As can be seen from Fig. 3, increasing the
number of framework layers L increases the success rate
fsr(θ̃ ) for all the six considered {SNR,1θ}-couples, although
the improvements are limited, especially when comparing
L = 3 and L = 5. Hence, we conclude that the general
recommendation of using RAkELo with M < m < 2M and
a small k [22], equivalent to using 3 < L < 6 for k = 3 (10)
in the layered framework proposed here, can be loosened for
the present AOA application.

Fig. 3 also shows that for the two highest SNRs, the rate of
successful AOA estimation is increased by using the higher
FOV resolution (1θ = 1◦) rather than the lower one (1θ =
2◦), especially if L ≥ 3. For example, the success rate at
θ̃ = 1◦ (i.e., assuming AOA estimation errors up to 1◦ are
allowed) increases from 70.6% to 89.1% (0 dB SNR, L = 5)
and from 83.1% to 96.2% (10 dB SNR, L = 5). Considering
the tightness of the reference fsr,exp(θ̃ ) to the success rates
achieved by the MLF at these SNRs for 1θ = 2◦ and the
fact that the success rates increase (in absolute sense) when
going to1θ = 1◦, it is concluded that the performance of the
MLF is limited by the FOV resolution when using 1θ = 2◦.
On the contrary, when looking at the −10 dB SNR cases,
it is observed that the success rate actually decreases when
increasing the FOV resolution, e.g., from 21.4% to 12.3%
for L = 5 and θ̃ = 1◦. It is worthwhile to note that the
resolution increase is obtained at the expense of an increased
computational cost. That is because the number of classifiers
(here, NNs) to be trained is inversely proportional with 1θ ,
see (10) and (8). Hence, for the −10 dB SNR case, using
the lower resolution is clearly the better option, both from

FIGURE 4. Average F1-scores F̄1(Qh) of the proposed MLF vs. label subset
cardinality Qh, for all simulations with L = 5 in Scenario I. See Table 2.

the AOA estimation accuracy perspective as well as from the
resource perspective.

To get a better insight in the impact of the FOV resolution,
we proceed by evaluating the predictive performance of the
NNs by means of the averaged F1-scores (Section IV-C).

2) NEURAL NETWORK PREDICTIVE PERFORMANCE
Fig. 4 shows the F1-scores F̄1(Qh) (25) for the various subset
cardinalities Qh = 0, . . . , 2. Note that even though k = 3,
F̄1(Qh > 2) is not defined because Q = 2 in all simulations
considered here. The results presented in Fig. 4 are based
on the simulations with L = 5. Thus, F̄1(Qh) is computed
by averaging the F1-scores (22) of 100 and 200 NNs for
the 1θ = 2◦ and 1θ = 1◦ frameworks, respectively (10).
As can be seen from Fig. 4, F̄1(Qh) decreases when increasing
the FOV resolution (i.e., decreasing 1θ ) for all SNRs and
for all values of Qh except Qh = 0. This can be explained
by a phenomenon called class imbalance [31]. Although a
detailed discussion is outside the scope of this work, it is
worthwhile to note that this effect is expected to get stronger
when further increasing the FOV resolution, as more and
more instances from the training set will correspond to Qh =
0. Consequently, learning an accurate mapping for instances
corresponding to other values of Qh becomes more difficult.
While Fig. 4 shows that increasing the FOV resolution

decreases the predictive performance at all considered SNRs,
Fig. 3 shows that the joint AOA estimation success rate fsr (θ̃ )
only decreases at low SNR. Thismight sound paradoxical, but
it is not: when increasing the FOV resolution while keeping
the maximum allowed AOA estimation error θ̃ fixed, one
might (if θ̃ > 1θ/2) obtain a successful AOA estimate also
using non-perfect predictions. That this is indeed the case can
be understood by evaluating the success rates relative to the
references fsr,exp(θ̃). As can be seen from Fig. 3 for L = 5 and
at mid and high SNR, the success rates are further apart from
the references fsr,exp(θ̃ ) for the higher FOV resolution (1θ =
1◦) than for the lower FOV resolution (1θ = 2◦). As the
references fsr,exp(θ̃ ) assume ideal classifiers, this indicates
that indeed the NNs’ predictions are further from ideal for
the higher FOV resolution, as confirmed by results shown in
Fig. 4. Interestingly, it is found that the threshold level, which
is optimized during the training stage, increased from 0.05 to

VOLUME 10, 2022 112095



N. Kanters, A. Alayón Glazunov: Supervised Learning Framework for Joint Estimation of AOAs and NOS

TABLE 3. P(Q̂ = Q) and RMSE for Scenario I. See Table 2.

FIGURE 5. P(Q̂ = Q) and RMSE vs. AOA interval. 10 dB SNR, 1θ = 2◦ and
L = 5, Scenario I. Results are based on a test set in which the sources’
AOAs are symmetric with respect to broadside. All other parameters are
as in Table 2, Scenario I.

0.22 (0 dB SNR) and from 0.04 to 0.23 (10 dB SNR) when
increasing the FOV resolution from 1θ = 2◦ to 1θ = 1◦.
This indicates that at the higher resolution, there are peaks in
the probabilistic angle spectra at angles other than the AOAs
that need to be filtered out. This is a direct consequence of
incorrect classifier predictions. At low SNR (−10 dB), the
situation is different, as the decreased predictive performance
resulting from an increased FOV resolution caused the suc-
cess rate fsr (θ̃ ) to decrease in absolute sense as well.

3) BENCHMARK COMPARISON
In this section, the joint AOA estimates of the proposed MLF
are compared to those attained from the reference algorithms
MDL, AIC (NOS estimates) and MUSIC (AOA estimates).
Again, the results presented for the MLF are based on the
L = 5 simulations.

Table 3 presents the NOS estimation accuracy P(Q̂ = Q)
and the root-mean-square error (RMSE) for all considered
{SNR,1θ}-couples. The best performing algorithm (i.e., the
one achieving the highest P(Q̂ = Q) and the lowest RMSE)
is highlighted in bold for each SNR. For both metrics, the
MLF outperforms the benchmark algorithms at all consid-
ered SNRs, although this requires different FOV resolutions:
again, the low resolution (1θ = 2◦) is preferred for the
−10 dB SNR case, whereas the high resolution (1θ = 1◦)
achieves better results at the mid and high range SNRs.

To clarify the relatively high RMSEs for the MUSIC algo-
rithm, we plot both P(Q̂ = Q) and the RMSE against the

AOA interval |θ2 − θ1| in Fig. 5. To this end, we synthesized
additional test sets (12000 instances) in which the AOAs of
the two sources are symmetric with respect to the array’s
broadside, i.e., θq = 90±δ degree. All other parameters are as
in Table 2. The AOA interval |θ2−θ1| = |90+δ−(90−δ)| =
2δ is assumed to be a random variable following a continuous
log-uniform probability distribution between 1◦ and 120◦.
We grouped the instances in these test sets based on their
AOA interval and computed P(Q̂ = Q) and the RMSE for
each group separately, as indicated by the vertical grid and
the stair-wise graphs in Fig. 5. In this way, we ’average out’
(especially at large AOA intervals) the impact of the finite
resolution which is inherent to both the MLF and the MUSIC
algorithm. As an additional reference, the Cramér-Rao lower
bound (CRLB), see, e.g., [2], [8], is shown as well. For the
sake of conciseness, we only present results for the {10 dB
SNR, 1θ = 2◦}-couple, but similar observations were made
in the other considered cases as well. As can be seen from
Fig. 5, MDL and AIC outperform the MLF at small AOA
intervals. This is because in this specific symmetric scenario,
an AOA interval of at least 21θ = 4◦ is required for the MLF
to be able to resolve both sources (Section III-B2). Hence,
at these small AOA intervals, the MLF never estimates the
NOS correctly and therefore, the RMSE cannot be computed.
Contrarily, the RMSE for the MUSIC algorithm does exist at
small intervals, although it is nearly 2 orders of magnitude
larger than the CRLB (worst case). This can be understood as
follows. Since the MUSIC algorithm belongs to the separable
detection category, it aims to return as many AOA estimates
as required according to the NOS detection method, here
MDL/AIC. In caseMDL/AICmanages to estimate the correct
NOS, while at the same time the MUSIC angle spectrum
does not contain distinct peaks at all AOAs (which might
happen for small AOA intervals [1]), the argument of another
peak in the spectrum is returned. This results in large AOA
estimation errors, which dominate the RMSE values pre-
sented in Table 3. Although not shown for the sake of con-
ciseness, it is observed that at lower SNRs, MDL generally
fails to correctly estimate the NOS in case of small AOA
intervals. Consequently, these instances are excluded from
the RMSE computation, explaining why the RMSE for the
MUSIC+MDL combination is lower at the lower SNRs. This
discrepancy between the NOS estimators and the MUSIC
algorithm at small AOA intervals complicates the comparison
with the MLF, and hence emphasizes the advantage of the
proposed joint AOA estimation success rate fsr(θ̃ ) (19), as this
metric considers both NOS and AOA estimates. Hence, next
we compare the proposed MLF and the MUSIC algorithm
(combined with MDL/AIC) in terms of the joint AOA esti-
mation success rate.

As can be seen in in Fig. 6, the proposed MLF outperforms
the MUSIC algorithm if θ̃ ' 1θ , i.e., if the maximum
allowed AOA estimation error is approximately of the same
order as (or larger than) the size of the FOV segments.
This applies to all variants of the MUSIC algorithm con-
sidered (low/high angle spectrum resolution, see Table 2,
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FIGURE 6. Joint AOA estimation success rate fsr(θ̃) vs. maximum allowed
AOA estimation error θ̃ , proposed MLF (with L = 5) vs. MUSIC for
simulations in Scenario I. See Table 2.

and MDL/AIC NOS detection) and to almost all {SNR,1θ}-
couples. Only for the {−10 dB SNR, 1θ = 1◦}-couple, the
MUSIC+AIC combination attains a higher success rate than
the MLF. Contrarily, if θ̃ < 1θ , the high resolution MUSIC
algorithm outperforms the MLF for the mid and high SNRs.
This is a direct consequence of the finite FOV resolution
of the MLF, because of which errors up to 1θ/2 are to be
expected, as already illustrated by fsr,exp(θ̃ ) (20) in Fig. 3.

B. RESULTS SIMULATION SCENARIO II: VARIABLE NOS
Next, we present an analysis of the simulation results per-
taining the variable NOS scenario. For the sake of concise-
ness, we limit ourselves to the benchmark comparison, as the
phenomena observed in Section VI-A, e.g., limited improve-
ments for L > 3 and a decreasing predictive performance for
increasing Qh due to class imbalance, apply here as well.

1) BENCHMARK COMPARISON
Fig. 7 shows the joint AOA estimation success rate fsr(θ̃ ),
plotted against maximum allowed AOA estimation error θ̃ ,
for all considered {SNR,1θ}-couples. Again, the results
shown for the MLF were obtained using a framework with
L = 5 layers. As can be seen, the success rates for the MLF
and for the MUSIC algorithm follow the same trends as in
scenario I (Fig. 6), although they have decreased in abso-
lute sense for all values of θ̃ for both algorithms. Contrary
to scenario I, the MLF now outperforms the MUSIC-AIC
combination in the {−10 dB SNR, 1θ = 1◦}-case as well.
Nevertheless, still the1θ = 2◦MLF achieves higher success
rates than the 1θ = 1◦ MLF at this low SNR.

To get more insight into the impact of the various NOSs on
the estimator performance, we group all test instances based
on the NOS Q and evaluate the success rate fsr(θ̃ = 1◦)

FIGURE 7. Joint AOA estimation success rate fsr(θ̃) vs. maximum allowed
AOA estimation error θ̃ , proposed MLF (with L = 5) vs. MUSIC for
simulations in Scenario II. See Table 2.

FIGURE 8. Success rate fsr(1◦) vs. number of sources Q for MLF and
MUSIC. Scenario II.

for each of them separately (Fig. 8). Hence, AOA estimation
errors up to 1◦ are considered acceptable. It is worthwhile to
note that the relativemaximum allowedAOA estimation error
θ̃/1θ is larger for the high resolution framework (1θ = 1◦)
than for the low resolution framework (1θ = 2◦). Conse-
quently, a higher success rate can be achieved by the high
resolutionMLF, even though the NNs have a lower predictive
performance (not shown for the sake of conciseness) than
those in the low resolution MLF. This was also observed in
scenario I, for SNRs equal to 0 and 10 dB (see Fig. 6 at
θ̃ = 1◦ and Fig. 4). As can be seen from Fig. 8, the success
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rate decreases for increasing NOSs Q, both for the MLF and
the MUSIC algorithm. We conclude that in this simulation
scenario and for this particular maximum allowed AOA esti-
mation error (θ̃ = 1◦), only theMLFwith lowFOV resolution
(1θ = 2◦) is outperformed by the (high resolution) MUSIC
algorithm, and only at SNRs of 0 and 10 dB. In all other cases,
the MLF achieves the highest success rate for all considered
values of Q.

VII. CONCLUSION
In this paper, we proposed a machine learning framework
(MLF) which jointly estimates the number of sources (NOS)
and the angles-of-arrival (AOAs) of plane waves impinging a
sensor array. The MLF is tailored to the array’s segmented
field of view (FOV) such that it can solve the joint AOA
estimation problem through supervised-learning-based clas-
sification. The proposed approach is general in the sense that
the MLF can, in principle, be implemented in combination
with any single-label multi-class classification algorithm.
Moreover, a new performance metric, the joint AOA esti-
mation success rate, is introduced to assess the performance
of the proposed MLF. Particularly, this metric depends on
the user-defined maximum allowed AOA estimation error.
Numerical simulations are conducted using feedforward neu-
ral networks as the learning algorithm. In scenarios repre-
senting both fixed and variable NOSs, results show that in
terms of the joint AOA estimation success rate, the optimal
FOV segmentation strongly depends on the signal-to-noise
ratio (SNR). When increasing the FOV resolution from 2◦ to
1◦ while keeping the learning settings the same, the achieved
success rate deteriorates at low SNR (−10 dB), for all consid-
ered values of the maximum allowed AOA estimation error.
On the contrary, at mid (0 dB) and high (10 dB) SNRs, the
success rate increases when increasing the FOV resolution.
The FOV resolution is inversely proportional to the number
of classifiers in theMLF. Hence, at mid and high range SNRs,
an important trade-off between the estimation performance
and the computational burden is to be considered. In nearly
all considered cases, theMLF outperforms themultiple signal
classification (MUSIC) algorithm, implemented in conjunc-
tion with the NOS estimator Akaike’s information criterion
(AIC) or the minimum description length (MDL). Only in
case of a fixed NOS and at low SNR, the MLF with high
FOV resolution (1◦) is outperformed by the MUSIC-AIC
combination. We conclude that the proposed MLF offers a
higher rate of successful joint AOA estimation for all SNRs
if the maximum allowed AOA estimation error is of the order
of (or larger than) the size of the FOV segments and if the
FOV resolution is selected with care.

Further research is required to determine the optimal FOV
resolution for a given SNR (distribution). Moreover, further
investigation into the use of alternative learning algorithms
and the use of different FOV discretisations for the different
framework layers is recommended. Finally, studying the use
of physically realistic sensor arrays, the impact of their lay-
out, and the impact of correlated sources on the estimation

accuracy of the proposed estimator in comparison to conven-
tional estimators like theMUSIC algorithm is of great interest
for practical applications.

APPENDIX A
EXPECTED SUCCESS RATE IDEAL CLASSIFIERS
Consider the independent and identically distributed random
variables θ1, . . . , θQ, drawn from the continuous uniform
distribution U (θmin, θmax). Assume the interval [θmin, θmax)
is segmented in M intervals [θi,min, θi,max) (i = 1, . . . ,M )
in a regular manner, meaning each interval has size 1θ =
(θmax − θmin)/M . Let’s denote the center of the ith interval
ci = (θi,min + θi,max)/2. Then, the probability P that all
θ1, . . . , θQ are at most θ̃ removed from one of the interval
centers c1, . . . , cM (for θ̃ < 1θ/2) is computed as

P(θ̃ )
∣∣
θ̃<1θ/2 =

Q∏
q=1

M
∫ θ̃

−θ̃

1
θmax − θmin

dθq

=

[
θmax − θmin

1θ

∫ θ̃

−θ̃

1
θmax − θmin

dθ
]Q

=

[
θ̃

1θ/2

]Q
. (28)

Clearly, if θ̃ ≥ 1θ/2, P(θ̃ ) = 1, since the closest ci is at
a distance of at most 1θ/2 from any point in the interval
[θmin, θmax). Hence, it follows that

P(θ̃ ) =


(

θ̃
1θ/2

)Q
if θ̃ < 1θ/2

1 otherwise.
(29)

APPENDIX B
MAXIMUM EXPECTED SUCCESS RATE
Consider performing random sampling with replacement
from the set {λ1, . . . , λM }, where the likelihood of selecting
a particular λi (i = 1, . . . ,M ) is equal for all of them.
Hence, when sampling Q times,MQ possible outcomes (per-
mutations) exist. Assume we want to compute the percentage
p of these MQ permutations which fulfill the requirements
that (I) none of the λi is selected multiple times, and (II) no
neighbouring λi are selected, i.e., when λi is selected, λi−1
and λi+1 are not. Here, the latter requirement reduces to either
λi+1 or λi−1 if i = 1 or i = M , respectively. This can be
interpreted as random sampling without replacementQ times
from a set of M − (Q − 1) elements, for which the number
of combinations equals

(M−(Q−1)
Q

)
. Multiplying this by Q!

converts the combinations to permutations, meaning that the
percentage of permutations fulfilling requirements (I) and (II)
is computed as

p =
(
M − (Q− 1)

Q

)
Q!
MQ × 100%. (30)
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