THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On Falsification of Large-Scale Cyber-Physical
Systems

JOHAN LIDEN EDDELAND

Department of Electrical Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2022

On Falsification of Large-Scale Cyber-Physical Systems

JOHAN LIDEN EDDELAND
ISBN 978-91-7905-750-3

© 2022 JoHAN LIDEN EDDELAND
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 5216
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Printed by Chalmers Reproservice
Gothenburg, Sweden, November 2022

To Hanna, Vidar, Sizten, and Signe

Abstract

In the development of modern Cyber-Physical Systems, Model-Based Test-
ing of the closed-loop system is an approach for finding potential faults and
increasing quality of developed products. Testing is done on many differ-
ent abstraction levels, and for large-scale industrial systems, there are several
challenges. Executing tests on the systems can be time-consuming and large
numbers of complex specifications need to be thoroughly tested, while many
of the popular academic benchmarks do not necessarily reflect on this com-
plexity.

This thesis proposes new methods for analyzing and generating test cases
as a means for being more certain that proper testing has been performed on
the system under test. For analysis, the proposed approach can automatically
find out how much of the physical parts of the system that the test suite has
executed.

For test case generation, an approach to find errors is optimization-based
falsification. This thesis attempts to close the gap between academia and in-
dustry by applying falsification techniques to real-world models from Volvo
Car Corporation and adapting the falsification procedure where it has short-
comings for certain classes of systems. Specifically, the main contributions
of this thesis are (i) a method for automatically transforming a signal-based
specification into a formal specification allowing an optimization-based falsifi-
cation approach, (ii) a new collection of specifications inspired by large-scale
specifications from industry, (iii) an algorithm to perform optimization-based
falsification for such a large set of specifications, and (iv) a new type of cover-
age criterion for Cyber-Physical Systems that can help to assess when testing
can be concluded.

The proposed methods have been evaluated for both academic benchmark
examples and real-world industrial models. One of the main conclusions is
that the proposed additions and changes to the analysis and generation of
tests can be useful, given that one has enough information about the system
under test. The methods presented in this thesis have been applied to real-
world models in a way that allows for higher-quality products by finding more
faults in early phases of development.

Keywords: Testing, Simulation-Based Verification, Formal Requirements,
Falsification, Optimization, Test Coverage, Cyber-Physical Systems.

List of Publications

This thesis is based on the following publications. Note that the papers are
not presented in chronological order; instead, the order is chosen so as to make
the research as easy as possible to understand for the reader.

[A] Johan Lidén Eddeland, Koen Claessen, Nicholas Smallbone, Zahra
Ramezani, Sajed Miremadi, Knut Akesson, “Enhancing Temporal Logic Fal-
sification with Specification Transformation and Valued Booleans”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 12, pp. 5247-5260, 2020.

[B] Johan Lidén Eddeland, Knut Akesson, “Evaluating Optimization Solvers
and Robust Semantics for Simulation-Based Falsification”. ARCH20. 7th In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems (ARCH20), July, 2020 - Online.

[C] Johan Lidén Eddeland, Alexandre Donzé, Sajed Miremadi, Knut Akesson,
“Industrial Temporal Logic Specifications for Falsification of Cyber-Physical
Systems”. ARCH20. 7th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH20), July 12, 2020 - Online.

[D] Johan Lidén Eddeland, Alexandre Donzé, Knut Akesson, “Multi-Re-
quirement Testing Using Focused Falsification”. Submitted for possible jour-
nal publication. This is an extended version of the paper Multi-Requirement
Testing Using Focused Fulsification accepted to and presented at HSCC 2022:
ACM International Conference on Hybrid Systems: Computation and Control.

[E] Johan Eddeland, Javier Gil Cepeda, Rick Fransen, Sajed Miremadi,
Martin Fabian, Knut Akesson, “Automated Mode Coverage Analysis for Cyber-
Physical Systems Using Hybrid Automata”. The 20th World Congress of the
International Federation of Automatic Control, July, 2017 - Toulouse, France.

iii

Specification of my contribution to the included publications:

[A] T implemented the specification transformer and implemented it on the
Volvo models for discussion in Section 5.5 in the paper. I implemented the
additive semantics in MATLAB and chose the benchmarks models and spec-
ifications that were included in the evaluation. I also ran all the experiments
in the paper. The co-authors aided in defining the theoretical framework of
specification transformation, e.g., using SignalTables and FormulaTables to
represent the specifications. I wrote the manuscript with valuable input from
all co-authors.

[B] I designed the experiments with the help of the co-author. I performed all
experiments and summarized the results in the table and cactus plot presented
in the paper. I wrote the manuscript with input from discussions with the
co-author.

[C] T created all requirements with inspiration from requirements at Volvo
Cars, and I tuned the parameters as described. I ran all the simulations needed
to produce the statistics presented in the paper, and I wrote the manuscript
with helpful input from all co-authors.

[D] I designed and implemented the MRF and Corners-UR algorithms together
with the co-authors. I ran the experiments and generated the data presented
in the tables. The theoretical background and discussion was a results of many
meetings and discussion together with the co-authors. I wrote the manuscript
in collaboration with all of the co-authors.

[E] T defined the main coverage criterion and co-implemented the algorithm
for calculating the mode coverage for existing simulations of the dog clutch. I
also wrote the manuscript. The co-authors co-implemented the algorithm for
calculating mode coverage, implemented visualization of the dog clutch (such
as in Figure 6 of the paper), and aided in formulation of the manuscript.

iv

Other publications by the author, not included in this thesis, are:

[F] Johan Eddeland, Sajed Miremadi, Martin Fabian, Knut Akesson, “Ob-
jective Functions for Falsification of Signal Temporal Logic Properties in
Cyber-Physical Systems”. 13th Conference on Automation Science and Engi-
neering (CASE) Xi’an, China, Aug. 2017.

[G] Koen Claessen, Nicholas Smallbone, Johan Eddeland, Zahra Ramezani,
Knut Akesson, “Using Valued Booleans to Find Simpler Counterexamples
in Random Testing of Cyber-Physical Systems”. 14th IFAC Workshop on
Discrete Event Systems (WODES) Sorrento Coast, Italy, May 2018.

[H] Koen Claessen, Nicholas Smallbone, Johan Lidén Eddeland, Zahra Ramezani,
Knut Akesson, Sajed Miremadi, “Applying Valued Booleans in Testing of
Cyber-Physical Systems”. 2018 IEEE Workshop on Monitoring and Testing

of Cyber-Physical Systems (MT-CPS) Porto, Portugal, Apr. 2018.

[I] Zahra Ramezani, Johan Lidén Eddeland, Koen Claessen, Martin Fabian,
Knut Akesson, “Multiple Objective Functions for Falsification of Cyber-Physical
Systems”. 15th IFAC Workshop on Discrete Event Systems (WODES) Online,
Nov. 2020.

Acknowledgments

So many people have helped me during my years as a Ph.D. student, both
professionally and personally, that it is probably impossible to mention every-
one. I will do my best, and I am humbled by being given the opportunity to
perform research in this project on such an interesting subject (which I did
not know anything about beforehand).

First of all, I want to thank my academic supervisor Knut Akesson and my
industrial supervisor Sajed Miremadi for your continuous support and encour-
agement during the entire project. Even though you have busy schedules, you
always had time for discussing interesting problems with me, and you guided
me through both the academic challenges and the more hands-on problems
which I could not solve myself. Thanks to both of you, I will always have fond
memories of my daily work as a Ph.D. student!

I would also like to thank my co-supervisor Martin Fabian. Whenever I
needed help with the final details of writing papers, you always stood up
to the challenge of meticulously finding every single word with any kind of
mistake. Maybe not the help I deserved, but the help I needed, both back
then and now when I look back on what I learned about writing and the
scientific process.

I am very grateful to Alexandre Donzé for all the help and support during
the recent years. You became a mentor to me after all my initial inquiries
about Breach and STL, and I am very lucky to have had you with all your
expertise become such as big part of the research project.

I would also like to express my gratitude towards Koen Claessen and Nicholas
Smallbone for your engaging discussions and contributions to the work I have
done. I will never understand how you can get so much done in such a little
time, but I am thankful for it!

I also want to thank all my managers at Volvo, especially my first manager
Isak Oberg who provided vital support at the start of my time as a Ph.D.
student when I wasn’t entirely sure how to handle the difficulty of it all. Many
thanks also to Sajed, Marcus, Martin, Aboozar, and Carol for helping me out
with support and carrying the burden of administration so that I didn’t have
to.

vii

I also want to acknowledge the support from my colleagues at Volvo. The
team spirit of Team MM with Andreas, Ulf, Ulrika, and Niklas always cheered
me up when I needed it, and Eduard and Carl are long-term team members
I’ve always been inspired by. Fredrik helped me with hardware, and Ellen,
Nithin, and Tiberiu helped me with software whenever I needed their input.
In addition to this, I got help and useful comments from many other colleagues
who I don’t have the space to mention here.

I am grateful for the support from all my Chalmers colleagues in the Au-
tomation group as well, especially from Zahra for the tight cooperation in
producing interesting research in the same research field. Interesting meet-
ings and discussions with Constantin and Yuvaraj also helped with gain a
wider knowledge of related fields of research.

I also want to thank my favorite teacher of all time, Tenzing, for the in-
spiration during and after physics classes in grades 7-9. Thanks to you I
understood more about both what I wanted to do myself, but also about how
to inspire and educate others.

Finally, I want to express my sincere gratitude toward my closest family.
My parents always supported me in everything I did since I was young. My
brothers felt more like a burden than anything else for the first 15 years of my
life, but looking back I can see how they helped me become who I am today.
I would never have been able to finish this Ph.D. without the never-ending
love and support from my wife, Hanna. No matter how bad of a day I can
have at work, coming home to you, Vidar, Sixten, and Signe always makes me
appreciate our wonderful life together. I love you and our fantastic family!

This work has been performed with support from the Swedish Governmental
Agency for Innovation Systems (VINNOVA) project TESTRON 2015-04893
and from the Swedish Research Council (VR) project SyTeC 2016-06204. This
support is gratefully acknowledged.

viii

Acronyms

CI:
CPS:
HIL:
LTL:
MIL:
MBT:
MC/DC:
MTL:
SIL:
SMT:
STL:

SUT:

Continuous Integration
Cyber-Physical System
Hardware-in-the-Loop

Linear Temporal Logic
Model-in-the-Loop
Model-Based Testing
Modified Condition/Decision Coverage
Metric Temporal Logic
Software-in-the-Loop
Satisfiability Modulo Theories
Signal Temporal Logic

System Under Test

ix

Contents

[Abstractl i
i
|Acknowledgements vii

ix

[_Overview| 1

1__Introductionl 3
[1.1 Testing in industry] oo 6
ILevels of testing], 7
|Continuous integration| 8

I1.2 Research questions| 10
I1.3 Methodologylo 12
Methodl« 14
............................... 15
|Limitations of the methodology| 16

[4 Thesisoutlind 16

Xi

2 Testing of Cyber-Physical Systems|
2.1 Cyber-Physical Systems|
[Requirements of CPSs| 0oL
2.2 Formal verification versus testing|
2.3 Coverage criterigf Lo
[Coverage criteria for Cyber-Physical Systems|
2.4 Random testing|. oL
2.5 Falsification| Lo L
2.6 Reinforcement Learning for falsification|
I3 Optimization-based Falsification of Cyber-Physical Systems|

Xii

8.1 Discrete-time signals| o000

3.2 Signal temporal logic|. oo
(Robust satisfaction of STL formulasl

8.3 Optimization|
3.4 Optimization-based Falsification|
[[nput generators| oL,
|Quantitative evaluation|,
[Parameter optimizer| L.

|Falsification in practicel.

8.5 Falsification example|o oo o000
3.6 Optimization approaches and solvers|

[Uniform Random sampling|

[Corner sampling]
[Simulated Annealing| 00000
..............................
CMA-ES].
[The Nelder-Mead Simplex method|
|Bayesian Optimization|
TuRBOl

3.7 Large-scale falsification|.
[Size and complexity of the system under test|

|Large number of specifications|

|Expression of the specifications|

|4 Summary of included papers and Contributions| 55
/ Paper Al 57
/ Paper Bl 58
/ Paper C| e 59
4.4 Paper D| 60
/ Paper Eff 61
4.6 Contributionsl 62
|5 Concluding Remarks and Future Work| 67
BI Futureworkl. 69
[References| 71

|A" Enhancing Temporal Logic Falsification with Specification Trans- |
L formation and Valued Booleans| Al
L Introductionl. o A3
.1 Related workl A4

1.2 Contributionsl A5

12 Signal Temporal Logic and Falsification| A6
2.1 Discrete-time signals| A6

[2.2 Signal Temporal Logic| A7

23 Falsificationlo oo A7

13 Signal-Based Specifications| A9
3.1 STL specifications in a signal-based framework| A10

13.2 Signal-based specifications expressed in STL. All

13-3 Recursive loops in specifications] Al4

B.4 When semantics donot match| Al7

4 Valued Booleando 0000 A18
4.1 Max semantics| L. A20
A2 Additive semanticso A21

4.3 Properties for reasoning about Valued Booleans|. A23

4.4 Other properties of VBoolg| A26

5 Results and Discussionl, A28
b1 _ Automatic Transmission Benchmarkl A30

xiii

(5.3 Third Order A — ¥ Modulator| A32

[5.4 Static Switched System| 000 A33

(5.5 Transforming Volvo requirements to STL| A33

5.6 Discussion|. o A34

6 Conclusionslo A35
6.1 Future workl.o A36
Referenced o o o oo A37
|B__Evaluating Optimization Solvers and Robust Semantics for Simulation-_|
L__Based Falsification| B1
[Introductionl. B3
2 Preliminariesl L. B3
[2.1 Discrete-time signals| B3

[2.2 Signal Temporal Logic| B4

2.3 Robust semantics for STTI B4

13 Experimental setup and results| B6
[3.1 Optimization solvers| B7

[3.2 Models and input generation| B7

B3 Resultd . . .« o o oo B8

3.4 Discussionl. B9

4 Conclusionsl o L B12
Referenced o o oo B13
|C_Industrial Temporal Logic Specifications for Falsification of Cyber- |
| Physical Systems] C1
[l Introductionl. C3

12 Requirement Models| 0oL C4
[2.1 Signal Temporal Logid| C4

[2.2 Simple requirement model example| Ch

2.3 Requirement models in the benchmark|. Cr

13 Instance Tuning Method and Organization|. Cr
3.1 _ Parameter instancesl, .. C8

(3.2 Instance tuning method| C9

2! Preliminary Results| C10

51 Conclusions| C10
References v o oo oo C12

Xiv

ID Multi-Requirement Testing Using Focused Falsification| D1

[l Introductionl. L D3
L1 Relatedworkl D5
L2 Contributiond D6

2 Preliminariesl D7
2.1 Signal Traces| o oo D7
2.2 Signal Temporal Logic| D8
2.3 Falsificationl oL D9
2.4 (Quantitative semantics for STL{. D10

13 Multi-Requirement Testingl D12
3.1 Baseline Algorithm: Corners and Random Search|. . . . D14
13.2 Focused Multi-requirement Falsification| D15
8.3 Sensitive Parameters Selectionl D16
13.4 Structural Sensitivity Analysis| D17
135 MREF algorithm|. D20

A Resultd. - - - o o oo D24
4.1 Experimental setup|. Lo D24
4.2 Results and discussion of MRE] D26
4.3 Sensitivity analysisfo o000 D29

5] Conclusion and future workl D30

References o oo D33

[E"Automated Mode Coverage Analysis for Cyber-Physical Systems |
| Using Hybrid Automatal El

[l Introductionl. E3

[2° Hybrid Automata and the MC/DC Criterion| E5

13 Hybrid Automatal. 0oL E8

4 Coverage Criterion| E9
4.1 Mode coverage|o E10
4.2 Comparison to other coverage definitions| El1

b Automotive use caselo E12
.1 Introduction of the modell E12
5.2 Generating the modes| L. E13
5.3 Characteristics of generated modes| E15
5.4 Coverage results| El6

6 Conclusionsl o E17

Referenced o o E18

XV

Part |

Overview

CHAPTER 1

Introduction

When we as humans create something, it is usually a process of trial and error.
“Rome was not built in a day”
that great things take a long time to finish, but perhaps also that there will
be mistakes made along the way. Developing software is no exception, which
means that we need to systematize how to catch faults so that they do not
exist in the final product.

This thesis tackles the problem of testing software. Specifically, techniques
to increase the level of automation in the testing of Cyber-Physical Systems
(CPSs) [1], to find bugs or faults without creating much additional work effort
for the engineers designing the system. A CPS is, as the name suggests, a
system that consists of both cyber and physical components — meaning that
there is some software interacting with actual physical components. Some
examples of CPSs are cars, industrial robots, and advanced medical devices.
A CPS is considered a hybrid system in the sense that it contains both discrete

is a proverbial saying that can suggest both

and continuous elements.

To efficiently develop modern CPSs, a common design paradigm is to use
models. A model in this case is a mathematical description of the inner work-
ings of the CPS, and the model can be defined for different levels of abstrac-

Chapter 1 Introduction

tion. For example, a simple model of a car could define how a point mass
accelerates forward as a function of how hard the driver pushes the gas pedal.
However, a more detailed model could take into account the friction between
the car tires and the road, the weight of the passengers in the car, the weather
and air resistance around the car, and many other characteristics that deter-
mine how the car moves. Performing testing on models is naturally called
Model-Based Testing (MBT) [2], and there are many methods to apply MBT
to CPSs [3]-]6].

MBT typically involves much automatic testing and is becoming more and
more useful as the software size in cars is increasing rapidly, which means that
relying too much on manual testing does not scale well enough time-wise to
be viable for the future. For example, Figure [I.1] shows the historical down-
loadable software size in certain Volvo cars. This motivates the introduction
of more automated testing as a complement to manual testing that is usually
already in place in the development of modern CPSs.

104
T
1.5} .
=
g
<
0.5 .
S80 XC90 S80
o 15MB 5MB 11MB
1998 2002 2006 2011 2015 2020

Year

Figure 1.1: A bar chart of the downloadable software size in certain Volvo car
models during the years 1998 - 2020.

To test the components that are being developed, one must define what
needs to be tested. This is done by defining a speciﬁcationﬂ i.e., the desired
behavior of the system. A specification can be written in natural language,

INote that in this thesis, the terms specification and requirement are used interchangeably.
In the appended papers, it is also the case that both terms indicate the same concept.

e.g. “The car’s velocity should be lower than 150 km/h”, or in some more
mathematical way, e.g. “v < 150”. The output of the system given a certain
input, a test case, can then be evaluated against the specification to see if the
test case has passed or failed.

An important and difficult question is how to create new test cases for
the System Under Test (SUT). Generating a test case for a model of a CPS
typically means coming up with inputs to a simulation of the closed-loop
system including both software and the simulated physical components of the
system. In the end, the tests are created to find faults if they exist in the
system. Testing can never prove the absence of faults in the system, but there
are different approaches to guide the generation to this end. One approach is
to consider code coverage of the software being tested.

As an example, consider the pseudo-code below.

if a then
r=z+1
else
r=z—1
end if

If one wants full statement coverage of the given code, all statements need
to be executed, meaning that a needs to take on both values true and false.
There are many notions of coverage [7] other than statement coverage, for ex-
ample, branch coverage and decision coverage, but the main idea of a coverage
criterion is to give a number indicating how much of the code that has been
tested.

Another approach to generating new test cases is via falsification of CPSs.
The goal of falsification is to find a counterexample where a given specification
does not hold. It is common for the specification to be expressed in a formal
language like Metric Temporal Logic (8] or Signal Temporal Logic 9], [10]
(STL), where one can measure how “far” a specification is from being falsified
by a test case. Whenever falsification is mentioned in this thesis, it refers
to the method of finding counterexamples to temporal logic specifications of
CPSs [11].

In short, this thesis distinguishes between testing, falsification, and op-
timization-based falsification as different levels of ensuring software quality
where more exhaustive methods like model checking are not applicable. The
relations between the different levels are shown in Figure [I.2]

Chapter 1 Introduction

Testing

Falsification

Optimization-based falsification

Figure 1.2: An overview of how testing, falsification and optimization-based fal-
sification are related. Optimization-based falsification is a subset of
falsification, which itself is a subset of the broader area of testing.
This thesis focuses mainly on optimization-based falsification.

No matter which test method is considered, it is clear that testing attracts
many practitioners from both academia as well as industry. It is however also
clear, as in most research areas, that methods developed in academic contexts
are not always found in industry. In other words, there is a discrepancy in
methods developed by researchers and methods used in industry. This thesis
attempts to diminish this discrepancy by adapting academic methods to be
suitable for industrial models as well as academic ones.

1.1 Testing in industry

Testing in an industrial context often becomes difficult because of the sheer
scale of software development. When several hundred engineers work together
to develop (a part of) a CPS, for example, a component in a car, there are
typically different levels of testing performed. It is also common to introduce
different automatic methods for faster and more reliable software development.
One of these methods is Continuous Integration (CI) [12], which is detailed
later in this section.

When testing in industry, the SUT can have different characteristics as
well. For some systems, we can have access to the source code, while for some
systems, the only thing available for tests are pre-compiled binary files. In the
latter case, there is no choice but to consider the system a black box, where
we can only access input and output values. This also means that in general,

1.1 Testing in industry

to be able to apply new testing methods to industrial systems, the methods
need to be able to handle systems that are completely or partially black-box.

Levels of testing

As part of a Model-Based Design approach, the testing levels can include, but
are not limited to:

¢ Model-in-the-Loop (MIL): The software component(s) to be tested
are modeled and simulated (meaning that no explicit code is written,
rather the software components are created using a modeling language,
for example, Modelica [13] or Simulink [14]). The plant, i.e., the physical
part of the system that the software interacts with, is also simulated.

¢ Software-in-the-Loop (SIL): The modeled software (or controller) is
code-generated, and then this generated code is tested against a simu-
lated plant.

o Hardware-in-the-Loop (HIL): Some component(s) of the actual hard-
ware are used in the testing, while some parts of the plant are still
simulated.

The final stage of testing is to physically test the entire system, for example
by driving the finished car and trying to evaluate whether all the requirements
on the system are fulfilled. The earlier testing phases presented here are the
ones that are cheapest and easiest to scale. For MIL and SIL testing, since
everything is simulated, the only limiting factor in creating and evaluating
new test cases is computational power. For HIL testing, since there is an
actual hardware component interacting with the software, the testing needs
to be performed in real-time, typically also with additional safety measures
since parts could potentially catch fire or be part of similar hazards.

In this thesis, the main focus is on testing environments where the whole
system is simulated, e.g. MIL and SIL testing. It should still be noted that
all different testing environments are vital for complete testing of the CPS,
as MIL and SIL testing for example cannot capture any hardware problems.
Similarly, for a car, certain aspects can only be tested by actually driving the
car and not in HIL testing.

There is also another aspect of testing in the software development process.
When a software component is created, typically the software developer will

Chapter 1 Introduction

create unit tests to assert that the component works as expected by itself.
When several software components are created, the next step is for them to
be connected as part of the functionality of the system. Now testing needs
to be performed to validate that the interface and interaction between the
components work as expected — this is called integration testing. When all
different parts of the final system are connected, the final testing stage is
called system testing. Figure [I.3] shows how MIL, HIL, and SIL testing can
be related to unit, integration, and system testing in an interpretation of the
V model of software development [15].

System System
requirements tests
Software Integration
. B
requirements tests
Software Unit
architecture tests MIL

Implementation

Figure 1.3: An illustration of how MIL, SIL, and HIL testing can be related to
unit, integration, and system testing in the V model of software de-
velopment. Even though each of the testing levels comes sequentially
in the testing process, there is not a 1:1 correspondence between (for
example) MIL/Unit, SIL/Integration, or HIL/System.

Continuous integration

A common way to incorporate testing in industry is to use Continuous Inte-
gration (CI) |12]. CI is the practice of automatically integrating changes of
developed code often, to frequently find smaller faults rather than having to
fix large faults with many potentially complex causes at larger time intervals.
An overview of a typical CI workflow is shown in Figure [I.4]

1.1 Testing in industry

Code

Developer .
velop repository

Commit to code
repository

Automatlcally trigger
Cl process

Recelve build fail
notlflcatlon

Receive
automated test fail No
notification

Yes

Figure 1.4: A flowchart including typical elements of continuous integration (CI).
When a developer pushes their code, the code needs to be built and
pass both unit tests and other automated tests before being pushed to
the master branch. If the code does not build, or if it fails any tests, the
developer will be notified and needs to change the code before trying
to push again. In the context of this figure, pre-build tests could be
unit tests, while post-build tests could be integration tests.

Chapter 1 Introduction

A sketch of the desired effect of CI, in terms of time spent finding and
correcting faults in the developed software, can be seen in Figure [[.5] It
is clear that in the ideal case, it is easier to find faults when there are few
of them and there are not many different versions of the software to check
against. However, implementing CI also requires the writing of automated
tests and a general change in the way of working (compared to not using CI).
As this thesis is focused on automated testing, it can be seen as part of making
a CI chain work.

Traditional
—— Continuous Integration

Technical debt

Delivery Delivery Delivery

Time

Figure 1.5: A sketch of intended technical debt over time using traditional devel-
opment methods versus continuous integration. Committing the devel-
oped code with a high frequency typically also means that the faults
are easier to find and less time-consuming to fix.

1.2 Research questions

The goal of the research performed leading up to this thesis can be sum-
marized in four research questions, all connected to Model-Based Testing of
Cyber-Physical Systems. The research questions did not originally all exist as
they are presented here, they were rather developed and matured during the

10

1.2 Research questions

progress of the performed research. As such, the research questions are not
in any sort of “chronological” order; instead, they are presented in a way that
arguably makes them easiest to understand in relation to each other.

Research Question 1. How can specifications expressed in industrial mod-
eling tools be used for optimization-based falsification of Cyber-Physical Sys-
tems?

One piece of this puzzle is attempted to be solved in Paper [A] The main
issue is that tools for falsification require specifications written in formal logic,
but engineers in industry typically do not have the expertise necessary to
write correct specifications in these frameworks. The solution of automatically
transforming specifications from Simulink into logic specifications is one of the
main contributions of this thesis.

Research Question 2. How can the optimization-based falsification process
be changed to require fewer simulations when considering a single requirement,
in the context of large-scale industrial systems?

As the research area of optimization-based testing is quite close to industrial
applications, the practical aspects are deemed important. Paper [B| presents
comparisons between using different optimization problem solvers and quan-
titative semantics for STL to better understand how falsification can be im-
proved for real-world systems.

Research Question 3. How can the optimization-based falsification process
be changed to require fewer simulations when considering multiple require-
ments at once?

This question is the basis for Paper where we present an algorithm
for Multi-Requirement Falsification. An evaluation of the industry-inspired
specification benchmark from Paper [C]illustrates the differences between the
classical single-requirement and the new multi-requirement approaches. This
adjustment of the falsification process to consider many requirements at once,
together with global sensitivity analysis to provide engineers insight into large
systems by use of STL robustness values, is a further step towards bringing
academic methods to industrial models.

Finally, when there is a set of generated test cases (no matter the method),
there is a need to know how to evaluate them concisely, without losing too

11

Chapter 1 Introduction

much information about the test cases themselves. These thoughts are sum-
marized in the final research question.

Research Question 4. How can we evaluate how well testing of Cyber-
Physical Systems fulfills structural coverage criteria, and how can we then use
these criteria to assess when testing is considered finished?

Paper [E] tackles this question. More specifically, a new kind of coverage
criterion is presented which is defined based on the dynamical equations of
the CPS model. This novel mode coverage is calculated both for a simple illus-
trating example, as well as for a use case (a model at Volvo Car Corporation).
The conclusion is that a mostly automatic approach can be used to analyze
how thoroughly the physical behavior of the model has been tested.

The paper makes it clear that both code coverage and mode coverage can be
useful, but for different purposes. Code coverage (MC/DC) is typically used
as a minimum requirement for evaluating whether a test suite (a collection
of test cases) has exercised the SUT enough. As such, MC/DC is given as a
percentage, and testers seldom reflect over why a certain degree of MC/DC
is fulfilled or not fulfilled. On the other hand, mode coverage is more to be
used as a basis for further analysis, especially when the mode coverage is not
100%, since the testers then should investigate the physical behaviors in the
modes that are never visited by the test suite. In this way, mode coverage
typically requires more work from a tester after the automatic analysis has
been performed, in contrast to the established MC/DC code coverage criterion
that is just used as a check that the test suite fulfills some basic properties.

1.3 Methodology

The purpose of the research presented in this thesis is to create a further un-
derstanding of the testing problem for Cyber-Physical Systems. The research
has been experimental, as is common for research in this area, where the
basis for evaluation of the research typically consists of different mathemati-
cal models of systems (benchmark models). The aim was to address the more
practical research problems, which is especially clear in the formulations of re-
search questions 2 and 3. An overview of the research methodology is shown
in Figure [[.6] This also corresponds closely to suggested research models in
systems engineering [16], where it is clear that industrial research originates

12

1.3 Methodology

from an industrial problem and then evolves towards both an industrial goal
and academically viable research.

Research idea

Industrial
maturity Demonstrator

Product
& Use

Figure 1.6: An overview of the research methodology used in this thesis. A re-
search challenge is combined with an industrial need to produce a re-
search idea. After some research has been performed, a demonstrator
illustrates how to bridge the gap between academia and industry. Fi-
nally, the research can result in a product that may be used in real
industrial applications as the project grows more mature.

As the research area of testing CPSs is tightly connected to applications,
it has been an important goal to conduct research that applies to large-scale
systems and not only smaller, simpler systems. While smaller systems have
the merit that they are typically easier to analyze and present, the potential
negative effect is that they do not always correspond very well to actual sys-
tems found in industry. With this in mind, one of the motivations for the
conducted research has been to work with methods that scale well for indus-
trial systems, but also to present the results in such ways that the issues of
large-scale systems are clearly shown by the use of smaller examples.

Even though most of the results are applied to either previously available

13

Chapter 1 Introduction

smaller benchmark models or proprietary models that we cannot disclose de-
tails of, we have also presented new specification models inspired by industrial
examples that allows for the greater research community to develop methods
more relevant to industrial use cases. While we cannot discuss exactly how the
specification benchmark in Paper [C] was procured, it is obvious that the com-
plexity and number of specifications presented give a novel way of evaluating
specification-related algorithms.

The research questions were deliberately designed throughout the project.
In the same way that the problems themselves were designed based on the need
at Volvo Car Corporation, so were also the research questions posed based on
how the industrial solutions could positively affect the research community.

Method

To be able to carry out meaningful research, the academic state-of-the-art was
investigated in an extensive literature review. In the research area of testing
of CPSs, there are many works that present tools, algorithms, and extensions
to previous works that increase testing capabilities using new approaches.
The decision to first focus on coverage, the subject of Paper [E] was due to a
need to analyze a set of test cases for a model already existing at Volvo Car
Corporation. The model in question was also included in the paper as a case
study.

Similarly, the reason for choosing falsification of CPSs as a method to fur-
ther develop and adapt for industrial models was that there was a need from
the industrial perspective to automatically generate new test cases for mod-
els present at Volvo Car Corporation. When the falsification approach was
applied to several models, we noticed shortcomings of parts of the procedure,
which led to subsequent research, and which also led to papers[A] [B] [C] and

For all the papers appended to this thesis, the goal of tables and figures with
results have always been to illustrate as many aspects of the treated problem
as possible. In Paper [E] the experiments were performed using OpenMod-
elica [17] and the programming language Python, with test cases previously
created by TestWeaver [18]. The experiments in all remaining papers were
performed using MATLAB [19].

From the research project’s point of view, the models to be tested at Volvo
Car Corporation were chosen beforehand, as they are the models being de-
veloped at the particular part of the organization where the research takes

14

1.3 Methodology

place. However, for the academic evaluation of research results, the bench-
mark models had to be chosen somehow. Since there at the start of the project
was no concrete set of benchmarks used by the whole research community, sev-
eral different models were picked from different publications in the field. The
benchmark models used for evaluation in the appended papers have appeared
in several different papers. As for the smaller examples in the appended pa-
pers, they were created to highlight the contribution of the paper as clearly
as possible, to hopefully make the paper easy to read and understand.

The structure of the results presented in the papers, such as the tables of
falsification rates and cactus plots over optimization solver performance, were
typically chosen with respect to how other papers in the field typically present
their results. As an example, it is common to present falsification rates and
the number of simulations (sometimes with both mean and median values),
but not as common to include, e.g., measures for statistical significance and
hypothesis tests. It would be possible, at least theoretically, to improve the
statistical significance of the presented results, e.g., by having more repeti-
tions of the experiments or by generating more examples (like automatically
generated STL formulas to falsify). However, generating more repetitions
of the experiments was usually too time-consuming, and automatically gen-
erating more STL formulas would go against the goal of the thesis to keep
experiments and evaluations as relevant as possible to large-scale industrial
systems.

Analysis

As all research aims to be reproducible, that has also been our main goal
in the content presented in the appended papers. However, since several of
the use cases presented in the papers (particularly the dog clutch model in
Paper [E} and the Volvo models discussed in Paper are proprietary, exact
reproducibility is impossible and the scientific integrity of the author has to
be trusted. In the cases where there is a use case from Volvo Car Corporation
included, there is also a simplified example included to motivate the reasons
for the approach presented in the specific paper.

15

Chapter 1 Introduction

Limitations of the methodology

Choosing methods that are relevant for industrial problems might not result
in the research that is the most appealing from a theoretical point of view,
however, it is still interesting for the research area in question since the field is
in its nature close to application. Choosing falsification as a means of assuring
correct behavior of simulations of CPSs has the drawback that falsification and
testing never guarantees the absence of faults. However, falsification is still
widely accepted as a reasonable strategy for quality assurance since it scales
well for complex systems.

1.4 Thesis outline

The thesis is divided into two parts. In the first part, an overview is presented
to give the reader the understanding needed for the papers appended in the
second part.

Chapter 2 contains a brief overview of why to perform testing for the
software that is part of CPSs. There are also presentations of coverage criteria
(needed for understanding Paper and random testing (needed for Paper [A)).

Chapter 3 is about optimization-based falsification of CPSs. In this chap-
ter, the falsification process is detailed, including a definition of Signal Tem-
poral Logic for discrete-time signals. These definitions are useful for under-
standing papers [A] [B] [C] and

Chapter 4 summarizes the content of the appended papers as well as the
contributions of the thesis.

Chapter 5 contains a conclusion of the work presented in the thesis and
an outlook on the future work to be done.

16

CHAPTER 2

Testing of Cyber-Physical Systems

This chapter gives a short insight into what testing is, and the different kinds
of testing that are related to this thesis. Section [2.I]presents details on Cyber-
Physical Systems and the requirements of such systems. In Section there
is a brief discussion about why testing is a reasonable approach to assert-
ing the wanted behavior of CPSs. Section discusses coverage criteria for
testing and how these are used in industry. In Section [2.4] random testing
is presented, and in Section [2.5] the falsification problem is introduced. Fi-
nally, in Section there is a discussion on the alternative approach of using
Reinforcement Learning for falsification.

2.1 Cyber-Physical Systems

Cyber-Physical Systems are systems that interact with the physical environ-
ment through the use of sensors (for acquiring information) and actuators (for
affecting the physical surroundings) [20]. The main differences from mecha-
tronic systems are that a CPS can be connected to and communicate with
other CPSs, and a CPS consists of several different integrated subsystems [21].
As systems get larger and more complex, a CPS can be seen as part of the

17

Chapter 2 Testing of Cyber-Physical Systems

transition chain going from first a mechatronic system, then to a CPS, and
then to a cloud-based system. As an example from the automotive domain, a
drivetrain for a vehicle is considered a mechatronic system, while an entire car
is considered to be a CPS. In the typical block diagram of a feedback system,
as seen in Figure this thesis considers testing all parts of the system. This
includes the plant, so while the software in the controller is part of the system
under test, the testing in the thesis can also be used to find, e.g., errors in
how the plant is modeled in a simulated environment.

Disturfances
47“:@—€> Controller — Plant !
Ym
Measurements

Figure 2.1: A block diagram of a typical feedback system. In this thesis, the entire
system is considered as the system under test, meaning that we do not
only consider the software as the goal system of the testing activities
presented, but also the plant to be controlled.

Requirements of CPSs

CPSs are typically safety-critical, meaning that a failure in the operation of
the system can result in serious damage or injury. Therefore, there is much
focus in research to make sure that CPSs conform to safety requirementsﬂ [22].
However, it is not trivial to formulate the requirements to be put on CPSs.
As an extended example, consider a hypothetical requirement on a specific
CPS, namely a car. This is to help illustrate the kind of requirements that
could exist in industry and therefore also inspire the transformation approach
used in Paper [Al However, as real industrial requirements are proprietary,

INote that requirement and specification typically refers to the same thing. However, the
word requirement is typically used in industrial contexts, and the word specification is
typically used to denote more formal or mathematical objects in academic contexts.

18

2.1 Cyber-Physical Systems

only a discussion on hypothetical requirements can be included in this thesis.
Consider therefore that we have the following requirement for the car:

Requirement 1. The car should be comfortable to drive.

This requirement is very abstract. On one hand, many would be able to
evaluate whether or not this requirement holds after driving the car for a
few hours. On the other hand, it is unclear how to formally specify this
requirement, and specifically, it is impossible to test that parts of the system,
e.g. certain software, fulfills its part of the requirement.

To make the requirement testable, it needs to be broken down into sub-
requirements. Of course, a requirement like the one presented can be inter-
preted in many different ways and will be considered fulfilled in different ways
depending on who is asking. Now, different attempts at breaking the require-
ment down into sub-requirements will be performed; an overview of how the
different requirements relate to each other is shown in Figure 2.2] The first
refinement follows in Requirement 2:

Req.

(Req. B3

Req. 3] [Req. @} {Req. Eﬂ

Figure 2.2: A tree describing how different sub-requirements are related. Each
node is a refinement of its parent.

Requirement 2. To be considered comfortable (and therefore fulfill Require-
ment , the car should fulfill all of the following:

2.1 The car seats should be ergonomic;

2.2 The inside of the car should reach a comfortable temperature quickly
after starting, and

19

Chapter 2 Testing of Cyber-Physical Systems

2.8 When the driver presses down the accelerator pedal, the car should re-
spond quickly.

It should be clear that Requirement [2] is for most people not enough to
describe that a car is comfortable, but this analysis is limited to the three sub-
requirements presented, to keep the example short enough for presentation.
The refinement will continue only for the requirements that can be considered
control-related, as those are the ones that could be used as specifications in
a simulation-based testing environment where finding faults in the control
system is the main goal (such as the testing environment used in most of this
thesis).

Requirement is not control-related; it is rather an issue to solve with the
hardware of the car. However, in a modern car, both Requirement and
Requirement [2.3] are likely control-related. For them to be testable, they need
to be more clearly defined, so that a simulation environment can somehow
evaluate whether the requirement has been fulfilled or not. Another level of
refinement is applied, which results in requirements [3] and [4

Requirement 3. When the car starts,
3.1 The inside of the car should reach 21°C within 2 minutes, and
3.2 The inside temperature of the car should never reach above 23°C.

Requirement 4. To feel like the car responds quickly to desired acceleration if
the angle of the accelerator pedal is larger than or equal to 70° and the current
speed is lower than or equal to 200 km/h, the gear must be shifted correctly
within 0.5 seconds and then the maximum acceleration force must be felt by
the driver within another 2 seconds. Otherwise, if the angle of the accelerator
pedal is lower than 70° or the current speed is higher than 200 km/h, the
behavior of acceleration is defined by another requirement.

The requirements can be refined even further, but the main point of the
refinement process has been shown: the further a requirement is refined, the
clearer it is which signals of the system that must be included to evaluate
the requirement. It is also typical that to check whether a requirement has
been fulfilled by a specific test case, a set of prerequisites have to be fulfilled.
These prerequisites correspond to different entries in the tables of formulas
discussed in the transformation of specifications in Paper [A] For example, for

20

2.2 Formal verification versus testing

Requirement [4 one precondition would be that the angle of the accelerator
pedal is larger than or equal to 70° and that the current speed is lower than
or equal to 200 km/h.

2.2 Formal verification versus testing

Formal verification includes approaches such as model checking (23], |24] and
deductive verification [25], [26] to verify correctness of models. If there is an
error with regards to a specification in the model, these methods will find
them and provide counterexamples to the specification. If there are no errors,
the methods provide formal proof of correctness for the specification. While
this sounds appealing, formal verification techniques have limitations and are
not possible to use for general industrial CPSs. In fact, the general problem
of verifying properties for hybrid systems, i.e., systems with both discrete
and continuous dynamics, is undecidable |27]. This means that it has been
proven that in the general case, no algorithm can decide whether a certain
property for a hybrid system holds or does not hold. In addition to this, while
formal verification methods are very useful for models without the limitations
discussed here, there are several other obstacles to overcome [2§] for model
checking to be viable in industry (the most notable being a lack of experience
in industry in formalizing the models and specifications to be checked).

With this in mind, we turn to testing instead. Testing is non-exhaustive,
meaning that no matter how long we test, we can not prove the absence of
faults, but testing can still raise confidence in the correctness of the final
product. Testing is scalable and usable for complex industrial-sized systems,
making it suitable for the research presented in this thesis which is close to
application.

2.3 Coverage criteria

Testing the inner structure of the SUT is called white-box testing while testing
the system behaviors without considering the inner workings of the SUT is
called black-box testing. If the scope is to perform white-box testing, one may
be interested in looking at different code coverage criteria for evaluating if the
test cases have tested the system appropriately or not. For examples of some
common coverage criteria 7], consider the simple example below.

21

Chapter 2 Testing of Cyber-Physical Systems

1: if (a and b) or ¢ then
2 r=x+1
3: else
4: r=z—1
5: end if

To fulfill statement coverage, every statement needs to be executed by the
test suite. To fulfill branch coverage, every branch of the program needs to be
executed. In this case, there are two branches; the “if” branch (row 2) and
the “else” branch (row 4), which means that “(a and b) or ¢” has to evaluate
to true at least once and false at least once in the test suite.

Fulfilling decision coverage is sometimes defined as fulfilling branch cov-
erage, and sometimes as making sure that every point of entry and exit in
the program has been invoked at least once as well as that every decision in
the program has taken all possible outcomes at least once [7]. A decision is
a Boolean expression composed of conditions and zero or more Boolean op-
erators, whereas a condition is a Boolean expression containing no Boolean
operators. In the given example, “(a and b) or ¢” and “a and b” are decisions,
while “a”, “b” and “c” are conditions.

Another coverage criterion that covers more than the ones mentioned above
is Modified Condition/Decision Coverage (MC/DC). MC/DC is especially in-
teresting because it is used widely in industry to validate test suites, and
because MC/DC is highly recommended for ASIL D (the highest classifica-
tion of Automotive Safety Integrity Level) in ISO 26262 [29]. MC/DC requires
all of the following:

1. Every point of entry and exit in the program has been invoked at least
once.

2. Every condition in a decision in the program has taken all possible out-
comes at least once.

3. Every decision in the program has taken all possible outcomes at least
once.

4. Each condition in a decision has been shown to independently affect
that decision’s outcome. A condition is shown to independently affect
a decision’s outcome by varying just that condition while holding fixed
all other conditions.

22

2.3 Coverage criteria

Below is a short analysis of what is needed to fulfill each of the points of
MC/DC for the given code example.

1. To fulfill the first point, branches of the if-statement need to be exited,
meaning that “(a and b) or ¢” needs to evaluate to true at least once,
and false at least once.

2. To fulfill the second point, each condition (a, b, and ¢) must be true at
least once, and false at least once.

3. To fulfill the third point, it is enough for this example to fulfill the same
things as the first point since there is only one decision present.
4. To fulfill the fourth point is the trickiest. Consider the two cases below
a = true, b = true, ¢ = true
a = false, b = false, ¢ = false
These inputs fulfill the first three points, but they do not fulfill the fourth
point. The reason is that for both of these cases, none of the conditions a,
b, or ¢ independently affect the decision’s outcome. Instead, an example
of cases required to fulfill MC/DC is shown below (where conditions in

bold can b