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ABSTRACT
Systems that rely on Machine Learning (ML systems) have dif-
fering demands on quality—non-functional requirements (NFRs)—
compared to traditional systems. NFRs for ML systems may differ
in their definition, scope, and importance. Despite the importance
of NFRs for ML systems, our understanding of their definitions and
scope—and of the extent of existing research—is lacking compared
to our understanding in traditional domains.

Building on an investigation into importance and treatment of
ML system NFRs in industry, we make three contributions towards
narrowing this gap: (1) we present clusters of ML system NFRs
based on shared characteristics, (2) we use Scopus search results—
as well as inter-coder reliability on a sample of NFRs—to estimate
the number of relevant studies on a subset of the NFRs, and (3),
we use our initial reading of titles and abstracts in each sample to
define the scope of NFRs over parts of the system (e.g., training
data, ML model). These initial findings form the groundwork for
future research in this emerging domain.

CCS CONCEPTS
• Software and its engineering → Extra-functional proper-
ties; Requirements analysis; • Computing methodologies→
Machine learning.
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1 INTRODUCTION
Machine Learning (ML) is increasingly being used in decision mak-
ing and prediction applications that influence many aspects of our
lives. Complex systems, referred to asML systems, useML to deliver
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critical functionality. Such systems demand high computational
capabilities (often based on GPUs), process a large amount of data,
and utilize complex non-deterministic algorithms [9]. Therefore,
ensuring the quality of such systems is potentially more expensive
and effort-intensive than traditional systems.

A thorough requirements engineering (RE) process is necessary
to ensure quality. Requirements imposed on system quality are
known as non-functional requirements (NFRs), and are expressed
over different attributes of quality [9]. For a ML system, one might
imagine constraints over attributes such as fairness, transparency,
privacy, security, or safety [8].

Although significant research has been devoted to NFRs, signifi-
cant challenges remain for modern system development. Even for
traditional systems, NFRs are difficult and challenging to express
explicitly [6], and even more difficult to verify or validate [17]. Such
challenges compound for ML systems, and the identification, defi-
nition, and measurement of NFRs for ML systems has emerged as a
critical problem to solve [8, 9].

Much of our accumulated knowledge concerning NFRs may be
no longer relevant when dealing with ML systems, due to their com-
plex and non-deterministic nature. Some NFRs, such as fairness,
explainability, and privacy become more important. Others, such as
usability or interoperability, may become less important [8, 11, 18].
New NFRs, such as retrainability, emerge. Moreover, the meaning
and interpretation of NFRs for ML systems may differ from tradi-
tional systems and may not yet be well understood [1]. To date,
there has been little research on NFRs for ML systems [9].

Further, “ML” is not one monolithic entity, but can be considered
at different levels of granularity within a larger system [19]. When
imposing NFRs over an ML system, some NFRs may apply to the
algorithm that performs the learning task, while others may apply
over the training data used as the basis for such decision making or
over the model trained using that data. Still others may apply over
the results of applying that model, or over the broader ML system
that acts on those results. Therefore, the scope of consideration for
NFRs (i.e., the scope of identification, definition, and measurement)
for ML systems is a complex and not-yet-solved problem.

We recently conducted an interview study, which examined treat-
ment of NFRs for ML systems in industry and reported challenges
of identifying, defining and measuring NFRs [8]. Addressing these
challenges will require (1) a detailed understanding of the defi-
nition and scope of each NFR in a ML system context, and (2), an
examination of past research on each of these NFRs as applied
to ML system development. These needs are intertwined. To date,
there has been no systematic literature reviews or other secondary
studies on ML system NFRs. However, performing such a study
requires a clear answer to questions of scope to proceed effectively.

https://orcid.org/0000-0001-6794-9585
https://doi.org/10.1145/3526073.3527589
https://doi.org/10.1145/3526073.3527589


SE4RAI’22 , May 19, 2022, Pittsburgh, PA, USA Habibullah et al.

We perform an exploratory study of the treatment of certain
NFRs for ML systems in research literature1. Our goals in this study
are to (1) gain an approximate idea of the extent to which select
NFRs have been studied by researchers, and (2), perform an initial
clarification of the scope of these NFRs for ML systems.

As a starting point, we have taken into account the NFRs identi-
fied as important in the interview study [8]. Using this set of NFRs,
we divide NFRs into clusters based on shared attributes of their
definitions. This enables understanding of which NFRs could be
considered in conjunction. Researchers could study particular clus-
ters, and practitioners may consider defining system quality over
related NFRs. We also identify an upper limit on the number of rel-
evant publications in the Scopus database for each NFR. Our initial
estimation shows that some NFRs, such as security or transparency,
have received significant focus. We select NFRs that have received
less attention (e.g., maintainability or testability), and examine the
titles and abstracts of 50-100 publications for each. Based on this
sample, we estimate the number of relevant publications on each
of the selected NFRs. This estimation enables scoping of secondary
studies. Finally, based on inspection of the titles and abstracts of
these samples, we perform an exploratory scoping of the selected
NFRs in terms of which elements of the system they can be defined
over (e.g., training data, ML algorithm, or ML model). This scoping
brings further clarity to the specific definitions and treatment of
these NFRs, which can benefit future research and practice on each.

Our study, while exploratory in nature, is intended to open new
opportunities for future research in NFRs for ML systems. We hope
to set the groundwork for future studies by clarifying the scoping
and definitions for these NFRs, identifying connections between
NFRs, and gaining an approximate idea of past interest in these
NFRs. Our results can allow researchers to plan future studies and
to identify NFRs that have not received sufficient attention. They
also help enable engineers to identify which NFRs to consider in
conjunctionwith others of interest, and to think critically about how
NFRs apply to different facets of the system-under-development.

2 BACKGROUND AND RELATEDWORK
NFRs for Traditional Systems: NFRs are considered essential for
ensuring the quality of software, but there are no agreed guidelines
on how and when NFRs should be elicited, defined, documented,
and validated [7]. Moreover, there is no consensus in the require-
ments engineering (RE) community regarding which step of the
RE process NFRs should be considered and applied [4]. Significant
research has been devoted to NFRs in RE, e.g., Doerr et al. applied a
systematic, experience-based, method to elicit, document, and ana-
lyze NFRs with the objective of creating a sufficient set of traceable
and measurable NFRs [5]. While most work such as this focuses on
NFRs for traditional software, we are focused on NFRs specifically
for systems that make use of ML to deliver functionality. Although
many researchers have studied NFRs for traditional systems, very
few studies to date have focused on NFRs for ML systems.
Requirement Engineering for ML Systems: Although there are
approaches on how to use ML to improve RE tasks, there has not
been extensive research on RE for ML systems [20]. Engineering of

1While little work has been conducted on the topic of NFRs for ML systems, there is
certainly relevant research on individual quality attributes, such as fairness or security.

ML systems requires different and novel approaches due to their
unpredictable nature and differences in their development process.
It is crucial to clearly identify and define these differences, in order
to offer tailored practices [10]. For traditional systems, activities
related to requirements analysis and specification are often per-
formed in the early phases of development, with requirements used
downstream as part of design, implementation and verification.
However, the activity flow often differs for ML systems due to their
reliance on data and the unpredictability of ML results. Upfront
problem definition for ML systems can be difficult, as building a
clear definition of the problem often requires iterative exploration
of data and processes—more so than in typical systems. As such, RE
forML systems hasmany unknown and unexplored areas, including
an understanding of how NFRs differ for such systems.

NFRs for ML Systems: We discussed challenges and research
directions for NFRs for ML systems [9]. Some of our knowledge
about NFRs for traditional systems may no longer be applicable
due to the non-deterministic behavior, as well as due to additional
performance demands imposed by the need to process and act on
large volumes of data. Some NFRs become more important (e.g.,
explainability), some become less relevant (e.g., modularity), there
are differing trade-offs between NFRs (e.g., increased security often
causes decreased usefulness), and there is no unified collection
and consideration of NFRs for ML-enabled systems. We defined
research direction for NFRs for ML systems, including exploring
and defining NFRs, as well as reinterpreting and redefining NFRs
that already exist for traditional systems.

In a recent interview study, we examined challenges regarding
NFRs for ML in industry by identifying examples of the identifica-
tion and measurement of NFRs and examining the importance that
practitioners place on NFRs for ML [8]. The results of the interview
study found that most NFRs as defined for traditional software are
still relevant for ML-enabled systems. Some NFRs, such as flexibil-
ity, efficiency, usability, portability, reusability, and usability were
identified as less important by some interviewees. However, they
were still considered important by other interviewees. The NFRs
identified in the interview study are listed in Table 1. We have
defined each NFR, often in an ML context, based on both our experi-
ence and related literature, such as research papers, websites, blogs,
and forums. In addition, we reported gaps to address, including
identification, definition, scope, and perceptions of NFRs in an ML
context [8]. In this work, we build on these results by beginning to
explore the coverage of NFRs in research literature.

ML as Part of a Larger Software System: In a ML system, the
“ML” is a small part of a larger system [19]. In traditional systems,
NFRs can be identified over the whole system or elements of the
system. In an ML context, NFRs can also be defined over different
parts of the system. These elements may differ from traditional
systems, and the differing nature of these elements may lead to
a differing understanding of relevant NFRs. In our preliminary
NFR definitions in Table 1, we have sometimes defined NFRs in
ML terms, referencing the ML model or data. However, this is not
done consistently, and not all potential elements of the system are
considered. In an effort to improve how NFRs for ML systems are
defined, we explore the idea of NFR “scope” further in this study.
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Table 1: Important NFRs for ML systems, identified in [8].
NFRs Definition
Accuracy The number of correctly predicted data points out of all the data points.
Adaptability The ability of a system to work well in different but related contexts.
Bias A phenomenon that occurs when an algorithm produces results that are systematically prejudiced due to erroneous assumptions in the ML process.
Completeness An indication of the comprehensiveness of available data, as a proportion of the entire data set, to address specific information requirements.
Complexity When a system or solution has many components, interrelations or interactions, and is difficult to understand.
Consistency A series of measurements of the same project carried out by different raters using the same method should produce similar results.
Correctness The output of the system matches the expectations outlined in the requirements, and the system operates without failure.
Domain Adaptation The ability of a model trained on a source domain to be used in a different—but related—domain.
Efficiency The ability to accomplish something with minimal time and effort.
Ethics Concerned with adding or ensuring moral behaviors.
Explainability The extent to which the internal mechanics of ML-enabled system can be explained in human terms.
Fairness The ability of a system to operate in a fair and unbiased manner
Fault Tolerance The ability of a system to continue operating without interruption when one or more of its components fail.
Flexibility The ability of a system to react to changing demands or conditions.
Integrity The ability to ensure that data is real, accurate and safeguarded from unauthorised modification.
Interpretability The extraction of relevant knowledge from a model concerning relationships either contained in data or learned by the model
Interoperability The ability for two systems to communicate effectively
Justifiability The ability to be show the output of an ML-enabled system to be right or reasonable.
Maintainability The ease with which a system or component can be modified to correct faults, improve performance or other attributes, or adapt to a changed environment
Performance The ability of a system to perform actions within defined time or throughput bounds.
Portability The ability to transfer a system or element of a system from one environment to another.
Privacy An algorithm is private if an observer examining the output is not able to determine whether a specific individual’s information was used in the computation.
Reliability The probability of the software performing without failure for a specific number of uses or amount of time.
Repeatability The variation in measurements taken by a single instrument or person under the same conditions.
Retrainability The ability to re-run the process that generated the previously selected model on a new training set of data.
Reproducibility One can repeatedly run your algorithm on certain datasets and obtain the same (or similar) results.
Reusability The ability of reusing the whole or the greater part of the system component for similar but different purpose.
Safety The absence of failures or conditions that render a system dangerous
Scalability The ability to increase or decrease the capacity of the system in response to changing demands.
Security Security measures ensure a system’s safety against espionage or sabotage.
Testability The ability of the system to to support testing by offering relevant information or ensuring the visibility of failures.
Transparency The extent to which a human user can infer why the system made a particular decision or produced a particular externally-visible behaviour.
Traceability The ability to trace work items across the development lifecycle.
Trust A trusted system is a system that is relied upon to a specified extent to enforce a specified security, or a security policy.
Usability How effectively users can learn and use a system.

3 METHODOLOGY
Though NFRs for traditional software are fairly well-understood,
there are still gaps in our foundational knowledge on NFRs for
ML systems. We are eager to learn which NFRs for ML systems
have been explored by other researchers and which are yet to be
investigated heavily. We also want to learn how NFRs for ML are
perceived by other researchers so that the definitions and scopes
of such NFRs can be refined.

Hence, we have performed an exploratory study aimed at at
establishing an initial scoping of the treatment of NFRs for ML and
an initial estimation of the level of research that has been conducted
on these NFRs. A systematic mapping study is primarily concerned
with structuring a research area [13]. As we are performing an
initial exploration of the scope of NFRs for ML systems, we have
adapted the systematic mapping study concept for our purposes.

Our goals in this study are to (1) gain an approximate idea of the
extent to which select NFRs have been studied by researchers, and
(2), perform an initial clarification of the scope of these NFRs for ML
systems. Specifically, we address the following research questions:

RQ1: Can the ML system NFRs be grouped into a small number of
clusters based on shared characteristics?
RQ2:Which NFRs have received the most—or least—attention in
existing research literature?
RQ3: Over which elements of an ML system can NFRs be defined?

To answer these questions, we grouped the NFRs into a small num-
ber of clusters based on their shared characteristics (Sec. 3.1). We

performed the initial stages of a mapping study in order to gain
a rough approximation of the how much research exists on each
NFR—focusing on those NFRs that have been least investigated
or belong to two particular clusters of interest (Sec. 3.2). Then,
based on the titles and abstracts and past experience, we identify
which elements of the system that these NFRs should be defined
and measured over (Section 3.3).

3.1 NFR Clustering
In Table 1, we listed the NFRs found to be important in the inter-
view study [8]. For each, we have defined them based both on our
past experience and based on their treatment in a small sampling
of research papers, websites, blogs, and forums. Based on these
definitions, we are interested in grouping these NFRs into a small
number of clusters, where each cluster contains NFRs that have
similar meaning or purpose. Researchers can use these clusters to
identify which NFRs may be related and able to collectively de-
termine the quality of a system. Researchers could also perform
secondary studies on particular clusters of NFRs. Developers can
also use these clusters to identify which NFRs may be relevant to
their particular needs or system-under-development.

We have created these clusters primarily through discussion of
the NFRs and their definitions. During a series of meetings, we read
and interpreted the definitions and debated their meaning. We then
discussed and decided which cluster to assign an NFR to. We have
placed NFRs in clusters if they are a similar purpose within system
development or could be measured in a similar manner.
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For example, the explainability of a ML system refers to the
extent to which its internal mechanics can be explained in human
terms. Transparency refers to the ability of the system to clarify the
reasoning for its decisions to a human user. These NFRs differ in
their exact meaning and assessment, but are both key elements in
ensuring that ML systems operate in a clear and reasonable manner.
Therefore, both should reside in the same cluster.

We also created a separate cluster for those NFRs that could not
be put into any of the other clusters, as they lacked any shared
characteristics with the NFRs in other clusters.

Our goal at this stage is not to create a formal hierarchy, as exists
for NFRs for traditional systems [2]. Rather, our interest is in creat-
ing a lightweight organizational structure for use in understanding
the scoping and definition of NFRs for ML systems.

3.2 Publication Volume Estimation
In this section, we describe our strategy for estimating the number
of research papers for certain NFRs.

3.2.1 Initial Paper Search. Weperformed a database search—including
all publications up to September 2021—in order to identify the re-
search papers that may be relevant for each NFR. We selected
Scopus, a meta-database, which includes research papers from peer-
reviewed journals and conferences frommultiple publishers such as
IEEE, ACM, and Elsevier. Scopus is considered one of the most rep-
resentative and rich in content for Software Engineering research
and is used in many secondary studies [12].

We identified relevant search terms and developed search strings
for the database search. We first derived the major terms (e.g., ma-
chine learning, non-functional requirements). Then, we identified
synonyms or alternative spelling for the major terms from related
literature, and based on our discussions. We also split major terms
into more specific and clear terms. For example, we split the general
term “non-functional requirements” into strings based on specific
NFRs. Finally, we concatenated these terms to form search strings.

We apply one search string per NFR. The string includes that NFR,
as well as terms related to machine learning: (“machine learning”
OR “supervised learning” OR “unsupervised learning” OR
“reinforcement learning” OR “deep learning”).

For example, to identify papers on interoperability, we have
used the search string: (“machine learning” OR “supervised
learning” OR “unsupervised learning” OR “reinforcement
learning” OR “deep learning”) AND (“interoperability”). As
a second example, to identify papers related to usability, we have
used the string: (“machine learning” OR “supervised learning”
OR “unsupervised learning” OR “reinforcement learning”
OR “deep learning”) AND (“usability”).

The number of papers found from this step give an upper limit
on the number of relevant publications. Not all of these publica-
tions are likely to be relevant, as they may not relate to the use
of such properties as NFRs for a ML system. For example, several
of the results for maintainability described work which used ML
to predict maintainability of another system, rather than focusing
on maintainability of an ML system. Therefore, in the next step,
we used a sample of publications to gain a finer estimation of the
number of relevant publications for a subset of the NFRs.

3.2.2 NFR Selection. This upper limit gives some indication of the
research interest in each NFR. To gain a clearer estimation of the
percentage of those publications that are relevant, we have chosen
to focus on a subset of the list of NFRs. Some NFRs, such as per-
formance or security, have already received significant attention
from the research community. We would recommend that future
secondary studies focus specifically on these topics. We have in-
stead focused on those NFRs that have received less focus from
researchers, including those with a lower number of publications
as well as those that we identified as being part of two clusters of
interest (the “other” cluster and a cluster centered around tailoring
a system to different environments).

We created a list of the number of publications found in the
search results for each NFR. At first, we sorted the NFRs based on
the number of publications, in decreasing order. We then excluded
those NFRs that have more than 1,200 search results. For example,
we excluded accuracy, as the number of retrieved papers was more
than the threshold. Based on this threshold, we excluded 16 NFRs.

We then took into account which cluster we assigned each NFR
to. If an NFR has more search results than the threshold but falls
into the two clusters that we selected for initial inspection, then we
included that NFR for consideration. As a result, we reincorporated
usability and flexibility into our estimation, as those NFRs fall into
these two clusters even though those have more search results than
the threshold. We perform a more detailed analysis on 20 NFRs.

3.2.3 Estimating the Number of Relevant Papers for Selected NFRs.
We estimate the number of relevant publications for each selected
NFR by inspecting the titles and abstracts of a sample of 50 papers.
We read the title and abstract of each publication and use inclusion
and exclusion criteria to filter these publications, marking them
as relevant or irrelevant. Each author determined the relevancy of
each paper independently. We then discussed each disagreement
in a meeting, using our criteria, and formed a final list.

Inclusion Criteria: The publication must discuss an NFR from
Table 1. It must focus on the definition, identification, measurement,
or challenges of a NFR for a ML system, or for an element of the
system (e.g., the model). It must have been published in a peer-
reviewed journal, conference, or workshop. The full text must be
accessible and written in English.

Exclusion Criteria: The publication is focused on topics other
than NFRs for ML systems. This includes publications where ML
is used to measure, improve, or predict a NFR. For example, the
authors usedML to classify requirements into different NFRs [14]. In
such a case, the publication is not relevant for examining how such
an NFR affects the development of a ML system. The publication
simply uses the NFR as an evaluation criteria, but does not discuss
or describe the use of the NFR during system development. For
example, if an author uses completeness as part of their evaluation
of the results of a system, but the actual research has no relation to
improving the completeness of a ML system, then it is excluded. The
publication was not written in English, not peer-reviewed, or lacks
an available full text. Editorials, abstracts, book chapters, workshop
summaries, poster sessions, prefaces, article summaries, interviews,
news, reviews, comments, news, reviews, tutorials, panels, and
discussions are excluded.
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Maintainability

Retrainability
Complexity

Figure 1: NFRs divided into clusters, based on shared characteristics.

Inter-coder Reliability: Following the process of individually
reviewing 50 papers for selected NFRs, we calculated our agreement
using Fleiss’ kappa, a statistical measure for assessing ICR between
a fixed number of raters. In some cases where the ICR was low,
or where there were significant disagreements, we repeated the
sampling process for a second set of 50 papers. In such cases, it was
hoped that we could clarify our shared definition and estimation
of the scope of the NFR. If the ICR either increased or stayed the
same, this served to increase confidence in our understanding.

The final list of relevant papers, after discussion, gives an indica-
tion of the number of publications that may be relevant from that
initial set retrieved from Scopus. This, in turn, offers an indication
of research interest in the NFR.

Estimating the Number of Publications: We counted the num-
ber of publications that were deemed relevant from the first—and,
in some cases, second—sample for each selected NFR.We used these
counts along with the total number of papers found by Scopus to
estimate the total number of included papers. This estimation is
calculated by simply multiplying the total number of publications
by the percentage of the sample that was deemed relevant.

For example, we found an upper limit of 851 publications for
the transparency NFR. After screening 50 publications, we agreed
to include 44 (88%). Extending to the full set of 851 papers, we
estimate that 749 publications will actually be relevant. As a second
example, we identified 214 publications for traceability. In this case,
we sampled 100 publications, and decided that 10 were relevant
(10%). Therefore, approximately 21 of the 214 are expected to be
relevant to the treatment of the property as a NFR for ML systems.

We repeated this calculation for the rest of the selected NFRs,
producing an estimation of the number of relevant papers for each.
This is still a rough approximation of past research interest, but it
is sufficient to provide an initial portrait of the field and to refine
our own definitions and ideas regarding scope.

3.3 NFR Scope Determination
In order to clearly define or measure the attainment of an NFR, it
must be understood exactly how the NFR applies to the system.
This determination requires understanding whether a NFR relates
to the system as a whole, or perhaps to a lower level of granularity
within the system. In the case of a ML system, an NFR may be
defined and measured over different aspects of the ML application.
For example, an NFR may apply differently when we discuss the
training data, the algorithm that uses the training data to build a
model, or to the model trained on that data.

Therefore, we have first determined which elements of a ML
system are particularly relevant when we discuss the NFRs for such
systems. We then used our existing definitions, past experience,
and the titles and abstracts of the relevant studies examined in the
previous step in order to determine to which of these elements
each NFR was applicable. In a series of meetings, we discussed each
NFR in relation to these system elements. In each case, we made a
determination by coming to an agreement and discussing any cases
where we disagreed—generally by identifying an example of how
that NFR is applied to that element. For example, repeatability refers
to the level of variability in the behavior of the system. Repeatibility
is a property of the results—or of the system as a whole—rather
then a property of the model, algorithm, or training data. It is the
results that vary, not the model itself. This scoping is intended as a
starting point for establishing detailed definitions for each NFR in
an ML system context.

4 RESULTS AND DISCUSSION

NFR Clustering (RQ1):We were able to create six different clus-
ters, where each cluster includes the NFRs that share similar prop-
erties and purposes. For example, after analyzing their definitions,
we found that ethics, bias, and fairness shares similar meanings and
serve similar purposes. Therefore, we put these three NFRs into the
same cluster.

The clusters are presented in Fig. 1. Cluster 1 includes NFRs
that are related to assessing the functional correctness of ML sys-
tems and aspects of correctness. This includes the core correctness,
as well as assessment of correctness (e.g., accuracy) and variance
(e.g., reliability, consistency). Cluster 2 contains NFRs related to
understanding the internal decisions or results of applying ML (e.g.,
transparency, explainability). The NFRs related to ethical aspects of
ML systems, such as fairness and bias, form cluster 3. NFRs related
to the performance (e.g., speed) of an ML system are contained in
cluster 4. The qualities related to tailoring and adjustment of the ML
system to different environments (e.g., flexibility, adaptability) are
grouped in cluster 5. Concerns related to privacy and security are
grouped together in cluster 6. The NFRs that do not share similar
properties are grouped in cluster 7.

Previouswork has presentedNFRs in terms of a hierarchy (e.g., [3])
or as part of a interdependency graph (e.g., [4]). Our goal was not to
suggest a definite hierarchy, but to group NFRs to clarify relatedness
and scope, particularly for future research studies. For example, a
study may focus on a particular cluster or one or two related NFRs.
These clusters can also help practitioners understand the similarity
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Table 2: NFRs with number of search results, number of
relevant publications, kappa values (agreement on sample),
and final paper volume estimation for select NFRs. We only
examined a second sample in cases where we wanted to see
if agreement would improve.

NFR Search Relevant Kappa Relevant Kappa Est.
Results (1) (1) (2) (2) Pubs.

Performance 114853
Accuracy 92669
Efficiency 22247
Security 19142
Complexity 16997
Privacy 6388
Safety 5848
Reliability 5620
Bias 4118
Scalability 3595
Consistency 2936
Flexibility 2764 23 (46%) 0.54 1271
Interpretability 2418
Trust 1965
Reproducibility 1796
Domain Adapt. 1732 47 (94%) 0.63 1628
Usability 1270 21 (42%) 0.50 29 (58%) 0.44 635
Adaptability 1177 34 (68%) 0.50 800
Fairness 1089 45 (90%) 0.41 980
Correctness 1045 16 (32%) 0.53 334
Integrity 1015
Transparency 851 44 (88%) 0.70 749
Explainability 706 44 (88%) 0.22 621
Fault Tolerance 553 26 (52%) 0.68 288
Interoperability 532 9 (18%) 0.45 96
Completeness 372 23 (46%) 0.40 25 (50%) 0.58 179
Portability 346 21 (42%) 0.45 145
Ethics 331 31 (62%) -0.03 205
Reusability 321 24 (48%) 0.55 154
Maintainability 277 6 (12%) 0.30 9 (18%) 0.72 42
Traceability 214 4 (8%) 0.61 6 (12%) 0.61 21
Repeatability 171 17 (34%) 0.44 58
Testability 77 4 (8%) 0.54 2 (4%) 1.00 5
Justifiability 3 0 (0%) 1.00 0
Retrainability 0 0

of NFRs and provide guidance on which related NFRs they should
consider while developing ML systems.
Estimated Number of Publications (RQ2):We used the search
strings described in Sec. 3.2 to identify an upper limit on the number
of relevant publications for each NFR. The number of identified
publications is presented the second column of Table 2. We found
the most results for performance, accuracy, and efficiency; while,
repeatability, testability, and justifiability yielded the fewest results.
We found no research papers in Scopus for retrainability, potentially
indicating that this term is not common.

We can sum the total number of search results for each cluster,
finding that cluster 4 (performance, . . . ) has 140695 results, cluster 1
(accuracy, . . . ) 105805, cluster 6 (security, . . . ) 33343, cluster 7 (“other”
NFRs) 19207, cluster 5 (adaptability, . . . ) 6872, cluster 3 (bias, . . . )
has 5538 and cluster 2 (explainability, . . . ) has 3978 results.

We can reflect on the number of papers found via the Scopus
search. The number of papers for accuracy is very high, as re-
searchers and practitioners are very focused on prediction accu-
racy. We also found more papers for usability than we expected,
even when excluding papers using usability as a synonym for ap-
plicability, and find it encouraging that research is focusing on
human-oriented aspects.

We were surprised that no publications were found for retrain-
ability, even though practitioners mentioned retrainability as im-
portant [8]. We hypothesize that these ideas are being discussed
using alternative terms. Similarly, we were surprised by few search

results on testability, but this may again be due to use of different
terms. We also expected more search results on fairness, as we per-
ceive that researchers and practitioners are focusing more on this
topic. This may be due to commonality and split of results amongst
bias, fairness, and ethics.

The performance and accuracy clusters (4 and 1) show the most
raw results, followed by the security cluster. These results are gener-
ally in line with our expectations. We can see a particular interest in
cluster 4, including performance. In ML terminology, performance
often denotes a form of accuracy or correctness, as opposed to time
or resource usage—as the term is often used in typical SE. Cluster
7 also has a relatively large number of results, mainly due to the
inclusion of complexity.

We were surprised that clusters 2—containing explainability—
and cluster 3—containing bias—yielded relatively fewer results.
Even though these are perceived as hot topics in research, either
the volume of papers is still relatively small, this work includes
terms which differ from the NFRs included as part of our search.

Although these results are a useful staring point, we refine our
estimation for a subset of NFRs to estimate how many publications
are relevant. When selecting NFRs for a more detailed estimation,
we focused on NFRs that are less researched (but still potentially
important), and those in Clusters 5 and 7. We applied the inclusion-
exclusion criteria and ICR process described in Sec. 3.2.3 for a
sample of fifty papers of each selected NFR. We present the number
of publications found to be relevant for each, along with the inter-
coder reliability in Table 2. In some cases, we also conducted a
second sample of an additional 50 publications.

We can evaluate the strength of our agreement as follows: < 0.0
is considered as poor agreement, 0.00-0.20 as slight, 0.21-0.40 as
fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00
as almost perfect [16]. We attained a substantial rage of scores in
terms of ICR for the NFRs. One result (ethics) was poor, with our
coding being worse than random. However, we attained fair results
for three other NFRs, and moderate or better for the remaining 15.
Our final estimation is shown in the final column in Table. 2.

Focusing on five of the NFRs in cluster 7, we can examine our
change in agreement after discussion. After the first sample of 50 pa-
pers, the ICR scores were fair for maintainability and completeness,
and moderate for usability, completeness, maintainability, trace-
ability, and testability. After a discussion among all three authors
about our perception and interpretation of the NFR definitions and
the inclusion and exclusion criteria, the ICR for the second sample
generally improved and ranged between moderate (e.g., complete-
ness, maintainability, traceability) to perfect (e.g., testability). We
note, however, that our ICR score for usability actually decreased
in the second round. To some extent, these score also depend on
the percentage of relevant publications. The less often papers are
relevant (e.g., testability), the easier it is to gain high agreement.

For some NFRs, it was difficult to agree on inclusion. For example,
we had particularly low agreement for ethics and explainability. For
some NFRs, we can often make a clear distinction between studies
focused on improving attainment of that NFR when designing a
ML system versus irrelevant studies (e.g., those that use ML to
predict attainment of an NFR for a traditional system). With topics
like ethics and explaininability, it was harder to make this type
of distinction, and there were more disagreements on particular
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Figure 2: Possible scope for NFRs over system elements.

studies. In these cases, future work may require clearer definitions
or more specific criteria.
NFR Scoping Over System Elements (RQ3): Clear definition of
NFRs in a ML system context,requires understanding which specific
elements of an ML system that an NFR is applicable to.

As a starting point for building this understanding, we believe
that NFRs can be defined over the following parts of an ML sys-
tem. The training data used by the ML algorithm as the basis
for making decisions. The algorithm that performs the learning
task. This includes algorithms that operate on training data, as well
as those that perform learning tasks based on feedback, such as
reinforcement learning agents. We also consider the specific im-
plementation of the algorithm here.The coremodel or artifact2

built by the algorithm for use in making decisions. For example, the
algorithm may use the training data to build a model that makes
decisions in new situations based on learned connections between
data items. The resulting decisions or behaviorsmade as a result
of applying the model. Finally, the ML system as a whole.

These parts are illustrated in Fig. 2. It is possible that more
elements may be applicable in the future, e.g., NFRs over features
of a data set or over specific types of functionality operating on the
results of ML, but we start with this initial list of system elements
to understand the scope of the selected NFRs.

Our overall determination of which system elements a particular
NFR can be defined over is presented in Table. 3. Note that our
2This notion also encompasses the policy learned by an agent in reinforcement learning,
or other rules “learned” by the algorithm in other techniques.

Table 3: System elements that NFRs can be defined over

System Element the NFR Can be Defined Over
NFR Cluster Train. Algo. Model Results Whole

Data System
Completeness 1 ✔ ✖ ✔ ✖ ✔

Correctness 1 ✔ ✔ ✔ ✔ ✔

Fault Tolerance 1 ✖ ✔ ✔ ✖ ✔

Integrity 1 ✔ ✔ ✔ ✔ ✔

Repeatability 1 ✖ ✖ ✖ ✔ ✔

Explainability 2 ✖ ✔ ✔ ✔ ✔

Transparency 2 ✖ ✔ ✔ ✔ ✔

Ethics 3 ✔ ✔ ✔ ✔ ✔

Fairness 3 ✔ ✔ ✔ ✔ ✔

Adaptability 5 ✔ ✔ ✔ ✔ ✔

Domain Adaptation 5 ✔ ✔ ✔ ✔ ✔

Flexibility 5 ✖ ✔ ✔ ✖ ✔

Interoperability 5 ✖ ✔ ✔ ✖ ✔

Portability 5 ✔ ✔ ✔ ✖ ✔

Reusability 5 ✔ ✔ ✔ ✖ ✔

Maintainability 7 ✔ ✔ ✔ ✖ ✔

Testability 7 ✖ ✔ ✔ ✔ ✔

Traceability 7 ✔ ✔ ✔ ✔ ✔

Usability 7 ✖ ✔ ✔ ✔ ✔

estimation of NFR scope is an initial estimation based on our ex-
periences and the sampled abstracts. The scope of each NFR likely
will evolve over time as more data and examples are gathered.

To illustrate our determinations, we select a number of exam-
ples. For example, we determined that the NFR flexibility can be
defined over the ML algorithm, the ML model, and the whole sys-
tem. However, we believe it is not applicable to the training data
and the results. Consider a definition of flexibility by Ladiges et
al. [15], “flexibility is an indicator for the ability of a system to react
to changing demands or conditions”. We can adapt this definition to
different parts of the ML system, as in the following3. The flexibility
of an ML algorithm is the ability of an algorithm to react to changing
demands and conditions, without significant re-implementation. The
flexibility of an ML model is the ability of a model to react to chang-
ing inputs and contexts in a useful way, without retraining. Finally,
the flexibility an ML system could use the initial definition or, more
specifically, the ability of a ML system to react to changing demands
or conditions without extensive re-implementation or re-training. On
the other hand, we struggle to define flexibility over training data.
It makes sense to think of the reusability of training data, e.g., to
train ML systems for different context and purposes with some of
the same data, but what does it mean for data itself to be flexible?
Similarly, results can be reusable, but it is not clear how they can be
flexible. We opt to omit these definitions from our consideration.

Similarly, the NFR usability can be defined over theML algorithm,
the ML model, the results, and the whole system; but may not be
applicable over the training data. If we take the simple definition
of usability from Table 1, “how effectively users can learn and use a
system”, this definition makes sense over the whole system. We can
also define this NFR over specific ML elements. The usability of an
ML algorithm is how effectively users can learn and use an algorithm
to train an ML model as part of a system. The usability of an ML
model is how effectively users learn to use an ML model at run-time
in order to get results. The usability of ML results is how effectively
users can understand and apply ML results for some practical purpose.
However, we struggle to create a definition for the usability of the
training data. Does a user learn data? Although a user uses data, is
some data more usable than others, or is that more a matter of data
quality and data appropriateness?

When processing the abstract and titles for usability, we noted
that many authors used usability as more a binary term meaning
applicability—e.g., usability means that data can be used to train a
model. We disagree with this use of usability, as usability is more
appropriate as a user-centered qualitative concept. If we exclude
general applicability, we find it hard to define usability of data.

Other combinations of system elements and NFRs can be defined
similarly. We can see that all NFRs can be defined over the whole
system, reflecting the scope of NFRs over traditional systems. Al-
most all apply over the model, and most to the algorithm. Fewer
NFRs apply to the training data and the results, but there is no clear
pattern here. Some apply to both, others only to one.

We are working towards a framework for the definition of each
NFR over each part, including a checklist on which part of the

3We note that these definitions may have significant overlap with definitions for NFRs
such as adaptability, resuability, or portability, which is precisely why these NFRs are
placed in the same cluster—cluster 5, in this case.
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system a particular NFR can be defined. We hope that such explo-
ration can lead to a deeper understanding of each NFR and their
application to ML systems.

4.1 Threats to Validity
External Validity:We have only used Scopus, which may mean
we miss relevant papers in other databases. However, Scopus is a
meta-database that is rich in content on computer science research
from multiple publishers. We searched papers in Scopus up to
September 2021, and there may be newer papers that are missed.
Future secondary studies should repeat the search process.

The search string was confined to a small set of terms and key-
words, focusing on only a subset of NFRs. We could have searched
for alternative terms and stems like "interoper" for interoperability.
However, it would be difficult to find equivalent stems for all NFRs
(e.g., security) and may have led to an unmanageable increase in the
volume of papers without a significant increase in relevant results.
Our goal is not to make a conclusive statement on the number of
publications, but to gain an approximate idea of the interest in each
NFR. A sample is sufficient for such purposes.
Internal Validity: There is potential bias in determining paper
inclusion. To mitigate this risk, we defined shared inclusion criteria,
each of the authors went through each title and abstract separately,
and we made a collective decision in cases of disagreement. Our
ICR results are often good, and performing a second sample yielded
consistent or better ICR scores for all but one NFR.

The clusters we created may be subjective to our experiences
and opinions. NFRs could be arranged differently, but we believe
our clusters are a good starting point to help organize and direct
future research. Further work may add to or adjust the clusters as
new evidence is found.

Our consideration of the scope of NFR definitions may also be
subjective. We made these judgements in agreement between all
authors, discussing difficult cases. We have tried to justify our
selection for a sample of NFRs. Future work will adjust our scoping
decisions when more evidence or examples are found.

5 CONCLUSIONS
In this work, we aimed at understanding and exploring definitions,
scope, and the extent of existing research on NFRs for ML systems,
as we believe that both the research community and industry lack
knowledge on NFRs for ML systems compared to understanding in
traditional systems. The results show that researchers have focused
on many NFRs for ML systems, but the amount of attention directed
to each NFR differs drastically. Some NFRs received more attention
andwere exploredmore (e.g., peformance, accuracy, efficiency) com-
pared to other NFRs (e.g., maintainability, traceability). Although
such differences were expected, it is useful estimate interest with
concrete numbers.

We created six clusters of NFRs based on the similarity of char-
acteristics and meaning of NFRs, and one cluster of NFRs which
does not share similar properties, with the objective of helping
researchers to focus on a particular cluster for their future system-
atic review studies. These clusters will also help practitioners to
understand the similarity of NFRs and provide them a direction on
which NFRs they need to consider while developing ML systems.

We defined NFRs over different granular levels of the ML systems
based on the meaning and purpose of those NFRs. This can help
practitioners to understand on which part of the ML system a
particular NFR can be considered while developingML systems. Our
futurework includes a comprehensivemapping study to identify the
current state-of-the-art on selected NFRs for ML systems research,
and a framework to guide consideration of NFRs over different
elements of ML systems.
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