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ABSTRACT
We study Frank-Wolfe algorithms – standard, pairwise, and away-

steps – for efficient optimization of Dominant Set Clustering. We

present a unified and computationally efficient framework to employ

the different variants of Frank-Wolfe methods, and we investigate

its effectiveness via several experimental studies. In addition, we

provide explicit convergence rates for the algorithms in terms of

the so-called Frank-Wolfe gap. The theoretical analysis has been

specialized to Dominant Set Clustering and covers consistently the

different variants.
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1 INTRODUCTION
Clustering plays an important role in unsupervised learning and

exploratory data analytics [20]. It is used in applications from

different domains such as network analysis, image segmentation,

document and text processing, community detection and bioinformatics.

Given a set of𝑛 objects with indices𝑉 = {1, ..., 𝑛} and the nonnegative
pairwise similarities A = (𝑎𝑖 𝑗 ), i.e., graph G(𝑉 ,A) with vertices 𝑉

and edge weights A, the goal is to partition the data into coherent

groups that look dissimilar from each other. We assume zero self-

similarities, i.e., 𝑎𝑖𝑖 = 0 ∀𝑖 . Several clustering methods compute the

clusters via minimizing a cost function. Examples are Ratio Cut

[7], Normalized Cut [36], Correlation Clustering [1], and shifted

Min Cut [9, 15]. For some of them, for example Normalized Cut,

approximate solutions have been developed in the context of spectral

analysis [27, 36], Power Iteration Clustering (PIC) method [25]

and P-Spectral Clustering [3, 18]. They are sometimes combined
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with greedy hierarchical clustering, e.g. 𝐾-means combined with

agglomerative clustering [10].

Another prominent clustering approach has been developed in

the context of Dominant Set Clustering (DSC) and its connection

to discrete-time dynamical systems and replicator dynamics [4, 31].
Unlike the methods based on cost function minimization, DSC

does not define a global cost function for the clusters. Instead,

it applies the generic principles of clustering where each cluster

should be coherent and well separated from the other clusters.

These principles are formulated via the concepts of dominant sets

[31]. Then, several variants of the method have been proposed. The

method in [26] proposes an iterative clustering algorithm in two

Shrink and Expand steps. These steps are suitable for sparse data

and lead to reducing the runtime of performing replicator dynamics.

[6] develops an enumeration technique for different clusters via

unstabilizing the underlying equilibrium of replicator dynamics.

[29] proposes a hierarchical variant of DSC via regularization and

shifting the off-diagonal elements of the similarity matrix. [8]

analyzes adaptively the trajectories of replicator dynamics in order

to discover suitable phase transitions that correspond to evolving

fast clusters. Several studies demonstrate the effectiveness of DSC

variants compared to other clustering methods, such as spectral

methods [4, 8, 26, 31].

In this paper, we investigate efficient optimization for DSC based

on Frank-Wolfe algorithms [13, 24, 33] as an alternative to replicator

dynamics. Frank-Wolfe optimization has been successfully applied

to several constrained optimization problems. We develop a unified

and computationally efficient framework to employ the different

variants of Frank-Wolfe algorithms for DSC, and we investigate

its effectiveness via several experimental studies. Our theoretical

analysis is specialized to DSC, and we provide explicit convergence

rates for the algorithms in terms of Frank-Wolfe gap – including

pairwise Frank-Wolfewith nonconvex/nonconcave objective function

for which we have not seen any theoretical analysis in prior work.

In addition, we study multi-start Dominant Set Clustering that can

be potentially useful for parallelizing the method.

We note that beyond DSC, replicator dynamics is used in several

other domains such as evolutionary game theory [11], theoretical

biology [28], dynamical systems [35], online learning [37], combinatorial

optimization problems [32], and several other tasks beyond clustering

[4]. Hence, our contribution opens novel possibilities to investigate

more efficient alternatives in those paradigms.

2 DOMINANT SET CLUSTERING
DSC follows an iterative procedure to compute the clusters: i)

computes a dominant set using the similarity matrix A of the
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available data, ii) peels off (removes) the clustered objects from

the data, and iii) repeats until a predefined number of clusters have

been obtained.
1

Dominant sets correspond to local optima of the following quadratic

problem [31], called standard quadratic problem (StQP).

maximize 𝑓 (x) = x𝑇Ax (1)

subject to x ∈ Δ =

{
x ∈ R𝑛 : x ≥ 0𝑛 and

𝑛∑
𝑖=1

𝑥𝑖 = 1

}
.

The constraint Δ is called the standard simplex. We note that A is

generally not negative definite, and the objective function 𝑓 (x) is
thus not concave.

Every unclustered object 𝑖 corresponds to a component of the 𝑛-

dimensional characteristic vector x. The support of local optimum

x∗ specifies the objects that belong to the dominant set (cluster),

i.e., 𝑖 is in the cluster if component 𝑥∗
𝑖

> 0. In practice we use

𝑥∗
𝑖

> 𝛿 , where 𝛿 is a small number called the cutoff parameter.

Previous works employ replicator dynamics to solve StQP, where x
is updated according to the following dynamics.

𝑥
(𝑡+1)
𝑖

= 𝑥
(𝑡 )
𝑖

(Ax𝑡 )𝑖
xT𝑡Ax𝑡

, 𝑖 = 1, .., 𝑛 , (2)

where x𝑡 indicates the solution at iterate 𝑡 , and 𝑥
(𝑡 )
𝑖

is the 𝑖-th

component of x𝑡 . We note the O(𝑛2) per-iteration time complexity

due to the matrix multiplication.

In this paperwe investigate an alternative optimization framework

based on Frank-Wolfe methods.

3 UNIFIED FRANK-WOLFE OPTIMIZATION
METHODS

Let P ⊂ R𝑛 be a finite set of points andD = convex(P) its convex
hull (convex polytope). The Frank-Wolfe algorithm, first introduced

in [13], aims at solving the following constrained optimization.

max

x∈D
𝑓 (x), (3)

where 𝑓 is nonlinear and differentiable. The formulation in [23]

has extended the concavity assumption to arbitrary functions with

𝐿-Lipschitz (‘well-behaved’) gradients. Algorithm 1 outlines the

steps of a Frank-Wolfe method to solve the optimization in (3).

In this work, in addition to the standard FW (called FW), we

also consider two other variants of FW: pairwise FW (PFW) and

away-steps FW (AFW), adapted from [24]. They differ in the way

the ascent direction d𝑡 is computed.

From the definition of D, any point x𝑡 ∈ D can be written as a

convex combination of the points in P, i.e.,

x𝑡 =
∑
v∈P

𝜆
(𝑡 )
v v, (4)

where the coefficients 𝜆
(𝑡 )
v ∈ [0, 1] and ∑

v∈P 𝜆
(𝑡 )
v = 1. Define

𝑆𝑡 = {v ∈ P : 𝜆
(𝑡 )
v > 0} (5)

1
With some abuse of the notation, 𝑛,𝑉 , A and x sometimes refer to the available (i.e.,

still unclustered) objects and the similarities between them. This is obvious from the

context. The reason is that DSC performs a sequential procedure where at each step

separates a cluster from the available unclustered data.

Algorithm 1 Frank-Wolfe pseudocode

1: procedure PSEUDO-FW(𝑓 , D, 𝑇 ) ⊲ Function 𝑓 , convex

polytope D, and iterations 𝑇 .

2: Select x0 ∈ D
3: for 𝑡 = 0, ...,𝑇 − 1 do
4: if x𝑡 is stationary then break
5: Compute feasible ascent direction d𝑡 at x𝑡
6: Compute step size 𝛾𝑡 ∈ [0, 1] such that 𝑓 (x𝑡 + 𝛾𝑡d𝑡 ) >
𝑓 (x𝑡 )

7: x𝑡+1 := x𝑡 + 𝛾𝑡d𝑡
8: return x𝑡

as the set of points with nonzero coefficients at iterate 𝑡 . Moreover,

let

s𝑡 ∈ arg max

s∈D
∇𝑓 (x𝑡 )𝑇 s, (6)

v𝑡 ∈ arg min

v∈𝑆𝑡
∇𝑓 (x𝑡 )𝑇 v. (7)

Since D is a convex polytope, s𝑡 is the point that maximizes the

linearization and v𝑡 is the point with nonzero coefficient that

minimizes it over 𝑆𝑡 . Let x𝑡 be the estimated solution of (3) at

iterate 𝑡 and define

d𝐴𝑡 = x𝑡 − v𝑡 ,

d𝐹𝑊𝑡 = s𝑡 − x𝑡 ,

d𝐴𝐹𝑊𝑡 =


d𝐹𝑊𝑡 , if ∇𝑓 (x𝑡 )𝑇 d𝐹𝑊𝑡 ≥ 𝑓 (x𝑡 )𝑇 d𝐴𝑡
𝜆
(𝑡 )
v𝑡

1−𝜆 (𝑡 )v𝑡

d𝐴𝑡 , otherwise

d𝑃𝐹𝑊𝑡 = s𝑡 − v𝑡 (8)

respectively as the away, FW, pairwise, and away/FW directions (to

be maximized). The FW direction moves towards a ‘good’ point, and

the away direction moves away from a ‘bad’ point. The pairwise

direction shifts from a ‘bad’ point to a ‘good’ point [24]. The

coefficientwith d𝐴𝑡 in d𝐴𝐹𝑊𝑡 ensures the next iterate remains feasible.

An issue with standard FW, which PFW and AFW aim to fix,

is the zig-zagging phenomenon. This occurs when the optimal

solution of (3) lies on the boundary of the domain. Then the iterates

start to zig-zag between the points, which negatively affects the

convergence. By adding the possibility of an away step in AFW,

or alternatively using the pairwise direction, zig-zagging can be

attenuated.

The step size 𝛾𝑡 can be computed by line-search, i.e.,

𝛾𝑡 ∈ arg max

𝛾 ∈[0,1]
𝑓 (x𝑡 + 𝛾d𝑡 ). (9)

Finally, the Frank-Wolfe gap is used to check if an iterate is (close

enough to) a stationary solution.

Definition 1. The Frank-Wolfe gap 𝑔𝑡 of 𝑓 : D → R at iterate 𝑡
is defined as

𝑔𝑡 = max

s∈D
∇𝑓 (x𝑡 )𝑇 (s − x𝑡 ) ⇐⇒ 𝑔𝑡 = ∇𝑓 (x𝑡 )𝑇 d𝐹𝑊𝑡 . (10)

A point x𝑡 is stationary if and only if 𝑔𝑡 = 0, meaning there

are no ascent directions. The Frank-Wolfe gap is thus a reasonable

measure of nonstationarity and is frequently used as a stopping
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criterion [23]. Specifically, a threshold 𝜖 is defined, and if 𝑔𝑡 ≤ 𝜖 ,
then we conclude the x𝑡 at the current iterate 𝑡 is sufficiently close

to a stationary point and we stop the algorithm.

4 FRANK-WOLFE FOR DOMINANT SET
CLUSTERING

Here we apply the Frank-Wolfe methods from the previous section

to the optimization problem (1) defined by DSC.

Optimization in Simplex Domain. Because of the simplex form –

the constraints in (1) – the convex combination in (4) for x ∈ Δ can

be written as x =
∑𝑛
𝑖=1

𝜆e𝑖 e𝑖 , where e𝑖 are the standard basis vectors.
That is, the 𝑖-th coefficient corresponds to the 𝑖-th component of

x, 𝜆e𝑖 = 𝑥𝑖 . The set of components with nonzero coefficients of x𝑡
gives the support, i.e., 𝜎𝑡 = {𝑖 ∈ 𝑉 : 𝑥

(𝑡 )
𝑖

> 0}.
Due to the structure of the simplexΔ, the solution of the optimization

(6) is 
s𝑡 ∈ Δ
𝑠
(𝑡 )
𝑖

= 1, where 𝑖 ∈ arg max

𝑖
∇𝑖 𝑓 (x𝑡 )

𝑠
(𝑡 )
𝑗

= 0, for 𝑗 ≠ 𝑖,

(11)

and the optimization (7) is obtained by
v𝑡 ∈ Δ
𝑣
(𝑡 )
𝑖

= 1, where 𝑖 ∈ arg min

𝑖∈𝜎𝑡
∇𝑖 𝑓 (x𝑡 )

𝑣
(𝑡 )
𝑗

= 0, for 𝑗 ≠ 𝑖 .

(12)

The maximum and minimum values of the linearization are the

largest and smallest components of the gradient, respectively (subject

to 𝑖 ∈ 𝜎𝑡 in the latter case). Note that the gradient is ∇𝑓 (x𝑡 ) = 2Ax𝑡 .

Step Sizes. We compute the optimal step sizes for FW, PFW, and

AFW. Iterate subscripts 𝑡 are omitted for clarity. We define the step

size function as

𝜓 (𝛾) = 𝑓 (x + 𝛾d)

= (x + 𝛾d)𝑇A(x + 𝛾d)

= x𝑇Ax + 2𝛾d𝑇Ax + 𝛾2d𝑇Ad

= 𝑓 (x) + 𝛾∇𝑓 (x𝑡 )𝑇 d + 𝛾2d𝑇Ad,

(13)

for some ascent direction d. This expression is a single variable

second degree polynomial in 𝛾 . The function is concave if the

coefficient d𝑇Ad ≤ 0 – second derivative test – and admits a global

maximum in that case.

In the following it is assumed that s and v satisfy (11) and (12),

and their nonzero components are 𝑖 and 𝑗 , respectively.

FW direction: Substitute d𝐹𝑊 = s − x into d𝑇Ad.

d𝑇Ad = (s − x)𝑇A(s − x)

= s𝑇As − 2s𝑇Ax + x𝑇Ax

= −(2s𝑇Ax − x𝑇Ax)

= x𝑇Ax − 2a𝑇𝑖∗x.

(14)

The 𝑖-th row of A is a𝑖∗ and its 𝑗-th column is a∗𝑗 .

Pairwise direction: Substitute d𝑃𝐹𝑊 = s − v into d𝑇Ad.

d𝑇Ad = (s − v)𝑇A(s − v)

= s𝑇As − 2v𝑇As + v𝑇Av = −2𝑎𝑖 𝑗 .
(15)

Away direction: Substitute d𝐴 = x − v into d𝑇Ad.

d𝑇Ad = (x − v)𝑇A(x − v)

= x𝑇Ax − 2v𝑇Ax + v𝑇Av

= x𝑇Ax − 2a𝑇𝑗∗x.

(16)

Recall A has nonnegative entries and zeros on the main diagonal.

Therefore s𝑇As = 0 and v𝑇Av = 0. It is immediate that (15) is

nonpositive. From x𝑇Ax ≤ s𝑇Ax we conclude that (14) is also

nonpositive. The corresponding step size functions are therefore

always concave. We cannot make any conclusion for (16), and the

sign of d𝑇Ad depends on x.
The derivative of𝜓 (𝛾) is

𝑑𝜓

𝑑𝛾
(𝛾) = ∇𝑓 (x)𝑇 d + 2𝛾d𝑇Ad. (17)

By solving
𝑑𝜓

𝑑𝛾
(𝛾) = 0 we obtain

∇𝑓 (x)𝑇 d + 2𝛾d𝑇Ad = 0

⇐⇒

𝛾∗ = −∇𝑓 (x)
𝑇 d

2d𝑇Ad
= −x

𝑇Ad
d𝑇Ad

.

(18)

Since ∇𝑓 (x)𝑇 d ≥ 0, we also conclude here that d𝑇Ad < 0 has

to hold in order for the step size to make sense.

By substituting the directions and corresponding d𝑇Ad into (18)

we obtain the optimal step sizes.

FW direction and (14):

𝛾𝐹𝑊 = −x
𝑇Ad
d𝑇Ad

=
a𝑇
𝑖∗x − x

𝑇Ax

2a𝑇
𝑖∗x − x𝑇Ax

. (19)

Pairwise direction and (15):

𝛾𝑃𝐹𝑊 = −x
𝑇Ad
d𝑇Ad

=
a𝑇
𝑖∗x − a

𝑇
𝑗∗x

2𝑎𝑖 𝑗
. (20)

Away direction and (16):

𝛾𝐴 = −x
𝑇Ad
d𝑇Ad

=
x𝑇Ax − a𝑇

𝑗∗x

2a𝑇
𝑗∗x − x𝑇Ax

. (21)

Algorithms. Here, we describe in detail standard FW (Algorithm

2), pairwise FW (Algorithm 3), and away-steps FW (Algorithm 4)

for problem (1), following the high-level structure of Algorithm 1.

All variants have O(𝑛) per-iteration time complexity, where the

linear operations are arg max, arg min, and vector addition. The key

for this complexity is that we can update the gradient ∇𝑓 (x) = 2Ax
in linear time. Lemmas 1, 2 and 3 show why this is the case. Recall

the updates in replicator dynamics are quadratic w.r.t. 𝑛. 2

2
Proofs are discarded due to space limit. They will be provided in a longer version of

the paper.
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Algorithm 2 FW for DSC

1: procedure FW(A, 𝜖 , 𝑇 )
2: Select x0 ∈ Δ
3: r0 := Ax0

4: 𝑓0 := r𝑇
0
x0

5: for 𝑡 = 0, ...,𝑇 − 1 do
6: s𝑡 := e𝑖 , where 𝑖 ∈ arg max

ℓ
𝑟
(𝑡 )
ℓ

7: 𝑔𝑡 := 𝑟
(𝑡 )
𝑖
− 𝑓𝑡

8: if 𝑔𝑡 ≤ 𝜖 then break

9: 𝛾𝑡 :=
𝑟
(𝑡 )
𝑖
−𝑓𝑡

2𝑟
(𝑡 )
𝑖
−𝑓𝑡

10: x𝑡+1 := (1 − 𝛾𝑡 )x𝑡 + 𝛾𝑡 s𝑡
11: r𝑡+1 := (1 − 𝛾𝑡 )r𝑡 + 𝛾𝑡a∗𝑖
12: 𝑓𝑡+1 := (1 − 𝛾𝑡 )2 𝑓𝑡 + 2𝛾𝑡 (1 − 𝛾𝑡 )𝑟 (𝑡 )𝑖

13: return x𝑡

Lemma 1. For x𝑡+1 = (1−𝛾𝑡 )x𝑡 +𝛾𝑡 s𝑡 , lines 11 and 12 in Algorithm
2 satisfy

r𝑡+1 = Ax𝑡+1, 𝑓𝑡+1 = x𝑇𝑡+1Ax𝑡+1 .

Algorithm 3 Pairwise FW for DSC

1: procedure PFW(A, 𝜖 , 𝑇 )
2: Select x0 ∈ Δ
3: r0 := Ax0

4: 𝑓0 := r𝑇
0
x0

5: for 𝑡 = 0, ...,𝑇 − 1 do
6: 𝜎𝑡 := {𝑖 ∈ 𝑉 : 𝑥

(𝑡 )
𝑖

> 0}
7: s𝑡 := e𝑖 , where 𝑖 ∈ arg max

ℓ
𝑟
(𝑡 )
ℓ

8: v𝑡 := e𝑗 , where 𝑗 ∈ arg min

ℓ∈𝜎𝑡
𝑟
(𝑡 )
ℓ

9: 𝑔𝑡 := 𝑟
(𝑡 )
𝑖
− 𝑓𝑡

10: if 𝑔𝑡 ≤ 𝜖 then break

11: 𝛾𝑡 := min

(
𝑥
(𝑡 )
𝑗
,
𝑟
(𝑡 )
𝑖
−𝑟 (𝑡 )

𝑗

2𝑎𝑖 𝑗

)
12: x𝑡+1 := x𝑡 + 𝛾𝑡 (s𝑡 − v𝑡 )
13: r𝑡+1 := r𝑡 + 𝛾𝑡 (a∗𝑖 − a∗𝑗 )
14: 𝑓𝑡+1 := 𝑓𝑡 + 2𝛾𝑡 (𝑟 (𝑡 )𝑖

− 𝑟 (𝑡 )
𝑗
) − 2𝛾2

𝑡 𝑎𝑖 𝑗

15: return x𝑡

Lemma 2. For x𝑡+1 = x𝑡 +𝛾𝑡 (s𝑡 −v𝑡 ), lines 13 and 14 in Algorithm
3 satisfy

r𝑡+1 = Ax𝑡+1, 𝑓𝑡+1 = x𝑇𝑡+1Ax𝑡+1 .

Lines 12-15 are identical to the updates in Algorithm 2 included

in Lemma 1. We thus only show the away direction.

Lemma 3. For x𝑡+1 = (1+𝛾𝑡 )x𝑡−𝛾𝑡v𝑡 , lines 22 and 23 in Algorithm
4 satisfy

r𝑡+1 = Ax𝑡+1, 𝑓𝑡+1 = x𝑇𝑡+1Ax𝑡+1 .

Algorithm 4 (AFW) is actually equivalent to the infection and
immunization dynamics (InImDyn) with the pure strategy selection

Algorithm 4 Away-steps FW for DSC

1: procedure AFW(A, 𝜖 , 𝑇 )
2: Select x0 ∈ Δ
3: r0 := Ax0

4: 𝑓0 := r𝑇
0
x0

5: for 𝑡 = 0, ...,𝑇 − 1 do
6: 𝜎𝑡 := {𝑖 ∈ 𝑉 : 𝑥

(𝑡 )
𝑖

> 0}
7: s𝑡 := e𝑖 , where 𝑖 ∈ arg max

ℓ
𝑟
(𝑡 )
ℓ

8: v𝑡 := e𝑗 , where 𝑗 ∈ arg min

ℓ∈𝜎𝑡
𝑟
(𝑡 )
ℓ

9: 𝑔𝑡 := 𝑟
(𝑡 )
𝑖
− 𝑓𝑡

10: if 𝑔𝑡 ≤ 𝜖 then break
11: if (𝑟 (𝑡 )

𝑖
− 𝑓𝑡 ) ≥ (𝑓𝑡 − 𝑟 (𝑡 )𝑗 ) then ⊲ FW direction

12: 𝛾𝑡 :=
𝑟
(𝑡 )
𝑖
−𝑓𝑡

2𝑟
(𝑡 )
𝑖
−𝑓𝑡

13: x𝑡+1 := (1 − 𝛾𝑡 )x𝑡 + 𝛾𝑡 s𝑡
14: r𝑡+1 := (1 − 𝛾𝑡 )r𝑡 + 𝛾𝑡a∗𝑖
15: 𝑓𝑡+1 := (1 − 𝛾𝑡 )2 𝑓𝑡 + 2𝛾𝑡 (1 − 𝛾𝑡 )𝑟 (𝑡 )𝑖
16: else ⊲ Away direction

17: 𝛾𝑡 := 𝑥
(𝑡 )
𝑗
/(1 − 𝑥 (𝑡 )

𝑗
)

18: if (2𝑟 (𝑡 )
𝑗
− 𝑓𝑡 ) > 0 then

19: 𝛾𝑡 ← min

(
𝛾𝑡 ,

𝑓𝑡−𝑟 (𝑡 )𝑗

2𝑟
(𝑡 )
𝑗
−𝑓𝑡

)
20: x𝑡+1 := (1 + 𝛾𝑡 )x𝑡 − 𝛾𝑡v𝑡
21: r𝑡+1 := (1 + 𝛾𝑡 )r𝑡 − 𝛾𝑡a∗𝑗
22: 𝑓𝑡+1 := (1 + 𝛾𝑡 )2 𝑓𝑡 − 2𝛾𝑡 (1 + 𝛾𝑡 )𝑟 (𝑡 )𝑗
23: return x𝑡

function, introduced in [5] as an alternative to replicator dynamics.

However, InImDyn is derived from the perspective of evolutionary

game theory as opposed to Frank-Wolfe. Thus, our framework

provides a way to connect replicator dynamics and InImDyn in

a principled way. Moreover, it allows us to further analyze this

method and study its convergence rate.

Proposition 1. Algorithm 4 (AFW) is equivalent to InImDyn, i.e.,
Algorithm 1 in [5].

5 ANALYSIS OF CONVERGENCE RATES
[23] shows that the Frank-Wolfe gap for standard FW decreases

at rate O(1/
√
𝑡) for nonconvex/nonconcave objective functions,

where 𝑡 is the number of iterations. A similar convergence rate

is shown in [2] for nonconvex AFW over the simplex. When the

objective function is convex/concave, linear convergence rates for

PFW and AFW are shown in [24]. The analysis in [38] shows linear

convergence rate of standard FW for nonconvex but multi-linear

functions. We are not aware of any work analyzing the convergence

rate in terms of the Frank-Wolfe gap for nonconvex/nonvoncave

PFW.

Following the terminology and techniques in [2, 23, 24], we

present a unified and specialized framework to analyze convergence

rates for Algorithms 2, 3, and 4. The analysis is split into a number

of different cases, where each case handles a unique ascent direction
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and step size combination. For the step sizes, we consider one case

when the optimal step size is used (𝛾𝑡 < 𝛾𝑚𝑎𝑥 ), and a second case

when it has been truncated (𝛾𝑡 = 𝛾𝑚𝑎𝑥 ). The former case is referred

to as a good step, since in this case we can provide a lower bound

on the progress 𝑓 (x𝑡+1) − 𝑓 (x𝑡 ) in terms of the Frank-Wolfe gap.

The latter case is referred to as a drop step or a swap step. It is called

a drop step when the cardinality of the support reduces by one,

i.e., |𝜎𝑡+1 | = |𝜎𝑡 | − 1, and it is called a swap step when it remains

unchanged, i.e., |𝜎𝑡+1 | = |𝜎𝑡 |. When 𝛾𝑡 = 𝛾𝑚𝑎𝑥 we cannot provide a

bound on the progress in terms of the Frank-Wolfe gap, and instead

we bound the number of drop/swap steps. Furthermore, this case

can only happen for PFW and AFW as the step size for FW always

satisfies 𝛾𝑡 < 𝛾𝑚𝑎𝑥 . Swap steps can only happen for PFW.

Let 𝑔𝑡 = min

0≤ℓ≤𝑡
𝑔ℓ , 𝑀 = min

𝑖, 𝑗 :𝑖≠𝑗
𝑎𝑖 𝑗 , 𝑀 = max

𝑖, 𝑗 :𝑖≠𝑗
𝑎𝑖 𝑗 be the

smallest Frank-Wolfe gap after 𝑡 iterations, and the smallest and

largest off-diagonal elements of A. Let 𝐼 be the indexes that take a
good step. That is, for 𝑡 ∈ 𝐼 we have 𝛾𝑡 < 𝛾𝑚𝑎𝑥 . Then, we show the

following results.

Lemma 4. The smallest Frank-Wolfe gap for Algorithms 2, 3, and
4 satisfy

𝑔𝑡 ≤ 2

√
𝛽 (𝑓 (x𝑡 ) − 𝑓 (x0))

|𝐼 | , (22)

where 𝛽 = 2𝑀 −𝑀 for FW and AFW, and 𝛽 = 2𝑀 for PFW.

Theorem 1. The smallest Frank-Wolfe gap for Algorithm 2 (FW)
satisfies

𝑔𝐹𝑊𝑡 ≤ 2

√
(2𝑀 −𝑀) (𝑓 (x𝑡 ) − 𝑓 (x0))

𝑡
. (23)

Theorem 2. The smallest Frank-Wolfe gap for Algorithm 3 (PFW)
satisfies

𝑔𝑃𝐹𝑊𝑡 ≤ 2

√
6𝑛!𝑀 (𝑓 (x𝑡 ) − 𝑓 (x0))

𝑡
. (24)

Theorem 3. The smallest Frank-Wolfe gap for Algorithm 4 (AFW)
satisfies

𝑔𝐴𝐹𝑊𝑡 ≤ 2

√
2(2𝑀 −𝑀) (𝑓 (x𝑡 ) − 𝑓 (x0))

𝑡 + 1 − |𝜎0 |
. (25)

From Theorems 1, 2 and 3 we conclude Corollary 1.

Corollary 1. The smallest Frank-Wolfe gap for Algorithms 2, 3,
and 4 decrease at rate O(1/

√
𝑡).

Initialization. The way the algorithms are initialized – value

of x0 – affects the local optima the algorithms converge to. Let

x̄𝐵 = 1

𝑛 e be the barycenter of the simplex Δ, where e𝑇 = (1, 1, ..., 1).
We also define x̄𝑉 as

x̄𝑉 ∈ Δ
𝑥𝑉
𝑖

= 1, where 𝑖 ∈ arg max

𝑖
∇𝑖 𝑓 (x̄𝐵)

𝑥𝑉
𝑗

= 0, for 𝑗 ≠ 𝑖 .

(26)

Initializing x0 with x̄𝐵 avoids initial bias to a particular solution as

it considers a uniform distribution over the available objects. Since

∇𝑓 (x̄𝐵) = 2Ax̄𝐵 , the nonzero component of x̄𝑉 corresponds to the

row of A with largest total sum. Therefore, it is biased to an object

that is highly similar to many other objects.

The starting point for replicator dynamics is x̄𝑅𝐷 = x̄𝐵 , as used
for example in [30, 31]. Note that if a component of x̄𝑅𝐷 starts at

zero it will remain at zero for the entire duration of the dynamics

according to (2). Furthermore, (x̄𝑉 )𝑇Ax̄𝑉 = 0 since A has zeros on

the main diagonal, and the denominator in replicator dynamics is

then zero for this point. Thus, x̄𝑉 is not a viable starting point for

replicator dynamics.

The starting point for standard FW is x̄𝐹𝑊 = x̄𝑉 , and is found

experimentally to work well. As explained in convergence rate

analysis, FW never performs any drop steps since the step size

always satisfies 𝛾𝑡 < 𝛾𝑚𝑎𝑥 . Hence, using x̄𝐵 as starting point for

FW will lead to a solution that has full support – this is found

experimentally to hold true as well. Therefore, with FW, we use

only initialization with x̄𝑉 . With PFW and AFW, we can use both

x̄𝐵 and x̄𝑉 as starting points. We denote the PFW and AFW variants

by PFW-B, PFW-V, AFW-B, and AFW-V, respectively, to specify the

starting point.

6 EXPERIMENTS
In this section, we describe the experimental results of the different

optimization methods on synthetic, image segmentation and 20

newsgroup datasets. In addition, we study multi-start optimization

for DSC which can be potentially useful for parallel computations.

6.1 Experimental Setup
The Frank-Wolfe gap (Definition 1) and the distance between two

consecutive iterates are used as the stopping criterion for the FW

variants and replicator dynamics. Specifically, let 𝜖 be the threshold,

then an algorithm stops if 𝑔𝑡 ≤ 𝜖 or if | |x𝑡+1 − x𝑡 | | ≤ 𝜖 . In

the experiments we set 𝜖 to Python’s epsilon, 𝜖 ≈ 2.2 · 10
−16

,

and the cutoff parameter 𝛿 to 𝛿 = 2 · 10
−12

. We denote the true

number of clusters in the dataset by 𝑘 and the maximum number of

clusters to extract by 𝐾 . For a dataset with 𝑛 objects, the clustering

solution is represented by a discrete 𝑛-dimensional vector c, i.e.,
𝑐𝑖 ∈ {0, 1, ..., 𝐾 − 1, 𝐾} for 𝑖 = 1, ..., 𝑛. If 𝑐𝑖 = 𝑐 𝑗 , then objects 𝑖 and 𝑗

are in the same cluster. The discrete values 0, 1, ..., 𝐾−1, 𝐾 are called

labels and represent the different clusters. Label 0 is designated to

represent ‘no cluster’, i.e., if 𝑐𝑖 = 0, then object 𝑖 is unassigned. We

may regularize the pairwise similarities by a shift parameter, as

described in detail in [21].

To evaluate the clusterings, we compare the predicted solution

and the ground truth w.r.t. Adjusted Rand Index (ARI) [19] and

V-Measure [34]. The Rand index is the ratio of the object pairs

that are either in the same or in different clusters, in both the

predicted and ground truth solutions. V-measure is the harmonic

mean of homogeneity and completeness. We may also report the

Assignment Rate (AR), representing the rate of the objects assigned

to a valid cluster. As we will discuss, it is common in DSC to apply

a postprocessing in order to make AR equal to 1.

6.2 Experiments on Synthetic Data
For synthetic experiments, we fix 𝑛 = 200 and 𝐾 = 𝑘 = 5, and

assign the objects uniformly to one of the 𝑘 clusters.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Results on the synthetic dataset for RD (red), FW
(blue), PFW (brown), and AFW (black). PFW-B (brown) and
AFW-B (black) have squares; PFW-V (brown) and AFW-V
(black) have crosses. (a)-(f): 𝑛 = 200. (a, b): 𝑡 = 400, 𝛿 = 2 · 10

−12.
(c, d): 𝑡 = 400, 𝛿 = 2·10

−3. (e, f): 𝑡 = 4000, 𝛿 = 2·10
−12. V-measure

demonstrates very similar results to ARI.

Let 𝜇 ∼ U(0, 1) be uniformly distributed and{
𝑧 = 0, with probability 𝑝

𝑧 = 1, with probability 1 − 𝑝,

where 𝑝 is the noise ratio. The similarity matrix A = (𝑎𝑖 𝑗 ) is then
constructed as follows:{

𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 = 𝑧𝜇, if 𝑖 and 𝑗 are in the same cluster

𝑎𝑖 𝑗 = 0, otherwise.

For each parameter configuration, we generate a similarity matrix,

perform the clustering five times and then report the average

results in Figure 1. We observe that the different FW methods are

considerably more robust w.r.t. the noise in pairwise measurements

and yield higher quality results. Also, the performance of FW

variants is consistentwith different parameter configurations, whereas

RD is more sensitive to the number of iterations 𝑡 and the cutoff

parameter 𝛿 .

𝑡 time AR ARI V-Meas.

FW

1000 0.36s 0.6325 0.4695 0.5388

4000 1.35s 0.6885 0.4593 0.5224

8000 2.41s 0.6969 0.4673 0.5325

PFW-

B

1000 0.43s 0.7429 0.1944 0.4289

4000 1.86s 0.6605 0.467 0.5327

8000 2.62s 0.642 0.471 0.5335

PFW-

V

1000 0.52s 0.6471 0.5178 0.5745

4000 1.6s 0.6487 0.4565 0.5237

8000 2.47s 0.642 0.471 0.5335

AFW-

B

1000 0.35s 0.8527 0.076 0.2854

4000 1.69s 0.6258 0.3887 0.5316

8000 2.93s 0.6599 0.4676 0.5328

AFW-

V

1000 0.46s 0.6415 0.5184 0.5736

4000 1.38s 0.6482 0.518 0.5754

8000 2.75s 0.6476 0.4618 0.5257

RD

1000 1.06s 1.0 0.0 0.0

4000 4.56s 0.9081 0.1852 0.3003

8000 11.4s 0.6997 0.4121 0.5384

Table 1: The results on newsgroups1 dataset.

𝑡 time AR ARI V-Meas.

FW

1000 0.37s 0.6587 0.5594 0.5929

4000 1.38s 0.6674 0.5479 0.5866

8000 2.6s 0.6679 0.5473 0.5864

PFW-

B

1000 0.45s 0.7508 0.135 0.3555

4000 1.57s 0.6172 0.6257 0.6364

8000 2.06s 0.6172 0.6257 0.6364

PFW-

V

1000 0.59s 0.6281 0.6095 0.6241

4000 1.85s 0.6172 0.6257 0.6364

8000 3.1s 0.6172 0.6257 0.6364

AFW-

B

1000 0.41s 0.8653 0.0979 0.316

4000 1.9s 0.6172 0.6257 0.6364

8000 3.39s 0.6172 0.6257 0.6364

AFW-

V

1000 0.48s 0.663 0.5548 0.5907

4000 1.75s 0.6172 0.6257 0.6364

8000 3.38s 0.6172 0.6257 0.6364

RD

1000 0.76s 1.0 0.0 0.0

4000 4.67s 1.0 0.1795 0.333

8000 13.52s 0.7585 0.4391 0.5161

Table 2: The results on newsgroups2 dataset.

6.3 Image Segmentation
Next, we study segmentation of colored images in HSV space. We

define the feature vector f (𝑖) = [𝑣, 𝑣𝑠 sin(ℎ), 𝑣𝑠 cos(ℎ)]𝑇 as in [31],

where ℎ, 𝑠 , and 𝑣 are the HSV values of pixel 𝑖 . The similarity matrix

A is then defined as follows. (i) Compute | |f (𝑖) − f ( 𝑗) | |, for every
pair of pixels 𝑖 and 𝑗 to obtain D𝐿2

. (ii) Compute the minimax (path-

based) distances [12, 14, 16] from D𝐿2
to obtain D𝑃

. (iii) Finally,

A = max(D𝑃 ) −D𝑃
, where max is over the elements in D𝑃

as used

in [8, 17]. Figure 2 shows the segmentation results of the airplane

image in Figure 2(a). The image has the dimensions 120× 80, which

leads to a clustering problem with 𝑛 = 120 × 80 = 9600 objects. We

run the FW variants for 𝑡 = 10000 and RD for 𝑡 = 250 iterations.

Due to the linear versus quadratic per-iteration time complexity
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(a) Original image (b) RD (c) FW, PFW-B, AFW-V, and AFW-B (d) PFW-V

Figure 2: Original image and the segmentation results from different DSC optimization methods.

𝑡 time AR ARI V-Meas.

FW

1000 0.41s 0.6756 0.5206 0.5879

4000 1.35s 0.6468 0.5309 0.5975

8000 2.63s 0.6473 0.5314 0.5978

PFW-

B

1000 0.49s 0.758 0.217 0.4617

4000 1.79s 0.6468 0.5317 0.6004

8000 2.88s 0.6468 0.5317 0.6004

PFW-

V

1000 0.56s 0.6468 0.5317 0.6004

4000 1.96s 0.6468 0.5317 0.6004

8000 3.71s 0.6468 0.5317 0.6004

AFW-

B

1000 0.37s 0.8373 0.1381 0.3594

4000 1.83s 0.6462 0.5316 0.6003

8000 3.19s 0.6468 0.5317 0.6004

AFW-

V

1000 0.49s 0.6468 0.5322 0.5993

4000 1.63s 0.6468 0.5317 0.6004

8000 2.99s 0.6468 0.5317 0.6004

RD

1000 0.86s 1.0 0.0 0.0

4000 4.69s 0.9089 0.2212 0.3465

8000 12.9s 0.8012 0.3526 0.4556

Table 3: The results on newsgroups3 dataset.

𝑡 time AR ARI V-Meas.

FW

1000 0.42s 0.653 0.5097 0.5706

4000 1.38s 0.6169 0.4672 0.5437

8000 2.6s 0.7002 0.5014 0.5514

PFW-

B

1000 0.43s 0.8092 0.2247 0.4483

4000 1.82s 0.6697 0.6211 0.6484

8000 3.04s 0.6697 0.6211 0.6484

PFW-

V

1000 0.58s 0.6591 0.6446 0.6717

4000 2.02s 0.6565 0.6462 0.675

8000 2.74s 0.6565 0.6462 0.675

AFW-

B

1000 0.35s 0.9041 0.1109 0.3361

4000 1.87s 0.6687 0.6191 0.6463

8000 3.55s 0.6697 0.6211 0.6484

AFW-

V

1000 0.5s 0.6525 0.5071 0.5651

4000 1.84s 0.6565 0.6462 0.675

8000 3.6s 0.6565 0.6462 0.675

RD

1000 0.93s 1.0 0.0 0.0

4000 5.46s 1.0 0.3197 0.4112

8000 14.52s 0.8559 0.4528 0.5328

Table 4: The results on newsgroups4 dataset.

of the FW variants and RD, we are able to run FW for many more

iterations. This allows us to have more flexibility in tuning the

parameters and thus obtain more robust results. According to the

results in Figure 2, the FW variants visually yield more meaningful

and consistent results compared to RD, and separate better the

airplane from the background.

6.4 Experiments on 20 Newsgroups Data
We study the clustering of different subsets of 20 newsgroups

data collection. The collection consists of 18000 documents in 20

categories split into training and test subsets. We use four datasets

with documents from randomly selected categories from the test

subset. (i) newsgroups1: the set of documents in the categories

soc.religion.christian, comp.os.ms-windows.misc, talk.politics.guns,

alt.atheism, talk.politics.misc. (ii) newsgroups2: the set of documents

in the categories comp.windows.x, sci.med, rec.autos, sci.crypt,

talk.religion.misc. (iii) newsgroups3: the set of documents in the

categoriesmisc.forsale, comp.sys.mac.hardware, talk.politics.mideast,

sci.electronics, rec.motorcycles. (iv) newsgroups4: the set of documents

in the categories comp.graphics, rec.sport.hockey, sci.space,

rec.sport.baseball, comp.sys.ibm.pc.hardware.

Each dataset has 𝑘 = 5 true clusters and 1700 ≤ 𝑛 ≤ 2000

documents, where we use 𝐾 = 5 for peeling off the computed

clusters.We obtain the tf-idf (term-frequency times inverse document-

frequency) vector for each document and then apply PCA to reduce

the dimensionality to 20. We obtain the similarity matrix A using

the cosine similarity between the PCA vectors and then shift the

off-diagonal elements by 1 to ensure nonnegative entries. We set

the regularization parameter to 𝛼 = 15, that seems a reasonable

choice for different methods. Using smaller or larger 𝛼 results in too

small clusters or too slow convergence, in particular for replicator

dynamics (RD).

Tables 1, 2, 3, and 4 show the results for the different datasets.

We observe that different variants of FW yield significantly better

results compared to replicator dynamics (RD), w.r.t. both ARI and

V-Measure. In particular, PFW-V and AFW-V are computationally

efficient and perform very well even with 𝑡 = 1000. On the other

hand, these methods are more robust w.r.t. different parameter

settings. Since all the objects in the ground truth solutions are

assigned to a cluster, the assignment rate (AR) indicates the ratio of

the objects assigned (correctly or incorrectly) to a cluster during the

clustering. A highAR does not necessarily indicate a good clustering

solution, rather it may imply slower convergence (as happens for

RD). High AR and low ARI/V-measure means assignment of many

objects to wrong clusters. This is what happens for RD with 𝑡 =

1000. As discussed in [31], it is common for DSC to perform a post

processing to assign each unassigned object to the cluster which
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newsgroups1 newsgroups2 newsgroups3 newsgroups4

Method t ARI V-Meas. ARI V-Meas. ARI V-Meas. ARI V-Meas.

FW

1000 0.4068 0.4969 0.5158 0.5733 0.5751 0.595 0.4663 0.5252

4000 0.4639 0.5225 0.5084 0.5699 0.572 0.5962 0.4409 0.5084

8000 0.4766 0.5351 0.5084 0.5699 0.5729 0.5972 0.4973 0.5396

PFW-B

1000 0.2063 0.3919 0.178 0.3814 0.2764 0.4859 0.288 0.4878

4000 0.4623 0.5324 0.5332 0.5834 0.5734 0.5992 0.587 0.6094

8000 0.4356 0.5219 0.5332 0.5834 0.5734 0.5992 0.587 0.6094

PFW-V

1000 0.5091 0.5763 0.5331 0.5824 0.5734 0.5992 0.605 0.6226

4000 0.4298 0.5149 0.5332 0.5834 0.5734 0.5992 0.6072 0.6268

8000 0.4356 0.5219 0.5332 0.5834 0.5734 0.5992 0.6072 0.6268

AFW-B

1000 0.0966 0.2751 0.131 0.344 0.1782 0.3967 0.1313 0.3577

4000 0.3162 0.4806 0.5332 0.5834 0.5734 0.5992 0.588 0.6097

8000 0.4615 0.5319 0.5332 0.5834 0.5734 0.5992 0.587 0.6094

AFW-V

1000 0.5066 0.5744 0.5099 0.5699 0.5741 0.5983 0.4592 0.5183

4000 0.5047 0.5719 0.5332 0.5834 0.5734 0.5992 0.6072 0.6268

8000 0.4308 0.5148 0.5332 0.5834 0.5734 0.5992 0.6072 0.6268

RD

1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4000 0.1892 0.3042 0.1795 0.333 0.2394 0.3575 0.3197 0.4112

8000 0.3659 0.4937 0.4123 0.5065 0.4227 0.4973 0.4858 0.5556

Table 5: Result of different methods on 20 newsgroup datasets after post assignment of the unassigned documents. The FW
variants especially PFW-V and AFW-V yield the best and computationally the most efficient results even with 𝑡 = 1000.

it has the highest average similarity with. Specifically, let 𝐶0 ⊆ 𝑉
contain the unassigned objects and 𝐶𝑖 ⊆ 𝑉 , 1 ≤ 𝑖 ≤ 𝐾 , be the

predicted clusters. Object 𝑗 ∈ 𝐶0 is then assigned to cluster 𝐶𝑖 that

satisfies

𝑖 ∈ arg max

ℓ≥1

1

|𝐶ℓ |
∑
𝑝∈𝐶ℓ

A𝑗𝑝 . (27)

Table 5 shows the performance of differentmethods after assigning

all the documents to valid clusters, i.e., when AR is always 1. We

observe that ARI and V-measure are usually consistent for pre and

post assignment settings. In both cases the FW variants (especially

PFW-V and AFW-V) yield the best and computationally the most

efficient results. Consistent to the previous results, PFW-V and

AFW-V yield high scores already with 𝑡 = 1000. These results are

consistent with the results on synthetic and image datasets.

6.5 Multi-Start Dominant Set Clustering
Finally, as a side study, we study a combination of multi-start

Dominant Set Clustering with the peeling off strategy. For this,

we perform the following procedure. 1. Sample a subset of objects,

and use them to construct a number of starting points for the same

similarity matrix. 2. Run an optimization method for each starting

point. 3. Identify the nonoverlapping clusters from the solutions

and remove (peel off) the corresponding objects from the similarity

matrix. 4. Repeat until no objects are left or a sufficient number of

clusters have been found.

This scenario can be potentially useful in particularwhenmultiple

processors can perform clustering in parallel. However, if all the

different starting points converge to the same cluster, then there

would be no computational benefit. Thus, here we investigate such

a possibility for our optimization framework. For this, we consider

the number of passes through the entire data, where a pass is

defined as one complete run of the aforementioned steps. After the

solutions from a pass are computed, they are sorted based on the

function value 𝑓 (x). The sorted solutions are then permuted in a

decreasing order, and if the support of the current solution overlaps

more than 10% with the support of the other (previous) solutions, it

is discarded. Each pass will therefore yield at least one new cluster.

With 𝐾 the maximum number of clusters to extract, there will be

at most 𝐾 passes. Thus in order for the method to be useful and

effective, less than 𝐾 passes should be performed.

Figure 3 shows the form of the datasets used in this study. Each

cluster corresponds to a two dimensional Gaussian distribution

with a fixed mean and an identity co-variance matrix (see Figure

3(a)). We fix 𝑛 = 1000 and 𝐾 = 𝑘 = 4, and use the parameter 𝑝 to

control the noise ratio. Set 𝑛1 = 𝑝𝑛 and 𝑛2 = 𝑛 − 𝑛1. A dataset is

then generated by sampling 𝑛1 objects from a uniform distribution

(background noise in Figure 3(c)), 0.1 ·𝑛2, 0.2 ·𝑛2, 0.3 ·𝑛2, and 0.4 ·𝑛2

objects from the respective Gaussians.

Let D be the matrix with pairwise Euclidean distances between

all objects in the dataset. The similarity matrix is then defined

as A = max(D) − D, similar to the image segmentation study

but with a different base distance measure. The regularization

parameter is set to 𝛼 = 15. To determine the starting points we

sample 4 components from {1, ..., 𝑛}, denoted by 𝑖1, 𝑖2, 𝑖3, 𝑖4. The

number 4 matches the number of CPUs in our machine. For a given

component 𝑖 ∈ {𝑖1, 𝑖2, 𝑖3, 𝑖4}, we define the starting points as

{
𝑥𝑉
𝑖

= 1

𝑥𝑉
𝑗

= 0, for 𝑗 ≠ 𝑖

and {
𝑥𝐵
𝑖

= 0.5

𝑥𝐵
𝑗

= 0.5/(𝑛 − 1), for 𝑗 ≠ 𝑖 .
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(a) No noise (b) AR 0.94, ARI 1.0, and V-measure 1.0 (c) Noise 𝑝 = 0.4 (d) AR 0.74, ARI 1.0, and V-measure 1.0

Figure 3: Two example datasets used for multi-start study. (b) and (d) show the FW clustering results; PFW and AFW produce
similar results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results of multi-start paradigm with FW (blue) , PFW (brown), and AFW (black) where PFW-B (brown) and AFW-B
(black) are marked by squares; and PFW-V (brown) and AFW-V (black) are marked by crosses. The first row corresponds to
UNI and the second row corresponds to DPP sampling. All optimization and sampling methods require only about two passes
to compute the clusters.

FW uses only x̄𝑉 while PFW and AFW use both x̄𝑉 and x̄𝐵 . To
sample the components, we use uniform sampling andDeterminantal

Point Processes [22], denoted as UNI and DPP, respectively.

Figure 4 illustrates the results for the different sampling methods

and starting objects. For a given dataset, sampling method, and

optimization method, we generate starting objects and run the

experiments 10 times and report the average results. Each method

is run for 𝑡 = 1000 iterations. For this type of dataset we do not

observe any significant difference between FW, PFW, or AFWwhen

using either DPP or UNI. It seems that AFW with x̄𝐵 as starting

object performs slightly worse.

However, we observe that all the sampling and optimization

methods require only two passes, whereas we have 𝐾 = 4. This

observation implies that the multi-start paradigm is potentially

useful for computing the clusters in parallel with the different FW

variants. We note that the peeling of strategy in Dominant Set

Clustering is inherently sequential, thus such an achievement can

be potentially very useful for parallelization.

7 CONCLUSION
We developed a unified and computationally efficient framework to

employ the different variants of Frank-Wolfe methods for Dominant

Set Clustering. In particular, replicator dynamics was replaced with

standard, pairwise, and away-steps Frank-Wolfe algorithms when

optimizing the quadratic problem defined by DSC. We provided

a specialized analysis of the algorithms’ convergence rates, and

demonstrated the effectiveness of the framework via experimental

studies on synthetic, image and text datasets. We additionally

studied aspects such as multi-start Dominant Set Clustering. Our

framework is generic enough to be investigated as an alternative

for replicator dynamics in many other problems.
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