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Abstract 
 
Background: Safe assisted and automated driving can be achieved through a detailed 
understanding of the driver response process (the timing and quality of driver actions 
and visual behavior) triggered by an event such as a take-over request or a safety-relevant 
event. Importantly, most current evidence on driver response process in vehicle 
automation, and on automation effects (unsafe response process) is based on driving-
simulator studies, whose results may not generalize to the real world. Objectives: To 
improve our understanding of the driver response process 1) in automated driving, which 
takes full responsibility for the driving task but assumes the driver is available to resume 
manual control upon request and 2) assisted driving, which supports the driver with 
longitudinal and lateral control but assumes the driver is responsible for safe driving at 
all times. Method: Data was collected in four experiments on a test track and public roads 
using the Wizard-of-Oz approach to simulate vehicle automation (assisted or automated). 
Results: The safety of the driver responses was found to depend on the type of vehicle 
automation. While a notable number of drivers crashed with a conflict object after 
experiencing highly reliable assisted driving, an automated driving function that issued a 
take-over request prior to the same event reduced the crash rate to zero. All participants 
who experienced automated driving were able to respond to the take-over requests and 
to potential safety-relevant events that occurred after automation deactivation. The 
responses to the take-over requests consisted of actions such as looking toward the 
instrument cluster, placing the hands on the steering wheel, deactivating automation, 
and moving the feet to the pedals. The order and timing of these actions varied among 
participants. Importantly, it was observed that the driver response process after receiving 
a take-over request included several off-path glances; in fact, drivers showed reduced 
visual attention to the forward road (compared to manual driving) for up to 15 s after 
the take-over request. Discussion: Overall, the work in this thesis could not confirm the 
presence of severe automation effects in terms of delayed response and a degraded 
intervention performance in safety-relevant events previously observed in driving 
simulators after automated driving. These differing findings likely stem from a 
combination of differences in the test environments and in the assumptions about the 
capabilities of the automated driving system. Conclusions: Assisted driving and 
automated driving should be designed separately: what is unsafe for assisted driving is 
not necessarily unsafe for automated driving and vice versa. While supervising drivers 
may crash in safety-relevant events without prior notification during highly reliable 
assisted driving, a clear and timely take-over request in automated driving ensures that 
drivers understand their responsibilities of acting in events when back in manual driving. 
In addition, when take-over requests are issued prior to the event onset, drivers generally 
perform similar manual driving and intervention performance as in a baseline. However, 
both before and just after the take-over requests, several drivers directed their gaze mainly 
off-road. Therefore, it is essential to consider the effect of take-over request designs not 
only on the time needed to deactivate automation, but also on drivers’ visual behavior. 
Overall, by reporting the results of tests of a future automated driving system (which is 
in line with future vehicle regulations and insurance company definitions) in realistic 
environments, this thesis provides novel findings that enhance the picture of automation 
effects that, before this thesis, seemed more severe. 
 
Keywords: automated driving, driver behavior, driving performance, take-over request, 
response process, automation safety. 
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1 Introduction 
Since its introduction in the late 19th century (Genta et al., 2014), the car has brought 
many benefits to humanity, such as the possibility to travel long distances without much 
effort. Driving a car requires precise collaboration between the human and machine. This 
collaboration works very well most of the time; most drives are uneventful, without 
damage to vehicle, infrastructure, or passengers (Dingus et al., 2006). However, things 
can go wrong and crashes with fatal or severely injured occupants are a reality. In fact, 
about 1.35 million people die in road traffic crashes every year, and tens of millions more 
suffer from life-altering injuries (World Health Organization [WHO], 2018).  
 
Vehicle automation—technology introduced to automate parts of the driving task in a 
passenger car—promises to have a positive impact on road safety by reducing the number 
of road-traffic deaths, since vehicle automation is expected to perform better than a 
human driver. Thus 94% of the crashes that are related to driver-related critical reasons 
such as recognition errors, decision errors, and performance errors might be avoided 
(National Highway Traffic Safety Administration [NHTSA], 2015). However, in order to 
obtain this safety benefit, vehicle automation needs to be safe, resolving the human 
factors challenges that come with introducing automation into a human-machine system 
(Bainbridge, 1983; Lee et al., 2017; Lee & Seppelt, 2009; Seppelt & Victor, 2016). 
Introducing automation may both result in safer driving (e.g., by reducing driver 
workload; de Winter et al., 2014; Lee et al., 2017), but it may also lead to less safe driving 
as drivers adapt their behavior to driving with automation instead of pure manual driving 
(Rudin-Brown, 2010; Rudin-Brown & Parker, 2004), and may therefore not be capable 
of providing manual control input to, or resuming manual control from, the vehicle 
automation system when required; Endsley & Kiris, 1995; Bainbridge, 1983).   
 
This thesis examines the safety-critical driver behaviors that may occur when drivers need 
to perform manual driving after a period of vehicle automation, focusing on two types of 
vehicle automation, assisted driving and automated driving. As defined in Thatcham 
Research (2019), assisted driving refers to vehicle automation systems that assist the 
driver by performing longitudinal and lateral control (i.e., accelerating, braking and 
steering the vehicle) when activated; the driver is always responsible for safety despite 
being assisted with part of the driving task and needs to be prepared to drive manually 
and respond to objects and events at all times. Thus, the driver needs to be properly 
engaged in the driving task and typically have eyes on the road and hands on the steering 
wheel. In contrast, automated driving refers to vehicle automation systems that are 
assumed to reliably take full responsibility for the driving task when activated, without 
any need for driver supervision. Thus, the driver is allowed to disengage from the driving 
task and can take eyes off the road and is not necessarily required to have hands on the 
steering wheel. However, the driver needs to be ready to resume manual control when 
the system notifies the driver with a vehicle notification (i.e., a take-over request) when 
the system meets a situation it is not designed to handle. If the driver does not respond 
to a take-over request the automated vehicle will need to bring the vehicle to a safe stop 
(United Nations Economic Commission for Europe [UNECE], 2021). 
 
For the scope of this thesis, examinations of the drivers’ ability to start to drive manually 
either during assisted driving (e.g., the driver needs to steer to avoid a stationary object 
on the road ahead that is not detected by the system) or after a period of automated 
driving (e.g., the driver needs to respond to a take-over request, deactivate automation, 
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and start to drive manually to exit a highway) will be assessed through investigations of 
the driver response process (the timing and quality of driver actions and visual attention) in 
different scenarios. These scenarios will sometimes include safety-relevant events. 
Automation effects are present when parts of the driver response process are deemed 
unsafe (i.e., when the driver response is less safe than what is typical for manual driving). 
Examples of automation effects are delayed response or a degraded driving performance 
or crashing in safety-relevant events or a reduced visual attention to the forward roadway. 
Therefore, to achieve safe vehicle automation, these effects need to be mitigated or 
prevented. 
 
The majority of evidence on automation effects—particularly, delayed response or 
crashing in a safety-relevant event—was obtained in driving simulators (Happee et al., 
2017; McDonald et al., 2019; Piccinini et al., 2020; Victor et al., 2018). Therefore, one 
important step towards achieving safe vehicle automation is to understand whether these 
automation effects generalize to driving a real vehicle on real roads with real motion and 
visual cues. The test environment may influence our current understanding of 
automation effects in different ways. First, as several validation studies have failed to 
reproduce findings from driving simulator studies in real environments, the reported 
types and size of effects may not apply to real driving conditions (Fisher et al., 2011; 
Wynne et al., 2019). To use driving simulators successfully, researchers must ensure the 
cues in the investigation are valid (Kaptein et al., 1996). Examples of cues that play a role 
for driver response to safety-relevant events are: (a) visual cues to help drivers detect a 
potential stationary obstacle and understand if it moves or stands still and (b) motion 
cues to guide driver actions: the actions produced by the car will influence the actions 
produced by the driver and vice versa (Macadam, 2003). Thus, if visual and motion cues 
are simulated or even absent observed driver actions may not be real. Finally, automation 
effects from simulator studies may be misleadingly elevated due to the following reasons: 
(1) specific types of studies—typically including critical scenarios—are more convenient or 
only ethically possible in a simulator (de Winter et al., 2021) and (2) the perceived risk is 
lower in a simulator than in a test track or on-road study (Fisher et al., 2011): as 
participants know it is a simulation, they may engage in riskier behaviors.  
 

Furthermore, the two automation types (assisted and automated) require more, and 
individual, attention. To begin with, assisted driving systems in on-market vehicles have 
already been involved in crashes in real traffic (National Transportation Safety Board 
[NTSB], 2017, 2018, 2019). A common factor in reports of these crashes is the lack of 
driver engagement (e.g., long hands-off-wheel times) prior to crashing in safety-relevant 
events when the assisted driving system did not act to avoid the event. However, the 
factors (contributing or mitigating) that influenced these crashes are not fully 
understood. In addition, these factors may not be the same as those in automated driving. 
At least one car manufacturer has promised their customers a low-speed system in the 
first half of 2022 (Mercedes-Benz Group, 2021), but on-market vehicles equipped with 
automated driving systems do not exist on our roads yet. Therefore, the ultimate impact 
of automated driving on road-traffic safety remains unknown.  
 
In fact, for both automation types (assisted and automated), detailed investigations of the 
complete driver response process are lacking; most previous studies have assessed the 
safety of vehicle automation by considering only a single response time (de Winter et al., 
2021; McDonald et al., 2019; Zhang et al., 2019). A more complete understanding of the 
response process is needed because the factors that influence automation effects may not 
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be apparent otherwise. For example, automation effects may: (a) occur some time after 
the automated driving system was deactivated and would be missed if only the time 
needed for drivers to deactivate the system were considered, (b) be influenced by previous 
actions within the response process (e.g., a delayed response to a safety-relevant event may 
stem from the time needed to deactivate the system), or (c) be caused by some human 
mechanism (cognitive or non-cognitive) that can be understood only by detailed 
investigations of the complete driver response process (e.g., a mechanism that may 
influence driver steering control only after automation has been deactivated; Mole et al., 
2019). 
 
In sum, this PhD thesis is devoted to understanding the driver response process in 
assisted driving and automated driving, and specifically in which scenarios automation 
effects are present, the type and size of the effects as well as the factors that contribute to 
or can mitigate the effects. In turn, understanding details of the driver response process 
and automation effects can be used to achieve safe vehicle automation by informing the 
development of, for example, vehicle automation design (e.g., hands-on-wheel 
requirements, countermeasures), vehicle regulations and consumer rating protocols, and 
driver models—to be used in computational simulations to estimate the benefit of 
countermeasures (Bärgman et al., 2017; McDonald et al., 2019) or as reference models 
in driver monitoring systems (in-vehicle systems that monitor driver states) to counteract 
unsafe driver behaviors.   
 

1.1 Objectives  
The overall aim of this PhD project is to contribute to the development of safe assisted 
and automated driving, that can be objectively measured. Objectively measured safe 
assisted and automated driving can be achieved through detailed understanding of the 
driver response process (including drivers’ response to take-over requests in automated 
driving and the manual driving performance that takes place after automation 
deactivation and drivers’ response to safety-relevant events during assisted driving) and 
the factors that influence this process. Importantly, there is also a need to advance the 
ecological validity of the current understanding of the driver response process in assisted 
and automated driving, that today mainly stems from driving simulator studies, by using 
data collected in more realistic settings.  
 
To achieve this aim, four objectives were specified:  

1. To investigate the driver response process in assisted driving when drivers encounter 
a safety-relevant event, and specifically the influence of a hands-on-wheel 
requirement, on a test track. 

 

2. To investigate the driver response process in automated driving when drivers receive 
a take-over request before encountering a safety-relevant event, and specifically the 
influence of automation duration, on a test track. 

 
 

3. To investigate the driver response process in automated driving when drivers receive 
a take-over request and then encounter the same safety-relevant event as in Objective 
1, and specifically the influence of take-over request timings, on a test track. 
 

4. To investigate the driver response process under non-critical conditions in automated 
driving when drivers receive a take-over request in a naturalistic setting.   
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2 Background  
 

2.1 Manual driving and event response  
Safe manual driving relies on the ability to sense and gather information about the 
driving environment, attend to and process the relevant information, and respond to the 
driving situation, both during routine driving and safety-relevant events (Macadam, 
2003). The driving task consists of three hierarchical levels of skills and control (Michon, 
1985). At the top level (the strategic level) the general planning of the trip is executed (e.g., 
decisions on where to go and how to go there, and whether an automated function 
should be used). At the middle level (the tactical level) decisions are made regarding the 
maneuvering control related to the present circumstances (e.g., selecting speed, avoiding 
obstacles, turning, overtaking). Finally, at the lowest level (the operational level) the 
continuous control of the vehicle is performed (e.g., steering, braking, accelerating).  
 

2.1.1 Human detection and response  

Humans are naturally programmed to detect and respond to changes in the environment; 
this ability, vital for our survival, is made possible through the complex interplay between 
the brain, the spinal cord and the nerves that make up the nervous system (Bear et al., 
2001; Spielman et al., 2020).The brain can then influence the activity in the spinal cord 
to command voluntary movements and produce human action using the muscular system 
(Bear et al., 2001). Detectable changes in the environment (e.g., light, sound) are typically 
referred to as stimuli. Specialized neurons called sensory receptors respond to different types 
of stimuli and enable information from the environment to be transmitted to the brain. 
Importantly, even if a stimuli is strong enough to be detected, we will need some time to 
respond, as we humans exhibit time delays when responding to stimuli (Macadam, 2003).   
 
Of special importance for the human detection and response in the context of driving is 
the human visual system as most information relevant for safe driving is gathered using 
the eyes (Macadam, 2003; Victor et al., 2015). However, not all the sensory information 
detected by the body is transmitted to the brain; our attention guides or selects the 
information that will be part of higher-level human cognition (Lee et al., 2017). The 
information we attend to depends on: its salience (e.g., a very loud alarm), the effort 
needed (e.g., do we need to turn our head), the expectancy of valuable information (e.g., 
a person is often crossing the road at a certain place) and the value/cost of attending/not 
attending to a specific stimulus (e.g., if we do not look at the road we may crash). Research 
suggest that eye movements are closely linked to visual attention, which is specifically 
related to the human visual system: people tend to direct their gaze to the target of their 
attention (Hoffman & Subramaniam, 1995; Shinar, 2008). However, the fact that 
humans look at something does not mean they attend to or perceive it: with attentional 
blindness, a fully visible object is missed because attention was directed somewhere else 
(Lee et al., 2017). While it is possible to look at something but not attend to it, research 
suggests that it is not possible to move the eyes to one location while attending to 
information in another location (Hoffman & Subramaniam, 1995).  
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2.1.1.1 Frameworks to explain how the brain processes sensory input to produce 
response  

Several frameworks have been developed to illustrate how the brain processes 
environmental information and produces action. For example, the information processing 
model of cognition represents human information processing as consisting of four stages 
(Lee et al., 2017; Wickens, 2002). First, we sense the environment; second, we perceive 
its meaning based on what we sensed (bottom-up processing) and prior knowledge (top-
down processing); third, we manipulate the information in our brain either through 
central processing (e.g., selecting an action) or through transforming and remembering; 
and fourth, we respond to the information (e.g., by executing the action). All these stages 
are dependent on a limited pool of attentional resources: if one stage requires a lot of 
attention, another step may be degraded. This division of information processing into 
different steps has also been proposed in other models (e.g., Endsley, 1995).  
 
Recently, another framework describing the human cognition and action process in 
driving has been proposed: predictive processing, or PP (Clark, 2013; Engström et al., 2018). 
It differs from the traditional information-processing assumption of a feed-forward 
stream of information from sensation to action (e.g., the information processing model 
of cognition described above). According to the PP framework, the brain continuously 
predicts sensory input from the external environment (e.g., looming – the visual 
expansion of an approaching lead vehicle on the retina) and minimizes deviations 
between predicted and perceived sensory inputs, through action (e.g., braking, steering) 
or by updating the prediction (Clark, 2013; Engström et al., 2018). The predictions are 
generated by a hierarchical generative model which is embodied in the brain and 
develops with experience.  
 

2.2 Vehicle automation  
When automation is introduced in a vehicle, the human activities on the operational, 
tactical, and strategic levels may change. Automation is not necessarily “all or none” but 
exists to different degrees, often called levels of automation, and these degrees may 
change the human activities in different ways (Parasuraman et al., 2000). There are 
several levels of automation, ranging from complete manual control up to full 
automation when no human input is required (SAE International, 2021; Seppelt & 
Victor, 2016). Assisted driving generally corresponds to an SAE Level 2 system and 
automated driving generally corresponds to an SAE Level 4 system (Thatcham Research, 
2019). However, a clear one-to-one correspondence does not exist. These two vehicle 
automation types (assisted and automated) were chosen for this thesis because of the clear 
distinction in driver roles and responsibilities; the driving is either shared when the driver 
is the one responsible for and in control for safe driving or delegated when the vehicle is 
fully responsible for safe driving (Seppelt & Victor, 2016). Three reasons for such a clear 
distinction in responsibilities for the driver and the system are: (1) the public confusion 
about the actual capabilities of current on-market systems (Thatcham Research, 2019); 
(2) concerns about the expectation that a human is able to provide fallback at any time 
during automated driving (i.e., to be prepared to act when automation meets a limitation 
or fails; Seppelt & Victor, 2016); and (3) these definitions (assisted and automated) are 
being adopted by safety rating organizations and insurance institutes (Euro NCAP, 2018; 
Thatcham Research, 2019) and will therefore likely guide the design of future vehicle 
automation systems.   
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The most mature vehicle automation system on the market today (in 2022) is assisted 
driving, whereas automated driving systems are currently being developed. For assisted 
driving, the vehicle can support the drivers with longitudinal and lateral control by 
combining Adaptive Cruise Control (ACC) with Lane Centering. As noted, the drivers 
are always responsible for safe driving and are expected to keep their hands on the 
steering wheel (UNECE, 2017) and their eyes on the road, and to be prepared to respond 
to conflict objects and events at any time (Seppelt & Victor, 2016; Thatcham Research, 
2019). The driver is responsible at all times because of the limitations current systems 
have which may result in situations that require driver action. For example, vehicle “cut-
in” (i.e., another vehicle enters the lane between the subject vehicle and a lead vehicle) 
and “cut-out” (i.e., another vehicle in front of the subject vehicle leaves the lane to avoid 
a conflict object on the road) scenarios are challenging for current on-market systems 
(Euro NCAP, 2021). These types of safety-relevant events frequently occur in everyday 
traffic, but still surprise drivers, especially when the event requires a fast, precise 
avoidance maneuver (usually steering and/or braking: Euro NCAP, 2021) to avoid a 
collision.  
  
An automated driving system, on the other hand, can take full responsibility for the 
driving task (i.e., longitudinal and lateral control, and event detection and response) for 
certain periods of time. The system would need to safely handle cut-in- and cut-out 
scenarios without the need for driver intervention. The driver is not even needed for 
supervising the system and may disengage from the driving task (hands off the steering 
wheel and eyes off the road) and engage in non-driving related activities (e.g., using a 
mobile phone). In fact, a United Nations (UN) vehicle regulation for a future low-speed 
automated driving system (“Automated Lane Keeping System”) is currently being 
developed by the Working Party on Automated/autonomous and Connected Vehicles (GRVA; 
UNECE, 2021). When the driver has to resume manual control, these systems are 
required to issue a take-over request (transition demand in UNECE, 2021) to notify the 
driver beforehand for both events known at system activation such as a highway exit 
(planned events in UNECE, 2021) and events unknown at system activation, but assumed 
likely to happen during driving, e.g., encountering a road-work zone (unplanned events in 
UNECE, 2021). If the driver does not respond to this demand by deactivating 
automation, the system should start a minimum risk maneuver (“a procedure aimed at 
minimizing risks in traffic, which is automatically performed by the system after a 
transition demand”; UNECE, 2021) no sooner than 10 s after the transition demand is 
issued. That is, the vehicle is required to take responsibility for safe driving when the 
driver is not fit to do so. However, this requirement assumes that systems can detect and 
notify the driver about an upcoming safety-relevant event more than 10 s beforehand. 
 

2.2.1 Scenarios requiring manual driving and event response in assisted 
and automated driving 

The process of resuming manual control from automated driving is referred to as a 
transition in the UN vehicle regulation (UNECE, 2021) as well as in the ISO 21959 for 
human performance and state in the context of automated driving (ISO, 2020). ISO 21959 
presents schematic models for the transition processes for both driver-initiated and system-
initiated transitions. These models have inspired Figure 1 below, which introduces the 
terminology used in this thesis in the context of two scenarios: manual driving input 
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required during assisted driving (Scenario 1) and transition of control from automated 
driving to manual driving (Scenario 2).  
 
ISO 21959 uses the word transition for both assisted driving and automated driving, even 
though these processes may be fundamentally different. In assisted driving, the driver is 
responsible for safe driving but is assisted by the system with operational control. This 
collaboration is shown in Figure 1 (Scenario 1) as the grey bar marked with driver and 
assistance system collaborate. Thus, as the driver is always assumed responsible for driving, 
a well-defined transition of control does not exist. The driver can either deactivate the 
system (e.g., by pressing buttons or braking) and drive in manual mode or apply steering 
wheel torque in order to change the vehicle’s path (overriding the function’s lane 
centering by providing manual control input) while the driver assistance system remains 
active. Importantly, the need for manual control input during assisted driving is not 
necessarily preceded by a prompt. Even when there is no prompt given by the system, the 
driver is required to detect and respond to a safety-relevant event that occurs, for example, 
due to a system limitation (e.g., an unexpected object ahead which the system does not 
detect, or a steering system torque limitation in a curve). Importantly, system limitations 
should be differentiated from silent-failure events, in which the system silently fails in a 
situation it was designed to handle. In assisted driving, the driver is fully responsible for 
safe driving at all times and needs to handle events independently if preceded by a 
prompt or not. In automated driving, the system prompts the driver to resume manual 
control through a salient notification (i.e., the take-over request) when needed. The take-
over request, marked in Figure 1 (TOR; Scenario 2), triggers a driver state transition: the 
“process of transforming the actual driver state (possibly determined by Non-Driving-
Related-Activity) to a target driver state suitable to effectively take-over manual control” 
(ISO, 2020). This transition means that the driver goes from having no responsibility for 
safe driving to full responsibility for safe driving (see automation deactivated; Figure 1).  
 
As shown in the scenarios in Figure 1, the driver response process consists of a response 
preparation phase: actions that need to be performed before the driver can start to drive 
manually (putting hands on the steering wheel, redirecting eyes back on-road) and a 
manual intervention and stabilization phase: the manual intervention and the driving 
performance that takes place after the driver has started driving manually (i.e., after start 
manual intervention). 
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Figure 1 - A representation of the process of driving manually after a period of assisted driving (Scenario 1) 
and of automated driving (Scenario 2) with a take-over request (TOR) present. The figure defines typical 
time periods of interest for assessing the driver response process. The two phases making up the complete 
driver response process (the response preparation phase and the manual intervention and stabilization phase) 
are marked. 
 
Scenario 1 Description 
A test vehicle is following a lead vehicle on a rural road. The test vehicle has the assisted 
driving system engaged, which means that the driver is responsible for safe driving but is 
supported by the assisted driving system (driver & assistance system collaborate). 
Suddenly, a conflict object (garbage bag) becomes briefly visible (event onset) and can be 
detected by an attentive driver. A little later, the lead vehicle performs a cut-out and fully 
reveals the conflict object to the driver, who needs to: (a) detect the object and understand 
the need to act (without being notified by the system), (b) complete the actions in the 
response preparation phase (e.g., put hands on wheel) in order to be able to start applying 
steering torque or deactivate the driver assistance system, and (c) steer and/or brake to 
avoid crashing, since the assisted driving system did not detect it or perform any evasive 
steering maneuver. In the manual intervention and stabilization phase the driver 
performs the evasive steering maneuver and then either returns to collaborating with the 
system or deactivates it and drives without being assisted by the system. Note that the cut-
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out scenario is just one example of a system limitation requiring driver control—many 
others exist (see Euro NCAP, 2021). 
 
Scenario 2 Description 
A test vehicle is following a lead vehicle on a rural road. This time, the test vehicle has 
the automated driving system activated and the driver is engaged in playing a game on 
his/her tablet with hands off the wheel and eyes off the road. The automated driving 
system is aware of an upcoming road-work zone (e.g., through receiving the information 
from another vehicle through vehicle-to-vehicle communication) while the lead vehicle is 
still blocking the view and notifies the driver to deactivate automation and resume 
manual control by issuing a take-over request. The driver needs to perform some actions 
in the response preparation phase such as stopping the game, redirecting his/her eyes 
from the tablet to the instrument cluster and/or the road, putting his/her hands on the 
steering wheel, and pressing two buttons in order to deactivate the system. Automation 
deactivated indicates this is achieved. Up ahead, the lead vehicle changes lanes (event onset) 
to avoid colliding with the first part of the road-work zone, two traffic cones (the conflict 
objects). The driver, whose car is now in manual driving mode, needs to start steering (start 
manual intervention), complete the manual intervention and stabilization phase by 
carefully maneuvering in the road-work zone to avoid colliding with any of the cones, 
and return to stable manual driving (vehicle control stabilized marks when this is achieved). 
For some systems, the start manual intervention may be used to deactivate automation, in 
which case the driver intervention time would be zero. Note that any critical scenarios that 
could be encountered in manual driving may occur at any time shortly after the driver 
has resumed manual control. 
 

2.3 Human factors challenges in the context of vehicle 
automation   

Introducing automation into a human-machine system comes with several benefits 
(Bainbridge, 1983; Lee et al., 2017; Seppelt & Victor, 2016). Benefits of automation over 
manual operation are increased efficiency and accuracy, as well as the fact that 
automation can handle tasks that are either dangerous or difficult for humans to handle. 
However, introducing automation into a human-machine system also comes with costs, 
that are typically seen when automation is designed in a way that requires human 
interaction (Seppelt & Victor, 2016). These costs typically stem from the assumption of 
that a gradual increase in automation will completely eliminate human involvement. 
However, decades of research on the effects of increasing automation on human 
performance (mainly in process industries and aviation) tell us that the human tasks and 
responsibilities are altered rather than eliminated (Bainbridge, 1983; Lee et al., 2017; 
Seppelt & Victor, 2016). Designers are capable of automating easy tasks, while tasks that 
are difficult or impossible to automate (or tasks the designers may not be aware of) are 
left for the human operator to handle. Consequently, the human operator typically 
becomes responsible for monitoring the automation’s performance and resolving 
scenarios that it is not able to handle. These scenarios often happen unexpectedly, 
possibly leading to catastrophic outcomes if the human operator is not able to resume 
manual operation in time. Ironically, the altered task of collaborating with the automated 
system may be more challenging for the human than manually performing the task in the 
first place (Bainbridge, 1983). The problem (sometimes referred to as the out-of-the-loop 
performance problem) is that humans working with automation are worse at detecting 
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system errors and at performing tasks manually when required to than humans who 
habitually perform the same manual tasks (Endsley & Kiris, 1995). The authors argue 
that the problem is linked to two major issues with automation: “the loss of manual skills 
and the loss of awareness of the state and processes of the system”. The latter is often 
referred to as a reduction in situation awareness (Endsley, 1995, 2015): “internal 
conceptualization of the current situation”, which occurs on three levels: (1) drivers 
perceive elements of the environment (“Which information do I need?”), (2) they 
comprehend the meaning of these elements (“What does this mean to me?”), and (3) they 
predict the near future (“What do I think will happen next?”). Merat et al. (2018) 
proposed a definition of out-of-the-loop in the context of vehicle automation: “not in 
physical control of the vehicle and not monitoring the driving situation, OR in physical 
control of the vehicle but not monitoring the driving situation”. In contrast, in-the-loop is 
defined as: “in physical control of the vehicle and monitoring the driving situation” 
(Merat et al., 2018).  
  
In assisted driving, the driver may not be actively engaged in the driving task on the 
operational level (longitudinal and lateral control), but is still assumed to be monitoring 
the system performance and environment and able to quickly provide manual driving 
input to handle time-critical events without vehicle notification. It is a challenge to ensure 
that the supervising driver stays in the loop. This challenge stems from one of the ironies 
of automation: the more capable the assisted driving system, the less attention drivers will 
pay to traffic and the system (e.g., directing less visual attention to the forward road), and 
the less capable they will be of resuming control (Bainbridge, 1983; Seppelt & Victor, 
2016). Certainly, humans are known to be poor at supervising (Warm et al., 2008). Thus, 
when an assisted driving system performs well without the need for driver input for an 
extended period of time, there is a risk of reduced monitoring potentially related to some 
psychological construct such as overtrust in the assisted driving system (Parasuraman & 
Riley, 1997), drivers that are mentally underloaded (Young & Stanton, 2002), or drivers 
that have insufficient mental models of the automated system (Victor et al., 2018).   
 
Automated driving, in contrast to assisted driving, is designed to allow drivers to be out 
of the loop, since drivers are free to engage in non-driving related activities and 
consequently do not need to pay attention to the road or have hands on the steering 
wheel or feet on the pedals. Thus, the parts of the out-of-the-loop performance problem 
relevant for automated driving are: (a) the potential loss of manual skills (Lee et al., 2017) 
as automated driving systems becoming increasingly capable and require less frequent 
driver input, as the operational design domain is extended (Hi-Drive, 2022) and (b) the 
need to ensure that the driver will successfully transition from an out-of-the-loop state to 
an in-the-loop state in response to a take-over request. Furthermore, the success and speed 
of the drivers response process in automated driving are potentially influenced by some 
of the previously mentioned psychological constructs, such as drivers that have a reduced 
situation awareness, are mentally underloaded or have insufficient mental models of the 
automated system, but could also be due to a less calibrated perceptual-motor control 
(Mole et al., 2019) or the simple fact that drivers need time to physically return to the 
position required for manual driving.  
 
Engström et al. (2018) also proposed another explanation for the out-of-the-loop 
phenomenon in automated driving through the concept of active inference and the 
different levels of the driving task (Michon, 1985). In the context of manual driving, 
active inference is the continuous minimization of prediction errors by either updating 



12 
 

predictions or acting —on the operational, tactical, or strategic levels—to stay in the loop. 
However, when automation is introduced, active inference may not take place on the 
operational or tactical levels, and consequently the driver may be out of the loop. In 
assisted driving, since the vehicle performs longitudinal and lateral control but the driver 
still needs to monitor the environment, the driver is assumed to be engaged in perceptual 
inference rather than active inference on the operational level. This means that the driver 
may still make predictions about looming by observing a lead vehicle in front. Thus, the 
driver would still be in the loop on the operational level, even if the type of inference is 
different from manual driving. However, if drivers monitor the environment without 
making predictions, they are assumed to be out of the operational loop but may still be 
engaged in active inference (in the loop) on the tactical and strategic levels. During 
automated driving, when a driver disengages fully from the driving task and is engaged 
in an non-driving related activity, the driver may be out of both the tactical and 
operational control loops. 
 

2.4 State of the art: understanding the driver response process 
in the context of vehicle automation  

A growing amount of researchers is concerned with understanding the scenarios in which 
drivers may have degraded driving performance—specifically, lowered ability to respond 
to a safety-relevant event after a period of automated driving, such that parts of the driver 
response process are unsafe—as well as the factors that influence this ability (Eriksson & 
Stanton, 2017; McDonald et al., 2019; Mole et al., 2019; Zhang et al., 2019). This section 
will summarize the state-of-the-art about driver responses in vehicle automation in 
general, and when the response is unsafe (i.e., automation effects present) specifically. In 
addition, this section will present typical ways of assessing the driver response process in 
safety-relevant events in vehicle automation (to determine the presence or absence of 
automation effects) as well as what is currently known about the influence of specific 
factors on the response process.  
 

2.4.1 Metrics used to assess the safety of the driver response process  

To understand the scenarios in which automation effects are present, as well as the type 
and size of these effects, means of measuring the driver response process are needed. The 
driver response to safety-relevant events has traditionally (manual driving or driving with 
ACC) been examined using reaction times (e.g., driver brake or steering reaction times; 
Young & Stanton, 2007). A reaction time is typically defined as the duration between 
the onset of a safety-relevant event (e.g., a lead vehicle that starts to brake) and the start 
of manual intervention (e.g., the driver brakes). The definition is not always 
straightforward; for example, in Scenario 1 in Figure 1, the onset of the safety-relevant 
event could be the time when the conflict object becomes briefly visible the first time or 
when the lead vehicle performs the cut-out.  
 
Up until now, the most frequently used metric to assess the driver response process in 
automated driving with a take-over request present is the take-over time. The take-over time 
is the time from when a take-over request is issued to when the driver has deactivated 
automation (either by a button press or by braking or steering; see Figure 1, Scenario 2). 
As illustrated in Figure 1, measures of response times (brake response times or take-over 
times) only capture some aspects of the complete driver response process. For example, 
the quality of drivers performance in the manual intervention and stabilization phase is 
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lacking. Recently, it has been proposed that investigations of response times and the 
response preparation phase need to be combined with analyzes of the manual driving 
performance that follows a period of assisted or automated driving, because the factors 
influencing response times may not be the same that influence the driving performance 
in the manual intervention and performance phase (Figure 1; Mole et al., 2019; Zeeb et 
al., 2016). Some of these factors may only be understood by considering the drivers’ 
steering behavior after automation (e.g., a less calibrated perceptual-motor control; Mole 
et al., 2019). However, up until now there has been no well-defined way to assess the 
success of this phase (McDonald et al., 2019; Mole et al., 2019). Examples of metrics that 
have been used to assess the driving performance in the manual intervention and 
stabilization phase are: conflict outcome (crash/no crash), minimum time-to-collision 
(min TTC), as well as descriptive statistics (mean, maximum, minimum) of longitudinal 
and lateral accelerations (McDonald et al., 2019).  
 
Another aspect of the driver response process that has not been considered to the same 
extent as the take-over time or steering/braking response times is the driver’s visual 
behavior. As pointed out in Section 2.1.1, drivers’ visual behavior is one of the most 
significant aspects of safe manual routine driving and event response. Thus, manual 
driving (after a period of automated driving) and assisted driving both require sufficient 
levels of visual attention toward the road to be safe. In driving research, drivers’ visual 
attention is typically inferred through measures of eye movements (ISO, 2015; Morando, 
2019; Victor, 2005). Common metrics are gaze direction and glance duration. Gaze 
direction is defined in ISO 15007 as the “area of interest to which the eyes are directed” 
and glance duration is the “maintaining of visual gaze within an area of interest” (ISO, 
2015) for a measured period of time. 
 
To evaluate drivers’ visual attention during the response process, some driving simulator 
studies have included, in addition to take-over time, response times for: (a) redirecting 
the gaze away from an non-driving related activity item (e.g., Gold et al., 2013), (b) 
directing the first glance on-road (Eriksson et al., 2018; Gold et al., 2013; Zeeb et al., 
2017), and (c) gazing towards mirrors (Gold et al., 2013; Vogelpohl et al., 2018). 
However, visual response times such as these may overestimate the level of visual 
attention directed appropriately, since the driver may subsequently glance away. A more 
comprehensive way of measuring drivers’ visual attention during the response process is 
to compute the PRC (percent road centre: the percentage of time that a driver’s gaze is 
directed on-road over time; Victor et al., 2005) for some specified time interval.  
 

2.4.2 Automation effects and aftereffects: the influence of vehicle 
automation type on the driver response process  

It appears that some of the human factors concerns related to automation in other 
domains are also present in certain vehicle automation scenarios. Even low degrees of 
automation (e.g., ACC) have been shown to increase driver brake response times to 
safety-relevant events when no prompt to the driver is given—compared to manual driving 
(Larsson et al., 2014; Piccinini et al., 2020; Rudin-Brown & Parker, 2004; Young & 
Stanton, 2007). Some evidence also indicates that the higher the degree of automation 
(ACC + Automated steering compared to ACC alone) the poorer the driver response to 
a safety-relevant event (Strand et al., 2014), but evidence of no effect or minor effects also 
exists (Larsson et al., 2014; Young & Stanton, 2007). A recent test-track study by Victor 
et al. (2018) confirmed that drivers may have difficulty responding to a safety-relevant 
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event similar to that in Scenario 1 during assisted driving. In fact, 28% of the drivers, all 
reporting high trust in automation to act in the conflict scenario, crashed with the 
stationary conflict object, which was either a garbage bag or a stationary balloon car. They 
explained that they did not act, or they acted too late to avoid a crash, because they 
expected the assisted driving system to avoid the conflict object.  
 
Evidence of automation aftereffects (i.e., automation effects specifically occurring after an 
automated driving system has been deactivated) has also been shown just after an 
automated driving system was deactivated in response to a take-over request (Gold et al., 
2013; Happee et al., 2017; Louw et al., 2015). In addition, some evidence indicates that 
the longer the automation duration, the more severe the automation aftereffects after a 
take-over request (Bourrelly et al., 2019); however, one other study did not observe any 
significant automation aftereffects (Feldhütter et al., 2017).  
 
Notably, few studies have directly investigated how the driver response process may differ 
for assisted driving and automated driving (McDonald et al., 2019). Thus, little is 
currently known about the similarity of the responses to the same safety-relevant event. 
The literature gives us reason to be concerned by suggesting that the more we automate, 
the poorer our ability to perform manual control after automation (Onnasch et al., 2014). 
However, this observation may not apply to both assisted driving and automated driving, 
since they differ in whether the drivers receive a take-over request prior to the need to 
provide manual driving input (assisted driving) or transition to manual driving 
(automated driving). Notably, warnings given well in advance have been found to elicit 
earlier responses than late or non-existent warnings (Lee et al., 2002). Thus, comparisons 
of the driver response processes for assisted driving and automated driving may be 
influenced both by the vehicle automation type and the presence of a take-over request.  
 
Finally, all studies mentioned in this section were performed in driving simulators, except 
the study by Victor et al. (2018), performed on a test track. Thus, the question remains 
to what extent the above findings about automation effects and aftereffects can be 
reproduced in more realistic contexts (e.g., test track or public road). 
 

2.4.3 Drivers’ visual attention and off-road glances during assisted and 
automated driving  

Previous research indicates that automating parts of the driving task may lead drivers to 
look less on-road than they do during manual driving. For example, previous research 
reports that PRC is lower during assisted driving than during manual driving on test 
tracks and in real traffic (Tivesten et al., 2015, 2019). In addition, drivers also tend to 
exhibit slightly longer off-path glance durations during assisted driving (see Gaspar & 
Carney, 2019; Morando et al., 2019) than in manual mode. Victor et al. (2018) reported 
off-path glances of up to 40 s during assisted driving when no attention reminders were 
given, although drivers were still responsible for supervising the vehicle.  
 
Because automated driving is designed to function without supervision, drivers will likely 
pay much less attention to the road than they do in manual driving. In line with this 
hypothesis, a previous driving simulator study reports a significant decrease in PRC from 
74.5% in manual driving to 54% during automated driving when the drivers were free 
to engage in non-driving related activities (Merat et al., 2012). Drivers who are looking 
away need time after the take-over request to return their visual attention to the road. 
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Research in driving simulators suggests that drivers typically direct their first glance 
towards the road within 2 s after the take-over request (Gold et al., 2013; Vogelpohl et 
al., 2018; Zeeb et al., 2017).  
 
However, as the time from the take-over request to the first on-road glance may 
overestimate the level of visual attention on road, a more complete way of measuring 
drivers’ visual attention after the take-over request is to compute the PRC for some 
specified time interval after the take-over request (as previosuly mentioned in Section 
2.4.1). Merat et al. (2014) used this method, comparing drivers’ PRC one minute after 
take-over requests issued by automated driving systems, where drivers had to look at the 
road, using two different strategies. One strategy issued the take-over request every 6 min 
and another issued the take-over request if drivers looked off path for 10 s or longer. For 
the take-over request issued at fixed time intervals, drivers’ PRC was high (about 70%) 
5–10 s after automation deactivation. The PRC then remained at a similar level until 
15–20 s had passed. Although the take-over request issued during long off-path glances 
showed the lowest PRC (58%) 5–10 s after automation deactivation, it increased to 80% 
when 15–20 s had passed. These results suggest that drivers with long, ongoing off-road 
glances prior to and at the time of the take-over request need slightly more time to build 
up to PRC levels of at least 70%.  
 

2.4.4 The influence of specific factors on the driver response process  

Many studies have investigated the influence of specific factors on the take-over time, 
which ranges from 0.7 s up to 23.8 s (Eriksson & Stanton, 2017; Zhang et al., 2019). The 
take-over time budget (Total time budget in Figure 1) is typically defined as the TTC at 
event onset. This period of time has been pointed out as one of the main factors 
influencing take-over time: in general, the longer drivers have to resume manual control, 
the longer they seem to take (McDonald et al., 2019). Additional factors that also 
influence the take-over time are: whether the transition scenario is practiced beforehand 
and whether non-driving related activity items (especially hand-held) or prompts are 
present (McDonald et al., 2019). In fact, it seems that take-over times decrease when there 
is a prompt (Zhang et al., 2019), but additional work is required to fully understand the 
influence of prompts on the driver response to safety-relevant events after automation 
(McDonald et al., 2019).  
 
The review by McDonald et al. (2019) concludes that driving performance in the manual 
intervention and stabilization phase is significantly influenced by the take-over time 
budget, non-driving related activity engagement, the modality of the take-over request 
(e.g., visual, auditory, haptic), the driving environment, presence of a prompt, repeated 
exposure, fatigue, trust in automation, and alcohol impairment. Many of these factors 
are the same as the ones influencing the take-over time, perhaps because of the relation 
between the response preparation phase and the manual intervention and stabilization 
phase. As the illustrated Scenario 2 in Figure 1 shows, the longer the response 
preparation phase, the shorter remaining action time is available. Consequently, in critical 
scenarios, drivers may be closer to a conflict object when they act, and therefore either 
crash or perform a harsh evasive maneuver to avoid crashing. This effect—degraded 
driving performance as a consequence of the time needed for drivers to prepare to act 
(by, for example, positioning their hands on the steering wheel)—can be called the 
preparation-action-time consequence. The extent to which the automation aftereffects 
(Section 2.4.2) may be influenced by the preparation-action-time consequence (a timing 
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issue) rather than a psychological construct such as reduced situation awareness, is 
currently unknown.  
 
Whereas factors such as the presence of non-driving related activity items and take-over 
request modality have received a lot of attention (McDonald et al., 2019), some 
potentially influential factors have not been focused on to the same extent. One example 
is a hands-on-wheel requirement (McDonald et al., 2019), which currently exists in 
Europe for drivers supervising an assisted driving system (UNECE, 2017). At least two 
studies have explicitly studied the influence of hands-off intervals of either 10 s or 120 s 
on the driver response process during automated driving when a safety-relevant event was 
preceded by a take-over request (Naujoks et al., 2015, 2017). Naujoks et al. (2015) found 
that all drivers responded appropriately (and with similar brake response times) in a 
longitudinal scenario when encountering a suddenly appearing stationary vehicle for 
both permitted hands-off durations (10 s vs 120 s). Further, Naujoks et al. (2017) found 
that drivers responded similarly (independent of the hands-off intervals) in a lateral lane-
drift scenario. Notably, both studies mention that most drivers did keep their hands on 
the steering wheel in both conditions even when they were allowed to take their hands 
off, which may have explained the similar responses.  
 
Another factor that has received little attention but may influence the driver response 
process is the type of conflict object used in the safety-relevant events (McDonald et al., 
2019). The conflict object type may influence the driver response process because 
differences in the saliency of different objects may influence their detection (Lee et al., 
2017). Finally, drivers’ trust in the automated system has been found to influence their 
response to safety-relevant events during automation: higher trust has been found to 
result in slower response times and more collisions than lower trust (Körber et al., 2018). 
More work is still required to fully understand the impact of trust on the driver response 
process (McDonald et al., 2019). 
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3 Methods 
This chapter gives an overview of the methods, settings, and tools that can be used to 
study driver behavior in the context of vehicle automation, and specifically the 
combination of the three that were used to study the driver response process in the five 
papers included in this thesis (Papers I–V). In addition, this chapter introduces 
experimental protocols, driving measures, and statistical methods that can be used to 
assess the driver response process in assisted and automated driving. 
 

3.1 Methods for studying driver behavior and participant 
selection  

Methods for studying driver behavior typically require a compromise between 
experimental control and realism (McLaughlin et al., 2009). On one side, there are the 
controlled studies in which two or more independent variables are typically manipulated, 
and the remaining factors that may influence the measured dependent variable/s are kept 
fixed. These studies provide an opportunity to study the effect of specific manipulated 
factors, while ruling out the influence of other factors that vary greatly in a real-world 
setting but can be precisely controlled in an experimental setting. However, keeping some 
factors fixed creates an artificial environment which may influence how humans behave, 
and thus the extent to which the results generalize to real-world settings remains 
unknown. At the other end of the spectrum are naturalistic studies in which participants 
are observed in their natural environment with minimum interference. The degree of 
realism is high, but understanding the relationships between different factors is a 
challenge because they cannot be controlled.  
 
Examples of test environments for studying driving behavior include driving simulators, 
test tracks, and public roads (McLaughlin et al., 2009). A driving simulator enables 
experiments with a high degree of control and the possibility to include critical safety-
relevant events without ethical or safety concerns (Fisher et al., 2011). Unfortunately, 
driving simulators have not been able to reproduce absolute values and sometimes not 
even absolute differences between conditions: the studies lack absolute validity. However, 
driving simulators have been able to produce differences in the same direction (e.g., speed 
reduction) when compared to on-road testing: the studies have relative validity (Fisher et 
al., 2011). Thus, when absolute values are required (e.g., the actual vehicle speed or 
accelerations after automation deactivation), tests in more realistic environments, such 
as test tracks or public roads, are generally necessary. A public-road study can be more or 
less controlled. An example of a less controlled public-road study is a naturalistic driving 
study in which drivers use their car (instrumented with sensors) as they normally would 
in everyday driving (e.g., commuting and shopping) for an extended period of time (weeks 
or even years). However, a public-road study is more controlled if participants are 
specifically asked to drive on a certain road segment and to engage in an non-driving 
related activity. Test-track experiments offers a higher degree of realism than driving 
simulators, since the visual and kinematic cues are real, but they lack some of the control 
(McLaughlin et al., 2009). In addition, test-track experiments can be more controlled 
than public-road studies, since safety-relevant events can be included with higher 
repeatability and safety compared to tests on public road (even if some ethical restrictions 
apply to how critical these events can be). Test-track experiments also lack some degree 
of realism since a test leader and/or a safety driver (serving as a safety back-up) may be 
present in the car.  
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The data used in Papers I–III were collected in three test-track experiments which 
included two safety-relevant events; in a public-road study this design would have been 
impossible, and in a driving simulator it would have been artificial. Use of a test track 
enabled the drivers to experience real kinematic feedback from the physical vehicle and 
the environment, unlike in driving simulators. However, to also understand how drivers 
interact with systems in a real environment with surrounding traffic and normal driving 
hazards, the data used in Papers IV–V in this thesis were collected in a public-road 
experiment.   
 

3.1.1 Participant selection  

In order to understand the driver response process and the factors that influence it for 
assisted and automated driving, human subjects are needed. However, to make 
statements about a population based on a sample of participants it is important to 
consider who the selected participants are (e.g., age, gender, education), where they come 
from (e.g., Sweden, a specific region in Sweden etc.; University of Michigan, 2018), and 
how they compare to the target population. The participants included in Papers I–V were 
all Volvo Car employees working in Gothenburg, Sweden. To minimize biases, the 
participants had no work duties associated with the development of automated driving, 
did not work as test drivers, and had not been part of similar studies. All participants had 
driven at least 5000 km during the year prior to the study. All samples were both age- and 
gender-balanced to the extent possible. All studies included in this thesis were reviewed 
and approved by the regional ethical review board in Gothenburg (Regionala 
Etikprövningsnämnden i Göteborg), Sweden (Dnr:369-16, 019–01827).      
 

3.2 Wizard-of-Oz vehicle  
While automated driving functions can be easily simulated in a driving simulator, test-
track and public-road testing presents a challenge in this regard. Due to the lack of reliable 
on-market (available for sale) automated vehicles, there is a need to find other ways of 
investigating human collaboration with vehicle automation. One approach is the Wizard-
of-Oz technique. In a Wizard-of-Oz experiment (previously Oz paradigm), participants 
think that they are interacting with an automated system, but in reality the automation 
is simulated by a human who is often partly or fully hidden (Kelley, 2018). When 
implemented to study interactions between drivers and an automated driving system, the 
technique enables the vehicle to be controlled from somewhere other than the driver’s 
seat (Habibovic et al., 2016). 
 
The three test-track experiments (Papers I–III) and the public-road experiment (Papers 
IV and V) used a Wizard-of-Oz vehicle—a Volvo passenger car rebuilt to include a steering 
wheel and pedals available to a driver (the Wizard) seated in the middle of the back seat. 
Both the steering wheel and the pedals were hidden from the participant in the driver 
seat. This setup enabled the Wizard to simulate an automated driving system. The vehicle 
was equipped with cameras that recorded the forward road, the driver’s face, and the 
driver’s upper side body. The public-road experiment also included a camera that 
recorded driver’s foot positions and the vehicle pedals. The vehicle signals collected 
included speed, longitudinal and lateral acceleration, steering wheel angle, GPS signals, 
and specific signals capturing when the take-over request was issued and when the driver 
had deactivated the automated driving system.   
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3.3 Experimental protocols  
Experiments performed to assess the driver response process during assisted driving or 
after a period of automated driving can be designed in different ways. Typically, the 
experimental protocols include a period of driving with an assisted or automated driving 
system engaged, up to a safety-relevant event which requires the drivers to override or 
deactivate the system and start driving manually to avoid a crash (Gold et al., 2013; 
Happee et al., 2017; Louw et al., 2015; McDonald et al., 2019). The safety-relevant event 
can consist of, for example, a braking lead vehicle combined with a silent ACC failure 
(Piccinini et al., 2020), a cut-in or cut-out scenario (Larsson et al., 2014; Victor et al., 
2018), or a conflict object (e.g., a broken-down vehicle) in the lane that drivers need to 
avoid by steering or braking (Gold et al., 2013; Louw et al., 2015). However, experimental 
protocols can also investigate drivers’ responses to take-over requests under less critical 
conditions (without an explicit safety-relevant event following the automation 
deactivation; (Eriksson et al., 2017; Naujoks et al., 2019; Rydström et al., 2022). 
 
The experimental protocols used in Papers I–III included safety-relevant events that 
required the drivers to act to avoid a crash. In Papers I and III, the event was a cut-out 
scenario, with a conflict object (either a garbage bag or a stationary vehicle) positioned in 
the lane (Scenario 1 in Figure 1). In Paper II, the event was a road-work zone made up of 
cones which was revealed when a lead vehicle changed lanes (Scenario 2 in Figure 1). 
Papers IV–V investigated the driver response process under non-critical conditions 
without a safety-relevant event.  
 

3.3.1 The preparation-action time consequence  

 
 
Figure 2 - A representation of how the timings of the take-over request (TOR) and event onset influence the 
time when drivers start acting to avoid a conflict object as part of a safety-relevant event. The same event is 
encountered in manual driving or driving with Adaptive Cruise Control (ACC; top row) and automated 
driving (middle and bottom rows). The middle and bottom rows differ in the timing of the take-over request 
in relation to the event onset.  
 
When the driver response processes after a period of automated driving and during a 
baseline drive (typically manual driving) are compared, the timing of the take-over request 
relative to the event onset is important because of the preparation-action time 
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consequence (introduced in Chapter 2, Section 2.4.4). Recall that this consequence 
refers to the automation effects that stem from the time needed for drivers to prepare for 
action after automation. When the take-over request and the event onset occur at the 
same time during automated driving (see Figure 2, middle row), the drivers need to 
complete the actions within the response preparation phase before the start manual 
intervention. In contrast, the drivers in the baseline condition can act directly (assuming 
they are fully engaged in the driving task). Thus, previous studies that used the setup 
illustrated in the middle row of Figure 2 may have been biased: the results may have 
reflected automation aftereffects such as delayed response, degraded manual driving 
performance, or crashing after automation was deactivated that were simply a 
consequence of the preparation-action time. In other words, the preparation-action time 
consequence illustrates how the response preparation phase includes a time delay which 
does not usually exist when drivers are already in manual driving mode.  
 
In fact, the type of setup used in Papers II–III differed from previous driving-simulator 
studies (Gold et al., 2013; Happee et al., 2017; Louw et al., 2015), since the take-over 
request was issued before the event onset (Figure 2, bottom row). This setup enabled the 
drivers to complete the actions within the response preparation phase before event onset 
(i.e., before the lead vehicle changed lanes). Paper II included a manual baseline; Paper 
III, an ACC baseline. Importantly, including a baseline is crucial when searching for 
automation effects; the manual and ACC baselines included in Paper II-III facilitates an 
understanding of whether the observed driver behavior (e.g., crashing) is due to the 
vehicle automation or simply happened because the situation was outside human ability. 
A very critical safety-relevant event may be unavoidable because humans have time delays 
when reacting to stimuli, such as a suddenly appearing conflict object (Macadam, 2003).  
 

3.4 Data processing and analysis to assess the safety of the 
driver response process  

As previously mentioned (Chapter 2, Section 2.4.1), the safety of driver responses has 
mainly been assessed using a single reaction time. However, the driver response to a 
triggering event can be assessed in more detail by: (a) decomposing reaction times into 
time components and (b) studying quality of the intervention (brake) profile (Lee et al., 
2002). For example, Lee et al. (2002) used this method to study drivers braking behavior 
in a rear-end collision event. Specifically, they studied the driver response process in more 
detail by decomposing the brake reaction time (the time from a prompt to the point when 
the driver began to decelerate) into several components (e.g., accelerator release reaction 
time and accelerator-to-brake transition time) and assessed the brake profile with the 
metrics mean and maximum brake accelerations. This method can also be used after a 
period of assisted or automated driving. Gold et al. (2013) decomposed the take-over 
time into components such as reaction times for positioning hands on the steering wheel 
and redirecting eyes to the forward path. Morando et al. (2020), investigating a type of 
assisted driving that allowed hands off the wheel and feet off the pedals, broke the 
response process down differently, into its visual components (glance reaction time and 
the location of that glance), motor components (hands and feet reaction times), and 
intervention components (time and choice of evasive maneuver). Both Gold et al. (2013) 
and Morando et al. (2020), in contrast to Lee et al. (2002), included measures of drivers’ 
visual attention as part of the response process. Further, Gold et al. (2013) assessed the 
manual intervention performance with, for example, lateral vehicle position trajectories 
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in the safety-relevant event and the utilization of the acceleration potential (i.e., the 
square-root of the sum of the squared maximum longitudinal and lateral accelerations).  
 
For analyzes of the driver response process, data that capture driver actions (including 
driver gaze directions) are needed. Some of these data can come from vehicle sensors 
such as brake pressure or steering wheel torque sensors. However, to capture driver 
actions that do not involve the vehicle controls (e.g., gaze locations, movement of hands 
and feet away from the steering wheel or the pedals), video data is typically needed. To 
collect the data, driving simulators and test cars can be equipped with video cameras that 
record the driver from different angles (e.g., positioned to capture the driver’s face and/or 
the driver’s feet and hands). Then, in order to extract time points for the driver actions 
of interest, manual video annotation is usually performed: one person (or several people) 
observes the video and notes the time stamps when a certain action starts (e.g., the driver 
has at least one hand on the steering wheel). These time stamps can then be extracted 
and combined into a dataset which can be used to analyze the response process. For 
analyzes of the intervention and driving performance, a combination of discrete metrics 
(e.g., maximum lateral acceleration, minimum steering wheel angle) and continuous metrics 
(e.g., longitudinal vehicle speed time series data) can be used. In a similar manner, the 
visual attention can be assessed using discrete metrics (e.g., time until driver gaze is 
directed on-road in response to a take-over request) or continuous metrics (e.g., the 
percent of time the gaze is directed towards a certain area of interest over a moving or 
fixed time window). The risk of only using discrete metrics is that important information 
can be missed. For example, a discrete difference in lane position observed directly after 
automation deactivation may simply be a sign that the drivers repositioned their hands 
on the steering wheel and applied some torque, and not necessarily a safety-critical action. 
By also including continuous measures of how the lane position changes over time after 
automation deactivation, a more complete understanding of how meaningful a 
difference in lane position may be, can be achieved. However, while discrete metrics can 
easily be included in statistical analyzes to understand effects and effect sizes, continuous 
metrics may require more advanced methods.  



22 
 

   
 
Figure 3 - A representation of the driver response process and the response preparation and the manual 
intervention and stabilization phases for assisted driving (top) and automated driving (bottom). Included in 
the figure are examples of the metrics used to capture the timing and quality of the actions within the response 
process.  
 
Figure 3 presents a subset of Figure 1. The response preparation phase includes all actions 
that are performed up to the start manual intervention, which is typically the point in time 
when the driver starts to perform a conscious maneuver intended to avoid a safety-
relevant event. However, when there is no safety-relevant event, it could be the point in 
time when the driver starts to provide manual control input. The manual intervention 
and stabilization phase consists of the manual driving performance that follows after the 
driver has started driving manually.  
 
The driver response process in Papers I–V was analyzed by performing manual video 
annotation to extract time points for the specific driver actions (including gaze direction 
to certain areas, such as the road ahead) of interest. In Papers I–V, the driver response 
process was assessed using time points for several actions: for example, when a driver 
showed surprise (Driver Surprise reaction), put hands on wheel (Hands on wheel), started 
steering to avoid the conflict object (Driver steering start), directed the eyes towards the 
instrument cluster (Gaze to instrument cluster), and deactivated automation 
(Automation deactivated). Examples of these time points are shown in Figure 3. These 
action time points were mainly used to assess the response preparation phase.  
 
In Paper I, the driving performance in the manual intervention and stabilization phase 
was simply assessed according to the conflict outcome (crash/no crash, indicated in 
Figure 3). In Papers II and III, the driving performance in the manual intervention and 
stabilization phases were analyzed in more detail. Vehicle speed and acceleration were 
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combined with metrics for discrete maximum speed and maximum lateral and 
longitudinal accelerations, for the period when drivers were maneuvering through the 
road-work zone (or avoiding the stationary object in the cut-out event). Detailed analyses 
of driver visual attention, inferred through measures of their gaze direction and glance 
durations, were conducted, both in the safety-relevant event (Paper I) and before and 
after a take-over request in automated driving (Paper IV). Specifically, in Paper I the PRC 
(Figure 3) was computed as a function of time (including several seconds prior to reaching 
the conflict object) and the values for the drivers who crashed were compared with those 
who successfully avoided the conflict object. In Paper IV, the percentage gaze directed to 
areas of interest (e.g., towards the road, an non-driving related activity item, or vehicle 
mirrors) were analyzed 30 s before and 30 s after the take-over request.  
 

3.4.1 Statistical methods 

To mathematically assess the significance of the observed difference between two or more 
metrics (as part of the driver response process), a variety of statistical methods can be 
used. Frequentist methods are the most commonly used statistical method within the 
literature on human factors in vehicle automation. However, frequentist methods 
(especially null hypothesis significance testing: NHST) have the disadvantage of 
encouraging black-and-white thinking: effects either exist or do not exist as it mainly 
indicates whether a p-value is rejected or accepted, without explicit information about 
parameter magnitudes (Kruschke & Liddell, 2018). The real world is often more 
nuanced, which another type of statistical method, Bayesian, is better at capturing. The 
output of a Bayesian analysis is a distribution of a parameter together with the uncertainty 
of this parameter value. Thus, the output includes possible magnitudes as well as 
probabilities of these magnitudes, making it more informative than NHST. This 
additional information enables researchers and designers to understand the size of the 
effect and the uncertainty, and could use that information to assess whether such effect 
size is meaningful in for them or not in the context they use the information. For 
example, a difference in vehicle speed may be reported as statistically significant by 
NHST, but the actual difference in magnitude may be very small (e.g., 0.1 m/s) and not 
meaningful in every context; a Bayesian analysis enables the reader to make this 
assessment. The papers included in this PhD thesis used both Frequentist (Papers I and 
IV) and Bayesian methods (Papers II, III, and V). In Papers II and III, Bayesian methods 
were used to estimate differences between metrics across conditions (e.g., maximum 
vehicle speed after automation and after manual driving) together with the uncertainty 
of this difference. In Paper V, Bayesian methods were used to model the association 
between the driver response process and a driver’s gaze location at the take-over request 
and repeated exposure to take-over requests, and to predict response times based on a 
driver’s gaze location at the time of the take-over request.  
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4 Summary of papers  
 

Paper I. Driver conflict response during supervised automation: 
do hands on wheel matter?  
 
Introduction Understanding how to secure appropriate driver conflict response when 
needed (e.g., due to system limitations) during assisted driving is an important step in 
achieving safe vehicle automation. However, in-depth knowledge regarding the 
mechanisms affecting the driver response process is lacking.  
 
Objective The first aim of this study was to investigate how the driver conflict response 
in assisted driving differs for drivers who crashed and drivers who avoided the stationary 
conflict object in a critical event. The second aim was to understand the influence of 
three factors on the driver response process: a hands-on-wheel requirement (with vs. 
without), the conflict object type (garbage bag vs. stationary vehicle), and the driver trust 
level (high vs. low).  
 
Method Seventy-six participants supervised an assisted driving system for 30 minutes on 
a test track before encountering a conflict event. In the conflict event, the participants 
needed to avoid a stationary conflict object which was revealed by a lead-vehicle cut-out. 
The driver conflict response was assessed through investigations of the drivers’ response 
process when they encountered the lead-vehicle cut-out scenario. The process included 
timepoints for a driver surprise reaction, hands-on-wheel, and driver steering and 
braking, as well as conflict outcome (crash/no crash).  
 
Results Crashers generally responded later in all the response-process actions compared 
to non-crashers. A hands-on-wheel requirement did not influence driver conflict 
response: all drivers started steering to avoid the conflict object at similar times. High-
trust drivers generally responded later than the low-trust drivers—or not at all; in fact, 
only high-trust drivers crashed. The stationary balloon vehicle triggered an earlier surprise 
reaction than the smaller garbage bag, while the hands-on-wheel requirement and 
steering response time were similar for the two conflict object types.  
 
Discussion A hands-on-wheel requirement that requires drivers to rest their hands on 
the steering wheel may not prevent drivers from responding late (or crashing) when 
drivers have supervised an assisted driving system for 30 minutes. To what extent this 
result generalizes to other types of conflicts (e.g., sideswipes, lane exits) is currently 
unknown. In addition, further research is also needed to understand whether a hands-
on-wheel requirement that requires a certain amount of torque input would yield 
different results.  
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Paper II. Automation aftereffects: the influence of automation 
duration, test track and timings  
 
Introduction Automation aftereffects—degraded manual driving performance, delayed 
responses, and more aggressive avoidance maneuvers occurring after automation 
deactivation—have been observed in driving-simulator studies after a period of automated 
driving. Further, longer automation duration seems to result in more severe aftereffects 
than shorter duration.  
 
Objective The aim of this study was to examine the effect of automation exposure and 
its duration on the response preparation phase and the manual intervention and 
stabilization phase when drivers encountered a simulated road-work zone on a test track. 
In addition, comparing the results with those of simulator studies would improve our 
understanding of the influence of factors such as test environment and experimental 
protocols on automation aftereffects.  
 
Method Seventeen participants followed a lead vehicle on a test track. They encountered 
a road-work zone three times: while driving manually and after short and long periods of 
automated driving. The take-over request was issued 5–6 s before the lead vehicle 
performed a cut-out and revealed the road-work zone.  
 

Results All drivers managed to resume manual control in response to the take-over 
request and manoeuvre through the road-work zone with a level of driving performance 
similar to that of manual driving, without colliding with any cones. The aftereffects of 
automation on driving performance were greater than the effect of automation duration, 
but they were minor compared to the aftereffects observed in driving simulator studies. 
 
Discussion The extent to which the difference in automation aftereffects was due to the 
different test environments (driving simulator vs. test track) or different experimental 
protocols is unknown. However, independent of test environment, in the search for 
automation aftereffects it is important to consider the influence of the time needed for 
the driver response preparation process on the observed aftereffects. That is, more work 
is needed to disentangle the aftereffects that are merely the result of a longer response-
preparation phase (i.e., the preparation-action time) from those that may be caused by 
some other mechanism or psychological construct (e.g., reduced situation awareness, less 
calibrated sensorimotor control).  
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Paper III. It’s about time! Earlier take-over requests in automated 
driving enable safer responses to conflicts  
 
Introduction Automated driving, which takes full responsibility for the driving task in 
certain conditions, is currently being developed. An important concern in automated 
driving is how to design a take-over request that mitigates the automation effects—in 
particular delayed responses to conflict scenarios—that previous literature from simulator 
experiments has demonstrated. 
 
Objective This study aims to investigate and compare driver responses to take-over 
requests and a lead-vehicle cut-out scenario under three conditions: (1) after a period of 
automated driving with a take-over request issued early (18 s time-to-collision), (2) same 
as (1) except with a take-over request issued late (9 s time-to-collision), and (3) baseline 
with adaptive cruise control (ACC). This paper also compares these results to those of 
Paper I, which used the same conflict scenario but with a near-perfect assisted driving 
system instead. 
 
Method The lead-vehicle cut-out scenario was encountered on a test track after 30 
minutes of driving with either ACC or automated driving. In automated driving, the 
take-over request was issued before the event onset (when the lead vehicle performed the 
cut-out) which revealed the conflict object to the participants. This take-over request 
strategy differed from previous driving-simulator studies that issued the take-over request 
at event onset. The participants had to respond by steering and/or braking to avoid a 
crash.  
 
Results Our findings show that, independent of take-over request timing, the drivers 
required similar amounts of time to 1) direct their first glance to the human–machine 
interface, 2) look forward, 3) end their non-driving-related activity, 4) put their hands on 
the steering wheel, and 5) deactivate automation. However, when the take-over request 
was issued early rather than late, they generally started to brake earlier (even before event 
onset). All participants successfully managed to avoid crashing with the object, 
independent of the condition. Automated driving with an early take-over request resulted 
in the earliest response, while ACC drivers responded slightly earlier than the drivers in 
automated driving with the late take-over request. 
 
Discussion Our findings do not support the findings of severe automation effects 
reported in previous driving-simulator studies. One reason for the difference is that a 
take-over request issued prior to event onset gives drivers the time needed for their 
response-preparation phase. With the extra time, at event onset the drivers are ready to act 
(hands on wheel, eyes forward) and can perform an avoidance maneuver just as in the 
baseline drive. Overall, this study shows that after a period of automated driving, drivers 
do not need to end up in a highly critical situation if the take-over request is issued early 
enough. In fact, automated driving with an early take-over request may be safer than 
driving with ACC, because in the former drivers are more likely to brake earlier in 
preparation for the conflict. Finally, a take-over request clearly communicates the need 
for drivers to resume manual control and handle potential events when the automated 
driving system has been deactivated. In our study, once the drivers had deactivated 
automation, they clearly understood their responsibilities to handle the conflict, in 
contrast to Paper I’s near-perfect assisted driving system. 
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Paper IV. Driver visual attention before and after take-over 
requests during automated driving on public roads  
 
Introduction Existing research on transitions of control from automated driving to 
manual driving has mainly focused on take-over times. Despite its relevance for vehicle 
safety, drivers’ visual attention has received little consideration. 
 
Objective This study aims to understand drivers’ visual attention before and after take-
over requests in automated driving, when the vehicle is fully responsible for the driving 
task on public roads. 
 
Method Thirty participants took part in a Wizard of Oz study on public roads. Drivers’ 
visual attention was analyzed by measuring gaze direction and glance durations, before 
and after four take-over requests. Visual attention during a corresponding manual 
baseline drive was also recorded for comparison. 
 
Results During automated driving, the participants showed less visual attention toward 
the forward road and longer single off-path glance durations than during manual driving. 
In response to take-over requests, the participants directed their gaze towards the 
instrument cluster. Levels of visual attention toward the road did not return to the levels 
observed during manual driving until 15 s after the take-over request. 
 
Discussion Our findings show the importance of considering the effect of the design of 
take-over requests on drivers’ visual attention alongside take-over times. The reason is 
that a take-over request may trigger drivers to look away from rather than towards the 
road; drivers may then deactivate automation before being fully aware of what is 
happening outside the vehicle. However, our findings may be influenced by the design 
of the take-over request, which was signaled in the instrument cluster, and may not 
generalize to other human-machine interface designs.  
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Paper V. Driver response to take-over requests in real traffic  
 
Introduction Existing research on transitions of control from automated driving to 
manual driving mainly consists of studies in virtual settings including a critical event. To 
understand the impacts of increasing vehicle automation on traffic safety, there is a need 
for studies conducted on real roads under non-critical conditions. 
 

Objective This study aims to understand how drivers respond to take-over requests in 
real traffic. Moreover, the study also investigates the association between the drivers’ 
response process and (a) where drivers are looking when they receive the take-over request 
(towards an non-driving-related activity item or forward) and (b) the repeated exposure 
to take-over requests. 
 
Method Thirty participants were exposed to four take-over requests after about 5–6 
minutes of automated driving (simulated using the Wizard of Oz approach) during a one-
hour drive on public roads. While the automated driving system was activated, 
participants could engage in non-driving related activities of their choice. 
 

Results All drivers responded to the take-over request and deactivated the automated 
driving system within 10 s of the take-over request. When they received the request, 
drivers were either looking on-road (38% of requests) or off-road. For the latter, the off-
road glance was most commonly towards an non-driving-related activity item. For 72% 
of the issued take-over requests (independent of drivers’ gaze direction at the time), 
drivers started their response by looking towards the instrument cluster (before placing 
their hands on the steering wheel and their foot on the accelerator pedal and deactivating 
automation). Both the timing and the order of these actions varied among participants. 
In fact, some participants (5%) deactivated automation without having showed a glance 
forward. The drivers’ gaze direction at the time of the take-over request had a stronger 
association with the response process than the repeated exposure to take-over requests 
did. A driver who received the take-over request while looking towards an non-driving-
related activity item was generally delayed in all parts of the response process, compared 
to a driver looking on-road at the time of the take-over request.   
 
Discussion As drivers may need several seconds to safely transition from automated 
driving to manual driving, future automated driving systems must be able to handle the 
complete driving task for a long time after having issued a take-over request. Driver 
monitoring systems could be used to support drivers to deactivate automation timely and 
safely. A driver monitoring system could for example notice whether a driver is engaged 
in non-driving-related activity s or not, and use that information to decide when to issue 
a take-over request. Further, driver monitoring systems could also be used to prevent 
drivers from deactivating the automated driving system before having looked toward the 
forward roadway.   
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5 Discussion  
 

5.1 Driver response process during assisted driving  
Paper I shows that automation effects may exist when drivers need to act in a lead-vehicle 
cut-out scenario during assisted driving when no vehicle notification is present. In fact, 
despite having their eyes on the threat, some drivers responded later in all actions of the 
response preparation phase of the driver response process, whereas others only showed a 
surprise reaction without putting their hands on the wheel or attempting to steer. This 
observed delay in—or lack of—response is in line with previous research on driver conflict 
response to events with no vehicle notification during driving with some lower degrees 
of driving assistance, such as ACC or ACC with automated steering (Larsson et al., 2014; 
Piccinini et al., 2020; Rudin-Brown & Parker, 2004; Strand et al., 2014; Young & 
Stanton, 2007).  
 

5.1.1 Advantages of the response preparation phase and the influence of 
a hands-on-wheel requirement  

Through its detailed analyzes of the actions within the response preparation phase, Paper 
I enabled an enhanced understanding of the way these actions were associated with the 
conflict outcome as previously identified in Victor et al. (2018). In addition, the paper 
provided insights into how three factors (i.e., a hands-on-wheel requirement, driver trust, 
and conflict object type) influence driver actions and, consequently, the response process. 
The paper reported that: (a) some drivers crashed without putting their hands on the 
steering wheel, whereas others who crashed exhibited a delay in the hands-on-wheel or 
steering response; (b) high-trust drivers generally put their hands on the wheel and started 
steering later than low-trust drivers; and (c) a larger conflict object influenced the timing 
of the surprise reaction, but not that of the hands-on-wheel or steering response. These 
results build on previous research on driver conflict responses to events without vehicle 
notification during assisted driving, which mainly focused on the timing of a single 
response, such as braking (Larsson et al., 2014; Piccinini et al., 2020; Young & Stanton, 
2007). 
   
One of the main findings in Paper I was that a hands-on-wheel requirement and 
supervision reminders during assisted driving did not prevent some drivers from 
crashing—nor did it elicit an earlier steering response. This finding is in line with previous 
studies that issued a take-over request prior to a safety-relevant event (Naujoks et al., 2015, 
2017), but contrasts with the results of Llaneras et al. (2017), who used a hands-on-wheel 
requirement that introduced consequences (e.g., need to grab steering wheel, reengage 
the system) when drivers ignored visual attention reminders in a (silent failure) lane-drift 
event. Thus, a hands-on-wheel requirement may still be beneficial in other types of 
conflicts (e.g., lateral lane drifts or incorrect system steering). The extent to which a 
modified hands-on-wheel requirement in the present study would have been able to 
mitigate crashing remains unknown. Some sort of hands-on-wheel requirement, inspired 
by the work of Llaneras et al. (2017), include different types of required physical (hands-
on-wheel) involvement which would depend on the drivers’ engagement in supervising 
the assisted driving system. For example, when a driver is examined as insufficiently 
engaged (and does not change behavior in response to a requirement or reminder): they 
may first be required to rest their hands on the steering wheel, then to resist the system-
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initiated torque, and finally they may need to actively provide steering torque. As these 
different types of hands-on-wheel involvement represent different degrees of physical 
control they could potentially be considered different ways of being in the loop according 
to Merat et al. (2018). To conclude, more work is needed to understand the physical 
involvement necessary to facilitate a safe and appropriate response to a safety-relevant 
event during assisted driving when no vehicle notification is present.  
 

5.1.2 Factors explaining delayed response and crashing during assisted 
driving  

Victor et al. (2018) concluded that the drivers who crashed in their study did so because 
of an automation expectation mismatch: they expected the assisted driving feature to avoid 
the object in the cut-out scenario. This conclusion was based on interviews after the drive, 
in which drivers reported that they expected the automation to act in the conflict, 
whereas the participants who avoided a crash reported that they either were uncertain 
about whether the automation would act or did not expect automation to act at all 
(Gustavsson et al., 2018; Victor et al., 2018). Paper I confirmed that all drivers showed 
high levels of visual attention toward the road in the safety-relevant event. In addition, 
Paper I also found that all drivers except one showed a facial surprise reaction in the 
safety-relevant event. This sign of surprise may be an indication that the drivers were 
aware of the conflict object.  
 
In addition, Paper I found that drivers who reported high trust in automation responded 
later than drivers who reported low trust in automation. The predictive processing (PP) 
framework (Clark, 2013) was proposed as a possible explanation for the difference. 
Explaining the results within the PP framework was novel: despite the recent advances of 
PP within cognitive neuroscience, this framework is rarely used to explain results in the 
literature on human factors in vehicle automation. Simply put, the delayed response and 
consequent crashing reported in Paper I may arise from the participants who crashed 
have a different understanding of the assisted driving systems’ capabilities than the ones 
who avoided crashing. In the PP framework, this difference in understanding can be 
explained as crashing and avoiding participants having different hierarchical generative 
models. Further, the difference in responses by the high-trust drivers who crashed and 
the ones who did not may arise from the drivers’ different involvement in the driving 
task on the operational level (Michon, 1985). In the PP framework, this can be explained 
as the high-trust drivers who avoided a crash was involved in perceptual inference (they 
were making predictions on looming) on the operational level, whereas the crashing high-
trust drivers were not engaged in any inference on the operational level. Other 
frameworks or conceptual models may also be useful to explain the results, but these were 
not considered within the scope of this thesis.  

 

5.2 Driver response process after a period of automated 
driving on a test track  

In contrast to Paper I, which focused on the driver response process during assisted 
driving, Papers II–V investigated the process after a period of automated driving. The 
work in these papers provides novel contributions to the literature on human factors in 
vehicle automation, which consists almost entirely of evidence from virtual 
environments. These papers, however, are based on data collected in more realistic test 
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environments, such as a test track and public roads, using a physical vehicle. As a result, 
the data presented in Papers II–V are more reliable and representative of driver and 
vehicle behavior, within the typical limitations of an experimental setup.     
 

5.2.1 Driver response to safety-relevant events on test track  

The finding of automation effects in Paper I, which combined assisted driving with a 
unexpected system-limitation event, motivated the work in Papers II and III. Generally, 
these papers were aimed at understanding whether the type of automation effects 
observed for assisted driving can be generalized to driving with an automated driving 
system that issues a take-over request prior to the need for manual driving. First, Paper II 
aimed to understand if automation effects would also be present in another safety-
relevant event that was assumed to be easier for the drivers to handle than the cut-out 
event investigated in Paper I. The question was addressed in Paper II by letting drivers 
encounter a simulated roadwork after a period of automated driving that was previously 
encountered during a manual baseline (i.e., the event was expected and practiced 
beforehand). In contrast, the cut-out event in Paper I was unexpected; the drivers only 
encountered the event once. Paper III investigated whether automation effects would be 
present in the same scenario as in Paper I —for an automated driving system that issued 
a take-over request well in advance of the conflict object.   
 
Interestingly, despite the increased automation and the fact that all drivers in Paper II 
(instructed non-driving-related activity engagement) and some drivers in Paper III 
(voluntary non-driving-related activity engagement) were out of the loop before the take-
over request, only minor automation aftereffects were observed. All drivers, after having 
deactivated the automated driving system, started their steering maneuver earlier or at 
approximately the same time as in the baseline condition (manual in Paper II, ACC in 
Paper III); further, they showed similar driving performances in the safety-relevant event. 
The extent to which the difference in automation effects between Paper I and II depend 
on the criticality and expectancy of different safety-relevant events, type of automation, 
and presence of a vehicle notification is unclear. However, the fact that Paper III included 
the same safety-relevant event as in Paper I suggests that the explanation lies in the 
different automation types (assisted vs. automated) which includes the presence or 
absence of a take-over request, rather than in the type of safety-relevant event. 
Importantly, we could not confirm the human factors assumption of that increased 
automation typically results in poorer performance (Onnasch et al., 2014). However, this 
assumption does not apply to systems that also differ in their ability to provide timely 
notifications to the human operator. In fact, vehicle notifications that attract drivers’ 
attention have been found to decrease response times (Lee et al., 2002), and the presence 
of a take-over request in Papers II and III (unlike Paper I) is likely to explain an important 
part of the appropriate responses observed. 
 
It also seems that, if a take-over request is triggered with sufficient time before event 
onset, the drivers are able to re-engage in the driving task on both the operational and 
tactical levels (Michon, 1985) and start making predictions about looming (as assumed 
by the PP framework) in a timely manner, avoiding crashing in the safety-relevant event. 
According to the PP framework, the fact that the drivers responded in time shows that 
they generated prediction errors to be acted upon (Clark, 2013; Engström et al., 2018). 
It can be assumed that the drivers were not making predictions about looming during 
automated driving (in Paper II they were looking at the game they were playing; in Paper 
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III at some other non-driving related activity item). Therefore, these drivers must have 
had sufficient time after the take-over request to start making predictions about looming 
(re-engage in active inference on operational level) in order to generate the prediction 
errors they acted upon.  
 

5.2.1.1 Factors explaining automation effects when responding to take-over requests 
in automated driving  

The minor automation aftereffects in Papers II and III, in contrast to the significant 
aftereffects in previous studies in driving simulators (Gold et al., 2013; Happee et al., 
2017; Louw et al., 2015), may be explained by several factors. One such factor is that the 
data included in Papers II-III was collected on real roads with a real vehicle with presence 
of real visual and motion cues and force feedback. Specifically, the absence of real motion 
cues and force feedback in previous driving simulator studies may have influenced the 
size of the accelerations generated to avoid a crash after automation deactivation. Both 
Gold et al. (2013) and Louw et al. (2015) report an increase in generated accelerations 
after automation compared to the manual baseline that was notably higher than what 
was observed in Papers II and III. However, to really understand the influence of test 
environment on the difference in observed automation aftereffects a validation study of 
the specific driving simulator is required (Kaptein et al., 1996). Another factor that may 
influence observed differences in aftereffects across studies is  that Papers II and III 
differed in terms of test environment and automated system specifications from the 
“typical” driving-simulator setup used in previous research. This setup let participants 
drive with an automated driving system on a highway at high speeds (120 km/h) before 
encountering a safety-relevant event (often a crash scene with stationary vehicles; de 
Winter et al., 2021). When the safety-relevant event became visible to the automated 
driving system it issued a take-over request; if the driver did not respond within the typical 
time budget of 7 s (or less) a crash would occur. The drivers could simultaneously 
deactivate the automated driving system and act to avoid the collision by simply steering 
or braking. Further, the automated driving system was assumed to be capable of issuing 
take-over requests for planned and unplanned events including objects that were not 
necessarily visible to the vehicle’s radar (i.e., before event onset) and then typically at 
longer time budgets (about 10 s or more). In addition, the automated driving system 
included a deactivation strategy that grants insurance companies’ wish for a clear 
distinction between the responsibilities of the human and the vehicle in the driving task, 
since drivers had to press and hold two buttons on the steering wheel for about 0.6 s to 
transition from automated driving to manual driving or vice versa.  
 
Given these differences in automated driving system designs, one reason why the findings 
in Papers II and III differ from those in previous driving-simulator studies is the 
preparation-action-time consequence (introduced in Sections 2.4.4 and 3.3.1). In sum, the 
less severe automation aftereffects may be due to the fact that the drivers in those studies 
had time to resume manual control before being presented with the conflict object 
because the take-over request was issued prior to event onset. In other words, after a 
period of automated driving, the automation aftereffects—in particular delayed response, 
degraded driving performance, and crashing—may be the result of the time it takes after 
automation for drivers to prepare for action (e.g., repositioning hands on the steering 
wheel). However, automation aftereffects may also be the result of any of the 
psychological constructs mentioned in Chapter 2, Section 2.3 (e.g., mental underload, 
reduced situation awareness). In other words, when the automated driving system issues 
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a take-over request at the event onset (as in previous driving-simulator studies), the 
delayed response (and potential crash) may be the result of drivers’ diminished awareness 
or mental underloading, but it is also affected by the time needed for drivers to become 
ready to act after automation.  
 
Paper III investigated the preparation-action-time consequence further by explicitly 
controlling the time given to participants for their response preparation phase. The 
participants received either 15 s or 6 s for their response preparation (i.e., a take-over 
request timing of 9 or 18 s give the participants 6 or 15 s, respectively, to prepare to act 
before the lead-vehicle cut-out starts at about 3 s) before the lead vehicle performed the 
cut-out maneuver. In this way, a comparison of automation aftereffects in the lead-vehicle 
cut-out scenario could be conducted with the assumption of a minor influence due to 
the preparation-action-time-consequence. The fact that all participants performed 
similarly in automated driving and in the ACC baseline suggests that controlling for the 
preparation-action-time can reduce aftereffects and, further, that possible psychological 
constructs (e.g., reduced situation awareness) do not have any additional severe impact. 
However, driving-simulator studies typically gave drivers a shorter time budget (7 s or less) 
than that of Papers II and III, which included time budgets between 9 and 18 s. This 
means that we cannot fully disentangle the influence of the overall time budget from the 
influence of the relation between the timings of the take-over request and the event onset 
on automation aftereffects. Because humans respond to stimuli with some time delay 
(Macadam, 2003), there will always exist time budgets that are too short. At the other 
end of the spectrum, a too-long time budget may mean that the full potential of 
automated driving is not utilized.   
 
Overall, the two papers provide evidence that drivers are able to resume manual control 
and handle safety-relevant events on real roads with a real vehicle when take-over requests 
are issued at 9–18 s time-to-collision and when take-over requests are issued prior to event 
onset. Thus, until automated driving systems are capable of providing drivers sufficient 
time budgets, the most advanced vehicle automation type should be assisted driving, with 
the driver fully responsible for the driving task at all times, despite being assisted with 
longitudinal and lateral control. 
 

5.2.1.2 The influence of automation duration and timings of the take-over request 
on the driver response process  

Finally, the results in Paper II suggest that automation duration has only a minor 
influence on the driver response process. This finding contrasts with those of Bourrelly 
et al. (2019) and Jarosch & Bengler (2019), who found that a longer automated drive 
resulted in more severe aftereffects, but are in line with the findings of Feldhütter et al. 
(2017). In fact, the only observed negative effect of automation duration on the driver 
response process in this paper was that four of the drivers, after being exposed to 
automation for 14 minutes, had problems deactivating automation on the first attempt 
and needed a second attempt, while all drivers successfully deactivated automation on 
the first attempt after only 4.5 minutes of automation. The longer duration may mean 
that drivers are more likely to forget the deactivation procedure.  
 
The results in Paper III suggest that the timing of the take-over request has only a minor 
influence on the time needed for the actions within the response preparation phase when 
the take-over request is issued before event onset. This finding contrasts with previous 
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driving-simulator studies which indicate an increase in take-over time with an increase in 
the time budget (McDonald et al., 2019; Zhang et al., 2019). The likely reason behind 
these contrasting findings are the differences in automated driving system specifications, 
as was described in Section 5.2.1.1. As in most driving-simulator studies, a take-over 
request is issued when a situation (e.g., looming) requires an immediate response, the 
driver may respond to the situation rather than to the take-over request. A longer take-
over request time budget in these settings likely resulted in a longer take-over time 
because drivers waited for the situation to become critical before starting the avoidance 
maneuver; there were no specific actions needed to deactivate the automated driving 
system before they could act on the threat (they could simply brake or steer). However, 
recall that in Paper III the drivers had to deactivate the automated driving system by 
pressing steering wheel buttons before they could respond to the event. The deactivation 
strategy in Paper III, selected to avoid accidental deactivation and mode confusion, 
required more deliberate actions and was more time-consuming than strategies in 
previous studies. In sum, previous findings of an increase in take-over time for an 
increased take-over time budget may not generalize to all types of automated driving 
systems. Specifically, when automated driving systems issue a take-over request before a 
situation requiring an immediate response, drivers may respond to the take-over request 
before responding to the threat itself; they may actually require a similar amount of time 
to deactivate the system, independent of the overall take-over time budget. 

 

5.3 Driver response process after a period of automated 
driving on public road  

While test-track studies have the advantage of including controlled safety-relevant events, 
their findings may not fully generalize to naturalistic driving studies with real traffic, 
which provide insights into driver behaviors in the actual environment where the systems 
will be used. As automated driving systems are not yet implemented in production 
vehicles (which might be used by novice drivers), a complete naturalistic driving study is 
not yet feasible. Therefore, to extend previous findings from test tracks and driving 
simulators, Papers IV and V investigated the safety of the driver response process when 
drivers receive take-over requests in real traffic in a public-road experiment. 
 

5.3.1.1 Drivers response to take-over requests on public road  

The results in Paper V suggest that drivers are able to respond to take-over requests and 
resume manual driving in real traffic within 10 s (i.e., before the start of a minimum-risk 
manoeuvre in UNECE (2021). These findings were true for all drivers, whether they 
chose to engage in non-driving related activities during the automated drive or not. 
However, a driver who is looking at an non-driving related activity item will likely take 
longer to perform all actions in the response process (i.e., glancing towards the 
instrument cluster, placing the hands on the steering wheel, deactivating the automated 
driving system, and placing the foot on the accelerator pedal) than a driver who is looking 
at the road. We can confirm a previous finding that the presence of non-driving related 
activities (especially handheld items) prolongs the process of resuming manual control in 
driving simulator studies (McDonald et al., 2019; Zhang et al., 2019). 
 
Paper V used data collected in real traffic to assess the safety of the driver response process 
mainly by focusing on the response preparation phase and specifically the actions drivers 
performed before automation deactivation. Overall, our findings are in line with the 
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previous study by Naujoks et al. (2019) which found that drivers managed to safely 
resume manual control on German freeways. In another recent study, by Rydström et al. 
(2022), drivers were also able to safely resume manual control in congested traffic 
situations in San Francisco. In contrast to our study and the study by Naujoks et al. 
(2019), the researchers issued take-over requests to drivers who had no previous 
experience or training. This difference likely explains the significantly longer take-over 
times they observed.  
  
One of the novelties in Paper V was the inclusion of drivers’ foot movements, which were 
not considered in previous studies on automated driving in real traffic (Naujoks et al., 
2019; Rydström et al., 2022). Paper V indicated that under non-critical conditions, 
drivers do not necessarily move their foot back to the brake pedal in response to a take-
over request: only in 7% of take-over request events had participants put their foot on 
the brake pedal within 10 s of the take-over request. On the other hand, all participants 
had moved their foot back to the accelerator pedal by that time. While the response times 
for moving the foot back to the pedals give some indications about the manual 
intervention and stabilization phase, Paper V did not consider the manual driving 
performance in detail (unlike Papers II and III). The previous studies, conducted in real 
traffic, suggest (through continuous measures of lane position and steering wheel 
position) that drivers quickly return to a level of driving performance in line with manual 
baseline driving (Naujoks et al., 2019; Rydström et al., 2022).  
 

5.3.1.2 Driver visual attention before and after take-over requests on public road   

Based on the findings in Paper V and the previously cited studies conducted in real 
traffic, drivers (with practice) will be able to resume manual driving from an automated 
driving system within 10 s of a take-over request. Although none of these previous studies 
considered drivers’ visual attention around the time of the take-over request in detail, the 
results in Paper IV demonstrate its importance when assessing the safety of the driver 
response process. The paper shows that it takes at least 15 s (longer than the 10 s needed 
to deactivate automation) for drivers’ visual attention to reach the same levels observed 
during routine manual driving on the same road. For comparison, the average reported 
mean take-over time, based on 129 studies, is only 2.7 s (Zhang et al., 2019). As a 
consequence, take-over request designs based solely on the mean take-over time risk 
overestimating drivers’ ability to perform safe manual driving after a period of automated 
driving. Importantly, several drivers in Paper V deactivated the automated driving system 
without even having looked toward the forward roadway. This sequence of actions is a 
safety concern, since a driver who has deactivated the automated driving system is 
responsible for safe manual driving and is assumed capable of handling potential events 
(SAE International, 2021; Thatcham Research, 2019; UNECE, 2021). In contrast to the 
automation aftereffects in terms of a delayed response and a degraded driving 
performance in a safety-relevant event, the observed automation effect in terms of a 
reduced visual attention after responding to a take-over request is in line with at least one 
previous driving-simulator study (Merat et al. 2014). 
 
Overall, Paper IV provides significant novel findings through its detailed investigations 
of the visual attention levels both before and after take-over requests in real traffic, 
demonstrating how analyzes of drivers’ visual attention (PRC over time) can identify 
safety-relevant driver behaviors. Furthermore, the findings in Papers IV and V suggest 
that drivers of future automated vehicles are likely to deactivate the automated driving 
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system before the start of a minimum-risk maneuver. However, deactivating automation 
through a button press does not necessarily mean that drivers are as aware of the 
environment as in manual driving (before 15 s from the take-over request have passed). 
It is also important to point out that both Papers IV and V are based on the assumption 
that the vehicle is able to handle the driving task until explicitly deactivated by the driver, 
and this assumption imposes several requirements on the automated driving system’s 
capabilities. First, automated driving systems need to know about an upcoming transition 
demand at least 10 s (and likely longer) before the driver needs to react to changes in the 
traffic situation. Second, automated driving systems also need to be able to ensure that a 
minimum-risk manoeuvre can be performed if the driver does not respond to the 
transition demand. 

 

5.4 Contributions to safe vehicle automation  
The overall aim of this PhD project is to contribute to the development of objectively 
measurable, safe vehicle automation. This thesis demonstrates that both safe assisted 
driving and safe automated driving on a test track can be achieved with most drivers,  
because most of the drivers in Paper I and all the drivers in Paper II-III performed well 
in the safety-relevant events. However, since 28% of drivers in Paper I still crashed, more 
work is needed to understand how to prevent drivers from crashing in safety-relevant 
events encountered in assisted driving (with no vehicle notification). Papers II and III 
demonstrate that the take-over request issued in automated driving may help drivers 
respond appropriately during safety-relevant events after automation has been 
deactivated. In fact, these papers demonstrate that drivers coming out of automated 
driving are able to perform manual driving and respond to safety-relevant events 
encountered after the take-over request in a manner similar to drivers driving manually 
or driving with ACC. 
 
Furthermore, this thesis demonstrates that knowledge about safe vehicle automation can 
be obtained by investigations of the driver response process during assisted driving and 
after automated driving, and the factors that influence this process. A challenge for the 
future is to integrate this knowledge into the design process. As a step in that direction, 
this thesis can inform the development of, for example, vehicle automation design, 
vehicle regulations and consumer rating protocols, driver monitoring systems and driver 
models. 
 
To begin with, this thesis demonstrates the need to consider detailed analyzes of drivers’ 
visual attention (along with take-over times) in order to understand the safety 
implications of automated driving systems—and consequently, to make informed 
decisions about vehicle automation design. As noted, focusing only on the time it takes 
for drivers to deactivate an automated driving system risks overestimating drivers’ 
readiness to respond to potential threats (because drivers may not yet be looking at the 
road). One way to assess drivers’ visual attention levels before and after take-over requests 
is through driver monitoring systems. These systems are likely to become reality in future 
vehicles, as Euro NCAP’s consumer rating program plans to give high scores to vehicles 
equipped with driver monitoring systems starting in 2023 (Euro NCAP, 2022). One 
example of the benefit of a driver monitoring system is that the system could anticipate 
or postpone take-over requests based on the driver’s visual attention levels during 
automated driving.    
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Second, the findings in this thesis can be used to inform vehicle regulations for current 
and future assisted driving and automated driving systems. The findings in Paper I show 
that requiring drivers to keep their hands on the wheel during assisted driving will not 
necessarily prompt earlier responses in longitudinal scenarios caused by system 
limitations, although (as mentioned) the requirement may have other safety benefits. The 
findings in Papers II, III, and V suggest that, most drivers using an automated driving 
systems are able to deactivate the system and resume manual control within 10 s—as 
currently assumed in UNECE (2021). However, there is not one single response time 
that is unique to every driver or situation. In fact, the combined findings in Papers II, III, 
and V suggest that participants, on average, need 0.7 s to direct their first glance at the 
instrument cluster, 1.2–2.2 s to place their hands on the steering wheel, and 2.9–4.1 s to 
deactivate automation. However, some participants needed up to 6–7 s to direct their 
first glance at the instrument cluster, 8.7 s to place their hands on the steering wheel, 
and 11.6 s to deactivate automation. 
 
Third, the newly acquired knowledge about the response process can be used to develop 
quantitative driver models that can be: (a) included in computational simulations for 
assessing the safety impact of design choices for human-machine interfaces or take-over 
request designs or (b) used together with driver monitoring systems to develop 
countermeasures for unsafe behaviors: behaviors detected by a driver monitoring system 
can be compared to a safe reference behavior and a countermeasure could act on 
potential deviations. Since the driver response process differs for assisted driving with no 
vehicle notification and automated driving with a take-over request, it makes sense to 
develop separate models for these fundamentally different automation types and driver 
roles. In addition, driver models for assisted driving need to capture the behavior of 
drivers that crash due to an expectation mismatch, possibly using the PP framework that 
includes different generative models. 
 
Finally, this thesis can also impact automated driving system design principles (e.g., 
human-machine interfaces for transitions). Whereas a period of 9.5 minutes (i.e., 
difference between 14 and 4.5 minute durations) of automated driving does not seem to 
have any effect on the driver’s ability to perform manual driving after a transition, an 
improved human-machine interface design can make the transition more intuitive so that 
drivers will be less likely to forget how to deactivate the system, even after a long period 
of automation. When an automated driving system is capable of issuing take-over 
requests prior to event onset, an earlier take-over request does not seem to prolong the 
drivers’ response preparation process. In fact, when the deactivation strategy requires a 
deliberate button press, drivers seem to respond to a take-over request issued before event 
onset independently of situation kinematics. Therefore, earlier take-over requests can 
give drivers more time to assess the traffic environment and notice upcoming events, 
which may lead to precautionary braking. Overall, allowing engagement in non-driving 
related activities in automated driving will typically prolong the time required for driver 
response preparation, but drivers should still be able to deactivate automation within 10 
s of the take-over request.  

 

5.5 Limitations  
Although the experiments in Papers I–III are performed with a real vehicle on a test track, 
which provides a higher degree of realism than a driving simulator, a test-track study also 
has its limitations. The situation is not perfectly realistic; it lacks real traffic, and a test 
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leader and safety driver are in the vehicle. In addition, the conflict objects used in the 
three experiments lacked some realism for safety reasons. In the experiments for Papers 
I and III, the conflict object was a balloon car or a stuffed garbage bag, and in the 
experiment for Paper II the conflict object was a simulated road-work zone made of cones. 
However, it would not be safe to perform studies which include a safety-relevant event 
on a public road with real traffic—only non-critical scenarios could be investigated. The 
public road experiment (Papers IV and V) also has limiting factors that may hinder 
generalization. For example, the experiments were conducted on Swedish highways in 
daylight and may not generalize to other cultures and weather conditions. In addition, 
this thesis primarily inferred drivers’ visual attention levels from the direction of their 
gaze. Since gazing towards an area does not guarantee that it is being attended to, this 
inference is a potential limiting factor of our study. As an additional limitation, the 
drivers in the experiments in Papers I–V were Volvo car employees in the Gothenburg 
area in Sweden. The extent to which our results generalize to other populations remains 
unknown.   
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6 Conclusions and future work  
This thesis has advanced the knowledge of human factors in vehicle automation through 
detailed analyzes of the driver response process, using data collected with a real vehicle 
on real roads. The findings contribute to our understanding of automation effects and 
aftereffects, as well as the contributing factors influencing the size of these effects.  
 
To begin with, this thesis demonstrates that vehicle automation does not always result in 
detrimental automation effects in terms of unsafe driver response and performance  
whether in safety-relevant events on a test track with real vehicles or when responding to 
take-over requests in real traffic. In fact, most drivers 72% of the drivers in Paper I 
(Objective I) and 100% of the drivers in Papers II and III (Objectives II and III), were 
able to perform safe manual driving and intervention performance after a period of 
assisted driving and automated driving. This thesis has revealed less severe automation 
effects than those that had been observed in virtual settings (driving simulators). When 
take-over requests are issued well ahead of the need for drivers to resume manual control 
(e.g., 10 s before the start of a minimum risk maneuver as recently proposed by current 
vehicle regulations), drivers are able resume manual driving in time (Objectives II, III, 
and IV). To guide countermeasure designs, vehicle regulations, and driver monitoring 
systems, we need to understand if the automation aftereffects observed in previous 
studies but not in our studies, are simply a result of 1) the test environments (driving 
simulators vs. test track/public roads) and 2) the time needed for drivers to become ready 
to act (i.e., to complete the actions within the response preparation phase. As a first step, 
a driving simulator study and a test track study could be performed with the exact same 
setup in order to understand if the larger automation aftereffects observed in driving 
simulators are due to the test environment, or if the effects are more related to the timings 
of take-over request and event onset. Overall it is important to disentangle automation 
effects that merely stem from the time needed to prepare for action (i.e., automation 
effects due to the preparation-action-time consequence) before attributing potential 
effects to a psychological construct or cognitive mechanism (e.g., a reduced situation 
awareness).  
 
In addition, this thesis also demonstrates that what is safe for automated driving is not 
necessarily safe for assisted driving and vice versa (Objectives I and III). Thus, future work 
should state what type of automation (including assumptions on driver responsibilities), 
is being investigated. As noted in Paper I, after having supervised a near-perfect assisted 
driving system for thirty minutes, some drivers may crash, despite having eyes on the 
threat and hands on the steering wheel, since they do not understand the need to act in 
a safety-relevant event that is not preceded by a vehicle notification. Although keeping 
their hands on the wheel might neither help drivers avoid crashing nor elicit earlier 
steering responses in longitudinal conflicts, the position may help drivers become aware 
of incorrect/insufficient system steering or prevent misuse (e.g., non-driving related task 
engagement when not allowed by system design). As long as automation limitations 
contribute to crashes, we need to find ways to prevent these crashes. For example, a design 
that requires drivers to put their hands on the steering wheel and apply torque 
occasionally may ensure that the driver is sufficiently engaged in the driving task to 
respond to events when needed. Also, , when the same safety-relevant event is preceded 
by a take-over request (in automated driving), drivers appear to better understand their 
responsibility to handle events and avoid crashing.  
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Overall, this thesis demonstrates the effects of the test environment, automation design 
and time budgets on automation effects (Objectives II and III). Therefore, to make 
vehicle automation as safe as possible, future researchers should aim to perform 
experiments that replicate automated driving systems and scenarios, likely to be present 
in real traffic. Future automated driving systems (which are in line with future vehicle 
regulations and insurance company definitions) on public roads are unlikely to expect 
drivers to respond to urgent non-prompted events. Before we have automated driving 
systems that can issue a take-over request to signal the need for manual driving, assisted 
driving in combination with system-limitation events requires further research to ensure 
that drivers understand their responsibility to act when such limitations occur.  
 
Also, an important challenge for future automated driving systems is the potential for 
deskilling (reduced manual driving performance skills when one rarely drives manually) 
as the systems become more capable. Although this thesis demonstrates that automated 
driving has no severe short-term effects on manual driving performance, it is unclear 
whether—and if so, when—drivers start to lose their manual driving skills. In addition, the 
findings in this thesis are based on drivers who are awake and in a traditional seating 
position. Future research should investigate what other options during automated 
driving which still leave the driver available to respond to take-over requests (e.g., 
sleeping, adopting different seating postures).  
 
Finally, this thesis demonstrates the importance of including detailed investigations of 
the driver visual attention as part of the driver response process; it is not only the timing 
and quality of driver actions in response to take-over requests and/or safety-relevant 
events and the manual driving performance after automation that matters for assessing 
the safety of vehicle automation. Considering the drivers’ visual attention levels (inferred 
from gaze direction and glance durations in this thesis) during and after the transition to 
manual driving is important, since some drivers may deactivate automation before 
looking on-road (Objective IV). In addition, after being exposed to automation, drivers 
may need longer than 15 s to establish the same visual attention levels observed during 
manual routine driving. Thus, if vehicle automation is designed solely based on the time 
needed to deactivate automation, the safety may be overestimated as drivers’ may 
deactivate automation before being as attentive as in manual driving.   
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