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Abstract
Purpose  To identify fasting serum metabolites associated with WG intake in a free-living population adjusted for potential 
confounders.
Methods  We selected fasting serum samples at baseline from a subset (n = 364) of the prospective population-based Kuopio 
Ischaemic Heart Disease Risk Factor Study (KIHD) cohort. The samples were analyzed using nontargeted metabolomics 
with liquid chromatography coupled with mass spectrometry (LC–MS). Association with WG intake was investigated using 
both random forest followed by linear regression adjusted for age, BMI, smoking, physical activity, energy and alcohol 
consumption, and partial Spearman correlation adjusted for the same covariates. Features selected by any of these models 
were shortlisted for annotation. We then checked if we could replicate the findings in an independent subset from the same 
cohort (n = 200).
Results  Direct associations were observed between WG intake and pipecolic acid betaine, tetradecanedioic acid, four glu-
curonidated alkylresorcinols (ARs), and an unknown metabolite both in discovery and replication cohorts. The associations 
remained significant (FDR<0.05) even after adjustment for the confounders in both cohorts. Sinapyl alcohol was positively 
correlated with WG intake in both cohorts after adjustment for the confounders but not in linear models in the replication 
cohort. Some microbial metabolites, such as indolepropionic acid, were positively correlated with WG intake in the discovery 
cohort, but the correlations were not replicated in the replication cohort.
Conclusions  The identified associations between WG intake and the seven metabolites after adjusting for confounders in 
both discovery and replication cohorts suggest the potential of these metabolites as robust biomarkers of WG consumption.

Keywords  Nontargeted metabolomics · Wholegrain · LC–MS · Dietary assessment · Biomarker

Introduction

Consumption of wholegrain (WG) cereals has been shown to 
convey various health benefits, such as lower inflammation 
markers [1] as well as reduced risk of type 2 diabetes [2], 
cardiovascular diseases, and colorectal and prostate cancer 
[3]. Fiber and phytochemical content have been suggested as 
the key components responsible for health benefits via mod-
ulation of, e.g., postprandial glycemic response and lowering 
serum LDL cholesterol [4, 5]. In addition, the fiber content 
could potentially influence the gut microbial community [6], 
which may induce changes in the microbial metabolites and 
metabolic outcomes thereafter. To advance our understand-
ing of the mechanisms by which WG influence health out-
comes, dietary assessment is crucial. However, subjective 
reporting of dietary intake is prone to misreporting due to, 
e.g., recall bias, error in estimation of portion size, or giving 
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favorable or socially desirable answers. The application of 
both subjective reporting and objective measurement of bio-
markers can provide complementary estimation of dietary 
intake, which may not be achievable using only either one 
of the approaches.

The FoodBall consortium has classified dietary biomark-
ers as indicators to reflect (1) the consumption of food, its 
compounds or components, or part of a dietary pattern, or 
(2) the effect or implicated physiological and health status 
[7]. In the case of WG, odd-chain alkylresorcinols (ARs) 
and their homologues have been widely explored as intake 
biomarkers of WG rye and wheat, while the even-chain 
ones seem to be specific for quinoa [5, 8, 9]. More recently, 
trimethylamine-N-oxide and various betainized compounds 
have been reported from consuming a WG-rich diet [10, 11]. 
In addition, lower levels of several endogenous compounds, 
such as serotonin, taurine, and glycerophosphocholine, and 
phosphatidylcholines (PCs) have also been reported after 
WG intake [12, 13]. However, the metabolism of these com-
pounds in the body seems to depend on individual factors, 
such as age, sex, and BMI [14, 15]. In addition, many factors 
covary with habitual WG intakes, such as higher physical 
activity, lower tendency to smoke, and lower alcohol con-
sumption [16]. On top of that, the risk of non- or low com-
pliance in the intervention studies [17] may make it more 
complicated to disentangle the effect of individual factors 
on WG-associated metabolites. Hence, there is a need to 
establish a panel of diet-derived and/or endogenous metabo-
lites associated with WG intake independent of confounding 
factors in free-living populations.

Applications of nontargeted metabolomics in health sci-
ences have been shown to reflect the contribution of intrin-
sic and (semi-) modifiable factors, including genetics [18], 
endogenous metabolic pathways, and gut microbiota [19], 
as well as lifestyle factors, such as diet [20], stress [21], 
and other environmental exposures [22]. Profiling the blood 
metabolome may hence provide information about lifestyle, 
environmental exposure, and other information about the 
individuals, including biological mechanisms underlying the 
relationship between nutrition and health [22–24].

Here we present the application of nontargeted meta-
bolic profiling to assess blood metabolites associated with 
WG consumption in a prospective population-based cohort 
study. Based on the presumed causal relationship between 
WG intake and the blood metabolome, associations were 
adjusted for confounders (age, BMI, smoking, physical 
activity, energy and alcohol consumption). Finally, the dis-
covered metabolites were checked if they could be replicated 
in an independent subset.

Materials and methods

Study population

The samples for this study were obtained from the Finn-
ish middle-aged male participants of the Kuopio Ischae-
mic Heart Disease Risk Factor Study (KIHD). KIHD is 
an ongoing population-based prospective cohort study in 
Eastern Finland [25]. The baseline examination took place 
in 1984–1989. 2682 men aged 42–60 years (83% of those 
who were eligible) participated in the baseline examinations.

Dietary assessment

Participants self-reported their dietary intake at baseline 
using a 4-day food record [26]. To ensure reporting accu-
racy, the participants received instructions on how to fill 
out the food record and a picture book containing a list of 
126 foods and drinks typically consumed in Finland during 
the 1980s. Each item included a corresponding estimation 
of portion size based on household measures to ensure 
proper assessment and recording [27]. During a study 
visit, a nutritionist checked the completed food records 
with the participant to improve accuracy [25].

The definition of WG followed the definition by the 
HEALTHGRAIN project [28], including downstream 
products, such as pasta. The KIHD database does not 
include information on intakes of individual grains. In 
the mid-to-late 1980s in Finland, wheat and rye were the 
most commonly consumed grains, followed by oat, rice, 
and barley [29]. However, in the KIHD cohort, WG pasta 
or rice intake was very uncommon (Table 1). The calcu-
lation of food and nutrient intakes was performed using 
the NUTRICA® 2.5 software (Social Insurance Institution, 
Turku, Finland), based mainly on the Finnish database of 
the nutrient composition of foods.

Selection of samples

Serum samples and data for this study were taken from 
two independent subsets within the KIHD cohort. The dis-
covery cohort (DC) was selected from a previous study on 
adherence to a healthy Nordic diet and incidence of coro-
nary artery disease within a mean follow-up of 20.4 years 
(nDC = 364) [30]. The replication cohort (RC) was taken 
from a study investigating the association between egg con-
sumption and the incidence of type 2 diabetes after a mean 
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Table 1   Baseline characteristics and dietary intake of study participants in each subset

All values are presented in median ± interquartile range (IQR), except for proportion of current and past smokers. Dietary data are presented in 
4-day-food-record median ± interquartile range (IQR)
%E percentage of energy intake, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids
a DC discovery cohort [30], RC replication cohort [31]
b Excluding jams and juices
c Excluding potatoes and vegetable juices

Study cohortsa

Discovery cohort (DC) Replication cohort (RC) Total

n Median (IQR) n Median (IQR) n Median (IQR)

Age, year 364 54.33 (48.50, 54.50) 239 54.33 (48.62, 54.50) 564 54.33 (48.56, 54.50)
Body mass index, kg/m2 362 25.90 (24.31, 28.29) 239 26.47 (24.81, 27.98) 562 26.16 (24.53, 28.12)
Waist-to-hip ratio 305 0.94 (0.91, 0.98) 199 0.94 (0.91, 0.97) 470 0.94 (0.91, 0.98)
Leisure-time physical activity, 

kcal/day
363 83.63 (24.66, 193.26) 239 77.34 (34.55, 179.98) 563 78.66 (28.79, 181.52)

Current smoker/past smoker, % 364 34.3/29.9 239 1.5/38.5 564 22.7/33.0
Cigarette packs/year 357 0.00 (0.00, 13.50) 239 0.00 (0.00, 0.00) 557 0.00 (0.00, 0.00)
Alcohol consumption, g/week 363 27.15 (5.95, 88.00) 239 12.00 (1.78, 37.02) 563 21.80 (3.80, 63.28)
Fasting serum insulin, mU/L 360 9.30 (7.00, 12.33) 235 10.30 (7.60, 13.30) 556 9.80 (7.30, 12.72)
Blood glucose, mmol/L 364 4.50 (4.30, 4.80) 238 4.60 (4.30, 4.90) 563 4.60 (4.30, 4.90)
Serum total cholesterol, mmol/L 363 5.99 (5.25, 6.68) 236 5.62 (5.04, 6.38) 560 5.84 (5.14, 6.57)
Serum VLDL cholesterol, 

mmol/L
361 0.48 (0.28, 0.77) 236 0.43 (0.30, 0.65) 558 0.47 (0.29, 0.72)

Serum LDL cholesterol, mmol/L 361 4.12 (3.48, 4.90) 236 3.78 (3.20, 4.56) 558 3.94 (3.35, 4.78)
Serum HDL cholesterol, mmol/L 362 1.28 (1.08, 1.47) 236 1.29 (1.13, 1.52) 559 1.27 (1.10, 1.48)
Serum triglycerides, mmol/L 357 1.08 (0.76, 1.47) 237 1.03 (0.74, 1.41) 555 1.05 (0.76, 1.45)
Serum C-reactive protein, mg/L 364 1.08 (0.65, 2.13) 239 0.90 (0.53, 1.75) 564 1.04 (0.63, 2.00)
Mean systolic blood pressure 

(mmHg)
362 131.92 (123.54, 143.92) 239 131.67 (122.83, 141.33) 562 131.92 (123.33, 142.33)

Mean diastolic blood pressure 
(mmHg)

362 88.33 (82.00, 95.67) 238 89.67 (83.17, 95.63) 561 89.00 (82.33, 95.67)

Dietary components
 Fruits and berries, g/dayb 364 113.99 (38.54, 216.69) 239 126.75 (61.10, 209.18) 564 118.99 (44.61, 207.79)
 Vegetables, g/dc 364 103.57 (59.36, 158.83) 239 104.58 (66.83, 159.23) 564 102.70 (60.45, 157.06)
 Total grain products, g/d 364 255.41 (194.00, 312.80) 239 265.90 (212.35, 315.06) 564 258.11 (204.84, 314.10)
 Total whole grains, g/d 364 155.28 (112.48, 208.83) 239 156.38 (120.53, 206.55) 564 154.90 (115.54, 207.29)
 Whole grains, excluding rice 

and pasta, g/d
364 155.28 (112.48, 208.83) 239 156.38 (120.53, 206.55) 564 154.90 (115.54, 207.29)

 Refined grains, g/d 364 87.72 (59.86, 121.55) 239 98.65 (75.28, 129.65) 564 90.95 (65.69, 125.74)
Nutrients
 Energy (kcal/d) 364 2,445.39 (2,065.45, 2,787.99) 239 2,454.97 (2,174.06, 2,842.69) 564 2,452.41 (2,123.48, 2,803.00)
 Carbohydrate, %E 364 43.33 (38.70, 48.56) 239 44.11 (40.83, 48.28) 564 43.65 (39.67, 48.33)
 Protein, %E 364 15.19 (14.15, 16.82) 239 15.17 (13.86, 16.76) 564 15.18 (13.97, 16.82)
 Total fat, %E 364 38.48 (34.15, 42.77) 239 38.77 (35.34, 42.30) 564 38.54 (34.56, 42.34)
 SFA, %E 364 17.95 (14.81, 21.03) 239 18.48 (15.59, 21.21) 564 18.17 (15.27, 21.10)
 MUFA, %E 364 11.65 (10.22, 12.87) 239 11.61 (10.12, 12.99) 564 11.64 (10.15, 12.99)
 PUFA, %E 364 4.21 (3.43, 5.23) 239 4.36 (3.44, 5.33) 564 4.22 (3.44, 5.27)
 Trans fatty acids, %E 364 1.00 (0.81, 1.22) 239 1.03 (0.87, 1.24) 564 1.02 (0.84, 1.23)
 Fiber, g/d, energy adjusted 364 24.52 (19.54, 30.36) 239 25.35 (20.87, 29.74) 564 24.83 (20.26, 30.17)
 Cholesterol, mg/d, energy 

adjusted
364 387.11 (328.15, 458.82) 239 382.65 (328.82, 462.50) 564 385.71 (328.68, 460.28)
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follow-up of 19.3 years [31]. From the original number of 
participants (n = 239), 39 participants were excluded, since 
they were already included in the DC (nRC = 200).

Collection of blood samples and other measurements

Blood samples were collected during the baseline examination 
visits in 1984–1989. Participants were instructed to abstain 
from alcohol consumption for 3 days and from smoking and 
eating for 12 h before examination visits between 08.00 and 
10.00 on Tuesdays–Thursdays [32]. After 30-min rest in supine 
position, venous blood samples were drawn without a tourni-
quet [32]. Serum was separated by centrifugation at 2000g for 
10 min (20 °C) after coagulation at room temperature for an 
hour [32]. The obtained serum samples were stored at − 80 °C 
until LC–MS analysis in 2016 for RC and 2018 for DC.

Body mass index (BMI) was calculated as body weight 
(in kg) divided by the square of height (in m2). The record-
ing of habitual leisure-time physical activity [33], smoking 
and alcohol consumption in the past 12 months and measure-
ment of blood pressure [34] have been described previously.

Metabolomics analysis

Sample randomization and preparation steps have been 
described in previous publications [30, 31]. After the sam-
ples were thawed entirely on ice water for approximately 3 h, 
100 µL of each sample was mixed with 400 µL of acetoni-
trile then pipetted into 96-well plate filter plate layered with 
96-well plate. Centrifugation (700g, 4 °C, 5 min) was per-
formed to obtain protein-free filtrate [35] which was directly 
used for LC–MS injection.

Data acquisition for nontargeted metabolic profiling 
analysis was performed at the LC–MS metabolomics center 
(Biocenter Kuopio, University of Eastern Finland). Two dif-
ferent LC–MS systems were employed for the DC and RC 
[30, 31]. The LC systems for the DC and RC were Van-
quish UHPLC (Thermo Fischer Scientific) and 1290 Infin-
ity Binary UPLC (Agilent Technologies), respectively. Both 
systems utilized two chromatographic techniques: reversed-
phase (RP) (Zorbax Eclipse XDB C18, 2.1 × 100  mm, 
1.8 μm, Agilent Technologies, Palo Alto, CA, USA) and 
hydrophilic interaction chromatography (HILIC) chromatog-
raphy (Acquity UPLC® BEH Amide 1.7 µm, 2.1 × 100 mm, 
Waters Corporation, Milford, MA, USA). The injection vol-
ume was 1 µL for each sample. A pooled sample from all 
biological samples per experiment was injected at the begin-
ning and after every 12 samples throughout LC–MS run for 
quality control and drift correction.

The MS systems used Q Exactive Focus Orbitrap MS 
(Thermo Fischer Scientific) for DC and Agilent 6540 Q-TOF 
(Agilent Technologies) for RC [30, 31], both with high 

resolution and accuracy. The data were acquired in both 
positive (ESI+) and negative (ESI−) electrospray ioniza-
tion modes. At the end of the analysis, data-dependent MS2 
were acquired for each mode. Further information about the 
LC–MS instruments setup and data acquisition parameters 
can be obtained from the previous publications [30, 31].

Discovery cohort

Peak-picking was performed using MS-Dial version 4.20 
[36] after converting the raw files to.abf format using Abf 
Converter. The data were collected with a tolerance of 
0.01 Da for MS1 and 0.025 for MS2. Peak detection was 
performed with a minimum peak height of 10,000 for DC 
and 1000 for RC due to the different detection units. Prelimi-
nary identification was performed in MS-DIAL [36] against 
the uploaded in-house library with an identification score 
cutoff of 70% and accurate mass tolerance of 0.015 Da for 
MS1 and 0.05 for MS2. The tolerance for peak alignment 
was 0.015 Da and 0.15 min. After alignment, the raw peak 
area from each mode was then exported to .xlsx files. This 
data matrix contained 36,584 features from RP−, 30,607 
from RP+ , 25,871 from HILIC−, and 15,095 from HILIC+ 
, which then underwent data preprocessing.

All features were preprocessed using the R package 
notame (https://​github.​com/​anton​vsdata/​notame) as previ-
ously described [21, 35]. The procedures allow correction 
of drift due to long LC–MS run sequence, missing values 
imputation, and removal of low-quality signals [35]. Follow-
ing this procedure, we retained 2829 and 1438 features from 
HILIC, and 6260 and 6957 features from RP, in ESI + and 
ESI−, respectively. Thus, the combined data matrix com-
prised 17,484 features from 364 participants in DC. Before 
statistical analyses, the peak areas of the features were trans-
formed using log-transformation, followed by normalization 
by mean-centering and scaling to unit variance.

Replication cohort

The metabolomics data of the RC underwent a similar pre-
processing procedure as DC described above. One data file 
from RP+ was corrupted during the peak-picking procedure, 
so the feature alignment of RP+ was based on 199 samples. 
The removal of low-quality features yielded 14,110 features 
from 200 participants in RC, which underwent the same nor-
malization procedures as in DC.

Statistical analysis

Discovery cohort

The selection of features for the identification step employed 
both multivariate and univariate approaches. Random Forest 

https://github.com/antonvsdata/notame
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(RF) using the R package MUVR (https://​gitlab.​com/​CarlB​
runius/​MUVR) that incorporates a repeated double cross-
validation scheme was applied to unbiasedly select a set of 
molecular features ranked based on their importance to pre-
dict the total WG intake. Permutation tests (n = 40, p differ-
ence between actual and permutation models  =  1.21e−14) 
were performed to ascertain that modeling results were 
not due to overfitting [37]. This variable selection proce-
dure maximized the selection of all relevant features (max 
model), resulting in a selection of 130 metabolic features. 
These features were then fitted to a linear regression model 
(using the built-in lm function in R) with WG intake as the 
independent variable and the normalized metabolite feature 
as the dependent variable, followed by correction for mul-
tiple testing by false discovery rate (FDR). FDR < 0.05 was 
considered significant.

In addition to the feature selection using random forest, 
we also performed a partial Spearman correlation test to 
capture additional features that may not be selected by RF. 
The correlation test was performed between WG intake and 
peak area of all features after first regressing both WG intake 
and peak areas with confounders (age, BMI, leisure-time 
physical activity, smoking, and intake of alcohol and energy) 
using the built-in lm function. Residuals were then corre-
lated using the built-in cor.test function in R. The cutoff of 
FDR < 0.005 was used to limit the annotation and discussion 
to a reasonable shortlist of likely relevant metabolites.

Replication cohort

143 annotated metabolites in the DC (Supplementary 
Table 1) were checked if they were also detected in the RC. 
To estimate the RT of those features in RC, 46 metabolites 
with confirmed identity based on the mass-to-charge ratio 
(m/z), retention time (RT), and MS2 spectra from both DC 
and RC were fitted to a locally estimated scatterplot smooth-
ing (LOESS) (Supplementary Table 2) using the built-in 
loess function in R. This number included some metabolites 
eluting at the range of RT uncovered by the relevant features 
as anchor points, although they were outside the scope of 
interest of the current study (Supplementary Table 2). The 
fitted LOESS was then used to predict (using the built-in 
predict function in R) the RT of the shortlisted features from 
DC without MS2 spectra in the replication cohort (RC).

Features with m/z tolerance of 5 ppm and RT tolerance 
of 0.5 min from either the RT in the discovery cohort (DC) 
or LOESS-predicted RT were added to the list of validated 
metabolites. In total, 61 metabolites with tolerance of 
mass-to-charge ratio (m/z) 5 ppm and retention time (RT) 
0.5 min (Supplementary Table 2, Supplementary Methods) 
were found in the RC. Random forest was not applied to 
the RC, because RF did not seem to fit the current subset 
(Q2 = 0.03). The reason could be the selection criteria of 

the study population which were based on egg intake [31] 
and were not related to WG intake. Hence, these metabo-
lites were then subjected to the same Spearman correlation 
and linear regression models as in the DC (Supplementary 
Table 3, Supplementary Methods).

Adjustment for potential confounders

Based on presumed causal relationships depicted in a 
directed acyclic graph [38] (Supplementary Fig. 1), vari-
ables associated with both WG intake as exposure and 
blood metabolome as outcome were identified as potential 
confounders. These selected confounders were age, BMI, 
leisure-time physical activity (kcal/day), smoking (estimated 
as cigarette packs per day multiplied by years of smoking), 
and intake of and alcohol (gr/week) and energy (kcal/day). 
In particular, energy intake was included as a standard mul-
tivariate model [39]. These confounders were adjusted for 
in partial Spearman correlations between WG intake and 
metabolic features and in adjusted linear models in DC. Both 
were followed by FDR adjustment. FDR < 0.005 for cor-
relation analysis and FDR < 0.05 for the linear models were 
considered significant.

The same set of confounders were also adjusted for in the 
Spearman correlation and linear regression model in the RC, 
except for smoking, since only one RC participant smoked. 
FDR < 0.05 for either correlation or linear models was con-
sidered significant in the RC. All statistical analyses were 
performed using R version 4.0.3 [40].

Compound annotation

Features in the DC with FDR < 0.05 in linear modeling 
(n = 112) or FDR < 0.005 in correlation analysis (n = 245) 
were added to the shortlist for compound annotation (Fig. 1). 
The list was further narrowed down by limiting molecular 
mass < 1000 Da, RT 1–12 min for HILIC and 1–15.5 min for 
RP modes, leaving 270 features for annotation.

Extracted ion chromatograms and MS2 spectra of dif-
ferential metabolites were visualized using Freestyle 1.3 
(Thermo Fisher Scientific) for annotation purposes. Metab-
olite annotation was performed based on matching mass, 
isotopic pattern, and MS2 spectra against existing libraries, 
either in-house for level I (together with matched RT with 
pure commercial compound run in the same platform) or 
online spectral databases (Supplementary Methods) for level 
II according to the guidelines from the Metabolomics Stand-
ard Initiative [41]. The utilized reference libraries for level 
II identification were MassBank [42, 43], METLIN [44], 
HMDB version 4.0 [45], and Mass Bank of North America 
(MoNA). Lipophilic compounds were matched against the 
in-house library or built-in MS-DIAL library [36] and LIPID 
MAPS [46]. Phospholipids [47, 48], dihydroxybenzoic acid 

https://gitlab.com/CarlBrunius/MUVR
https://gitlab.com/CarlBrunius/MUVR
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[49, 50], betaines [51, 52], and alkylresorcinols [12, 49] 
were annotated based on previously reported MS2 frag-
ments. Features without data-dependent MS2 were subjected 
to targeted MS2 analysis using the previously described 
method [30]. Metabolites with compound class annotation 
based on the fragmentation patterns were reported as level 
III. Completely unknown compounds with unavailable MS2 
data or lacking MS2 interpretation were reported as level 
IV [41].

Reproducibility study of metabolites previously 
associated with wg intake

Besides annotating metabolites from the discovery and rep-
lication strategies described above, we further annotated 
metabolites previously associated with WG intake [10, 
12, 13, 49, 52, 53] from the data. This list of metabolites 
included ARs, betaines, and other metabolites (Supplemen-
tary Table 4). In addition, due to the potential interaction 
between WG, endogenous metabolism, and gut microbiota 
[54, 55], we also investigated the association between WG 
intake and some microbial metabolites (Supplementary 
Table 5) previously reported from gut microbiota or linked 
to the metabolism of benzoxazinoid or phenolic compounds 
[54, 56–59].

Results

Participants' characteristics at baseline and dietary intake 
data were reported as median (interquartile range (IQR)) 
(Table 1).

Metabolites associated with wholegrain intake 
in the discovery cohort

After removing noise and redundant features or fragments 
from the same metabolites, 143 metabolites were associ-
ated with WG intake based on correlation or linear model 
after RF variable selection (Supplementary Table 1). Among 
them, 24 metabolites were directly associated, identified at 

level I or II (Table 2). Pipecolic acid betaine, aminophenol 
sulfate, tetradecanedioic acid, dimethoxyphenylpropenoic 
acid, hydroxyisoleucine, tryptophan, and sinapyl alcohol, 
were selected in both correlation and RF, followed by a lin-
ear model. Three glucuronidated odd-chain ARs were also 
found in this analysis, namely, AR 19:0-glucuronide, AR 
19:1-glucuronide, and AR C21:1-glucuronide (Table 2).

Some metabolites were selected only by either RF or cor-
relation analysis. Valine betaine, AR C23:1-glucuronide, 
dihydroxybenzoic acid, indolepropionic acid, pyrocatechol 
sulfate, lysophosphatidylcholine (LPC) (19:0), LPC (22:0), 
PC (17:0/18:2), glutamine, dihydroactiniolide, pyrrolidone 
carboxylic acid, gamma-glutamyl-leucine, and two isomers 
of gamma-glutamyl-valine were selected only by the cor-
relation analysis (Table 2). Conversely, other unknown PCs 
and lipids were selected only by RF. In addition to the anno-
tated metabolites, several compounds associated with WG 
remained unidentified (Supplementary Table 1).

After adjustment for confounders, pipecolic acid betaine, 
tryptophan, hydroxyisoleucine, dimethoxyphenylpropenoic 
acid, sinapyl alcohol, aminophenol sulfate, tetradecanedioic 
acid, and three glucuronidated ARs, retained their associa-
tion (Supplementary Table 1).

Replication cohort

Among the 61 annotated metabolites from the DC that were 
also annotated in the RC, 11 were positively correlated 
with WG intake (FDR < 0.05) (Supplementary Table 3). 
These were pipecolic acid betaine, tetradecanedioic acid, 
hydroxyisoleucine, sinapyl alcohol, three glucuronidated 
ARs (AR C19:0-, C19:1-, and C21:1-glucuronide), 2 PCs 
[LPC(19:0) and PC(17:0/18:2)], glucuronidated eicosa-
noid RPneg_511.255@6.50, and an unknown metabolite 
(HILICneg_177.077@1.29). Among them, pipecolic acid 
betaine, tetradecanedioic acid, AR C19:0-, C19:1-, and 
C21:1-glucuronides, HILICneg_177.077@1.29 retained 
their association after adjustment both in correlation and 
linear models. Sinapyl alcohol retained its association only 
after correlation analysis but not in the linear models, and 
AR C23:1-glucuronide showed an association only after 
adjustment (Supplementary Table 3). Aminophenol sulfate, 
dimethoxyphenylpropenoic acid, dihydroxybenzoic acid, 
and other metabolites that were significant after adjustment 
in the DC could not be found in RC.

Microbial metabolites and other wg‑related target 
compounds

In addition to the data-driven approach, we also aimed to 
replicate compounds previously associated with WG intake 
or produced by gut microbiota. With this approach, we did 
not find any additional metabolites related to WG intake 

Fig. 1   Study flowchart. BMI body mass index, CHD coronary heart 
disease, DAG directed acyclic graph, DC discovery cohort, FDR false 
discovery rate, KIHD Kuopio Ischaemic Heart Disease Risk Factor 
Study, LC–MS liquid chromatography–mass spectrometry, LM linear 
regression model, LTPA leisure-time physical activity, MS2 tandem 
mass spectrometry, DC discovery cohort, RF max random forest with 
maximum variable selection, RT retention time, T2D type 2 diabetes, 
RC replication cohort, WG whole grain. *Sample selection criteria 
have been reported in previous publications according to a healthy 
Nordic dietary pattern, the incidence of coronary artery disease for 
DC and egg intake, and incidence of type 2 diabetes for RC [30, 31].
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(Supplementary Table 4). However, the microbial metabo-
lites indolepropionic acid, dihydroxybenzoic acid isomer, 
pyrocatechol sulfate, and hippuric acid correlated with WG 
intake in our data (Supplementary Table 5). Features with 
matching m/z as indoxyl sulfate, indoleacrylic acid, and 
two isomers of dihydroxyphenylacetic acid (DOPAC) were 
also associated with WG, but no MS2 data were available 
to confirm the annotation even after targeted MS2 analysis 
(Supplementary Table 5). These metabolites, except pyrocat-
echol sulfate, hippuric acid and a metabolite with matching 
m/z as DOPAC, retained their association after adjustment 
for confounders (Supplementary Table 1). However, when 
focusing on the RC, many of the microbial metabolites could 
not be found in the data, and those that were annotated, e.g., 
indolepropionic acid and hippuric acid, were not associated 
with WG intake (Supplementary Table 5).

Discussion

In this study, we observed associations between WG con-
sumption and the levels of various metabolites in the fasting 
serum of middle-aged and older men from eastern Finland. 
Some metabolites, such as pipecolic acid betaine, tetrade-
canedioic acid, four glucuronidated ARs, and an unknown 
metabolite, retained their associations in both analyzed 
cohorts after adjustment for confounders (age, BMI, physi-
cal activity, smoking, alcohol, and energy intake).

Pipecolic acid betaine and ARs have been previously 
associated with WG intake [5, 6, 10, 12]. Pipecolic acid 
betaine was consistently at the top of the list with a cor-
relation estimate of 0.398 and 0.328 after adjustment in the 
DC and RC, respectively (Table 2). This finding nominates 
pipecolic acid betaine as the serum betaine with the strong-
est association with WG in this study. We also found a con-
sistent association between WG intake and four glucuroni-
dated ARs in this study, with AR C23:1-glucuronide being 
associated only after adjustment for confounders. Similar 
to our findings, glucuronidated ARs have previously been 
reported to associate with WG intake in intervention studies 
[9, 12]. The odd number of carbon atoms in their side chains 
highlights the preference of wheat and rye in the study popu-
lation [8]. However, contrary to previous studies [60–62], 
we did not find free-form ARs or their metabolites, such as 
3-(3,5-dihydroxyphenyl)-propanoic acid and 3,5-dihydroxy-
cinnamic acid [63] in either the DC or the RC, which might 
be due to differences in the analytical methods and sample 
preparation techniques. WG intake was found to be associ-
ated with dihydroxybenzoic acid (Supplementary Table 5), 
but the position of the hydroxy groups needs to be confirmed 
with a reference compound.

Tetradecanedioic acid has previously been extracted from 
brown rice [64]. Because brown rice was not commonly 

consumed in Finland in the 80s, this finding may strengthen 
the previously found association between WG intake and 
dicarboxylic acids [56], though they have not gained much 
attention. Sinapyl alcohol constitutes lignin complex in the 
cereal bran [65] and has been reported to increase after a 
WG intervention [13]. In this study, it was associated with 
WG intake in both cohorts after partial correlation but only 
in adjusted linear models in the RC. This finding may show-
case how applying several statistical approaches may enable 
data exploration from different angles. Consequently, to 
identify the most robust biomarker candidates, we focused 
our attention on the metabolites with observable associations 
in both the RF and the correlation-based approaches.

In the DC, WG intake was associated with some amino 
acids, namely, glutamine, hydroxyisoleucine, tryptophan, 
and gamma-Glu-Leu and gamma-Glu-Val. Glutamine, 
dihydroactiniolide, gamma-glutamylated peptide, and PCs 
lost their association after adjustment for confounders, sug-
gesting that they might not have a direct association with 
WG intake. Tryptophan and hydroxyisoleucine, however, 
retained their association after adjustment. Furthermore, 
microbial derivatives of tryptophan, namely, indolepropionic 
acid, as well as metabolites with matching m/z as indoxyl 
sulfate and indoleacrylic acid, retained their direct associa-
tion after adjustment in the DC. Other microbial metabolites, 
such as dihydroxybenzoic acid, also showed a positive cor-
relation. These associations between WG intake with amino 
acids and microbial metabolites were in accordance with 
previous study reporting increased indoleacetic acid after 
rye consumption [66], which showed how WG consumption 
may influence an array of metabolic pathways, including 
protein and microbial metabolism [67].

In the RC, however, tryptophan did not associate with WG 
and hydroxyisoleucine lost its association after adjustment. 
Other microbial metabolites were correlated with WG after 
adjustment in the DC but could not be identified or lost their 
associations in the RC. This observation could be due to 
differences in the consumption patterns caused by different 
selection criteria between the DC (focus on the healthy Nor-
dic diet [30]) and the RC (focus on egg consumption [31]), 
despite the same dietary assessment instrument. Similarly, 
we had previously shown how hippuric acid was related to 
WG intake in a dietary pattern with fatty fish and berries 
but not when it was enriched with WG alone [9]. Since the 
gut microbiome had a stronger association with dietary pat-
terns than with individual dietary constituents [68], different 
consumption patterns could expectedly be reflected in the 
gut microbiome and, later, in the microbial metabolites. The 
variation in the levels of gut microbial metabolites hence 
might hinder their application as dose-dependent expo-
sure biomarkers [69]. Likewise, the LC–MS instruments 
used to analyze DC and RC samples were different (LC-
Orbitrap-MS vs LC–QTOF–MS, respectively). Therefore, 
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the different analytical capabilities to detect, especially the 
minor compounds, cannot be ruled out. Despite the differ-
ent analytical platforms, the repeated association of specific 
metabolites with WG intake in both the DC and the RC may 
highlight these metabolites as robust potential biomarkers of 
WG intake. Future replication in other populations, e.g., with 
both males and females, or of different age groups, would be 
necessary to further test the robustness of these metabolites. 
If these metabolites are proven to be robust across various 
populations, the next step would be to obtain absolute quan-
tification of these metabolites to understand the kinetics, 
e.g., time- and dose–response, as well as to investigate the 
stability, reliability, analytical performance, and reproduc-
ibility across different laboratories [7] before they can be 
used as robust biomarkers of WG intake.

This study has several strengths. The reporting bias was 
minimized by comprehensive dietary recording accompa-
nied by a picture book, household measurements to estimate 
the portion sizes, and checking by a nutritionist together 
with the participants. The WG consumption included the 
WG cereals in mixed dishes and recipes, which increases the 
accuracy of habitual intake assessment. Another key strength 
was the application of a robust metabolomics workflow with 
stringent quality control and compliance to widely accepted 
reporting guidelines. Replicated metabolite findings in the 
RC after adjustment for potential confounding increased 
the probability that covariates did not primarily drive the 
observed association. Also, the replicated findings based on 
two analytical platforms further underline their robustness. 
These findings may provide a basis for follow-up studies 
to quantify or examine a causal relationship or biological 
mechanisms.

There are also several limitations. First, the baseline sam-
ples in this cohort were collected during the 1980s, which 
require validation for current diets and food products. Altera-
tions in the serum metabolome may occur with such prolonged 
storage even under proper storage conditions. However, this 
would likely affect all groups similarly and contribute to dilut-
ing results rather than systematic bias, which may partially 
explain the lack of associations. The possibility of not finding 
metabolites that have been completely degraded or decom-
position of metabolites to smaller molecules under such a 
long storage also cannot be ruled out. Dietary intakes were 
based on a single 4-day food record, so we could not tell apart 
if the associated metabolites were due to recent or habitual 
exposure. Third, the effect of processing, such as sourdough 
fermentation, could not be distinguished in this study, though 
it may affect the conversion of WG-derived metabolites [50]. 
The study design did not enable investigating the causality 
between WG intake and the metabolic profile. Potential con-
founding from genetic factors was minimized by selecting men 
from eastern Finland with a common genetic ancestry [70]. 
However, it may also restrict the generalizability of results 

to women and other populations, which may nominate other 
metabolites as potential biomarkers of WG intake due to 
variations in the blood metabolome. The contribution of WG 
intake to the blood metabolome could not be separated from 
other favorable lifestyle factors, e.g., consumption of a healthy 
Nordic diet rich in root vegetables and berries, or physical 
activity. Although physical activity has been included as one 
of the confounders, it might have not fully accounted for the 
total contribution of physical activity to metabolic profile and 
its association with WG intake. Similar arguments would be 
valid also for other covariates we adjusted for, such as age, 
BMI, smoking, intake of energy, alcohol, as well as those we 
could not adjusted for, e.g., healthy Nordic diet, either as a 
dietary pattern or as individual components, which potentially 
coexist with WG intake. Hence, follow-up studies in other 
cohorts are required to validate the findings. The application 
of different LC–MS platforms for discovery and replication 
cohorts may raise a possibility of different detection capacity 
between both instruments, which was minimized by focusing 
on only metabolites appeared in both discovery and replica-
tion cohorts. Finally, univariate and multivariate data analysis 
strategies have different strengths and weaknesses, and which 
strategy is best suited for biomarker discovery from nontar-
geted metabolomics data is still yet unclear. Consequently, 
studies are de facto being performed using either or both strate-
gies. We, therefore, chose to use both random forest followed 
by linear models and partial correlation under the rationale 
that both approaches were complementary. Thus, identifying 
metabolites that appeared using both techniques would provide 
a robust selection of biomarker candidates in this exploratory 
study.

Conclusions

We examined the fasting serum profile of middle-aged and 
older men in eastern Finland in relation to WG consump-
tion. High consumption of WG was associated with higher 
levels of previously reported WG phytochemicals, such as 
pipecolic acid betaine and glucuronidated alkylresorcin-
ols, as well as novel metabolites, such as tetradecanedioic 
acid and an unknown metabolite. The retained associa-
tion after adjustment both in the discovery and replication 
cohorts showed the potential of these metabolites to reflect 
WG intake independently of adjusted confounders. These 
metabolites hence showed potential as biomarker candidates 
of WG intake, which, after repeated validation attempts, may 
aid in objective assessment of WG intake in future studies. 
Further investigations are warranted to assess the influence 
of individual factors, such as dietary patterns, lifestyle, and 
gut microbiota, on absorption, digestion, metabolism, and 
excretion of these biomarker candidates and their causal 
links with the potential benefits of WG on metabolic health.
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