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Abstract 

Procrastination and other types of dilatory behaviour are common in online learning, 

especially in higher education. While procrastination is associated with worse performance and 

discomfort, positive forms of delay can be used as a deliberate strategy without any such 

consequences. Although dilatory behaviour has received attention in research, it has to my 

knowledge never been included as an integral part of an adaptive learning system. Differentiating 

between different types of delay within such a system would allow for tailored interventions to be 

provided in the future without alienating students who use delay as a successful strategy. In this 

thesis, I present four studies that provide the basis for such an endeavour. I first discuss the 

results of two studies that focussed on the prediction of the extent of dilatory behaviour in online 

assignments. The results of both studies revealed an advantage of objective predictors based on 

log data over subjective variables based on questionnaires. The predictive performance slightly 

improved when both sets of predictors were combined. In one of these studies, we implemented 

Bayesian multilevel models while the other aimed at comparing various machine learning 

algorithms to determine the best candidates for a future inclusion in real-time predictive models. 

The results reveal that the most suitable algorithm depended on the type of predictor, implying 

that multiple models should be implemented in the field, rather than selecting just one. I then 

present a framework for an adaptive learning system based on the other two studies, where I 

highlight how dilatory behaviour can be incorporated into such a system, in light of the 

previously discussed results. I conclude this thesis by providing an outlook into the necessary 

next steps before an adaptive learning system focussing on delay can be established. 

Keywords: procrastination, strategic delay, adaptive learning, log data, predictions, 

machine learning 



A PREDICTION-BASED FRAMEWORK TO REDUCE PROCRASTINATION IN ADAPTIVE LEARNING SYSTEMS  
5 

Table of Contents 

1 Introduction ............................................................................................................................... 7 

2 Procrastination and other types of dilatory behaviour in online learning ................................. 9 

2.1 Academic procrastination ................................................................................................ 11 

2.2 Reasons for procrastination ............................................................................................. 12 

2.3 Consequences of procrastination ..................................................................................... 13 

2.4 Strategic delay and other positive forms of dilatory behaviour ....................................... 14 

3 Measurement of dilatory behaviour ........................................................................................ 15 

3.1 Prediction of dilatory behaviour ...................................................................................... 17 

3.2 Empirical findings on the prediction of dilatory behaviour............................................. 19 

3.3 Comparison between machine learning models .............................................................. 22 

3.4 Empirical findings on the performance of machine learning models .............................. 23 

4 Adaptive framework to address dilatory behaviour ................................................................ 23 

4.1 Basis of the framework .................................................................................................... 24 

4.2 The framework ................................................................................................................ 26 

4.3 Outlook & potential intervention strategies ..................................................................... 30 

5 Conclusion .............................................................................................................................. 32 

Acknowledgments .......................................................................................................................... 33 

References ...................................................................................................................................... 34 

 



A PREDICTION-BASED FRAMEWORK TO REDUCE PROCRASTINATION IN ADAPTIVE LEARNING SYSTEMS  
6 

                                                                                                                                                     

 Table of Figures 

1 Illustration of the three core components of an adaptive learning system .............................. 26 

2 Illustration of the progess of the adaptive mechanism over the span of a semester ............... 29 

 

  

  

  

  

  

  



A PREDICTION-BASED FRAMEWORK TO REDUCE PROCRASTINATION IN ADAPTIVE LEARNING SYSTEMS  
7 

1 Introduction 

Ever since its inception, the Internet has continued to expand its reach into almost every 

aspect of life, including learning. The ongoing digitalisation has not only given rise to forms of 

learning such as distance learning or technology-based learning but has also delivered the 

necessary tools such as learning management systems to enhance pre-existing approaches 

including adaptive, personalised, self-regulated, and self-directed learning. These approaches can 

now benefit from the collection and subsequent analysis of learner- and context-specific data, 

allowing for learning to be optimised in real-time; a concept better known as learning analytics 

(see Mavroudi, Giannakos, & Krogstie, 2018; Ferguson, 2012). 

Besides these new possibilities, the advent of online learning has brought with it an 

illustrious array of other advantages, including but not limited to: access to higher education for 

groups that previously did not have any due to temporal or spatial constraints (e.g., full-time 

employees, parents, students living in remote locations), efficient and convenient ways to achieve 

learning goals (Chen, Lambert, & Guidry, 2010), and higher levels of student engagement (see 

Dumford & Miller, 2018 for an overview). However, it also casts a shadow and within that 

shadow, something sinister lurks that most of us are already more than familiar with: 

procrastination. Despite not appearing to be threatening at first glance, it is widespread, 

persistent, and associated with various negative consequences, including increased risk of drop-

out and feelings of guilt (see Höcker, Engberding, & Rist, 2022). 

The overall aim of this thesis is to present a framework of how to address procrastination 

and other types of dilatory behaviour within an adaptive learning system, which could provide 

tailored interventions to reduce procrastination while not affecting positive types of dilatory 

behaviour. The goal of the first study, published as a conference paper titled Implementation of 
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an Adaptive Instructional Design for a Physics Module in a Learning Management System 

(Imhof, Bergamin, Moser, & Holthaus, 2018), was to demonstrate how an adaptive instructional 

design, in this case rule-based task recommendations embedded in feedback based on students’ 

prior knowledge and current performance, can be implemented in a learning management system 

(LMS).  This paper then served as the basis for a book chapter called Implementation of Adaptive 

Learning Systems: Current State and Potential (Imhof, Bergamin, & McGarrity, 2020), which 

marks the second entry for this thesis. The chapter details the basic mechanisms of adaptive 

learning, what the current research has revealed about its effectiveness, and where the future 

potential lies. In the third and fourth studies, titled Prediction of Dilatory Behaviour in Online 

Assignments (Imhof, Bergamin, & McGarrity, 2021) and Prediction of Dilatory Behaviour in 

eLearning: A Comparison of Multiple Machine Learning Models (Imhof et al., 2022) 

respectively, me and my co-authors investigated the prediction of dilatory behaviour when 

handing in assignments in an LMS, focussing on a comparison between questionnaire- and log 

data - based predictors. The underlying data was the same for both studies, what differed was the 

prediction approach behind it (Bayesian multilevel models in study 3, expanded by multiple 

Machine Learning algorithms in study 4). For the remainder of the thesis, these four studies will 

be referred to as studies 1, 2, 3, and 4, respectively. 

Within the framework, study 2 provides the theoretical basis for the proposed adaptive 

learning system. Studies 3 and 4 present solutions for how to predict the extent of dilatory 

behaviour, which is crucial since it allows for interventions to be made, be it by lecturers or 

teachers or by an adaptive system. In future, such an adaptive learning system could implement 

machine learning decision-making, providing adaptive instructional feedback akin to study 1, yet 

in a more sophisticated manner and tailored specifically towards maladaptive forms of dilatory 

behaviour based on dilatory profiles. 
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I will first give an overview over the basics of procrastination and other types of dilatory 

behaviour, followed by a discussion about how it can be measured, where the contributions of 

studies 3 and 4 will also be highlighted. In the next chapter, I will then present a framework of 

how the models detailed in studies 3 and 4 could be incorporated in an adaptive learning system 

based on the contributions of all four studies, followed by a discussion about what implications 

for interventions this framework offers, before providing a conclusion. 

2 Procrastination and other types of dilatory behaviour in online learning 

In this chapter, I present an overview over conceptualisations of procrastination in general, 

followed by a definition of academic procrastination, the reasons behind it, the consequences 

thereof, and how it differs from other types of dilatory behaviour. 

Based on its literal meaning, derived from the Latin expression procrastinus, composed of 

the prefix pro, meaning forward, and crastinus, meaning of tomorrow, one could assume that 

procrastination simply refers to moving something from one day to the other, or in other words, 

the act of delaying something. This is exemplified by Alcoholics Anonymous founder Bill 

Wilson, who once wrote that procrastination means “really sloth in five syllables”. However, this 

does not capture the true essence of procrastination. After all, attributing laziness to a student 

cleaning their entire flat top to bottom just to avoid working on their essay seems misguided. 

What is missing from Wilson’s interpretation is highlighted in many definitions found in the 

literature: some focus on the inability to convert an intention into an action (Blunt & Pychyl, 

2005), others stress the delay of specific parts of a task (e.g., the beginning or the end, Lavoie & 

Pychyl, 2001; or the aversive nature of the task, e.g., Alexander & Onwuegbuzie, 2007), or focus 

on the lack of motivation (Senécal, Koestner, & Vallerand, 1995) or self-regulation (Rebetez, 
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Rochat, Barsics, & Van der Linden, 2016; Tuckman & Sexton, 1989). Similarly, Sirois and 

Pychyl (2013) define procrastination as a “self-regulatory failure of not exerting self-control 

necessary for task engagement” (p. 116). Steel (2007) adds another element in his often-cited 

definition, namely the irrational and dysfunctional nature of procrastination. He thus defines it as 

a “voluntary delay of an intended course of action despite expecting to be worse off for the delay 

(p. 66).” 

Importantly, this awareness highlights that procrastination is not caused by intellectual 

differences between procrastinators and non-procrastinators (see Ferrari, 1991), but rather 

differences in the level of self-regulation, volition, and organisational skills (Rabin, Fogel, & 

Nutter-Upham, 2011). Procrastinators have trouble setting goals (Lee, 2005), correctly estimating 

how long it takes to reach, prioritise, and follow through with them, even if they were set (Ferrari, 

2001; Howell & Watson, 2007), which are all time and effort management issues (see Hailikari, 

Katajavuori, & Asikainen, 2021). When viewed from a self-regulation perspective, a lack of 

inhibition capacities may play a large role, since they are necessary for the regulation of thoughts, 

emotions, impulses, and behaviour (Tice, Bratslavsky, & Baumeister, 2001), which could explain 

the low conscientiousness, high impulsivity, thought control issues, and mood regulation deficits 

that are often associated with procrastination (see Dewitte & Schouwenburg, 2002; Gustavson, 

Miyake, Hewitt, & Friedman, 2014; Harriott, Ferrari, & Dovidio, 1996; Rebetez, Rochat, & Van 

der Linden, 2015; Sirois & Pychyl, 2013). Another approach, the Temporal Motivational Theory 

(Steel & König, 2006), conceptualises procrastination as the absence of positive reinforcers (i.e., 

a task lacking personal value), low self-efficacy (i.e., confidence in one’s ability to complete 

tasks), unclear or distant deadlines, and an inability to delay gratification. Links between 

procrastination and various facets of motivation have also been reported (e.g., intrinsic 

motivation, extrinsic motivation, and a lack of motivation, Rakes & Dunn, 2010; Grunschel et al., 



A PREDICTION-BASED FRAMEWORK TO REDUCE PROCRASTINATION IN ADAPTIVE LEARNING SYSTEMS  
11 

2013a; Lee, 2005; Rebetez et al., 2015; Tice & Baumeister, 1997). Other authors conceptualise 

procrastination as a failure-avoidance strategy (e.g., Helmke & Aken, 1995). 

For the purposes of this thesis, I draw from multiple of the definitions above and thus view 

procrastination as an irrational, voluntary delay of important tasks characterised by a lack of self-

regulation and time management skills. 

2.1 Academic procrastination 

While not being exclusive to online learning - after all, procrastination can be encountered 

in basically any given circumstance in life that involve tasks that need to be completed 

eventually, such as housekeeping, making appointments, paying bills, oiling that squeaky door, 

answering that important e-mail at work, or doing taxes - academic procrastination is thought to 

be a particularly prevalent type of procrastination, as the reported numbers suggest. While the 

prevalence rates are around 10-25% in the general population (Ferrari, Díaz-Morales, 

O’Callaghan, Díaz, & Argumedo, 2007; Svartdal, 2017), the self-reported numbers among 

university students are as high as 70% (Rahimi & Hall, 2021; Schouwenburg, Lay, Pychyl, & 

Ferrari, 2004). Students in distance education are particularly susceptible to procrastination, due 

to the higher demands this autonomous learning environment puts on students’ persistence, 

responsibility, attention, self-efficacy, self-regulation, and self-directedness (e.g., Deimann & 

Bastiaens, 2010; You, 2015). In this context, self-regulation refers to efforts to monitor, 

manipulate and improve one’s own learning, e.g., by implementing strategies (Corno & 

Mandinach, 1983). Learning in a self-regulated manner is a demanding task for many students, 

especially since it not only requires knowledge about how to learn, but also actual 

implementation of learning strategies, be they cognitive, metacognitive, motivational, or 

behavioural (see e.g., Zimmerman, 2008). Studies have shown that procrastinating is positively 
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correlated with reduced use of cognitive and metacognitive learning strategies (Howell & 

Watson, 2007; Klingsieck, Fries, Horz, & Hofer, 2012; Wolters, 2003) and that self-regulation 

strategies serve as a mediator of the effects of procrastination on learning behaviours, meaning 

successful implementations of such strategies are able to counter personal tendencies to 

procrastinate (see Pintrich, 2004). 

One self-regulation strategy that is particularly relevant in online learning is effort 

regulation (also known as volition, see Corno, 1993; Pintrich, 2000). It refers to a learner’s ability 

to control their attention and resist distractions, which is a challenge, given the saliency of 

distractors in online learning. While distractions such as daydreaming have been an issue before 

(see Harriott et al., 1996; Pychyl, Lee, Thibodeau, & Blunt, 2000), online learning has pried 

Pandora’s Box of distractions wide open, as every distraction imaginable pines for students’ 

limited attention. Media multitasking has become particularly tempting (Dontre, 2021) and 

students may find it increasingly difficult to stay on task without getting distracted due to a 

growing use of personal digital devices (Gazzaley & Rosen, 2016). All it takes is a simple mouse 

click or touchscreen tap. Checking Facebook (Meier, Reinecke, & Meltzer, 2016), watching cat 

videos (Myrick, 2015), or being on the Internet in general (Thatcher, Wretschko, & Fridjhon, 

2008) have thus become frequent sources of distraction from typical tasks in online learning such 

as studying learning materials, participating in single or group activities, or completing online 

assignments. 

2.2 Reasons for procrastination 

The reasons for procrastination suggested by the literature are linked to its postulated 

nature: approaches that view procrastination as a personality trait focus on its relation to other 

personality traits, with mixed results (e.g., extraversion, conscientiousness, and external locus of 
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control, Senécal, Lavoie, & Koestner, 1997; Steel, Brothen, & Wambach, 2001; the Dark Triad, 

Lyons & Rice, 2014; responsibility, Çelikkaleli & Akbay, 2013; perfectionism, Renn, Allen, 

Fedor, & Davis, 2005), whereas approaches that stress the situational factors underlying 

procrastination note that it is more likely to occur when the task at hand is perceived as aversive 

(Blunt & Pychyl, 2005). This aversiveness can take many forms: a task can be perceived as 

boring, too difficult or challenging, anxiety-inducing (fear of failure, see Renn et al., 2005; Abdi 

Zarrin, Gracia, & Paixão, 2020; Rahimi & Hall, 2021), or not granting the student enough control 

or autonomy, leading to it being avoided (Senécal et al., 1997). This is in line with self-

determination theory, according to which psychological needs have to be fulfilled as a basis for 

autonomous motivation (Deci & Ryan, 2008). Procrastination could also be viewed as a self-

handicapping (or self-defeating) strategy: by waiting until the last possible minute to start with or 

finish a task, a procrastinator could then attribute the poor outcome, should it occur, to their low 

effort, rather than low ability, thus protecting their self-worth (Garcia & Pintrich, 1994). 

Psychological reactance, meaning the protection of freedom of choice by favouring suddenly 

unavailable options over the remaining alternatives, has also been linked to procrastination and 

could serve as an additional reason (Malatincová, 2015). 

2.3 Consequences of procrastination 

Regardless of the underlying reasons, procrastination is traditionally associated with a list 

of negative consequences, which includes unsatisfactory academic performance (Klassen, 

Krawchuk, & Rajani, 2008), higher levels of stress and anxiety, (Ferrari, O’Callaghan, & 

Newbegin, 2005; Sirois, 2004), higher number of task-related errors (Ferrari, 2001), reduced 

mood, and feelings of guilt (Pychyl et al., 2000). As You (2015) notes, this is particularly 

damaging in online learning settings, since procrastination affects drop-out rates (Doherty, 2006), 
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and there is evidence to suggest that its impact on achievement could be more severe compared to 

traditional classroom settings (see Tuckman, 2005). Similarly, Yilmaz (2017) found a stronger 

negative link between procrastination and assignment scores in distance learning compared to 

face-to-face environments. 

2.4 Strategic delay and other positive forms of dilatory behaviour 

Nonetheless, a rather recent strand of research has noted that not all acts of delay are 

necessarily ill-fated and that in fact, a functional counterpart to procrastination may exist. Initially 

coined active procrastination by Chu and Choi (2005) to differentiate the concept from the 

regular, “passive” version, other terms have since been introduced to avoid a linguistic 

conundrum that Pychyl (2008) pointed out. He argued that procrastination is negative and 

maladaptive by definition; and a positive form would thus be an oxymoron. These other terms 

include active delay, purposeful delay (Corkin, Yu, & Lindt, 2011; Grunschel et al., 2013a), and 

strategic delay (Klingsieck, 2013). Despite referring to the term purposeful delay in studies 3 and 

4, I will instead use the term strategic delay during the remainder of this thesis, the reason for 

which will be addressed in chapter 4. 

Klingsieck (2013) identifies four aspects that procrastination and its functional counterpart 

have in common and three in which they differ, based on constituent parts of their definitions 

found throughout the literature. The shared aspects are the involvement of an act of delay, an 

intention to start or to complete a task, the necessity or personal importance of the task, and the 

voluntary nature of the delay. Voluntary in this sense means it is not imposed on the individual 

purely by external factors, e.g., a student missing a train, preventing them from handing in an 

assignment on time. The three aspects that are unique to procrastination are the irrationality of the 

delay, delaying a task despite being aware of the potential consequences, and the subjective 



A PREDICTION-BASED FRAMEWORK TO REDUCE PROCRASTINATION IN ADAPTIVE LEARNING SYSTEMS  
15 

discomfort (or other negative consequences) it entails. Aspects that are unique to strategic delay 

include a preference to work under pressure to be properly motivated and the ability to meet 

deadlines, which along with a higher level of satisfaction and the intentionality of the decision 

mark the four dimensions of a strategic delay - specific questionnaire by Choi and Moran (2009) 

(even though it uses the original term active procrastination). Another key difference between 

procrastination and strategic delay is the aforementioned level of self-efficacy. Self-efficacy, 

particularly in the context of self-regulated learning, is thought to be crucial since the confidence 

in using appropriate strategies is a key factor when beginning and completing tasks (Klassen et 

al., 2008). Wäschle, Allgaier, Lachner, Fink, and Nückles (2014) for example found that self-

efficacy is at the centre of both a vicious and a virtuous circle. Students that experience low self-

efficacy and/or perceive tasks as aversive are less likely to engage with them, tend to then delay 

their completion and thus probably fail to achieve their goals, which might cause feelings of 

disappointment and an increased likelihood of avoiding similar tasks in future. This vicious circle 

could be counteracted by higher self-efficacy: perceptions of high self-efficacy positively affect 

the motivation to engage with a task, which increases the likelihood of implementing learning 

strategies, resulting in higher chances of success and the achievement of goals, in turn increasing 

self-efficacy for the next task. 

3 Measurement of dilatory behaviour 

As many authors note (e.g., Wäschle et al., 2014; Malatincová, 2015; Stainton, Lay, & 

Flett, 2000), a distinction should be made between trait and state procrastination since actual 

dilatory actions are influenced by personal tendencies (i.e., personality traits), situational factors, 

and self-regulation strategies (see Steel, 2007; Pintrich, 2004). This is evidenced by a medium to 

high correlation between trait and state of .51 (Stainton et al., 2000), implying that state and trait 
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are related, but not identical. In general, there is little consensus whether procrastination is 

primarily a personality trait or the result of situational factors (see Thatcher et al., 2008). Despite 

a meta-analysis by Steel (2007) showing that procrastination is stable across time and across 

different situations, favouring a trait perspective, there is also empirical evidence to highlight the 

role of contextual factors, e.g., task characteristics (Blunt & Pychyl, 2005). Another reason not to 

conflate trait and state procrastination is provided by Malatincová (2015), who proposes that 

procrastination may actually be a multi-dimensional construct or even a set of constructs. 

Subjective experience and actual delay should thus clearly be distinguished from one another, 

since they might relate to different underlying, potentially opposed psychological variables. 

Anxiety for instance may increase self-reported questionnaire scores while reducing actual delay 

at the same time. Conflating questionnaire scores and temporal indicators of delay would thus be 

misleading.  

Defining procrastination is not the only point of contention in the research on the topic, 

how to measure it has also been subject to debate (Svartdal et al., 2016). By far the most common 

approach for measuring trait procrastination has been the implementation of questionnaires, 

usually self-report instruments with varied theoretical underpinnings (see Steel, 2010 or Rozental 

et al., 2014, for an overview). In contrast, dilatory behaviour  in online learning scenarios is 

commonly assessed with log data collected from LMS, e.g., Levy and Ramim (2012), who 

measured the difference between the due times and submission times of tasks, del Puerto Paule-

Ruiz, Riestra-González, Sánchez-Santillán, and Pérez-Pérez (2015) and Cerezo, Esteban, 

Sánchez-Santillán, and Núñez (2017), who both used a variety of log data variables to form 

association rules, Akram et al. (2019), Yang et al. (2020b), and Yang et al. (2020a), who all used 

homework submission data to classify students as procrastinators or non-procrastinators, or Abdi 
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Zarrin et al. (2020), Cao (2012a; 2012b), and Motie, Heidari, and Sadeghi (2012), who all used 

trait procrastination as the outcome variable. 

3.1 Prediction of dilatory behaviour 

Dilatory behaviour has thus served as a predictor in multiple studies, yet it has rarely been 

the outcome variable itself. While the effect that dilatory behaviour exerts on achievement or 

subjective well-being is important, predicting whether a student is going to delay a task in the 

first place - and by how much - is also valuable information. It allows lecturers or teachers to 

intervene in time or gives an adaptive system the information it needs to provide instructional 

guidance. These potential benefits make the lack of research in this area all the more surprising. 

A notable exception is a study by Hlosta, Zdrahal, and Zendulka (2018), where a predictive 

approach that did not rely on data from previous courses (“Self-Learning”) was implemented to 

predict whether students were going to meet the first submission deadline. However, the focus of 

the study lied on dealing with the underlying issue of unbalanced data, meaning an uneven 

distribution of observations between levels of a class (in this case delayed and punctually-

submitted tasks). Moreover, no theoretical links between the predictors and the outcome were 

established. Another exception is a study by Zuber et al. (2020), who successfully predicted 

dilatory behaviour with the Pure Procrastination Scale (PPS) and its subdimensions but included 

no other predictors in their regression models. 

The goal of study 3 (Imhof et al., 2021) was thus to address this research gap by 

calculating models to determine the best predictors of delay and to compare objective and 

subjective predictors. We differentiated between trait and state delay by measuring dilatory 

behaviour - the outcome variable - based on log data and trait procrastination as well as trait 

strategic delay - both serving as predictors - with one questionnaire each. In total, we used seven 
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predictors, four subjective ones based on questionnaire scores and three objective indicators 

derived from log data from our LMS (i.e., Moodle) and other internal systems. 

The first objective predictor was a temporal variable, namely the interval between the start 

of a block (i.e. learning unit) and the first click on an assignment, indicating how long it takes 

until a student first reads the task description. Our courses are structured in consecutive thematic 

blocks, which is why the official start of the block the assignments were located in was used as 

the starting point for this calculation. The other two objective predictors were click-based activity 

indicators, similar to the variable used in study 1. The sum of clicks on what we deemed learning-

relevant course activities (forums, learning videos, Moodle books, wikis, glossaries etc.) 

indicated engagement with learning materials across the course. The other click-based measure, 

the sum of all clicks on the assignment itself, indicated how often students re-read the 

instructions.  

The subjective predictors were derived from the literature outlined in chapter 2. Trait 

procrastination and trait strategic delay were selected due to the expected links between them and 

dilatory behaviour, based on the reported correlation between trait and state (Stainton et al., 

2000). We chose a self-efficacy score as the third indicator due to the role self-efficacy plays in 

dilatory behaviour, having strong ties to motivation in general, self-regulation, self-directedness, 

appropriate goal-setting, and the successful implementation of effective learning strategies (see 

e.g., Wäschle et al., 2014; Klassen et al., 2008). Moreover, it is a relevant factor in multiple types 

of delay and may help differentiate between them. The fourth and final questionnaire-based 

indicator was a self-directed learning score. As highlighted in chapter 2, self-regulation is a key 

concept in procrastination, even being at the core of some of the conceptualisations (e.g., the one 

by Sirois & Pychyl, 2013 who view procrastination as a self-regulation failure), which is why a 
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related measure is crucial to include. Our choice was between a measure of self-directed learning 

(SDL) or a scale assessing of self-regulated learning (SRL), which are similar concepts that often 

get used interchangeably. While there are differences between these two concepts (see Saks & 

Leijen, 2014; Linkous, 2021), they are both strongly linked to self-efficacy, procrastination, and 

strategic delay (see Sundaramoorthy, 2018; Corkin et al., 2011; Grunschel, Patrzek, Klingsieck, 

& Fries, 2018; Onji & Kikuchi, 2011; Saeid & Eslaminejad, 2017; Schommer-Aikins & Easter, 

2018; Wolters, 2003). Since we collaborated with the Research Unit Self-Directed Learning at 

the North-West University in South Africa for a follow-up project, we settled for an instrument 

assessing SDL, which was also advantageous due to its brevity (10 items). 

In general, we decided to implement short questionnaires whenever possible in order not 

to alienate the participants, who were busy students in higher education, and usually fully-

employed as well. We then calculated multiple Bayesian multilevel models to determine which 

individual predictors worked best, which category of predictors would perform better, and 

whether a combination of the two categories would yield more favourable results. 

3.2 Empirical findings on the prediction of dilatory behaviour 

Our results in study 3 demonstrate on the one hand that dilatory behaviour can indeed be 

predicted, and on the other hand, that objective factors (log data) are far more successful in doing 

so than subjective predictors (questionnaire scores). Despite the close links between self-efficacy, 

self-directed learning, trait procrastination and trait strategic delay in the literature, the respective 

questionnaire scores were mostly negligible as predictors. The missing effect of self-efficacy 

lines up with Cao (2012a) and a recent study by Hailikari et al. (2021), who also did not find the 

expected link between self-efficacy and delay. The weak relation between trait procrastination 

and dilatory behaviour was also confirmed in a recent study by Wieland, Ebner-Priemer, 
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Limberger, and Nett (2021) that was published shortly after study 3. By using an event-based 

experience sampling method involving appraisals, the authors found that general procrastination 

tendencies did not predict task-specific delays. This contrasts with a study by Zuber et al. (2020), 

who found that trait procrastination did predict actual behaviour in a behavioural task (sending in 

a signed attendance sheet before a deadline). However, none of these studies (including study 3) 

implemented the same scales to assess trait procrastination, which could partially explain the 

contrasting results, as can the nature of the tasks. While we investigated mandatory assignments, 

the tasks in Wieland et al. (2021) were selected by the students themselves and the task in Zuber 

et al. (2020) was, while mandatory, purely administrative. 

Among the log data predictors, the interval between the start of a block and the first click 

turned out to be the most successful, aligning with the findings of del Puerto Paule-Ruiz et al. 

(2015) and Cerezo et al. (2017). Surprisingly, the purely click-based log data variables produced 

non-intuitive effects, e.g., clicks on relevant activities being a positive predictor, which could be 

explained by students using other learning content as way to delay working on the actual 

assignment. The click-based variable in study 1 however worked as intended and had the 

expected effect on learning progress. The major difference was the granularity of the measure: in 

study 1, it served as a general measure of online activity (i.e., a sum across a longer period of 

time) whereas in study 3, the measures were more specific (on the course level for the clicks on 

course activities and on the more fine-grained assignment level for the assignment-related clicks). 

Performance-wise, there was little worth in combining both subjective (trait) and objective 

(state) measures in study 3 as the objective models barely improved when the subjective 

predictors were added. On the one hand, this is hardly surprising since at least some overlap can 

be expected due to the moderate correlation reported in the literature, yet on the other hand, they 
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are not supposed to measure the exact same construct as pointed out by Malatincová (2015) and 

can thus not serve as replacements or proxies for one another, implying a potential for additional 

variance to be explained. Importantly, our results do not imply that subjective variables should be 

discarded, as they can serve as predictors in the absence of objective variables. Besides not 

measuring the same construct, subjective and objective variables are not interchangeable for a 

practical reason: They are not equally intrusive. While log data can be extracted without the 

student ever noticing (giving consent at some point notwithstanding), questionnaires need to be 

strategically selected and distributed, as students tend to find them tedious and disruptive, if they 

outstay their welcome. 

Our results have wider implications for measurement of delay: First of all, we discovered 

an effect of the type of deadline, meaning that clear deadlines were associated with less delay. 

Unclear deadlines are a potential issue since they may appear more distant than they are, thus 

reducing the sense of urgency and increasing the likelihood of dilatory behaviour (see Huang, 

Zhang, Burtch, Li, & Chen, 2021). There is also a limitation in that the calculation of delay 

requires a deadline, which is not always appropriate, either because they are not available on a 

technical level (meaning it cannot simply be extracted from an LMS alongside the other data), the 

task does not have any, or because the deadline does not exist outside of the students’ mind. Self-

imposed deadlines are important, yet inaccessible unless specifically asked for. Another 

implication is the point in time our indicators allow a prediction to be made. The issue with our 

log data variables is that they require a minimum of clicks in order to actually be able to make a 

prediction about potential delay. For instance, if the student has not clicked on an assignment yet, 

the interval variable cannot be calculated.  This was not of much relevancy in study 3 itself since 

all data was extracted after the fact and our predictions were actually post-dictions. However, this 

would be an issue for interventions based on these variables, which cannot be provided if key 
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variables are missing. After all, the long-term goal of this line of research is to implement 

prediction models into an LMS, allowing lecturers and/or systems to intervene once potential 

maladaptive dilatory behaviour is detected. This process will be detailed in chapter 4. 

3.3 Comparison between machine learning models 

Before this kind of prediction model may be implemented in a live LMS, appropriate 

machine learning (ML) algorithms need to be identified. The purpose of study 4 (Imhof et al., 

submitted) was thus to determine potential candidates by comparing the predictive performance 

of multiple ML algorithms, trained and tested on the data set obtained in study 3. 

In study 4, we chose the Bayesian multilevel models from study 3 as our baseline and 

compared the predictive performance of the following ML algorithms: Naive Bayes (NB), K-

Nearest neighbours (KNN), Radial Basis Function Networks (RBFN), Feed-Forward Neural 

Networks (FFNN), Regression Trees (RT), Gradient Boosting Machines (GBM), Random Forests 

(RF), and several types of Support Vector Regression (SVR). The goal was to determine the 

algorithms that minimised the error between the predicted and actual delay values and obtained 

the best classification performance of two classes (delayed and timely submission, i.e., 

dichotomised delay values) for each of the three types of predictors (subjective, objective, and 

combined). Since our data was unbalanced (66% of assignments having been submitted in time), 

common performance indicators such as accuracy or the Matthews Correlation Coefficient 

(MCC) were not easily interpretable (see Hlosta et al., 2018). For this reason, we opted to 

calculate a score that balances the measures for both classes in complex ML modelling, the novel 

G-score. The 𝐺-score takes the trade-off between the performance of predicting delay, the 

performance of predicting timely submission, and the error between the predicted and ground 
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truth value into account. The objective of each ML algorithm was then to maximise the 𝐺-score 

when training and validating the solutions. 

3.4 Empirical findings on the performance of machine learning models 

The results show that the algorithms with the best 𝐺-scores were not always the same 

depending on the type of predictor selected: GBM was the best approach for subjective 

predictors, the Bayesian multilevel models with random slopes from study 3 for the objective 

predictors, and RF when all predictors were combined in a single model.  This implies that 

choosing one single particular ML algorithm may not be the best solution when applying these 

models for real-time predictions. 

The results also allow us to draw more conclusions about the predictor types, since the 

advantage of the objective predictors over the subjective variables was consistent across the 

various ML algorithms, thus supporting the findings from study 3. In contrast to that study 

however, the superiority of the combined predictors was slightly more pronounced. While the 

ranking was unclear before, the ML models revealed an advantage of combining all seven of the 

predictors in terms of predictive performance, further underlining the role that subjective 

predictors play despite their lower predictive performance. 

4 Adaptive framework to address dilatory behaviour 

Now that suitable predictor variables and appropriate models have been determined, the 

next step is to actually implement these models into an LMS to allow for interventions aiming at 

the reduction of procrastination. Adaptive learning systems provide the necessary conditions for 

such an endeavour, as they are able to deliver instructional countermeasures (e.g., automated 

feedback, warnings, or task variations) specifically tailored towards certain learner 
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characteristics, for example the type of delayer. In the following, I will first discuss the 

implications of study 1, before presenting a framework of how an adaptive learning system may 

address dilatory behaviour based on the models we calculated in studies 3 and 4, combined with 

conclusions drawn from studies 1 and 2. 

4.1 Basis of the framework 

Study 1 did not address dilatory behaviour directly, but rather aimed at demonstrating how 

a simple rule-based adaptive learning system may be implemented by analysing the effects of 

detailed and non-detailed tasks, which were recommended based on the learners’ level of 

knowledge. Nonetheless, the study has two important implications for the proposed framework: 

First off, it further highlights that log data can successfully be used to indicate activity (or lack 

thereof), even just in the form of simple click sums. Secondly, we encountered an effect that at 

least superficially resembled the Expertise Reversal Effect (Kalyuga, Ayres, Chandler, & 

Sweller, 2003). This effect means that interventions may actually be weaker for experts or even 

detrimental to their performance in comparison to novices, since the additional information may 

interfere with prior knowledge, increasing their cognitive load. This is relevant in the context of 

the thesis in two ways: On the one hand, as previous studies (e.g., Ferrari, 2001) have shown, 

procrastinators perform worse under conditions that require high levels of self-regulation, which 

is the case when cognitive load is increased. Not accounting for dilatory behaviour could thus be 

considered a shortcoming of study 1 that was not addressed in the paper itself. On the other hand, 

interventions aimed at reducing procrastination could have a detrimental impact in the same vein 

as the Expertise Reversal Effect, which is why the learner characteristics that instructions and/or 

content are adapted to need to be assessed carefully and as accurately as possible. In that sense, 

providing non-procrastinators or students that delay tasks in a strategic manner with unneeded 
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interventions may have adverse effects, such as distracting them or increasing their cognitive load 

with information they may not need. 

As highlighted in studies 3 and 4, this requires a differentiation between strategic delay 

and procrastination as state variables, meaning the behaviour must be categorised to allow for 

accurate predictions to be made, which then enable adaptive interventions. Not intervening is also 

an option in case students do not delay their tasks in the first place, or do so as part of a deliberate 

strategy. In both studies, the outcome was dilatory behaviour in general, without the possibility to 

determine its type. Ways to differentiate between different types without relying on 

questionnaires include gaining contextual data or analysing click-based and/or temporal log 

patterns. Lindblom-Ylänne, Saariaho, Inkinen, Haarala-Muhonen, and Hailikari (2015) 

investigated the former by conducting interviews. Based on the seven core aspects of 

procrastination and purposeful delay as identified by Klingsieck (2013), they distinguished 

between five dilatory profiles. Each of their participants was then assigned to one of the five 

categories: students that showed no delay, strategic delayers, unnecessary delayers, 

procrastinators without discomfort, and procrastinators with discomfort. This distinction is 

crucial, since interventions may not always be welcome. They may even be counterproductive, as 

discussed above. Whether help is appreciated depends on multiple factors, e.g., self-efficacy, 

self-regulation, motivation, whether fear of failure is involved, or if the delay is motivated by 

self-handicapping. While they cannot account for all the intricacies of dilatory behaviour and the 

multitude of reasons behind it, these profiles could provide the means to deliver more specific 

interventions compared to a one-size-fits-all approach. Moreover, they capture subjective 

components of dilatory behaviour (Malatincová, 2015) on top of the actual delay. 
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4.2 The framework 

I thus present a framework under the umbrella of design-based research that demonstrates 

how procrastination and other types of delay may be addressed within an adaptive learning 

system. Since this framework involves adaptive learning, I first briefly address the basics of 

adaptive learning systems, which are explained in more detail in study 2. In our view, adaptive 

learning refers to technologies that adapt the teaching process to the behaviours and needs of 

individual learners and monitor their learning process (Imhof et al., 2020, see Adams Becker et 

al., 2018). Adaptive learning systems commonly involve three core components, the domain 

model, the learner model, and the adaptive model (Vagale & Niedrite, 2012). 

 

Figure 1.   Illustration of the three core components of an adaptive learning system 

Figure 1 shows a graphic representation of what elements these models comprise and how 

they interact. The basis of adaptation is provided by the learner model, which is a representation 

of the learner via specific learner characteristics that are detected by sensors and further 

processed by the learner modeller (e.g., abilities, knowledge, personality traits, and preferences). 
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This information is then passed to the adaptive model, which adapts the objects of adaptation 

(content, instructions, mode of presentation, learning paths) via the presenter by checking if 

certain conditions are met via the controller, e.g., if a students’ prior knowledge is low enough to 

justify an intervention by providing more guidance. This decision is also influenced by the 

domain model, which provides the context of adaptation and involves the topic to be taught 

(more specifically its contents and structure) as well as the intended learning outcome. It also 

consists of multiple loops that define the granularity of the adaptive mechanism (step loop, task 

loop, curriculum loop). The impact of the adapted content (instructions, feedback, intervention) 

on the student’s performance can then be assessed with learning analytics, i.e., analysing 

collected learner-specific data. These then inform the sensor, thus updating the learner model and 

restarting the process. Of particular relevance to the framework are the learner and adaptive 

models. 

So far, to my knowledge, no adaptive learning system has focussed directly on 

procrastination as part of its learner or adaptive models. Even related concepts such as self-

regulated learning (Harati, Sujo-montes, Tu, Armfield, & Yen, 2021), motivation, and general 

meta-cognitive abilities have rarely been used to inform learner models (see Nakić, Granić, & 

Glavinić, 2015 for an overview over commonly used learner characteristics). Moreover, the 

assessment of relevant learner characteristics is still mostly rooted in rule-based approaches, 

rarely employing ML (see Afini Normadhi et al., 2019 for an overview). This highlights the two 

most crucial novelties of the framework: providing adaptive interventions based on dilatory 

profiles and doing so with an ML approach, allowing for flexible real-time predictions and 

interventions. 
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The goal of this framework is thus to implement the models created in studies 3 and 4 into 

an LMS to provide real-time predictions of delay, which then serve as the basis for adaptive 

interventions to reduce or prevent procrastination. However, the predictions will be expanded: 

instead of solely predicting delay, the models will also predict which dilatory profiles students 

belong to, inspired by the profiles presented in Lindblom-Ylänne et al. (2015). These profiles will 

serve as a means to differentiate between different types of delayers in order to provide 

appropriate automated interventions, as discussed above. This is also the reason why I favour the 

term strategic delay in the context of this thesis over purposeful delay, as used in studies 3 and 4. 

Since the subject trait variables can be assessed at any time during a semester, they can 

serve as early predictors to inform the learner model, thus providing the means to overcome the 

cold-start problem. While their predictive performance is not fully satisfactory as study 4 

particularly highlights, they can still serve as initial informants of the learner model before the 

objective, log data - based predictors become active (e.g., by students first clicking on an 

assignment). Naturally, this raises a concern since it appears to counteract the usual fading 

process, where support and guidance decrease over time rather than increasing, as is the case 

here. The solution I provide in this framework is to split the process into two phases: in phase 1, 

no historical data (i.e., student data from previous semesters) is available, meaning there is no 

fading and the amount of data entering the learner model increases over time. In the second 

phase, historical data can be used to assign students to the dilatory profiles, which can then be 

updated over time as new information enters the learner model. This process works in the form of 

a loop. 
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Figure 2.   Illustration of the progress of the adaptive mechanism over the span of a semester 

Figure 2 shows how phase one of the process is supposed to work under the framework: 

The learner model is first created based on trait variables, resulting in a dilatory profile which 

then informs the adaptive model. A student could thus be categorised as a potential procrastinator 

early in the semester, even though no intervention is necessary yet. As the semester progresses, 

more and more bits of information enter the learner model via learning analytics (e.g., log data 

patterns), updating and refining the profile, perhaps changing the initial categorisation. This is a 

crucial step since early-assessed profiles could introduce biases that get perpetuated in later 

predictions and ultimately lead to unsuitable interventions. Once enough data is collected, the 

adaptive model can then provide an intervention, e.g., through a cue, a recommendation, or 

psychoeducational measures to increase self-efficacy and reduce anxiety. Importantly, the point 

in time an intervention is made does not have to be fixed and can instead be adapted as well, and 

so can the deployed algorithm. After all, as study 4 reveals, there is no clear preferable algorithm 

that works equally well for all types of predictors, so this choice should also be incorporated into 

the adaptive loop, based on the data available at any given time. After the semester has ended, the 
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final profile can be kept as historical data (with students’ consent, of course) and serve as the 

basis for predictions in the following semester, i.e., phase two. However, this does not necessarily 

preclude a reassessment of the subject variables, which should be updated from time to time 

despite their trait-like nature, as discussed in study 4. 

4.3 Outlook & potential intervention strategies 

However, before the framework can actually be incorporated into an LMS, more research 

is required. In the next steps, more indicators should be involved in order to increase the 

predictive performance, which is not as high as it could be (see study 4). While self-efficacy is 

important and strongly linked to motivation, other motivational factors should also be considered. 

Fine-grained, task-specific measures to discover task aversiveness to name an example (see 

Wieland et al., 2021), environmental factors such as institutional conditions (Nordby, Klingsieck, 

& Svartdal, 2017), and the reasons behind dilatory behaviour (Grunschel et al., 2013b) also need 

to be involved in upcoming studies to gain a more differentiated, comprehensive picture. Another 

avenue is to further analyse clickstream patterns, which can serve as an indicator of time 

management skills (Park et al., 2018) or self-regulation (Li, Baker, & Warschauer, 2020). 

Increasing the data set used for training the ML models is another suitable way to make sure 

predictions are performing better once they are part of an LMS. Another concern that still needs 

to be addressed is the accuracy of the dilatory profiles, which requires its own separate study. 

After all, we do not know yet how well our models are suited to predict the affiliation with 

dilatory profiles as opposed to predicting delay values. Sensitivity and the positive predictive 

value are also of importance in this context: should false positives or false negatives be 

prioritised, i.e., is it preferable to potentially alienate strategic delayers or to miss actual 

procrastinators? 
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Careful consideration also needs to be given to the interventions themselves, which were 

not part of any of the four studies presented in this thesis. A vital component to any 

procrastination-related intervention strategy are time management skills, as the literature suggests 

(see e.g., Wolters & Brady, 2020), along with effort management and psychological flexibility 

(see Hailikari et al., 2021). The importance of time management was also evident in study 3 in 

regard to the effect of the deadline type we discovered, as previously discussed. Potential 

interventions could thus include reminder systems similar to the ones implemented by Onji and 

Kikuchi (2011) or Antunes et al. (2016). 

Nonetheless, improving time management skills should not be the sole strategy, as it fails 

to directly address emotional issues (Eerde & Klingsieck, 2018). Fear of failure for instance is an 

important driving factor of procrastination, especially for students (whether they are 

undergraduates or and graduates, see Rahimi & Hall, 2021). Another emotional key factor is task 

aversiveness (Afzal & Jami, 2018). As a meta-analysis by Eerde and Klingsieck (2018) reveals, 

the most effective intervention strategies are based on cognitive behavioural therapy (CBT), 

which reduced procrastination to a larger degree than the other investigated types of interventions 

(self-regulation, therapeutic interventions outside of CBT, and interventions focussing on 

resources and strengths). However, as the authors note, most interventions lack a coherent 

theoretical basis. They thus suggest future studies should have theoretical underpinnings rooted in 

goal-setting or self-regulation principles, be they cognitive-motivational or emotional. Moreover, 

the authors stress that the studies that were part of this meta-analysis did not account for self-

determination theory. An intervention study specifically based on that theory was conducted 

recently by Oram (2021). 
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In their review, focussing on academic interventions, Zacks and Hen (2018) concluded 

that self-regulation skills and study habits should be addressed and that instructors ought to 

discuss career goals, anxieties, and learning experiences in a supportive manner with their 

students to reduce the risk of procrastination. How these principles can successfully be translated 

into automated interventions from the perspective of instructional design remains to be seen in 

follow-up studies. 

5 Conclusion 

In conclusion, the four studies that form the bulk of this thesis highlight the value of log 

data - based approaches in the context of student online activity and dilatory behaviour and 

provide a viable basis for an adaptive framework allowing maladaptive forms of delay such as 

procrastination to be reduced or prevented in learning management systems. While subjective 

variables did not fare as well as the objective predictors in terms of predictive performance in any 

of our delay models, they should not be dismissed out of hand as they may serve an important 

role as early predictors in real-time adaptive scenarios. As our results imply, the choice of model 

should not be rigid and may involve multiple different algorithms, depending on the data 

available. 

The proposed framework, which aims to reduce procrastination via adaptive interventions 

based on dilatory profiles informed by a combination of log data - based and questionnaire - 

based variables, needs to be evaluated in future studies before it can be implemented in the field. 

The next steps will include an expansion of the models to allow for affiliation to the profiles to be 

predicted, the addition of new fine-grained and context-specific predictors to refine the models 
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and increase their predictive performance, as well as determining which interventions are the 

most suitable in an online learning context.   
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ABSTRACT 

This article demonstrates how an adaptive instructional design for a physics module can be realized in a standard learning 
management system. We implemented a didactic design with physics-specific online exercises that were accompanied by 
either detailed or non-detailed instructions, depending on the results of the previous task (or a prior knowledge test for the 
very first exercise). This was realized by use of simple technological tools within the framework of a straightforward 
recommender system with four components. Consequently, students with less prior knowledge and/or lower learning 
achievements received more and different teaching assistance than those with high levels of prior knowledge or 

performance. This was done in the form of recommendations embedded within task feedback, suggesting which task to 
tackle next. We present first results which show that prior knowledge and online activity contribute to the learning 
progress in different ways depending on the type of task that was chosen. The detailed versions of the tasks were 
beneficial only to the students with lower or medium prior knowledge test scores while the students with higher levels of 
prior knowledge had less learning progress. In the future, our simple recommender system may serve as the basis for a 
more complex adaptive system, further closing the gap between research and practice in the field of technology-based 
adaptive learning. 

KEYWORDS 

Technology-based Learning, Adaptive Learning, Cognitive Load, Expertise Reversal Effect, Learning Management 
System, Log Files 

1. INTRODUCTION 

As countless aspects of our lives have become more and more digitalized in the past few decades, so has 

learning. Accordingly, new forms of learning such as distance learning or technology-based learning have 

emerged and have been gaining in importance ever since (Bergamin et al. 2012). Due to their flexible nature, 

these new forms of learning allow learners independence and autonomy, offer freedom of choice and break 

space-time barriers, thus granting many people the opportunity to pursue academic studies in circumstances 

that do not commonly allow for that to occur (e.g. full-/part-time employment or parenthood). In addition, 

such flexibility allows for individual requirements and contexts to be taken into account, which can vary 
substantially between learners and which can then determine the appropriate instructional design. In 

university education, learners are usually expected to develop the same competences over the course of their 

studies despite differing in key characteristics such as different prior knowledge or experience in relation to 

certain topics or learning skills. One way to achieve the goal of comparable learning success despite 

heterogeneous preconditions is through adaptation of the learning process, replacing the classic  

“one-size-fits-all” approach.  

The importance of adapting the learning process to the needs of the learner can be demonstrated by the 

finding that instructional techniques (e.g. guidance by a tutor or detailed instructions) that prove beneficial 

for novices in a given field can lose their effectiveness or even be counterproductive when applied to experts; 

a phenomenon known as the Expertise Reversal Effect (Kalyuga et al. 2003). On a technical level, adaptive 

learning environments may be provided through Learning Management Systems (LMS), which are 
increasingly accessible due to the raise of technology-based learning.  
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Despite the popularity of studies on adaptive educational hypermedia, actual practical implementations of 

adaptive technology-based learning are still scarce (Somyürek 2015). Scanlon et al. (2013) found “a 

surprising failure” (p. 4) to translate research results in the field of technology-based learning  

(e.g. prototypes) into commercial applications, due to the so-called “valley of death” (i.e. failure due to lack 
of funding amongst other factors). According to Price et al. (2017), this gap between research and practice in 

technology-based learning appears to be systemic in nature, requiring change on multiple levels, including 

institutional change. Murray and Pérez (2015) claim that intelligent technology-based learning environments 

are still “years away”, in spite of the advances that have been made, and appeal for pedagogy rather than 

technology to “drive the evolution of advanced learning systems” (p. 124). Oxman and Wong (2014) also 

identify the challenges of (further) implementation of technology-based learning systems as structural  

(e.g. term length) and operational rather than technological. Therefore, bridging the gap between research and 

practice requires an interdisciplinary approach that involves large-scale field studies in appropriate contexts 

as well as well-founded instructional designs (cf. Scanlon et al. 2015). This study seeks to narrow the gap 

between experimental research and its practical application by addressing the question whether an adaptive 

learning system can be implemented in a traditional learning environment without the use of high-end 
technology (such as deep neural networks). In this paper, we demonstrate how adaptive learning can be 

implemented in practice on a university level by applying it to a physics module within the learning 

management system “Moodle”. Our approach utilises a fairly simple rule-based instructional design. We 

further explore to what extent adaptive instruction design, online activity and prior knowledge are related and 

how much they contribute to the learning progress. Finally, we discuss the potential and limitations of  

rule-based adaptive learning systems within the boundaries of a standard LMS. 

2. THEORETICAL BACKGROUND 

As explained above, the Expertise Reversal Effect – the phenomenon that teaching support which is 

beneficial for novices can turn out to be superfluous or even detrimental to experts and vice versa – may 

obstruct learning success in many learning scenarios, especially in classic settings where all learners receive 

the same instructions or guidance (Kalyuga 2007b). “Reversal” refers to the circumstance that the 

effectiveness of didactical aspects may be reversed for different levels of learners’ expertise (Lee & Kalyuga 

2014). The most common explanation for this effect is the Cognitive Load Theory (Sweller 1988), which 

focusses on the interactions between long-term and working memory. According to this theory, the former is 

used to store knowledge and has an unlimited storing capacity while the latter is involved in consciously 

processing novel information, but is limited in its capacity of storing it, both in terms of amount and duration 
(van Merriënboer & Sweller 2005). Recent accounts of the theory differentiate between (at least) two kinds 

of cognitive load, the intrinsic load and the extraneous load. Intrinsic load concerns cognitive processes that 

are required for processing learning materials and may be affected by the (perceived) complexity or difficulty 

of the material. In contrast, extraneous load refers to cognitive processes caused by factors that are not 

directly related to the learning task but are nevertheless crucial for the learning process, for instance 

convoluted instructional design or unfavourable presentation of the learning material (Kalyuga 2009a). 

The basis of the Cognitive Load Theory is the notion that the intrinsic and extraneous loads combined 

cannot exceed the limitations of the working memory (Paas et al. 2003). If high extrinsic load results from an 

unnecessary processing of design or presentation aspects, less capacity can be made available for the 

processing of the actual learning tasks (i.e. intrinsic load). Consequently, learning is impaired if the learning 

activities require too much cognitive capacity, resulting in overload.  
Importantly, the current cognitive load of a learner is not only determined by objective factors (such as 

difficulty of the learning content and instructional design), but also by characteristics of the learner. In parts, 

human expertise results from cognitive schemata with varying degrees of complexity and automation housed 

by the long-term memory (van Merriënboer & Sweller 2005). Knowledge is stored in and organized by these 

schemata, which may become automated through training, thus freeing space in the working memory, 

thereby reducing the intrinsic load and leaving more cognitive capacity for the processing of new content 

(Kalyuga 2009a). Put differently, the level of available knowledge exerts considerable influence on the 

cognitive load (Kalyuga 2007b). This implies that optimal teaching of complex learning content needs to take 

learners’ cognitive load into account and actively manage it though instructional interventions (Somyürek, 
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2015; Rey & Buchwald, 2011). In the case of the Expertise Reversal Effect, this concerns the degree of 

instructional guidance: On the one hand, a lack of sufficient guidance during a complex task may result in the 

application of poor problem-solving strategies or arbitrary trial-and-error behaviour. On the other hand, vast 

amounts of instructional guidance may lead learners to squandering their resources by comparing and 
contrasting their prior knowledge with the incoming information, thus inflating their intrinsic load (Kalyuga 

2007b).  

Consequently, at the start of the learning process, novices should be provided with instructional guidance 

(e.g. step-by-step instruction) in order to help them with their tasks and optimise their cognitive load. As the 

learners gain more expertise over time, this guidance can then gradually be reduced (cf. the concept of fading 

scaffolds; van Merriënboer & Sluijsmans 2009). The educational implications of the Cognitive Load Theory 

in general and the Expertise Reversal Effect in particular have been confirmed by numerous studies (e.g. Rey 

& Buchwald 2011). However, it should also be noted that the cognitive load approach is limited to the 

acquisition of subject-specific knowledge as the learning goal (Kalyuga & Singh, 2016) and is less applicable 

to other learning objectives such as the acquisition of self-regulated learning skills or the increase of learning 

motivation. Moreover, learners may feel overburdened with the necessary monitoring and adaptation of the 
learning process (Kirschner & van Merriënboer 2013). Technology-based adaptive learning can assist these 

processes, thus reducing the extrinsic load and increasing the effectiveness of learning. 

In contrast to traditional technology-based approaches, adaptive learning allows learning aspects 

(contents, navigation, support) to be presented in a dynamic environment that continually changes in 

response to information collected in the course of learning. This raises the question, which sources of a 

learning scenario are most suitable as a basis for adaptation processes in a course module (cf. Nakić et al. 

2015, for an overview). Principally, three main groups of characteristics can be identified: (1) stable or 

situational personal characteristics of the learners such as gender, culture, learning style, prior knowledge or 

emotional state, (2) specific characteristics of the content such as topics or task difficulty and  

(3) characteristics of the context such as learning time or self-regulation (Wauters et al. 2010). The learning 

process itself can then be adapted by means of altering the instructional design regarding the relevant 

learning objects in accordance with the needs of an individual or a group of learners. 

3. INSTRUCTIONAL DESIGN AND SYSTEM IMPLEMENTATION 

In our instructional design, we focus on task difficulty as the adaptive factor, similar to Brunstein et al. 

(2009); Hsu et al. (2015); and van Der Kleij et al. (2015). Distance students in general and the students at our 

university in particular tend to have significantly different levels of background knowledge and learning 
strategies (mostly due to different educational and/or professional careers). Therefore, we implemented an 

adaptive instruction design in the learning management system used by our university (Moodle), which 

recommended tasks with step-by-step detailed or non-detailed instructions and thus varied the task difficulty 

accordingly. In the context of self-regulated learning, students could either follow the recommendation or 

choose an alternative learning path. Aiming to reduce the cognitive load, less proficient students were given 

instructions that offered more support and assistance while more proficient students received less support, 

thus increasing the task difficulty. The recommendations and interventions were each embedded in the 

feedback of the previously processed task. Our framework for processing and linking learning data with 

adaptive learning instructions was inspired by a model by Zimmermann et al. (2005). Conceptually, the 

system was based on four components that together formed the adaptation mechanism. The first component 

was the sensors, which were linked to the task data (specifically if a task has been solved correctly or not). 
The second component was the analyser, which collected the data measured by the sensors. This information 

was then transferred to the third component, the controller, which determined whether a certain threshold had 

been met. Depending on the outcome, the controller determined if the learning object (for example a task) 

was to be adjusted. The last component was the presenter, which then displayed objects of learning support 

(such as recommendations). As an entry point, we used the data from a prior knowledge test that was 

administered at the beginning of the course and assessed the level of expertise with which the students started 

the course. In the course of the semester, further tests and assessments were then fed to the sensor component 

data base. Consequently, students received instructions and learning support adapted to their learning 
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performance and behaviour. The learning support focused on three different elements: the initial sensor, the 

step loop and the task loop. 

The initial sensor was an assessment of prior knowledge in physics in the form of a set of standard 

exercises solved at the very start of the course. Based on their performance, the students were then divided 
into two groups, “novices” (less than 50% correct answers) and “experts” (more than 50% of the answers 

were correct). Depending on the score, the first proper task in the module appeared in a detailed (high 

learning support) or a standard form (low learning support). The second element, the step loop, measured the 

current level of knowledge within a task and accordingly determined the appropriate learning support. Based 

on the correctness of the answer, the students received feedback which was provided after each step in the 

task and changed depending on how often the same question was answered incorrectly. This served the 

purpose of clarifying possible misunderstandings the students might have had as quickly as possible, e.g. by 

reminding them of forgotten information (Durlach & Ray 2011). The third element, the task loop, consisted 

of two kinds of tasks, namely standard tasks and transfer tasks. The former assessed the ability to solve a 

particular physics problem, while the latter had two objectives: On the one hand, the transfer task checked 

whether a student had understood a particular problem and was thus able to solve the task in its standard form 
(see “vertical transfer”, van Eck & Dempsey 2002), and on the other hand, it evaluated whether the student 

was able to apply the now acquired problem-solving knowledge to a similar task in a different topic (see 

“horizontal transfer”, van Eck & Dempsey 2002). Within each set of tasks, the system recommended which 

task the student should tackle next and in what form (detailed or standard). The detailed version featured 

numerous small solution steps, while the standard version was composed of few solving steps. We chose a 

rule-based adaptive learning system with a fixed set of rules. The reason for this decision was two-fold: On 

the one hand, the sensors in our learning scenario do not generate enough data for a complex self-learning 

system and on the other hand, we wanted to keep the adaptation mechanisms transparent for our students in 

the sense of an “open learner model”. 

Starting in the autumn semester of 2015/16, we carried out a two-year field study that implemented our 

adaptive learning approach into one of our university’s study modules. The chosen bachelor module was part 

of the course of studies in industrial engineering and featured three main physics topics (thermodynamics, 
optics and microphysics). The module was organized in a blended learning format, which means there was a 

mixture of face-to-face sessions (20% of the overall expected effort) and both on- and off-line self-study 

(80%). In order to promote the acceptance of our system among students, we chose a mixed control approach 

between the system (adaptation) and the learner (adaptability). In their feedback, the students thus received 

recommendations as to which tasks they should ideally complete and in which form they should choose it. As 

previously stated, compliance with these recommendations was always optional. The sensor data (i.e. the 

current state of knowledge) was made available to students in a transparent and concise way to foster their 

self-assessment skills as well as their acceptance of the recommendations (see open learning models, e.g. 

Long & Aleven 2017; Suleman et al. 2016). 

4. ANALYSIS 

4.1 Object of Investigation, Subjects, Procedure and Hypotheses 

As previously stated, the students attending a physics module in the semesters 2015/16 and 2016/17 served as 

the participants in our investigation. The module is offered each autumn semester and was chosen for its 

reputation as a “problem module”, due to its above-average failure rate. Each semester, the students are 

divided into seven or eight classes, split among different lecturers. Considering the high degrees of 

employment of our students, the class division was based on the students’ preferences in terms of optimal 

time and location for the five face-to-face events (with four options to choose from in terms of location), 

which had no bearing on the module content or the online part of the course. In the autumn semester 2015/16, 

105 students were enlisted in the course while 106 students participated in the course the following year 

(2016/17). In both years, the data of several students had to be excluded for our main analyses since they 
either didn’t complete the prior knowledge test (11 in the 2015/16 semester) or the final exam at the end of 

the semester (7 in the first and 16 in the second year). There were no missing prior knowledge test scores in 
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the second year since the test was not optional anymore. The course offered 43 adaptive tasks not all of 

which had to be completed by the students. More proficient students for example may only need to solve a 

fraction of the task array after having successfully completed the first assessment (initial sensor) in order to 

succeed at the final test at the end of the semester while less proficient students may have to complete a 
larger portion of the task set in order to achieve the same goal (following the recommendations). 

As for the procedure, we first evaluated the distributions of the prior knowledge test scores and three 

different indicators of online activity (sum of daily clicks, sum of completed standard tasks and sum of 

completed detailed tasks) based on the students’ log files. The sum of daily clicks was used as a general 

online activity measure, while the other two were specific for engagement with either detailed or non-detailed 

tasks. In order to investigate how our instruction design impacted the learning progress of our participants, 

we then explored the relationship between online activity, prior knowledge and the learning progress by 

calculating several regression models. We formulated four hypotheses for this exploratory study: H1: prior 

knowledge is negatively related with learning progress (the less one knows, the more one can learn, i.e. a 

ceiling effect); H2: general online activity (in the form of the sum of daily clicks) and learning progress are 

positively related; H3: engagement with the tasks (be it detailed or standard tasks) is positively related with 
learning progress; 

H4: There is a negative interaction between online activity (all three forms thereof) and prior knowledge 

(more online activity benefits less knowledgeable students more than it does those with high levels of prior 

knowledge). The whole procedure was done separately for both semesters since the second semester served 

as a replication and expansion of the first. All statistical analyses were performed with R (R Core Team 

2013). 

4.2 Distributions of the Prior Knowledge Test Scores and Online Activity 

Measures 

Before examining the distribution of the prior knowledge test scores, the scores in the separate three topics 
(microphysics, thermodynamics and optics) were added and standardised to an index of 100. Using the R 

psych package (Revelle 2017), we calculated the mean scores of the prior knowledge test and the mean sums 

for the online activity measures, as well as the skewness and kurtosis of the distributions (see Table 1 for an 

overview). The normality of the distributions was then tested using the Shapiro-Wilk normality test. In the 

2015/16 semester, the null hypothesis that the data was normally distributed wasn’t rejected  

(W = 0.99, p = .59) while it clearly was in the 2016/17 semester (W = 0.94, p < .001). Thus, for the semester 

of 2015/16, the test scores were found to be approximately normally distributed while in the 2016/17 

semester, the data was not normally distributed but instead skewed to the left due to overall low test scores 

(not a single person reached a score higher than 45 out of 100) and a high proportion of test scores of 0.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Two overlapping histograms showing the distributions of the prior knowledge test scores in both semesters.  
The frequencies of the scores did not differ from a normal distribution in year 1 (2015/16) but were left-skewed in year 2 

(2016/17) 
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As for the online activity measures, only completed tasks were accounted for since the recommendation 

in the task loop was only given after having completed a task; aborted tasks were not counted. All six online 

measure distributions were clearly left-skewed due to the high frequencies of low levels of activity. 

Table 1. Distribution of the prior knowledge test scores and three online activity measures in the two semesters, including 
the number of participants, means, standard deviations, the Shapiro-Wilk test statistic W and the according p-value 

Measure Mean (SD) Skewness Kurtosis W (p) 

Semester 2015/16 
Prior knowledge test score (n=94) 42.88.0 (20.93) -0.06 -0.53 0.99 (.59) 

Sum of daily clicks (n=87) 831.56 (693.19) 1.25 1.77 0.89 (<.001) 
Sum of completed standard tasks (n=87) 7.03 (8.72) 1.40 1.26 0.80 (<.001) 
Sum of completed detailed tasks (n=87) 9.25 (8.30) 0.65 -0.72 0.90 (<.001) 

Semester 2016/17 
Prior knowledge test score (n=106) 19.71 (11.02) -0.36 -0.67 0.94 (<.001) 
Sum of daily clicks (n=90) 860.75 (626.45) 0.61 -0.07 0.95 (<.001) 
Sum of completed standard tasks (n=90) 11.10 (9.55) 0.75 0.11 0.92 (<.001) 
Sum of completed detailed tasks (n=90) 7.85 (7.32) 0.76 -0.10 0.90 (<.001) 

4.3 Prior Knowledge, Online Activity and Learning Progress 

In the following section, we report the relationship between prior knowledge, online activity and the learning 

progress within the adaptive module. For this purpose, the learning progress for each student was defined as 

the difference between the results of the prior knowledge test and the final test, both standardized to 100. We 

explored the relationship between the prior knowledge, the students’ online activity and their learning 

progress by calculating three regression models for each of the three online activity measures (“OA” models 
1 to 3) as well as a regression model solely containing prior knowledge (the “PK” model), all of which was 

done separately for both semesters. We used the R package ggplot2 (Wickham 2009) for the regression plots. 

The first OA model included only the online activity measure as a predictor. The second OA model added a 

second predictor in the form of the prior knowledge test score and the third and final OA model added the 

interaction between the online activity measure and the prior knowledge test score (see Figure 2). In all 

instances, the three models were supposed to predict the learning progress. 

4.3.1 Prior Knowledge 

For both semesters, the PK model yielded a significant regression with an adjusted R2 of 0.29 for the 2015/16 

semester (F(1, 85) = 36.01, p <.001) and an adjusted R2 of  0.03 for the 2016/17 semester (F(1,85) = 4.02,  
p = .047). In line with our hypothesis H1, there was a significant negative relationship between prior 

knowledge test score and predicted learning progress (b = -0.61, p < .001) for the 2015/16 semester, i.e. 

students with higher prior knowledge showed less learning progress. A similar relationship was found for the 

2016/17 semester (b = -0.31, p = .048). 

4.3.2 Sum of Daily Clicks and Prior Knowledge 

For the 2015/16 data, two significant regression models were found, namely OA models 2 (F(2, 84) = 21.8,  

p < .001) with an adjusted R2 of 0.33 and model 3 (F(3, 83) = 15.82, p < .001) with an adjusted R2 of 0.34. In 

model 2, there was a positive relationship between sums of daily clicks and predicted learning progress  

(b = 0.01, p = .02) and a negative relation between prior knowledge and learning progress (b = -0.67,  
p < .001), supporting H2 and H1 respectively. Contrary to H4, the interaction between the two predictors 

(model 3, see Figure 2) was not significant (b = -0.0003, p = .09). Model 2 significantly improved model fit 

compared to model 1 (F(1, 84) = 43.96, p < .001), while model 3 did not did not improve model fit compared 

to model 2 (F(1, 83) = 2.88, p = .09). In contrast, none of the regression models were significant for the 

2016/17 data. 

4.3.3 Sum of Completed Standard Tasks and Prior Knowledge 

We again found two significant regression models in the 2015/16 semester, namely for OA models 2  

(F(2, 84) = 29.07, p < .001) and 3 (F(3, 83) = 19.18, p < .001), both with an R2 of 0.39. In model 2, both 

factors were significant predictors of learning progress. As before, participants’ predicted learning progress 
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was positively related to the sum of completed standard tasks (b = 1.08, p  < .001) and negatively related to 

the prior knowledge test score (b = -0.91, p < .001). In model 3 (see Figure 2), the interaction between the 

two predictors again did not reach significance (b = -0.003, p = .80). Thus, the results supported hypotheses 

H1 and H3 but not H4. As before, model 2 provided a better model fit (F(1, 84) = 56.51, p < .001) compared 
to model 1. The same could not be said about model 3 (F(1, 83) = 0.06, p = .80). Again, none of the 

regression equations were significant in case of the 2016/17 data. 

4.3.4 Sum of Completed Detailed Tasks and Prior Knowledge 

In the 2015/16 semester, all three models were significant, with OA model 1 (F(1, 85) = 6.54, p = .01) having 

an R2 of 0.06, model 2 (F(2, 84) = 21.2 , p < .001) an R2 of 0.32 and model 3 (F(3, 83) = 17.67 , p < .001) an 

R2 of 0.37. In model 1, the predicted learning progress was positively related to the sum of completed 

detailed tasks (b = 0.75, p = .01). This was also in the case in model 2 (b = 0.55, p = .03). Like before, the 

relationship between predicted learning progress and prior knowledge test was negative (b = -0.58, p < .001). 

Unlike before, the interaction between online activity and prior knowledge (see Figure 2) was significant  
(b = -0.04, p = .01). Hence, hypotheses H1, H3 and H4 were all supported by the data. A simple slope analysis 

(using the R package jtools, Long 2018) revealed that the slope of the sum of completed detailed tasks was 

only significantly different from zero when the prior knowledge test score was either medium (b = 0.52,  

p = .04) or low (b = 1.28, p < .001). As before, model 2 (F(1, 84) = 35.92, p < .001) was an improvement 

over model 1 in terms of model fit. Unlike before, model 3 further improved upon model 2 in this case  

(F(1, 83) = 7.39, p =.01). However, none of the regression models were significant for the 2016/17 data. 

 

 

 

 

 
 

 

 

 

 

Figure 2. Regression model 3 for all three measures of online activity separately. All models are based on 2015/2016 data 
exclusively. In model 3, learning progress is predicted by prior knowledge test score, online activity and the interaction 

between the two. That interaction was significant only when using sum of completed detailed task as the measure of 
online activity. In order to illustrate the interaction, we plotted the predicted effect of online activity on learning progress 

using simple slopes for students that scored one standard deviation below the mean (-1 SD), students that scored one SD 
above the mean (+1 SD) and students with mean prior knowledge test scores (M) 

5. DISCUSSION 

The purpose of this article was to demonstrate how an adaptive instruction design could be implemented in a 

standard learning management system. On a theoretical level, the instruction design was based on the 

Cognitive Load Theory in general and the Expertise Reversal Effect in particular. We developed an adaptive 

task set which was then combined with a rule-based recommendation system within the learning management 

system Moodle. Our adaptive system was applied to a physics module during two semesters (2015/16 and 

2016/17) with the respective enlisted students of our university serving as our participants.  

The results for the 2015/16 semester reveal that the prior knowledge test score and the level of online 
activity are both important predictors of learning progress. As hypothesized, the relationship between online 

activity (be it the sum of daily clicks or the amount of standard tasks solved) and learning progress was 

positive (the higher the level of online activity, the larger the learning progress), while the relationship 

between prior knowledge test scores and learning gain was negative (the higher the initial score, the smaller 

the learning gain). Contrary to our hypotheses, this effect was independent from the level of online activity in 

most cases with the detailed tasks being the exception, where we found the expected negative interaction: the 

amount of tasks solved was positively related with learning gains when the prior knowledge test score was 
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low and negatively related when the score was high. This means the less proficient students (i.e. the 

“novices”) benefitted from the detailed tasks more than the advanced students (i.e. the “experts”). Even 

though this result suggests a presence of the Expertise Reversal Effect (Kalyuga et al. 2003), an according 

conclusion cannot be drawn unless we know whether the students followed the recommendations. Moreover, 
the ceiling effect we found could also account for that result, especially when considering that classic exams 

always have a maximum score that cannot be exceeded.  

Surprisingly, neither the prior knowledge test scores nor the levels of online activity predicted the 

learning progress in the 2016/17 semester, neither separately nor in interaction. We argue that this result was 

found due to the peculiar distribution of the prior knowledge test scores. As stated before, the scores in that 

semester were very low with not even a single student reaching 50 points out of a 100. The test was exactly 

the same as the year before, where it showed no floor or ceiling effects and yielded a mean slightly below 

what one would expect for a test of medium difficulty (in this case, 50). Since the test itself was identical, the 

difference between the semesters must have a different explanation. Even though the distributions of the 

online activity levels were also left-skewed, this could not explain the difference since those distributions 

were similar in both semesters. As previously stated, what differed between the semesters was the 
circumstance that the prior knowledge test was mandatory in the 2016/17 while it was not the year before. 

Motivational aspects thus may factor into a possible explanation or a potential homogeneity within the 

particular group of students, which has yet to be investigated (e.g. similar previous education that was light 

on physics). 

A major limitation of the study is the lack of a control group. Control groups are hard to achieve in 

contexts like the one this field study was conducted in since the grades the students receive at the end of the 

semester are real, thus posing ethical problems comparable to withholding of treatment in clinical studies. In 

this particular case, there was no non-adaptive past version of the course available to compare to the adaptive 

one, and even if there was, comparisons might not be all that conclusive given the difference in key factors 

we witnessed between the 2015/16 and 2016/17 semesters. As of the time of this writing, the adaptive system 

is still being used in the 2017/18 semester, the results of which will be available soon. Another limitation is 

the lack of information concerning whether the students actually complied with the recommendations (rather 
than making their choice either at random or as they saw fit). However, the students’ compliance with the 

recommendations will be analysed soon as well. 

6. CONCLUSION 

We demonstrated that a simple rule-based adaptive system can be implemented in a common learning 
management system, getting one step closer to bridging the gap between theory and practice of implementing 

adaptive systems. As our results show, the implementation of the task-difficulty based adaption process was 

successful (to an extent), even though we (expectedly) encountered a ceiling effect concerning the learning 

progress of the students with higher levels of prior knowledge. Our results also demonstrate the importance 

of reliable assessments serving as the sources of adaption (e.g. well-balanced tests). Future studies in this line 

of research could grant insight into the transfer tasks, which were very rarely solved by the students and thus 

could not be analysed properly. Despite the limitations of this study, this line of research holds potential since 

the successful implementation of simple rules can serve as the basis for a more complex adaptive system, for 

instance by expanding the sources for adaption (e.g. mood) or by refining the instruction design  

(e.g. by adding more levels of difficulty). In the near future, research in the field of learning analytics  

(see e.g. Bannert et al. 2017) may result in the development of more holistic sensors that measure several 
metrics relevant to learning at once, providing multiple sources for adaption, potentially even allowing 

implementations within common LMS. Such improvements could result in adaptive systems with more 

intelligent and complex algorithms at their core, which could then lead to more accurate prognoses, higher 

efficiency of the adaptive process and more suitable recommendations for the students, which in turn may 

enhance the acceptance of such systems among students and lecturers.  
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Chapter 6
Implementation of Adaptive Learning 
Systems: Current State and Potential

Christof Imhof, Per Bergamin, and Stéphanie McGarrity

6.1  �Introduction

Countless aspects of our lives have become increasingly digitalized in the past few 
decades, learning being no exception. In the wake of digitalization, new forms of 
learning have emerged such as distance learning or technology-based learning, 
which are increasingly gaining importance today (Bergamin et al. 2012). Due to 
their flexible nature, these new forms of learning allow learners more independence 
and autonomy than ever before. Moreover, they overcome space-time barriers, thus 
granting many people the opportunity to pursue academic studies in circumstances 
that usually prevent or at least hinder such ambitions, e.g. full- or part-time employ-
ment or parenthood. Such flexibility allows for the inclusion of personal needs and 
contexts, which can differ considerably between individual learners. In higher edu-
cation, such characteristics might be prior knowledge, learning skills, experience in 
regard to certain topics, use of strategies or affective states. Even with these differ-
ences, learners are usually expected to develop the same competences throughout 
their studies.

One way to achieve these comparable learning outcomes despite heterogeneous 
preconditions is to continuously adapt the learning process to the needs of the learn-
ers. This and related concepts can be covered under the umbrella term adaptive 
learning. In contrast to other technology-based learning approaches, adaptive learn-
ing enables the presentation of learning resources (e.g. content, support or naviga-
tion) in a dynamic form. This mostly occurs as a reaction to collected and evaluated 
data which can change during the learning processes, e.g. due to learning progress. 
In essence, adaptive learning systems continuously identify what a learner does or 
does not understand and provide help accordingly until a certain learning goal is 

C. Imhof (*) · P. Bergamin · S. McGarrity 
Swiss Distance University of Applied Sciences, Brig, Switzerland
e-mail: christof.imhof@ffhs.ch; per.bergamin@ffhs.ch; stephanie.mcgarrity@ffhs.ch

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48190-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-48190-2_6#DOI
mailto:christof.imhof@ffhs.ch
mailto:per.bergamin@ffhs.ch
mailto:stephanie.mcgarrity@ffhs.ch


94

met. This help can take different forms. One described by Oxman and Wong (2014) 
is the presentation of content situated just above the learner’s current level in order 
to balance challenge and frustration. On this basis, adaptive learning has the poten-
tial to reduce dropout rates, lead to better learning outcomes and help students to 
achieve their learning goals faster. The notion of providing learners with assistance 
tailored towards their specific needs has a long history in pedagogy (e.g. in the form 
of one-to-one teacher support). However, technology-based adaptive learning sys-
tems provide forms of adaptivity beyond what can realistically be accomplished in 
traditional classroom settings in terms of resources or scale (cf. Koedinger 
et al. 2013).

The overall research problem addressed in this chapter is how the theoretical and 
conceptual foundation of an adaptive system needs to be specified in order for such 
a system to be implemented successfully in a university setting. This chapter aims 
to contribute the following to the discussion: We will first determine what it entails 
for a learning system to operate adaptively. In order to characterise the research in 
this area, we will then explore six basic questions in the design process of adaptive 
learning systems: why, what, what to, when, where and how a system can or should 
adapt (Brusilovsky 1996, 2001; Knutov 2012). We will also address the features and 
functions that are central to adaptive systems, followed by an overview over the cur-
rent state of research in the area of adaptive learning. Practical implications and 
future potential of the research will also be discussed.

6.2  �Definition of Adaptive Learning

Adaptive learning may be viewed from different theoretical and disciplinary per-
spectives, which is reflected in the definitions found in the literature. Depending on 
the perspective, the definitions may thus emphasise different elements. Jameson 
(2003), for example, approaches adaptivity from a computer science perspective 
and highlights the system’s interactivity and its adaptation to different users based 
on user models (see below) as its core functionalities. He therefore defines a user-
adaptive system as “an interactive system that adapts its behaviour to individual 
users on the basis of processes of user model acquisition and application that involve 
some form of learning, inference, or decision making” (p. 2). Interactivity and a 
focus on individual learners are elements also present in a more recent conceptual-
ization by Aleven et al. (2017). In contrast to Jameson (2003), the authors argue 
from an educational point of view and further specify which kind of measure a 
system should base its adaptation upon. The authors identify three conditions a 
learning environment must meet in order to be considered adaptive. First off, its 
design needs to reflect topic-related challenges that learners often encounter. 
Secondly, the environment’s pedagogical decision-making has to be based on psy-
chological measures of individual learners (such as current knowledge, skills or 
affective states). Lastly, it is required to respond interactively to learner actions. All 
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three of these aspects require data about learners, which are either pre-existing (con-
dition 1) or collected and processed by the system (conditions 2 and 3).

In our view, these two definitions, although emphasising important learning-
related components of adaptivity, do not explicitly address instructional aspects of 
adaptive learning. One element we deem crucial in this context is the monitoring of 
changes regarding the learners’ progress. In our understanding, adaptive learning 
thus refers to technologies that monitor learning progress and repeatedly or continu-
ously adapt the teaching process to the behaviours and needs of individual learners 
(see Adams Becker et al. 2018).

6.3  �Core Components of Adaptive Learning Systems 
and Their Implementation

As indicated by the definitions of adaptive learning systems, there are certain ele-
ments that need to be accounted for when implementing such systems. Three core 
elements commonly found in adaptive learning systems, regardless of their degree 
of sophistication, are the domain model, the learner model and the adaptive model 
(cf. Vagale and Niedrite 2012). The domain model (also known as content model or 
expert model) refers to the content and structure of the topic to be taught, i.e. the 
relationships between the domain elements, and can address the intended learning 
outcomes as well as their sequence. The learner model (also known as user model 
or student model) is – as the name implies – a representation of the learner. The 
model consists of sensors and the learner modeller. The sensors capture and mea-
sure specific learner characteristics and pass the information to the learner modeller 
which then either uses the information as is (e.g. age, gender, prior knowledge) or 
further processes it (e.g. current knowledge, abilities, learning styles, motivational 
or emotional state). Depending on what characteristics the sensors measure, learner 
models can be either static or dynamic. While static models assess learner charac-
teristics once, dynamic variants repeatedly measure and update them. In order for 
the learner model to be sound, the assessment of the learner characteristics (and the 
ensuing inferences) needs to be reliable and valid (see Shute and Towle 2003). The 
information from the sensors is in turn processed by the learner model and then 
further relayed to the adaptive model (also known as adaptation model, instruc-
tional model, pedagogical model or tutoring model). This model combines the pro-
cessed information from the learner model with information from the domain 
model. The adaptive model can proceed to adapt content, instruction, or recommen-
dations accordingly to support the learner in their progress. The model encompasses 
an instructional strategy that determines not only what can be adapted but also the 
context in which the adaptive process will occur.

Another way to look at adaptive learning systems is to focus on the design pro-
cess. One way to characterise this process and its facets is by considering the six 
dimensions of the classic adaptive hypermedia approach (cf. Brusilovsky 1996): the 
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goals, targets, sources, temporal contexts, situational contexts and methods/tech-
niques of adaptation. These dimensions can be rephrased as the following six ques-
tions: Why is adaptation wanted? What can or should a system adapt? What can or 
should it adapt to? Where and when can it be applied? And how does the system 
adapt? These questions will be elaborated on in the following sections, starting with 
the why question. Due to similarities between them, some of the subsequent ques-
tions will be bundled, specifically the when and where questions that both concern 
the context of adaptation and the what and how questions which both address the 
adaptive model. The relation between the three core components and the six ques-
tions is illustrated in Fig. 6.1.

6.3.1  �Why Is Adaptation Wanted? The Reasons for and Goals 
of Adaptation

The first didactic question for the development of adaptive learning objects or entire 
systems is why adaptation of learning to particular needs is even desired (Knutov 
2012). On the one hand, it relates to the identification and fulfilment of user-related 
needs that require such methods and techniques in the first place (i.e. the goals of 
adaptation). Through adaptive learning, personal learning paths, assistance and 
advice, a variety of learning requirements can be met, which is difficult to achieve 
in traditional learning settings. For instance, uneven levels of prior knowledge 
between learners, which could lead to adverse effects (e.g. overwhelming inexperi-
enced learners while simultaneously boring advanced learners), can be mitigated 
through adaptive instructional design. Another example is adaptive learning sys-
tems can support novices that require navigational help, e.g. by limiting the amount 
of alternatives or recommending relevant links (Brusilovsky 1996). On the other 
hand, this question concerns the course designers’ motivation behind applying dif-
ferent adaptive methods and techniques (i.e. the reasons for adaptation). In princi-
ple, the why question thus concerns the pedagogical rationale underlying the 
implementation of adaptive systems (cf. Mavroudi et  al. 2018). The pedagogical 
rationale itself can be derived from a variety of different basic theories, such as 

Fig. 6.1  Core components 
of adaptive learning 
systems and facets of the 
design process
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aptitude-treatment interactions, the zone of proximal development, fading scaffolds, 
the expertise reversal paradigm and self-regulated learning.

The concept of aptitude-treatment interactions (see Cronbach and Snow 1977) 
refers to the circumstance that instructional strategies (Cronbach and Snow refer to 
these as “treatments”) are not equally successful for each individual learner and 
may instead depend on specific abilities of the learners that forecast their potential 
success – in other words, their aptitude. From this point of view, adaptive learning 
provides options to find optimal treatments to match individual learners’ aptitudes. 
Another concept which adaptive learning can build on is the zone of proximal devel-
opment (see Vygotsky 1978). The core idea of this concept is to give the learners 
tasks they are able to complete with guidance, as opposed to tasks they are able to 
do unaided or task they cannot complete even with guidance. As the learner pro-
gresses, this guidance can gradually be reduced (cf. the concept of fading scaffolds; 
Collins et  al. 1988; van Merriënboer and Sluijsmans 2009). The importance of 
adapting the learning process to characteristics of the learner is further supported by 
the finding that instructional techniques (e.g. guidance by a tutor or detailed instruc-
tions) that benefit novices can lose their effectiveness or even be counterproductive 
to experts, a phenomenon known as the expertise reversal effect (Kalyuga et al. 2003).

In this context, “reversal” refers to the idea that the effectiveness of instructional 
techniques may be reversed for different levels of expertise, e.g. that instructions 
may help novices yet hinder experts (Lee and Kalyuga 2014). The expertise reversal 
effect is usually explained by the Cognitive Load Theory (Sweller 1988). The basis 
of the theory is the notion that the cognitive load, i.e. information that is currently 
stored and processed in the working memory, cannot exceed its limitations. While 
the long-term memory holds cognitive schemata with varying degrees of complex-
ity within an unlimited storing capacity, the working memory is thought to be quite 
limited in its capacity to store information, both in terms of amount and duration 
(van Merriënboer and Sweller 2005). Classic accounts of the Cognitive Load Theory 
differentiate between two kinds of cognitive load, the intrinsic load and the extrane-
ous load. Intrinsic load refers to cognitive processes involved in processing novel 
learning materials, which may be affected by the (perceived) complexity of the 
material. Extraneous load concerns factors that affect cognitive processes despite 
not being directly related to the task at hand, such as convoluted instructional design 
or unfavourable presentation of the learning material (Kalyuga 2009).

The two forms of cognitive load interact with one another so that an abundance 
of extraneous load (e.g. by giving learners too much unnecessary information or by 
having a cluttered visual design) reduces the capacity left for proper processing of 
the learning material due to the working memory’s limitations. Importantly, the cur-
rent cognitive load of a learner also depends on learner characteristics such as 
expertise. In parts, expertise is represented by cognitive schemata with varying 
degrees of complexity and automation housed by the long-term memory (van 
Merriënboer and Sweller 2005). When schemata become automated through train-
ing, space in the working memory is freed, which then reduces the intrinsic load, 
leaving more cognitive capacity for the processing of new content (Kalyuga 2009). 
This implies that instructional interventions should be adjusted (adapted) to the 
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learners’ cognitive load when teaching complex content (Rey and Buchwald 2011; 
Somyürek 2015). This may be achieved through instructional guidance: low levels 
of guidance or instructional scarcity can affect novices negatively as they might lack 
the expertise to compensate for the missing or incomplete information, which can 
lead to poor problem-solving strategies or mere guess work. Experts on the other 
hand are not affected as much since they can rely on their prior knowledge. When 
the amount of guidance is overabundant, the inverse effect may occur: novices ben-
efit from the detailed instructions while experts’ cognitive load is increased since 
they need to compare and contrast the flux of incoming information with their prior 
knowledge, inflating their intrinsic load (cf. Kalyuga 2007). Consequently, at the 
start of the learning process, novices should be provided with instructional guidance 
(e.g. step-by-step instruction) in order to guide them through their tasks and reach 
an optimal level of cognitive load. The concept of fading scaffolds applies here 
again (Collins et al. 1988; van Merriënboer and Sluijsmans 2009).

The educational implications of the Cognitive Load Theory and its role in 
explaining the expertise reversal effect have been explored and confirmed in numer-
ous studies (e.g. Rey and Buchwald 2011). However, the cognitive load approach is 
limited to a specific learning goal in its application, namely, the acquisition of 
subject-specific knowledge (Kalyuga and Singh 2016). Other learning goals such as 
enhancing self-regulated learning are beyond the scope of the approach and may 
best be addressed by other theoretical perspectives within adaptive learning. Self-
regulated learning refers to self-directive processes and motivational self-beliefs 
that learners use to proactively acquire academic skills (Zimmerman 2008). These 
skills include the setting of challenging goals, the employment of appropriate strate-
gies to achieve these goals and the self-monitoring of one’s activities and effective-
ness until said goals are met. Adaptive learning environments can support 
self-regulated learning, e.g. by facilitating monitoring via continuous self-
assessments and improving regulation of learning processes via instructional guid-
ance (Scheiter et al. 2017).

These theories all provide guidelines for pedagogical decision-making. Despite 
representing vastly different perspectives, they are not mutually exclusive. The ped-
agogical strategies of adaptive learning systems can draw from multiple theoretical 
sources at once, e.g. by combining self-regulated learning with fading scaffolds.

6.3.2  �What Can or Should Be Adapted and How? The Objects, 
Methods and Techniques of Adaptation

The next questions concern what can be adapted within a system to meet the guide-
lines illustrated above and how this may be accomplished. On one hand, the what 
question depends on the domain model since that model provides a structure of the 
topic also entailing which aspects can be adapted (see Knutov 2012). Brusilovsky 
(2001) suggests two aspects that can be adapted, namely, presentation and navigation 
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support. Adaptive presentation focusses – as the name implies – on the presentation 
of the content in accordance with various learner characteristics (which will be dis-
cussed later). For example, a more experienced learner may be provided with less 
detailed instructions for a task, while novices may receive additional explanations 
to support their understanding of the topic. Adaptive navigation support is based on 
personalised learning paths that are supposed to guide the learner to appropriate 
learning content. Knutov (2012) adds a third approach in the form of content adap-
tation support, which addresses the presence or absence of specific bits of informa-
tion, thus regulating their accessibility. This kind of support may also vary the 
emphasis that is put on the information. Other parts of the instructional design that 
can be adapted include hints, prompts and recommendations.

On the other hand, the what question also revolves around the adaptive model, as 
does the how question. How the adaptive process works can be described on two 
levels, either on a conceptual/design level or on an implementation level. The adap-
tive process involves techniques, which are usually applied at the implementation 
level of a system and adhere to specific approaches or algorithms, as well as meth-
ods, which are generalisations of techniques (Knutov 2012). Examples for tech-
niques in content adaptation support include inserting, removing or modifying 
information, which change the accessibility of information, thus altering the content 
itself. Other techniques, which are also shared by adaptive presentation support, do 
not change the content but rather lead the learner to focus only on parts of the con-
tent. These include dimming, sorting, zooming or stretchtext (Knutov 2012). The 
latter two are also useful techniques when presenting information that only needs to 
be seen by a subset of learners. Techniques applied in the context of adaptive navi-
gation support can either be enforced or recommended. These techniques include 
guidance (e.g. by recommending links, which can also be classified as an adaptive 
presentation support technique), link generation or link hiding (Knutov 2012).

The decision between enforced or recommended paths taps into the self-
regulation dilemma, which concerns the amount of control that is given to the sys-
tem versus the control given to its user (see Bergamin and Hirt 2018; Kobsa et al. 
2001). On one end of the spectrum, learners are given complete control over their 
learning process (i.e. choice of topics, resources and support). Such systems are also 
called adaptable systems. The learner-control approach might entail positive conse-
quences since freedom can be a motivating factor and learners may enjoy being in 
control. However, this level of freedom may also overwhelm and thus demotivate 
learners, especially at the beginning of the learning process, when learners lack self-
regulation skills, or when a complex topic is concerned. On the other end of the 
spectrum, adaptive systems choose and present learning content, which may lead to 
decisions that are more sound than decisions that novices would make, but the lack 
of control on the learner’s part may frustrate them, especially when the decisions by 
the system are faulty or not what the learner anticipates. This may be the case when 
the learner model is not accurate enough or when the learner’s view is skewed. One 
way to bypass the dilemma is by allowing the control to be shared between the sys-
tem and the learner, which is often achieved by implementing recommender sys-
tems. These systems offer learners recommendations or advice on how to adapt their 
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learning process (e.g. by recommending tasks, supplementary material and so on) 
instead of forcing a system-made decision upon them. The learner is thus free to 
follow the recommendation or ignore it.

Since instructional interventions in this type of system are dependent on the 
learner’s initiative, they are referred to as non-embedded (Clarebout and Elen 2006). 
A more embedded alternative exists in the form of the two-step approach (cf. 
Bergamin and Hirt 2018). In the first step, the system selects a set of appropriate 
learning objects (e.g. tasks), which the learner is then able to choose from. The main 
advantage of this approach is that learners can be prevented from being over-
whelmed by countless options or from selecting counterproductive tasks while still 
being allowed to be in control, at least to a degree. Chou et al. (2015) present another 
option that allows simultaneous shared control between the system and the learner, 
the negotiation-based adaptation mechanism. This mechanism compares the sys-
tem’s learner model with the student’s self-assessment, and if they do not match, 
modifications to the learner model will be “negotiated” between the learner and the 
system. It supports learners with low meta-cognitive skills while allowing learners 
to correct inaccurate learner models.

Moreover, methods and techniques applied in adaptive learning systems can vary 
substantially in terms of complexity and level of detail. A common distinction is 
made between rule-based and algorithm-based systems (Murray and Pérez 2015; 
cf. Oxman and Wong 2014). The former usually relies on a series of if-then func-
tions with varying degrees of complexity (e.g. through different branching paths). If 
learners get answers right, the system directs them to the next task, and if they do 
not, it provides assistance in the form of a hint, repeated content or different expla-
nations of the same content. Rule-based adaptive systems are transparent in their 
functionalities, which makes them easier to use; however, they do not tap into the 
computational potential that more sophisticated systems do. Algorithm-based 
approaches are far more complex and often involve methods related to machine 
learning, such as item-response theory (e.g. Wauters et al. 2010; Pliakos et al. 2019), 
Bayesian Knowledge Tracing (Corbett and Anderson 1995), fuzzy-logic 
(Ennouamani and Mahani 2019) or deep learning (Goodfellow et  al. 2016). 
Additionally, they may involve elaborated techniques such as (big) data mining (e.g. 
Yuan 2019) or learning analytics in order to continuously predict the success of an 
individual learner based on specific bits of information. As Ge et al. (2019) note in 
their literature review, there is a tendency for adaptive systems to rely on established 
algorithms, rather than implementing game engines or developing their own 
algorithms.

A noteworthy example for algorithm-based approaches are micro-adaptive sys-
tems (Vandewaetere et al. 2011). Micro-adaptive systems are learning systems that 
employ micro-adaptive instructions that dynamically decide which instructional 
treatments are the most appropriate at any given time (e.g. intelligent tutoring sys-
tems). They accordingly provide tailored on-time instructions based on within-task 
measures. The fine-grained and precise measures this approach requires are thought 
to warrant the implementation of artificial intelligence techniques. However, this 
alleged necessity has attracted controversy since some authors, e.g. Essa (2016), 
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argue that domain-specific micro-adaptivity should be regarded as “the primary 
realm of the instructor” (p. 11). The authors speculate that for the foreseeable future, 
machine learning will not surpass the instructor’s knowledge and experience, at 
least as far as providing feedback and correcting errors is concerned. We would like 
to emphasise that machine learning and the instructor’s experience are not mutually 
exclusive and may complement one another. Examples for this are supervised 
machine learning and co-creation strategies (see Dollinger and Lodge 2018).

6.3.3  �What Can or Should Be Adapted to? The Basis 
of Adaptation

The fourth question concerns which characteristics of the learner should be cap-
tured by the sensor part of the learner model. As these characteristics form the basis 
for adaptive processes, they need to be selected carefully. What characteristics are 
most valuable in the context of a learning task, a course or even degree programmes 
to be adapted in regard to a particular goal is not a trivial question and has led to 
some disagreement in the literature (see Granić and Nakić 2010). In order to provide 
a potential answer, Nakić et al. (2015) conducted one of the most encompassing 
literature reviews regarding adaptation to learner characteristics. The authors 
explored 22 different learner characteristics over 98 studies released between 2001 
and 2013, which include age, gender, working memory capacity, (meta-)cognitive 
abilities, anxiety and so on.

Given how wide the variety of characteristics to choose from is, several attempts 
have been made to categorise them. Vandewaetere et al. (2011) differentiate between 
three categories, which they derive from the combination of empirical research with 
theoretical propositions. These three categories are (1) cognition (working memory 
capacity, intelligence, prior knowledge, cognitive and learning styles), (2) affect 
(frustration, confusion, delight, mood and self-efficacy) and (3) behaviour (need for 
learner control, help and/or feedback, self-regulated learning, number of tries per 
task and grades). Although these categories seem to differ clearly, the boundaries 
between them are often blurred. The category affect includes states that are blends 
between affect and cognition (e.g. confusion and self-efficacy), while the character-
istics in the behaviour category can be viewed as consequences of cognitive and 
affective states. Another classification stems from Aleven et al. (2017) who identify 
five groups of learner characteristics: prior knowledge and knowledge growth; strat-
egies and errors; affect and motivation; self-regulated learning strategies, metacog-
nition and effort; and learning styles. As they note, determining which characteristics 
are worth adapting to the most is ultimately an empirical question. Based on the 
results of the studies that Nakić et al. (2015) examined, the authors conclude that 
adapting to one or more of the following characteristics proves to be the most suc-
cessful: learning styles, prior knowledge, cognitive styles, preferences for particular 
types of learning materials and motivation. The latter is noted to have been subject 
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to increasing attention in research, along with characteristics such as emotions and 
metacognitive abilities (Nakić et al. 2015). Adapting to cognitive abilities and per-
sonality is also deemed promising, although those characteristics have been explored 
to a lesser degree (see, e.g. Afini Normadhi et  al. 2019). Further details will be 
provided in the section discussing the current state of the research.

6.3.4  �When and Where Can Adaptation Be Applied? 
The Context of Adaptation

Knowing on which pedagogical basis we want to adapt what aspects to which char-
acteristics with which techniques, the final questions are when and where adapta-
tion takes place. One way to answer both of these questions at once is by addressing 
loop levels, which determine when and where instructions can be varied within the 
adaptive model. According to Bergamin and Hirt (2018), there are three levels on 
which adaptation can occur: the curriculum loop, the task loop and the step loop. In 
the curriculum loop, the adaptive system recommends (or enforces) learning 
domains (curricula) based on the learners’ needs and preconditions. This can be 
illustrated with an example: A learner succeeds in a particular course and may thus 
be recommended an advanced course on the same topic. Since it concerns in-
between-course adaptation, the curriculum loop only occasionally adapts to the 
learner model.

In the task loop (also known as outer loop), the system makes decision regarding 
the instructional support, complexity of the content or sequencing (i.e. task selec-
tion) depending on the individual learner’s current conditions. An adaptive system 
may thus recommend (or enforce) more challenging tasks to successful learners 
while presenting tasks that involve more assistance to less proficient learners. Since 
it concerns tasks, the task loop adapts to the learner model more frequently than the 
curriculum, but less frequently than the step loop. In the step loop (also known as 
inner loop), the system provides hints, feedback and prompts regarding the current 
learning activity within a learning object (e.g. a task). This adaptation depends on 
the individual learner’s most recent learning behaviour. Aleven et al. (2017) also 
differentiate between three loop levels; but instead of the curriculum loop, they 
include a design loop in their conceptualisation. Design-loop adaptivity refers to 
data-driven changes between different iterations of the same course on the basis of 
similarities between learners. For example, a course designer may receive the feed-
back that a high percentage of students displayed the same misconception in a phys-
ics task, which leads to them accounting for that misconception in the next version 
of the course. In contrast to the other loops, this loop does not concern the individual 
learner and takes on a different perspective (namely, that of a course designer 
charged with redesigning an existing course).

The when and where questions can further be addressed by considering another 
aspect of adaptive systems, namely, their application area. While e-learning remains 
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the main application area of adaptive learning, its range has expanded significantly 
over the years. Adaptive learning systems are applied in various educational institu-
tions (primary school, secondary school, senior school, university, etc.) as well as 
organisations, e.g. for training purposes. Moreover, there has been an increase in 
context-aware adaptive systems that try to incorporate context characteristics in 
addition to learner characteristics, e.g. the time and place of a learning activity or 
the device used by the learner. This can be achieved by either expanding the learner 
model or adding a fourth model to the three core components (for instance, a context 
model; see Knutov 2012).

6.4  �Current State of the Research

In this next part, we will concentrate on three aspects of current application-oriented 
research: the evaluation of the effectiveness and efficiency of adaptive learning sys-
tems, the satisfaction of learners with such systems and their actual implementation. 
We highlight application-oriented research over theoretical literature to emphasise 
the practical implementation of adaptive learning systems.

6.4.1  �Learner Performance: Effectiveness and Efficiency 
of Adaptive Learning Systems

Instructional effectiveness and efficiency are key aspects of adaptive learning since 
optimising learning is one of the central objectives of this approach (Sottilare and 
Goodwin 2017). Instructional effectiveness refers to enhancing learning capacity to 
acquire knowledge or skill. Importantly, the time in which this learning gain is sup-
posed to transpire is fixed and the learning content is varied, so that at the end of the 
course, learners may be below, at or above their expected level (Sottilare and 
Goodwin 2017). In contrast, instructional efficiency refers to the acceleration of 
learning, which means a reduction of the time learners need to reach a desired level 
of knowledge or skill. By providing learners with instruction tailored to their needs 
(e.g. based on their current level of knowledge), the amount of information they are 
presented with can be reduced. However, allowing learners to skip information is 
not always recommended since learning materials may need to be revisited from 
time to time to retain proficiency (Sottilare and Goodwin 2017). Adaptive learning 
reveals its potential addressing both of these points, as it permits a large variety of 
learning materials and instructional strategies to be tailored to the needs of indi-
vidual learners. Effectiveness and efficiency depend, among other things, on the 
context of the deployment of adaptive learning, higher education being by far the 
most common context (see Xie et al. 2019, for an overview).
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One part of the literature concerns the effectiveness and efficiency of adaptive 
learning systems. This line of research is concerned with the research question how 
effective and efficient adaptive learning systems are, usually in comparison to either 
non-adaptive alternatives or other adaptive systems with diverging features. 
Accordingly, most researchers hypothesise that adaptive learning systems are more 
effective and efficient than their non-adaptive counterparts. While some studies 
have assessed both effectiveness and efficiency of adaptive learning systems, others 
have focussed on one of these two performance measures. Verdú et al. (2008), for 
example, examined the evidence for the effectiveness of adaptive learning by com-
paring studies that analysed adaptive systems in various institutional contexts. They 
found that with varying levels of statistical significance and effect sizes, all 18 of the 
studies in their pool reported positive results, i.e. students improved in their aca-
demic achievement when using adaptive systems in comparison to control groups. 
The variation between effect sizes indicates a vast range of effects. One study 
yielded an effect size of 0.1, which indicates a small, statistically not significant 
learning gain. Large effects (i.e. effect sizes of at least 0.66) were found in ten of the 
studies, with the remainder yielding medium to small effects. Further studies show 
that the results concerning the effectiveness and efficiency of adaptive learning are 
rather mixed: while there is evidence to suggest that the implementation of adaptive 
learning can lead to improved achievements, higher self-perceived learning gains 
and reduced cognitive load (e.g. Yang et al. 2013), other studies were only able to 
detect positive effects on learning outcomes under specific conditions. In their eval-
uation of an adaptive online learning system, Griff and Matter (2013) only found 
positive effects in two out of the six participating institutions. Similarly, Murray and 
Pérez (2015), who implemented a micro-level adaptive approach, only found a neg-
ligible impact of adaptive learning on learning outcomes when compared to a tradi-
tional non-adaptive approach. In a recent experimental classroom study, Eau et al. 
(2019) did not find any significant impact of adaptive learning on exam scores, 
course grades or progress. In contrast, Ghergulescu et al. (2016), who conducted a 
field study with a total sample size of 10,000 students across 1700 mathematics ses-
sions, report significant improvements across ability levels (i.e. ranging from low to 
high achievers). Low achievers improved more than high achievers, thus reducing 
the achievement gap.

Another part of the literature addresses effectiveness and efficiency in relation to 
the temporal context the systems operate in as well as the learner characteristics 
their learner model is based on. Here we will illustrate this based on the findings by 
Aleven et al. (2017), who evaluated the effectiveness of adapting to various learner 
characteristics by systematically reviewing studies that either addressed design-
loop, task-loop or step-loop adaptations to learner characteristics stemming from 
their previously presented five categories (prior knowledge, strategies and errors, 
affect and motivation, self-regulation of learning and learning styles). Since we do 
not consider design-loop adaptivity to be on the same dimension as the task and step 
loops as explained above, we will only include the latter two in our overview.

First off, Aleven et al. (2017) present evidence to support the effectiveness of 
adapting to prior knowledge. Evidence on the task-loop adaptivity suggests that 
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adapting the task selection to the learners’ prior knowledge improves both effective-
ness and efficiency of learning. Corbett et al. (2000), for instance, observed that 
students scored twice as high in the assessment of an algebra problem and 10% 
higher in a standard test when using the Cognitive Tutor Algebra I in comparison to 
traditional courses. Cognitive Tutors are intelligent tutoring systems that present 
tasks which train aspects students are unlikely to have mastered yet. Comparable 
results have been achieved by promoting learning by analogue problem-solving, 
where students solve problems by transferring knowledge from an analogue, adap-
tively selected example (cf. Muldner and Conati 2007). Increased learning gains 
were also observed when examining step-loop adaptivity, even though the evidence 
is not quite as abundant in this context. Conati (2013), for example, reported larger 
learning gains after implementing a self-explanation coach for physics problem-
solving (i.e. a system that adaptively selected steps of worked examples and pro-
vided a structure template as well as feedback). This effect was larger for students 
with low levels of prior knowledge, which is also what Albacete and VanLehn 
(2000) observed. The opposite was found by Own (2006): in his study, the differ-
ence in learning progress was only significant for students that had more prior 
knowledge. E. Verdú et al. (2008) identified differences in contexts, systems and 
analyses between the studies as the most likely cause for this discrepancy.

Overall, Aleven et al. (2017) note that the evidence supporting the value of adapt-
ing to prior knowledge is consistent with the widespread notion that learners’ prior 
knowledge is a key factor in learning. In fact, the authors assert that adapting to 
prior knowledge within the task-loop yielded the largest effects out of all the pos-
sible combinations between the learner characteristics and loops they examined.

Adapting to learners’ affect was also found to improve effectiveness and effi-
ciency. An example concerning task-loop adaptivity is a study by Walkington 
(2013), who implemented interest in her tutoring system by adapting the cover sto-
ries of algebra problems to students’ interests. This resulted in higher accuracy and 
increased learning efficiency in the course and led to accelerated learning later on. 
Regarding the step loop, affect-aware tutoring systems were found to enhance learn-
ing. Examples include studies by D’Mello et  al. (2010), who used AutoTutor, a 
system capable of detecting boredom, confusion, frustration and neutral affective 
states, or D’Mello et  al. (2012), who implemented eye-trackers in their tutoring 
system in order to detect and adaptively counteract disengagement. Some systems 
even feature hybrid adaptivity, i.e. algorithms that combine affective with cognitive 
factors (e.g. Mazziotti et al. 2015). In contrast, Aleven et al. (2017) note that research 
focussed on adapting to learners’ motivation has been comparatively scarce with 
only the groundwork being laid, e.g. in the form of self-efficacy-detecting algo-
rithms using machine-learning models (McQuiggan et al. 2008).

Task-loop adaptivity to self-regulation can be effective as well, even though the 
evidence seems to be mixed. The most promising approach appears to be a combi-
nation between open learner models (i.e. a representation of the learner characteris-
tics used by the system, often presented to the learner in a visual form) and 
self-assessment support (cf. Arroyo et al. 2014; Long and Aleven 2013). There is 
also evidence to suggest that adapting to self-regulated learning yields positive 
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results in the step loop by improving learners’ self-regulated learning processes 
(e.g. help-seeking, Tai et al. 2013).

In contrast, the evidence for the effectiveness and efficiency of adapting to learn-
ers’ learning strategies and error patterns is mixed (Aleven et al. 2017). While step-
loop adaptivity to strategies and errors is also deemed effective, particularly when 
applied in the form of step-level feedback (see Koedinger and Aleven 2007), the 
evidence presented by Aleven et al. (2017) does not support any clear advantage of 
task-loop adaptivity over non-adaptive tutoring. Adapting to learning styles also 
yielded little conclusive evidence, despite the popularity of the concept in past and 
present research (e.g. Kolekar et al. 2019). Many researchers argue that learning 
styles lack a firm theoretical basis (e.g. Aleven et  al. 2017; Kirschner and van 
Merriënboer 2013; Lu et al. 2003), an issue that is further compounded by other 
controversies surrounding the topic, with some researchers even dismissing them as 
a “myth” (see Kirschner 2017).

A learner characteristic not present in the overview presented by Aleven et al. 
(2017) that was recently investigated was aptitude (Eldenfria and Al-Samarraie 
2019). In their study, Eldenfria and Al-Samarraie (2019) found their aptitude-based 
adaptive mechanism to be effective, which was supported by EEG data.

Current research thus shows that adaptive learning can be both effective and 
efficient, be it in general or addressing specific temporal contexts (i.e. loops) or 
learner characteristics. The effects found in the literature may vary in their size from 
no effect to large effects, but all reported effects are positive, supporting the poten-
tial for future research.

6.4.2  �Satisfaction Among Learners

Effectiveness and efficiency are not the only measures to indicate the success of a 
learning system. No matter how effective a system is, the prospects of success are 
jeopardised if students and/or teachers reject it. Assessing student satisfaction is 
therefore key when judging the quality of a system. Moreover, studies have shown 
positive links between student satisfaction and motivation, student retention and 
recruitment (see Schertzer and Schertzer 2004). Levy (2007) additionally shows 
that dropouts occur at substantially higher rates in e-learning as compared to offline 
courses, stressing the importance of student satisfaction for student retention. The 
research question that guides this strand of research is thus how satisfied students 
are with adaptive learning systems. Usually, students are hypothesised to feel satis-
fied with adaptive learning systems. Verdú et al. (2008) compared the results of 11 
studies that assessed the level of students’ satisfaction with adaptive learning sys-
tems via questionnaires. Since the results were based on questionnaires with differ-
ent scales, the values were normalised before the comparison. One study reported 
medium (0.5) and the others high learner satisfaction (0.66–0.81) with adaptive 
learning systems. They conclude that most learners thought that the adaptive sys-
tems supported their learning progress and met their requirements.
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In a more recent study, Dziuban et al. (2017) investigated how students from two 
contextually different universities reflected on the adaptive learning platform 
Realizeit. Despite differing in demographic and educational backgrounds, most stu-
dents reacted positively to the adaptive system by giving it high marks regarding its 
perceived educational effectiveness and were able to make a near-seamless transi-
tion from non-adaptive systems. However, there are certain conditions that have to 
be met in order for learners not to reject adaptive systems. If systems are unstable, 
unreliable, too cumbersome in their use or plagued by usability problems, the risk 
of students (and teachers) abandoning it rises. Lack of transparency is an additional 
risk factor that can lead to trust issues (e.g. when the system is perceived as a “black 
box” without any comprehensible rationale behind its decisions; see Khosravi 
et al. 2020).

Assessing the usability of adaptive systems is therefore worthwhile (cf. Khosravi 
et al. 2020). Alshammari et al. (2015), for example, compared an adaptive learning 
system with a non-adaptive version in an experimental setting and found that the 
adaptive learning system yielded higher ratings regarding its perceived usability 
than its non-adaptive counterpart. Similarly, Vesin et al. (2018) examined the usabil-
ity of the adaptive learning system ProTuS using the System Usability Scale (SUS). 
The resulting score was 67.2 out of 100, indicating a marginally acceptable usabil-
ity, i.e. on the verge of being acceptable (with a score of 70 being the threshold). 
More recently, a German translation of the SUS was used to assess the usability of 
adaptive courses in the learning management system Moodle (Pancar et al. 2019). 
In contrast to previous results, the adaptive courses yielded lower usability scores 
(55.08 and 57.8) than their non-adaptive counterparts (62.87 and 67.51), meaning 
their usability was “ok”.

As the research above illustrates, adaptive learning systems tend to be satisfying 
to learners, which is an important condition for the success of such systems. 
However, research on their usability opened up a clear gap which needs to be further 
addressed. Given how crucial usability is to the acceptance of adaptive learning 
systems, improving it is a key challenge.

6.4.3  �Implementation of Adaptive Learning Systems

Another avenue of research within adaptive learning concerns the actual implemen-
tation of adaptive systems in practice, providing potential answers to the how and 
when/where dimensions. The research questions in this area are thus if adaptive 
learning systems can be successfully implemented in educational practice and under 
what conditions. Despite the wealth of studies on adaptive learning systems, there 
has been a notable lack of successfully implemented adaptive technology-based 
learning systems in practice (Cavanagh et al. 2020; Somyürek 2015), with a few 
exceptions, e.g. the previously mentioned study by Ghergulescu et  al. (2016). 
Scanlon et al. (2013) found what they called a “surprising failure” (p. 4) to translate 
research results in the field of technology-enhanced learning, including prototypes, 

6  Implementation of Adaptive Learning Systems: Current State and Potential



108

into commercial products. This gap between research and successful application is 
the so-called valley of death, which can be caused by a lack of funding, weaknesses 
in the didactic concept, scalability-related issues, inaccuracies in the core compo-
nents or lack of sustainability.

Moreover, as Lerís et al. (2017) point out, technological issues are a contributing 
factor as well since one of the main reasons why some adaptive systems have failed 
is a lack of easy-to-use technology for the teachers meant to design adaptive tasks 
and instructions. Instructors that produce and follow sound instructional designs are 
essential to adaptive learning, which is why it is key to involve them from the very 
beginning (cf. Shelle et al. 2018). One potential solution is to implement adaptive 
learning within environments that teachers are already familiar with, such as learn-
ing management systems (e.g. Moodle). In one of our own studies, we demonstrate 
how a simple rule-based adaptive design based on a recommender system can be 
implemented in a physics course on Moodle (see Imhof et al. 2018). Our system 
recommended tasks with either detailed or non-detailed instructions to our students, 
depending on their current level of knowledge (i.e. a prior knowledge test score for 
the first task and task performance for the remainder of the task set). We deemed the 
implementation successful enough to serve as a good basis for future, more com-
plex adaptive instructional designs in the same or similar contexts.

6.5  �Practical Implications and Future Potential of Adaptive 
Learning Systems

The results presented above have practical implications for designing and imple-
menting adaptive learning systems. In this discussion, we will refer to the six ques-
tions introduced in the beginning of this chapter again. Why is adaptation wanted? 
Research reveals arguments for the implementation of adaptive learning systems by 
demonstrating effectiveness and efficiency. Where and when can adaptation be 
applied? Adaptive learning systems have yielded positive effects in a variety of dif-
ferent contexts, be it in terms of institutions, the topics to be learned (despite the 
noticeable focus on STEM topics, especially in the realm of micro-adaptivity; cf. 
Essa 2016), the target audience or the loop levels within the adaptive model. What 
can or should it adapt to? Not all options are equally recommendable in regard to 
learner characteristics. For instance, the evidence for adapting to learning styles is 
mixed at best (cf. Aleven et al. 2017), despite their popularity. Importantly, no mat-
ter which learner characteristics are chosen, they need to be assessed reliably and 
validly in order for the system to adapt to the learners’ needs accurately. What can 
or should it adapt and how? In contrast to the other questions, these two are difficult 
to answer on the basis of the literature we considered. To our knowledge, systems 
usually follow one specific approach in terms of methods and techniques and stick 
to them. This renders direct, unbiased comparisons with other approaches nigh 
impossible, since the list of potential confounding variables is vast (e.g. learning 
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support, learning topics, educational contexts, outcome variables, learning devices, 
differences between learners and so on; cf. Xie et al. 2019).

Moreover, adaptivity on its own is no guarantee for success. In our view, the suc-
cess of an adaptive system is instead linked to three crucial elements of its adaptive 
design, each addressing multiple of the six basic questions:

	1.	 The concept behind an adaptive learning system needs to be specific and sound. 
Adaptive learning has unique requirements and is, as Freda (2016) states, not a 
“magic bullet”. The quality of the adaptive design (and thus the recommenda-
tions a system makes) depends on the monitoring and diagnosis of changing 
learning requirements, which could result in insufficient adaptation rules if 
neglected (cf. Dounas et al. 2019).

	2.	 The loop level the system operates on has to be specified. As Essa (2016) notes, 
a considerable amount of research has been dedicated to the inner loop (i.e. step 
loop or micro-adaptivity), whereas research on the outer loop (i.e. task loop or 
macro-adaptivity) has been described as “modest” (Rus et al. 2013).

	3.	 Special care ought to be given to the algorithms behind the adaptive learning 
system. Most systems rely on existing algorithms (cf. Ge et al. 2019) which are 
not necessarily the ideal solution in every individual case.

In summary, adaptive systems need a concise concept behind them as well as a 
suitable adaptive mechanism supported by the proper algorithms. Differences in 
these three design elements could explain why some studies found adaptive learning 
systems to be effective (Eldenfria and Al-Samarraie 2019; Ghergulescu et al. 2016) 
while others did not (Eau et al. 2019) or had mixed results (Griff and Matter 2013). 
This is especially important when estimating the effectiveness of adaptive learning 
systems in practice.

Furthermore, the results illustrated above highlight that usability should be a 
major focal point when designing and implementing such systems (Khosravi et al. 
2020). Systems burdened with usability problems satisfy neither learners nor teach-
ers, increasing the risk of systems being swiftly abandoned.

As our overview depicts, the processes of designing and implementing adaptive 
learning systems are very complex since there are countless options one could 
choose when designing adaptive systems. Not only are these processes non-linear 
since the questions inform and influence each other; there is also a notable lack of 
guidance for them, at least currently (Hou and Fidopiastis 2017).

All in all, the practical implications of adaptive learning are somewhat limited at 
the moment since there are still various challenges that adaptive learning systems 
have to overcome in order to truly bridge the gap between research prototypes and 
application tools. In their Delphi study, Mirata and Bergamin (2019) identified three 
dimensions of the challenges for adaptive learning: technology; teaching and learn-
ing; and organisation. In the dimension technology, the challenges are infrastruc-
ture and hard- and software, which include the usability of adaptive learning 
systems, and perceptions and beliefs about adaptive technology, e.g. acceptance 
and attitude towards technology, both from the lecturers’ and students’ points of 
view. In the context of the dimension teaching and learning, the identified challenges 
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are instructional and curriculum elements (e.g. the need to redesign courses) as well 
as lecturer and learner characteristics (e.g. their motivation and commitment). The 
final dimension, organisation, contains institutional strategies (including commit-
ment on the part of the management), management (e.g. support for lecturers and 
learners) and resources (e.g. the hiring of instructional designers). Further chal-
lenges are identified by Zliobaite et al. (2012), who present additional technological 
challenges, and Freda (2016), who highlights the organisational challenges. 
Zliobaite et  al. (2012) add scalability and having to deal with “realistic data” as 
additional challenges for technology. In order to improve usability, trust and accep-
tance, they state that the practical application of adaptive learning systems might 
have to be broken down into adaptive tools that non-experts are also able to use. 
This latter point is also stressed by Cavanagh et al. (2020), who include understand-
ing of the mechanism behind adaptive learning systems as one of the items on their 
list of pedagogical best practices.

Similar to Mirata and Bergamin (2019), Freda (2016) stresses securing monetary 
resources and convincing parties other than students and teachers of the value of 
adaptive learning (e.g. project managers and instructional technologists) as two 
important obstacles when transitioning from traditional to adaptive learning systems.

Future research has the potential to address most if not all of these issues, thereby 
getting closer to bridging the gap between research and application, potentially 
leading to widespread successful implementations of adaptive learning systems. As 
the research presented in this chapter shows, adaptive learning systems hold consid-
erable potential to improve scalability (i.e. reaching more learners with less effort) 
and learners’ performance. This complex development is still ongoing, but the cur-
rent state of the research indicates great promise for the future.
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A B S T R A C T   

Procrastination has been increasing since the proliferation of online learning. While traditionally assessed with 
self-report instruments, online learning offers the possibility to measure objective indicators (log data). In the 
present study, we aim to find out whether the combination of short scales on procrastination-related traits and 
log data predict the extent of dilatory behaviour in online tasks and performance (assignment scores). The log 
data models (which include the number of clicks on the assignment, the interval between thematic block start 
and first click, and the number of clicks on course activities as predictors) have a better fit and explain more 
variance than the questionnaire models when predicting delay; and the predictions barely improve when 
combined. The prediction of performance did not yield any noteworthy effects. Future studies need to diversify 
predictors by incorporating contextual factors to improve early and/or late predictions and allow classification of 
dilatory behaviour (e.g. procrastination vs purposeful delay).   

1. Introduction 

Procrastination is a widespread phenomenon chronically affecting 
the general population (Blunt & Pychyl, 1998; Harriott & Ferrari, 1996) 
in a variety of situations, be it by putting off housekeeping, doing taxes 
or seeing a dentist. A remarkable frequency of such behaviour has been 
reported in learning settings on an academic level, where the self- 
assessed prevalence is approximately 70% (Ellis & Knaus, 1977; Steel, 
2007). This particular type of procrastination – academic procrastina
tion – is characterised by favouring short-term (or immediate) gratifi
cations such as sleeping, playing, watching TV (Pychyl, Lee, Thibodeau, 
& Blunt, 2000), checking Facebook (Meier, Reinecke, & Meltzer, 2016), 
or watching cat videos (Myrick, 2015) over long-term assignments, such 
as studying for an upcoming exam or writing papers, that only provide 
distal rewards. It is therefore often described as a failure to complete 
academic tasks within a given timeframe or delaying academic work in 
general (Schraw, Wadkins, & Olafson, 2007; Senécal, Koestner, & Val
lerand, 1995). This fits with the common concept of procrastination as a 
failure of self-regulation (Klingsieck, Fries, Horz, & Hofer, 2012; Steel, 
2007). However, not all dilatory behaviour is necessarily classified as 
procrastination since other types of delay have been identified, such as 
purposeful delay (see Corkin, Yu, & Lindt, 2011; Grunschel, Patrzek, & 
Fries, 2013). In the following sections, we define procrastination and 
purposeful delay, show their connections to other relevant learning 

concepts that can serve as indicators for them, followed by an overview 
over findings concerning prediction models involving dilatory 
behaviour. 

Given how prevalent and potentially damaging procrastination can 
be (e.g. in regards to performance, see Steel, 2007), researchers have 
identified several indicators and measures of dilatory behaviour, with 
the goal of detecting such tendencies early-on, especially in online 
courses. These indicators are either subjective (i.e. self-report ques
tionnaires) or objective (e.g. log data). The aim of this study is to explore 
which factors predict the extent of dilatory behaviour (i.e. how long 
students delay the submission of their assignments) the best and to 
determine whether a combination of both kinds of indicators improves 
the predictability in the context of online assignments. 

2. Theoretical background, prior research, and current study 

2.1. Academic procrastination 

Steel (2007) describes procrastination as a “voluntary delay of an 
intended course of action despite expecting to be worse off for the delay” 
(p. 66). The second half of the quote highlights that procrastinators are 
aware of the ill-fated nature of their behaviour. Thus, what sets pro
crastinators apart are not intellectual differences (see Ferrari, 1991), but 
rather differences in the level of self-regulation (Rabin, Fogel, & Nutter- 
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Upham, 2011; Wolters, 2003). Procrastination tendencies in academia 
are thought to have been increasing ever since the advent of online 
learning due to the self-directedness such learning environments de
mand (see You, 2015). Online learning environments require students to 
be more intrinsically motivated to prevent procrastinating (Wighting, 
Liu, & Rovai, 2008). This poses challenges to students' responsibility and 
time management, which increase the risk of procrastinating. In such 
environments, procrastination is often considered to be more damaging 
compared to traditional classroom settings (Tuckman, 2005) and 
thought to lead to higher drop-put rates (Doherty, 2006). Other negative 
outcomes procrastination is associated with include lower performance, 
reduced mood, increased stress, feelings of guilt, poor self-rated health, 
and lower self-efficacy (Pychyl, Lee, Thibodeau, & Blunt, 2000; Sirois, 
Melia-Gordon, & Pychyl, 2003; Steel, 2007; Tice & Baumeister, 1997). 

A further characteristic of procrastination is its stability across situ
ations and over longer time spans as evidenced by Steel's meta-analysis 
(Steel, 2007). However, there is also evidence to suggest that contextual 
and situational aspects, e.g. task characteristics or mood, may influence 
procrastination. The moderate correlation of 0.51 between state and 
trait procrastination (see Steel, 2007) indicates that they are related, but 
not one and the same. Hence, procrastination as a trait does not neces
sarily determine behaviour, which leaves room for other learning- 
related factors. 

2.2. Purposeful delay and connections to other learning-related factors 

Since procrastination is strongly linked to self-regulation (i.e. efforts 
by students to monitor, manipulate and improve their own learning, 
Corno & Mandinach, 1983), learning concepts related to or including 
self-regulation may be useful when it comes to predicting procrastina
tion. One such concept is self-directed learning (SDL). SDL is defined as a 
process in which learners take charge of their own learning process by 
identifying their learning needs, goals, and resources, deploying 
appropriate strategies and evaluating the outcomes (Knowles, 1975). 
SDL has several crucial cornerstones that are relevant in this context, 
namely self-monitoring, self-management as well as evaluation and 
regulation of students' own learning (see Bolhuis, 1996; Garrison, 1997). 
Self-regulation is also one of the primary dimensions of SDL, along with 
motivation and metacognition (cf. Mentz & Van Zyl, 2018). Studies have 
shown that SDL has negative links to procrastination (e.g. Onji & 
Kikuchi, 2011; Schommer-Aikins & Easter, 2018) and positive links to 
self-efficacy (e.g. Saeid & Eslaminejad, 2017). 

Self-efficacy is another learning concept related to self-regulation 
with strong ties to procrastination and is usually defined as the belief 
in one's ability to succeed, or more specifically “people's judgements of 
their capability to organize and execute courses of action required in 
attaining designated types of performances” (Bandura, 1986, p. 391). In 
their study, Wäschle, Allgaier, Lachner, Fink, and Nückles (2014) found 
a virtuous circle of self-efficacy to counteract the vicious circle of pro
crastination, the latter of which students with low levels of self-efficacy 
are prone to fall into. High self-efficacy is also associated with the 
functional counterpart of procrastination, a concept initially known as 
active procrastination (Chu & Choi, 2005). Active procrastination denotes 
behaviour that closely resembles “regular” procrastination on its sur
face, with four key differences: People who display active procrastina
tion still achieve satisfactory outcomes, prefer to work under pressure, 
do it intentionally and are able to meet deadlines. These differences also 
serve as the four subscales of the Active Procrastination Scale (APS, Choi 
& Moran, 2009). 

The naming of this concept received criticism on a linguistic level for 
being an oxymoron (see Pychyl, 2008) since procrastination is classi
cally defined as irrational, ill-fated behaviour which directly contradicts 
the benefits that active procrastination is supposed to have. For this 
reason, the term active delay was introduced to avoid that linguistic 
conundrum. However, as Hensley (2014) notes, the dichotomy between 
active and passive is an oversimplification, which led to a third term 

being introduced to refer to the same concept, namely purposeful delay 
(see Corkin, Yu, & Lindt, 2011; Grunschel, Patrzek, & Fries, 2013). This 
is also the expression we use. A similar term has been coined by Kling
sieck (2013), namely strategic delay, which can be considered synony
mous with purposeful delay. This type of delay is characterised as a 
rational and intentional strategy that is positively related to self-efficacy. 
Reasons for delaying tasks in such a manner include prioritising other 
tasks, acquiring more information before executing a task, enhancing 
motivation (e.g. if one prefers to work under pressure), reaching a state 
of cognitive flow and maximising learning in a minimal amount of time 
(Ferrari, 2011; Schraw, Wadkins, & Olafson, 2007). 

In their study, Corkin, Yu, and Lindt (2011) found that purposeful 
delay and procrastination are indeed inversely related. Moreover, pro
crastination was found to be negatively related to self-regulation 
whereas purposeful delay is positively linked with aspects of self- 
regulation such as the aforementioned self-efficacy (see Chowdhury & 
Pychyl, 2018) or self-regulated learning (Sundaramoorthy, 2018). Self- 
regulated learning (SRL) is a concept similar to self-directed learning 
(SDL) with subtle differences, mainly regarding its origins, with SRL 
being rooted in psychology and SDL stemming from pedagogy. 
Furthermore, purposeful delay was found to be linked to higher grades. 
Combined, these findings support the notion that purposeful delay is a 
functional adaptive form of delay, in stark contrast to procrastination. 
However, this notion has recently been challenged by Pinxten, De Laet, 
Van Soom, Peeters, and Langie (2019), who attempted to replicate the 
four factor-structure of the APS, as reported by Choi and Moran (2009). 
The authors instead found a three-factor structure (intentional decision, 
ability to meet deadlines, and a combined factor consisting of preference 
for pressure and outcome satisfaction) and the findings did not support 
the expected positive effect of purposeful delay on achievements. 

2.3. Measurement of dilatory behaviour 

Traditionally, procrastination and other types of delay are assessed 
with self-report instruments. However, as Malatincová (2015) points 
out, the subjective component of procrastination that these instruments 
assess needs to be distinguished from the actual delay component. This 
is a crucial distinction since hindsight bias or a situation-specific sub
jective sense of procrastination may influence people's perception of 
their own behaviour. A reliable measurement of the delay component of 
procrastination therefore requires objective methods less susceptible to 
this type of bias. In the context of academic procrastination, there are 
tools that have emerged since the advent of online learning which 
provide exactly that. One prominent example are log data, which can be 
extracted from most learning management systems (LMS). Such data 
include the number of clicks within the course, the time spent on certain 
learning activities, deadlines, submission times and so on, thus 
providing the means to calculate delay or find indicators thereof. Several 
studies have analysed dilatory patterns in this manner. Morris, Finne
gan, and Wu (2005) for instance found significant differences in 
participation (i.e. number of views for content and hours spent on 
certain activities) between what they called “withdrawers” and “com
pleters”. The amount of viewed discussion posts and content pages not 
only predicted student participation, but also their finale grades. 

Levy and Ramim (2012) investigated the relationship between pro
crastination and academic performance by using data analytic tech
niques and measured procrastination as the difference between the due 
time and the submission time in hours. Results indicate that students 
who procrastinated performed worse in online exams, with additional 
trends being the time of day the exams were taken (exams taken in the 
morning yielded better results), the students' academic level (sopho
mores procrastinated the most), and gender (women procrastinated 
more often). Similarly, You (2015) measured procrastination by 
observing late or absent submission. Instead of implementing data an
alytics, the author conducted a multiple regression analysis and found 
that procrastination negatively predicted course achievement, with the 
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predictability increasing over time. 
A different approach was followed by del Puerto Paule-Ruiz, Riestra- 

González, Sánchez-Santillán, and Pérez-Pérez (2015), who identified 
indicators of procrastination based on additional log data extracted from 
the LMS Moodle, such as the number of clicks in mandatory resources, 
time spent on quizzes and the time it takes to first click on or submit 
various tasks. These indicators were then discretised (low/medium/ 
high) and formed into association rules. These rules were reformulated 
in the form of conditionals, e.g. if the number of clicks in a mandatory is 
high and the time it takes until the first submission of an assignment is 
low, then the performance is good. The time-related indicators turned 
out to be the most important ones for students' performance. 

A similar study was conducted by Cerezo, Esteban, Sánchez- 
Santillán, and Núñez (2017), who also implemented association rules 
based on indicators on Moodle, albeit in a blended learning context. The 
results were comparable, as the time-related indicators (e.g. the time 
that passes between the unlocking of a block on Moodle and the sub
mission of an assignment within that block) were strongly associated 
with performance. In their study, Yamada, Oi, and Konomi (2017) 
assessed self-efficacy in addition to procrastination and learning per
formance, albeit in the context of self-regulated learning (SRL) rather 
than self-directed learning (SDL). They found that self-efficacy was 
related to the frequency of out-of-class activities, submission times, and 
performance. Akram et al. (2019) predicted academic procrastination 
based on homework submissions by using ten different classification 
algorithms. Homework submission data were also used in two recent 
studies by Yang and colleagues: in Yang et al. (2020b), they classified 
students as procrastinators, procrastination candidates and non- 
procrastinators with a clustering algorithm based on homework sub
mission data and in Yang et al. (2020a) the authors implemented 
educational data mining in order to predict course achievement with 
students' homework-based procrastination behaviour. 

2.4. The present study 

These studies demonstrate that dilatory behaviour can be measured 
by various instruments independent from questionnaires. However, 
most of these studies use state procrastination as a predictor for 
achievement rather than trying to predict dilatory behaviour itself, 
specifically its extent. Trait procrastination has been predicted before (e. 
g. Cao, 2012, who predicted both procrastination and purposeful delay 
based on APS scores with self-efficacy, learning strategies, and motiva
tional factors), state procrastination less so. To our knowledge, which 
predictors comparatively work best for predicting the extent of dilatory 
behaviour is hardly explored, since the studies presented above rely on 
algorithms based on patterns in the submission dates alone, rather than 
assessing the value of other indicators such as click data or learning 
concepts related to delay (like self-directed learning and self-efficacy). 
Despite our focus on the predictability of dilatory behaviour, achieve
ment was still of interest to us since procrastination and achievement are 
closely linked in most of the research in this area (poor grades or drop- 
outs being commonly researched consequences of this behaviour). 
Achievement is usually operationalised with final exam or cumulative 
course scores, but we are interested to see whether a more direct 
approach works as well, in this case the raw scores of individual online 
assignments. 

Our research questions are thus as follows: 1. Which predictor types 
and individual predictors are the most successful in predicting the extent 
of dilatory behaviour? 2. Does a combination of subjective trait pre
dictors (questionnaires) and objective state predictors (log data) 
improve the predictability of dilatory behaviour? 3. Which predictors 
types and individual predictors are able to predict achievement in online 
assignments (scores) the best? 4. Does a combination of subjective and 
objective predictors improve the predictability of scores? 

As far as we are aware, no other studies have combined log data 
analysis with questionnaires in this context, specifically the combination 

of procrastination, purposeful delay, and the two learning-relevant 
concepts of self-efficacy and self-directed learning. We expect all pre
dictors to contribute to the prediction of delay as well as achievement, in 
accordance with the relations between the involved concepts in the 
literature. Self-efficacy and self-directed learning are thus hypothesised 
to be negative predictors of delay and positive predictors of achieve
ment. Academic procrastination and purposeful delay are expected to be 
positive predictors of delay (both being types of trait delay) while mixed 
for achievement (positive for purposeful delay and negative for pro
crastination). The number of clicks per assignment and the number of 
clicks on relevant activities, both indicating activity, are expected to 
negatively predict delay and positively predict achievement. The final 
predictor, the interval between the start of a block and the first click, is 
hypothesised to be a positive predictor of delay and a negative predictor 
of achievement. Moreover, we hypothesise that the combination of the 
subjective and objective predictors improves predictability. 

3. Methods 

3.1. Participants 

The participants (N = 243, 115 women, 128 men, mean age 33.53, 
SD = 9.03) were students at a Central-European distance university who 
partook in the study voluntarily after being invited via e-mail. Each 
student was enrolled in between one and four courses the university 
offered during the autumn semester of 2019. The courses all followed a 
blended learning approach with 80% online (or self-paced) studies and 
20% traditional face-to-face classes. As a reward for their participation, 
the students had a chance of winning one of 3 sets of cinema vouchers. 
The invitation to our study was sent to every student that was registered 
at our institution at that point (around 2000), resulting in a response 
rate of about 12%. The questionnaires were filled in online at the very 
end of the semester, preceded by a briefing about the duration and 
purpose of the study. The participating students were also informed 
about the planned use of their log data on Moodle and consented by 
entering their e-mail address after reading an informed consent form, 
which was in turn used to match the datasets. Since the ethics committee 
of our institution was in its early development at the time of data 
collection, we could not obtain their approval for this study. However, 
we conducted it in accordance with the Declaration of Helsinki, assuring 
consent by providing an informed consent form, highlighting the 
voluntary nature of the participation, and disclosing the purpose of the 
study as well as our data protection measures. 

Out of 243 initial participants, 134 remained in the final dataset due 
to multiple issues. First, 24 e-mail addresses were unidentifiable, which 
meant the questionnaire scores of these participants could not be con
nected to the students' log data. Then, 31 students were not enrolled in 
courses that actually had any online assignments, which meant there 
was no delay to be predicted. 51 students were additionally lost since the 
deadlines for the assignments in their courses could not be deduced by 
log data alone, meaning the lecturers communicated the deadlines on a 
different channel (e.g. via e-mail, course files or in a face-to-face class). 
Finally, 3 students had to be excluded due to errors in the automatically 
generated log protocols. A total of 126 courses were involved, each 
including one to eight students from our sample. 

3.2. Instruments & procedure 

The variables of interest were trait variables assessed by online 
questionnaires and state variables in the form of log data. The four trait 
variables self-efficacy, self-directed learning, procrastination and purposeful 
delay were measured with one questionnaire each. Self-efficacy was 
measured with the General Self-efficacy Scale (GASE), which consists of 
5 items, all related to beliefs about one's academic abilities (e.g. 
conviction to pass the exam if putting in enough effort) and is aimed at 
measuring academic self-efficacy regardless of academic discipline 

C. Imhof et al.                                                                                                                                                                                                                                   



Learning and Individual Differences 88 (2021) 102014

4

(Nielsen, Dammeyer, Vang, & Makransky, 2018). In order to measure 
self-directed learning, we used the Self-directed Learning Scale (SDLS), 
which consists of a single factor comprising 10 items (Lounsbury, Levy, 
Park, Gibson, & Smith, 2009). The items all involve the concept of the 
capacity to learn without relying on others (e.g. finding answers on one's 
own for content not explained in class). We measured academic pro
crastination with the Academic Procrastination Scale — Short form 
(APS-S) that consists of 5 items, all of which include avoiding or 
delaying academic tasks (McCloskey, 2012). This short form contains 
the items that the author deemed the most promising from his full-length 
version, based on their psychometric properties. The validity of the 
suggested short form was then confirmed in a study by Yockey (2016). 

We chose the Active Procrastination Scale (APS) to assess purposeful 
delay, which consists of 4 subscales with 4 items each, i.e. a total of 16 
items (Choi & Moran, 2009). The subscales are intentional decision, ability 
to meet deadlines, preference for pressure, and outcome satisfaction. Three 
of the questionnaires utilise a five-point Likert scale (APS-S, GASE, 
SDLS) while the APS implements a seven-point Likert scale. All ques
tionnaires exclusively implement the agree/disagree type of question. 
We chose the GASE, SDLS, and APS-S for their short length, which is 
beneficial for online surveys with busy students. To our knowledge, no 
shorter alternatives to the APS are available, which is why we imple
mented the original questionnaire. All of the questionnaires were 
translated into German in a multi-step process. We first translated the 
original questions from English into German ourselves, then used 
translation software to translate the German versions back into English, 
compared the two versions to detect specific expressions that may differ 
between them, and finally asked a native speaker for a final verification. 

The internal consistency, item difficulty, item discrimination, and 
example items of all four of the questionnaires are shown in Table 1 
below. Item difficulty usually refers to the likelihood of a correct answer 
in a test, but can also be used to determine the likelihood of an affir
mative answer in a questionnaire. The internal consistency, expressed by 
Cronbach's alpha, is 0.68 for the GASE, 0.81 for the SDLS, 0.76 for the 
APS, and 0.85 for the APSS. 

The log data was extracted from the database of the university's 
instance of Moodle. Since variables related to durations (e.g. the dura
tion of solving a quiz or reading an interactive book) were not available 
to us at the time, we used click-based variables included in the raw log 
files, signifying activity. The first such variable was the number of clicks 
on an assignment, which is the sum of all individual clicks on a particular 
assignment section in the course before the assignment was submitted. 
Clicks that occurred after the submission (e.g. to check whether the 
lecturer provided their feedback) were ignored because they were 
irrelevant for the prediction. Next, we considered the overall number of 
clicks on relevant activities as a predictor. We consider all activities on 

Moodle to be relevant that are provided as optional tasks that involve 
engagement with the learning material. The variable was thus calculated 
as the sum of all clicks students made on the following course activities: 
quizzes, wikis, forums, chats, glossaries, embedded learning videos, and 
interactive books. Moodle activities we did not consider were stat re
ports, grade reports, and schedules. The courses at our institution 
generally consist of multiple blocks (between five and ten), each with its 
own assignments, optional tasks, and face-to-face class. The third and 
final log variable was the block-click-interval, which was the difference 
between the point in time the first click on an assignment was registered 
and the day the block the assignment was a part of started (generally two 
weeks after the previous face-to-face class). We included this variable 
due to its face validity: the longer a student waits to start working on an 
assignment (indicated by the first click since the task description is not 
visible in the main course and requires at least one click to be read), the 
less time they have to complete it before the deadline. 

Since the outcome variable delay depends on the existence of a 
deadline for its calculation, we focus solely on the submission of 
mandatory assignments instead of involving additional learning tasks 
that are self-paced and/or optional. Thus, we defined delay as the 
temporal distance between the deadline of an assignment and its sub
mission. The other outcome variable of interest, score, was calculated 
based on raw assignment scores extracted from the log files, which were 
then divided by the respective maximum score. This was done in order 
to turn all of the scores into percentage scores, rendering them 
comparable. 

On top of these predictors, we considered five covariates for our 
models, including age and gender. Since learning behaviour could change 
over time, we considered study experience as an additional covariate, 
which refers to the number of years the students have been studying at 
our institution up to the point of data collection. Department is another 
covariate we included since the effects could vary between study sub
jects. Moreover, we considered the type of deadline as a final relevant 
covariate. Since our institution grants lecturers many liberties in regards 
to course-specific details, assignment deadlines are specified in a diverse 
range of ways. We categorised the deadlines into two groups for this 
study: relative dates (i.e. in relation to a certain face-to-face class, e.g. 
two weeks after the next class) and absolute dates (e.g. on the 31st of 
August, 23:59). 

3.3. Analyses 

The analyses were conducted with R (Version 4.0.2; R Core Team, 
2020) and the R-packages brms (Version 2.13.5; Bürkner, 2017, 2018), 
chron (Version 2.3.56; James & Hornik, 2020), fitdistrplus (Version 1.1.1; 
Delignette-Muller & Dutang, 2015), flextable (Version 0.5.11; Gohel, 
2020), ggplot2 (Version 3.3.2; Wickham, 2016), ggpubr (Version 0.4.0; 
Kassambara, 2020), knitr (Version 1.30; Xie, 2015), lubridate (Version 
1.7.9; Grolemund & Wickham, 2011), moments (Version 0.14; Komsta & 
Novomestky, 2015), papaja (Version 0.1.0.9997; Aust & Barth, 2020), 
performance (Version 0.5.0; Lüdecke, Makowski, Waggoner, & Patil, 
2020), psych (Version 2.0.8; Revelle, 2020), sjPlot (Version 2.8.5; 
Lüdecke, 2020), stringr (Version 1.4.0; Wickham, 2019), and tidyverse 
(Version 1.3.0; Wickham et al., 2019). 

We followed Bayesian approaches for our analyses since we intend to 
use the results of this study to inform the priors of a follow-up study. 

4. Results 

4.1. Descriptives 

The mean delay was − 1.66 days, which translates to an early sub
mission of assignments roughly one and a half days before the deadline 
(SD = 18.26, min = − 113.51, max = 132.43). Positive values indicate 
delay and negative values mean early submissions. The skewness of the 
distribution was low (1.20), the kurtosis however was excessively high 

Table 1 
Questionnaire descriptives.  

Scale Cronbach's 
alpha 

Item 
difficulty 

Item 
discrimination 

Example item 

GASE  0.68 0.71–0.86 0.2–0.66 I generally manage to 
solve difficult academic 
problems if I try hard 
enough. 

SDLS  0.81 0.62–0.86 0.32–0.62 I like to be in charge of 
what I learn and when I 
learn it. 

APS  0.76 0.45–0.86 − 0.01–0.68 I frequently find myself 
putting important 
deadlines off. 

APSS  0.85 0.42–0.52 0.62–0.73 In order to make better 
use of my time, I 
intentionally put off 
some tasks. 

Note. Cronbach's Alpha, item difficulty, item discrimination values, and example 
items for all four questionnaires 
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(18.91) due to a vast majority of the submissions having been made 
shortly before or after the deadline (see Fig. 1). The total amount of 
assignments was 1107, equating an average of 8.26 assignments per 
student. The mean score is surprisingly high at 89.14% (SD = 14.58). 
The median revealed that half of the scores are above 93.81%. The mean 
values of the predictors were as follows: self-efficacy (mean = 19.71; SD 
= 3.10, min = 8, max = 25), self-directed learning (mean = 38.74, SD =
5.29, min = 18, max = 50), academic procrastination (mean = 11.04, SD 
= 4.16, min = 5, max = 21), purposeful delay (mean = 72.51, SD =
11.87, min = 43, max = 104), number of clicks on the assignment (mean 
= 6.58, SD = 4.91, min = 1, max = 34), the number of clicks on relevant 
activities (mean = 173.83, SD = 168.44, min = 0, max = 1237), and the 
block-click-interval (mean = − 7.13, SD = 32.40, min = − 150.30, max =
98.72). 

The values for our covariates were as follows: age (mean = 31.61, SD 
= 7.97, min = 19, max = 61), gender (Nmen = 65, Nwomen = 69), study 
experience in years (mean = 2.63, SD = 1.24, min = 1, max = 5), the 
department (NassignEconomics = 366, NassignComputerScience = 418, NassignHealth 
= 323), and the type of deadline (Nrelative = 944, Nabsolute = 163). The 
predictors and covariates were all standardised (z-transformed) for the 
multilevel models due to their different scales (with the exception of the 
non-binary categorial variable department). 

4.2. Bayesian multilevel models 

Due to the way our data was structured, we decided to calculate 
multilevel models. The basic structure was as follows: Every student was 
enrolled in at least one course and handed in at least one assignment for 
each of their courses. The assignments were therefore located on level 1 
and were nested in two grouping factors, namely the course and the 
student (level 2), resulting in repeated measures for some of the vari
ables. In our dataset, the variables student and course were interlaced, i. 
e. students could be part of multiple courses and courses could contain 
multiple students. Our dataset was not large enough to inform highly 
complex multilevel models with nested grouping factors. Therefore, we 
settled on 2-levels model with course and student as level-2 variables. 

Our predictors and covariates were either associated with the 

assignment, the course, or the student. The variables associated with 
assignment (level 1) were the number of clicks on the assignment and the 
block-click-interval as predictors and the covariate type of deadline. The 
predictors associated with student (level 2) were the four questionnaire 
scores as well as the covariates age, gender, study experience, and stress, 
since these variables concerned the participants rather than the assign
ments. One predictor (number of clicks on relevant activities) and one 
covariate (department) were associated with Course (also level 2). 

We then calculated six Bayesian multilevel models with brms in order 
to address the first and second research questions. The first model was 
an intercept-only model (modelIO). The second one (modelquest) then 
added the four trait predictors (i.e. GASE, SDLS, APSS, and APS). The 
third and fourth models (modellogRI and modellogRS) contained state pre
dictors in the form of the three log data variables described above. The 
trait predictors were not included in these two models. Model three 
included random intercepts and model four added random slopes. The 
grouping factor for the random parts of these two models was either 
course or student, depending on the predictor. The fifth and sixth models 
(modelallRI and modelallRS) included all seven predictors, again with the 
same random parts as in models three and four. The five covariates were 
featured in all of the models except for the intercept-only model. 

All models shared the same outcome variable, namely delay. Despite 
the unusual distribution seen in the left-hand plot in Fig. 1, we opted for 
a Gaussian distribution in the multilevel models due to the low skewness 
of the distribution. As an example for how we specified the models in R, 
we chose modelallRS (see R code chunk below). Since we did not have any 
informative priors at our disposal, we used the default weakly- 
informative priors provided by brms. 

Fig. 1. Distribution of delay (in days) and assignment scores (in percent).  
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First, we report the magnitude of the fixed effects in our models. 
According to Lorah (2018), the effect size of fixed effects in multilevel 
models can either be represented by the standardised regression co
efficients or by Cohen's f2. We decided to report both since the high- 
kurtosis distribution may lead to effects based on regression co
efficients appearing larger than they actually are. Cohen's f2 effect sizes 
for all predictors and covariates are displayed in Table 2. We found two 
fixed effects that were deemed at least “small” judging by Cohen's f2 (see 
Fig. 2). The larger of the two was produced by the predictor block-click- 
interval, which was present in all of the models it was included in (ElogRI 
= 6.20, [5.20, 7.23]; ElogRS = 6.48, [4.57, 8.42]; EallRI = 6.10, [5.10, 
7.15]; EallRS = 6.43, [4.48, 8.39]). The effect size was medium to small 
(flogRI

2 = 0.15, flogRS
2 = 0.15, fallRI

2 = 0.14,fallRS
2 = 0.14). The other small 

effect was produced by the predictor number of clicks on the assignment, 
which also appeared in all four respective models (ElogRI = 4.65, [3.75, 
5.54]; ElogRS = 3.82, [2.18, 5.44]; EallRI = 4.68, [3.81, 5.58]; EallRS =

3.92, [2.34, 5.54]). 
The remaining fixed effects did not quite pass the threshold set by 

Cohen's f2 and were not as consistent across models as the two main 
effects, but are still worth reporting due to the credible interval of their 
regression coefficients not including zero. These included four pre
dictors and two covariates. A fixed effect of self-directed learning emerged 
in two models (Equest = − 1.81, [− 3.25, − 0.35]; EallRI = − 2.06, [− 3.59, 
− 0.45]), as did an effect of number of clicks on relevant activities (EallRI =

2.12, [0.10, 4.15]; EallRS = 2.12, [0.01, 3.02]). Moreover, we found ef
fects for self-efficacy (Equest = 2.86, [1.44, 4.27]) and academic procras
tination (EallRS = 0.99, [0.06, 1.93]) in one model each. The covariate 
study experience produced fixed effects in three models (Equest = 1.57, 
[0.33, 2.80]; ElogRI = 3.23, [0.39, 6.03]; EallRI = 3.27, [0.37, 6.10]), as 
did deadline type (Equest = − 1.92, [− 3.07, − 0.80]; ElogRS = − 2.03, 
[− 3.93, − 0.15]; EallRS = − 1.99, [− 3.98, − 0.10]). 

The credible intervals of the remaining predictors and covariates all 
included 0, rendering them negligible. Random effects can be found in 
all RS models and for both grouping factors. The fixed and random ef
fects of modelallRS are displayed in Table 3 (see Annex A for tables con
cerning the other models). Two of the random (i.e. group level) effects 
were correlated, namely the block-click-interval and the number of clicks 
on the assignment. This effect existed for both grouping factors (course: 
RallRS = 0.66, [0.36, 0.88]; student: RallRS = 0.68, [0.33, 0.92]). The 
correlation between the variables themselves was outside the realm of 
multicollinearity (R = − 0.27). The other correlated effects did not 
involve the predictors. 

We then conducted a model fit comparison and calculated the effect 
size for the models, represented by R2 (see Table 4). ModelallRS had the 
best fit in comparison to the other five models; however, the difference 
to the second best model (modellogRS) was lower than the respective 
standard error, rendering the exact ranking unclear (see Table 4). The 

percentage of explained variance in modelallRS, calculated with the 
r2_bayes function from the package performance, was R2 = 0.74 when 
random effects were included (conditional) and 0.18 without random 
effects (marginal). The loo-adjusted R2, which is the closest equivalent 
to an adjusted R2 measure, was R2 = 0.62. 

In order to investigate the third and fourth research questions, we 
calculated the same models a second time, this time with score as the 
outcome variable and delay as an additional eighth predictor. Due to the 
peculiar distribution of the outcome variable, we first inspected a Cullen 
and Frey plot (see Fig. 3) with the fitdistrplus package to determine the 
most appropriate distribution based on skewness and kurtosis, in this 
case a gamma distribution. Since the scores included 0, we chose the 
hurdle gamma family for our models. 

The resulting models included very few fixed effects for any of the 
predictors. Cohen's f2 was not applicable due to the underlying distri
bution, which is why we focused on the standardised regression co
efficients. Two predictors produced fixed effects, namely self-directed 
learning (Equest = 0.03, [0.01, 0.05]; EallRI = 0.03, [0.01, 0.05]; EallRS =

0.04, [0.01, 0.06]) and academic procrastination (Equest = 0.03, [0.01, 
0.05]). Two covariates also had effects: study experience (ElogRS = − 0.08, 
[− 0.13, − 0.01]; EallRS = − 0.08, [− 0.14, − 0.02]) and the department, 
specifically computer science when compared to health (Equest = 0.09, 
[0.03, 0.15]). See Annex B for the model summaries. The model fit 
comparison (Table 5) revealed an unclear ranking (again due to large 
standard errors) and small R2s. 

5. Discussion 

The main goal of this study was to find out whether the combination 
of subjective questionnaire data (trait) and objective log data extracted 
from an LMS (state) improves the predictability of two outcome vari
ables, dilatory behaviour and achievement in online assignments. 
Moreover, we intended to determine the best individual predictors for 
these two outcome variables. We calculated multiple Bayesian multi
level models to answer these questions. 

Even though the high-kurtosis distribution in the delay data and the 
peculiar distribution of the scores were not ideal, the models all 
converged with satisfying Rhats, indicating a good fit between the data 
and our models. In regards to delay, the two strongest and most 
consistent effects were both based on log data predictors, namely the 
block-click-interval and the number of clicks on an assignment in that order. 
A higher interval was indicative of a longer delay, which can be 
explained by the circumstance that students who start their work 
assignment later have less time to complete it and therefore likely hand 
it in later. This result is in line with the findings of del Puerto Paule-Ruiz, 
Riestra-González, Sánchez-Santillán, and Pérez-Pérez (2015) and Cer
ezo, Esteban, Sánchez-Santillán, and Núñez (2017). The latter effect was 

Table 2 
Effect sizes.   

Cohen's f2 quest Cohen's f2 log_RI Cohen's f2 log_RS Cohen's f2 all_RI Cohen's f2 all_RS 

Predictors 
GASE_z 0.01 – –  0.01  0.01 
SDLS_z 0.01 – –  0.01  0.01 
APSS_z 0 – –  0.00  0.00 
APS_z 0 – –  0.00  0.00 
n_clicks_assign_z – 0.05 0.04  0.05  0.05 
interval_block_click_z – 0.15 0.15  0.14  0.14 
n_clicks_relevant_activity_z – 0 0  0.00  0.00  

Covariates 
age_z 0 0 0  0.00  0.00 
gender_z 0.01 0 0  0.00  0.00 
study_exp_z 0.01 0.01 0.01  0.01  0.01 
deadline_type_z 0.01 0 0  0.00  0.00 
depart 0.01 0 0  0.00  0.00 

Note. Effect sizes (Cohen's f2) of predictors and covariates for all models expect the intercept-only model 
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also positive, meaning a higher number of clicks indicates longer delay. 
More activity would usually imply less procrastination (see Cerezo, 
Esteban, Sánchez-Santillán, & Núñez, 2017), in this case however we 
look at the activity specific to the page containing the description of the 
assignment and the according submission form itself, rather than 
meaningful activity within the course (which is covered by the third log 
variable). Less clicks may be associated with swift submissions of as
signments considering there is little benefit to be gained from opening 
this particular page within the course multiple times on different occa
sions. Also, we only considered the overall number of clicks rather than 
inspecting its temporal distribution across the semester, so increased 
activity can emerge through random clicking or repeated visits to this 
part if the students needed to refresh their memories (e.g. assignment 
instructions). 

The third log variable, clicks on relevant activities, only producing a 
tiny effect is surprising, given the abovementioned connection between 
activity and procrastination. Moreover, the effect is positive, which may 
appear counterintuitive, but not implausible when considering that even 
relevant learning tasks can be used as a means of procrastinating, similar 
to how people may perform tasks they do not enjoy on a regular basis to 
distract themselves from a task they enjoy even less (e.g. house-cleaning 
instead of learning for an upcoming exam). The models solely containing 
objective predictors not only included the most noteworthy effects, they 
had a much better model fit than their subjective counterparts and, 
given the unclear model fit ranking, may even surpass the combined 
models. 

These results suggest that paying attention to students' log behaviour 
is worthwhile when trying to predict (and ultimately prevent) dilatory 
behaviour. One potential intervention that could be developed based on 
these findings would be a time management tool that provides prompts 
on an LMS, reminding students of upcoming deadlines, similar to the 
system presented by Onji and Kikuchi (2011). This idea is also supported 

by the consistent effect of the covariate deadline type: the more absolute 
the deadline was, the less delay there was, implying a benefit of clearly 
communicated deadlines. The timing of such prompts would be key, 
since deadlines that appear distant may reduce the sense of urgency, 
particularly with students that have a low course load (Huang, Zhang, 
Burtch, Li, & Chen, 2021). Another possibility would be a tool that in
forms lecturers about dilatory tendencies of their students, allowing 
them to intervene in order to minimise the risk of drop-outs, similarly to 
the application presented by Antunes et al. (2016). Attention also needs 
to be paid to another covariate, the students' study experience. Interest
ingly, experienced students tended to delay the submission of their as
signments more, which we suspect may be the result of an attitude of 
increased relaxation towards deadlines as the years pass by. 

Given how little the log data models improve in their level of 
explained variance when the questionnaire predictors were added, it 
appears to be more efficient to only use log-data-based predictors rather 
than combining them with questionnaire-based predictors. However, 
these results do not imply that models with subjective predictors should 
be discarded altogether. Both of our successful predictors rely on at least 
one click having been made on the assignment, which often occurs 
rather close to the deadline. This could be an issue in practical appli
cations of these models. If one wishes to make early predictions, pre
diction models devoid of log data may prove useful when no such data is 
yet available. Appropriate data for early predictions can be provided by 
subjective measures, which may theoretically be assessed via question
naires at any given time during a semester. In our case, we found three 
effects of subjective predictors across the delay models, namely those of 
self-efficacy, self-directed learning, and academic procrastination. Despite 
these effects being considerably weaker than their objective counter
parts and not passing the threshold for one of our two effect size mea
sures, we still considered them worth discussing. 

The higher the self-directed learning score was, the shorter the delay, 

Fig. 2. Effects of number of clicks on assignment (modelallRS), and block-click-interval (modelallRS).  
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which was consistent with our hypothesis. Given that self-directed 
learning involves teachable skills, this result implies that fostering it 
may be a fruitful intervention strategy. In contrast, the effect of self- 
efficacy was positive, meaning that higher scores indicated longer 
delay, negating our corresponding hypothesis. One possible explanation 
could be the positive relation between self-efficacy and purposeful delay 
(trait), meaning that students who delay on purpose may feel more 
confident in their decision compared to procrastinators. However, since 
we cannot distinguish between types of dilatory behaviour in this 
context (i.e. whether participants procrastinated or delayed the sub
mission on purpose for valid reasons), this needs to be explored further. 
Another explanation could be the comparatively low internal consis
tency of the GASE. This raises the question if a different questionnaire 
may have been more appropriate (at the cost of efficiency). In contrast, 

the weak link between academic procrastination and delay is consistent 
with the literature, given the often-reported medium correlation be
tween trait and state procrastination and the fact our delay measure 
conceptually encompasses more than one type of delay. 

In contrast to the delay models, the score models only produced a few 
weak effects. The most consistent effect across models was self-directed 
learning, further stressing the potential benefits of fostering it. Additional 
effects were provided by academic procrastination, which was positive, 
and the covariates study experience (experienced students having slightly 
lower scores) and department (computer science students scoring slightly 
higher than students in the health department). The weakness of these 
effects prevents them from being interpreted in any meaningful way. 

Table 3 
Fixed and random effects in modelallRS.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  0.44  3.24  − 6.08  6.62  1.00 
GASE_z  0.84  0.66  − 0.45  2.13  1.00 
SDLS_z  − 1.07  0.58  − 2.24  0.08  1.00 
APSS_z  0.99  0.47  0.06  1.93  1.00 
APS_z  − 0.16  0.45  − 1.03  0.71  1.00 
n_clicks_assign_z  3.92  0.82  2.34  5.54  1.00 
interval_block_click_z  6.43  1.00  4.48  8.39  1.00 
n_clicks_relevant_activity_z  1.50  0.76  0.01  3.02  1.00 
age_z  − 0.45  0.46  − 1.34  0.45  1.00 
gender_z  − 0.52  0.56  − 1.58  0.58  1.00 
study_exp_z  0.83  0.71  − 0.55  2.26  1.00 
deadline_type_z  − 1.99  0.97  − 3.98  − 0.10  1.00 
department comp.sci  − 2.86  3.67  − 9.85  4.44  1.00 
department economics  0.57  3.82  − 6.70  8.30  1.00  

Random effects (course) 
sd(Intercept)  14.40  1.73  11.32  17.96  1.00 
sd(n_clicks_assign_z)  4.91  0.73  3.60  6.41  1.00 
sd(interval_block_click_z)  6.77  0.86  5.19  8.52  1.00 
sd(deadline_type_z)  5.46  0.93  3.77  7.46  1.00 
sd(department comp.sci)  15.98  2.10  12.11  20.46  1.00 
sd(department economics)  3.66  2.77  0.17  10.45  1.02 
cor(n_clicks_assign_z,interval_block_click_z)  0.66  0.14  0.36  0.88  1.01 
cor(Intercept,deadline_type_z)  − 0.84  0.10  − 0.97  − 0.57  1.00 
cor(Intercept,department comp.sci)  − 0.97  0.02  − 0.99  − 0.93  1.00 
cor(deadline_type_z,department comp.sci)  0.88  0.09  0.66  0.98  1.00  

Random effects (student) 
sd(Intercept)  1.01  0.62  0.06  2.33  1.00 
sd(n_clicks_assign_z)  4.46  0.76  3.01  5.99  1.00 
sd(interval_block_click_z)  3.62  0.74  2.23  5.13  1.00 
sd(n_clicks_relevant_activity_z)  0.80  0.60  0.03  2.25  1.01 
sd(deadline_type_z)  0.81  0.57  0.03  2.06  1.00 
cor(n_clicks_assign_z,interval_block_click_z)  0.68  0.15  0.33  0.92  1.00 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects and random effects (both grouping factors). For the random 
effects, the estimates which include 0 in their credible intervals are not shown. “z” indicates z-transformed variables. 

Table 4 
Model fit comparison (delay).  

Model elpd diff SE diff R2 

Bayes 
R2 Bayes 
marginal 

R2 loo- 
adjusted 

modellogRS  0.00  0.00  0.74 0.18  0.62 
modelallRS  − 3.11  3.24  0.74 0.17  0.62 
modelallRI  − 200.84  39.84  0.54 0.19  0.46 
modellogRI  − 201.30  39.68  0.54 0.18  0.47 
modelquest  − 538.19  65.79  0.05 –  0.02 
modelIO  − 551.21  65.34  0.00 –  0.00 

Note. Comparison of the model fit by leave-one-out cross validation (LOO). Elpd 
diff indicates the difference between the expected log pointwise predictive 
density for a new dataset and SE diff is the standard error of elpd diff. Negative 
elpd diffs favour the first model, in this case model logRS. The marginal R2 in
dicates the percentage of explained variance without random effects. 

Fig. 3. Cullen and Frey graph for the distribution of scores.  
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Overall, the models produced several effects and the amount of 
explained variance is respectable. The presence of a sizable amount of 
random effects for both grouping factors, combined with the difference 
in explained variance between models that do or do not include them 
shows that individual and course-specific differences play a large role. 
Despite the importance of individual and course-specific factors this 
result implies, our predictors related to these two aspects produced 
either few or no effects at all, meaning other, contextual factors need to 
be taken into consideration, e.g. motivational ones (cf. Howell & Wat
son, 2007). Additional predictors could for example be located on the 
course level, e.g. interest in the topic, instructional clarity, or perceived 
difficulty (cf. Ackerman & Gross, 2005; Steel, 2007). Self-report mea
sures, which were confined to the subject-level in this study, could also 
be applied on the course level or, even more fine-grained, on the 
assignment level. While more fine-grained subjective state measures 
could provide valuable insights in addition to the objective state and 
subjective trait measures already employed, they would require 
frequent data collection throughout the semester, which may be 
perceived as disruptive from the students' perspective. If this sort of 
measure is to be involved, short questionnaires would be crucial to 
prevent participants from dropping out of the study. The high percent
age of variance explained by individual as well as course differences 
implies potential in assessing more contextual factors, such as specific 
reasons for delaying a submission or the procrastination-friendliness of 
the environment (Nordby, Klingsieck, & Svartdal, 2017). This could for 
instance be achieved by interviews, which allow for more nuanced in
formation to be collected. Data gathered from interviews could also 
provide the necessary information to help categorise dilatory behaviour. 

In addition, the log data predictors may benefit from a classification 
into distinguishable patterns. In the current models, click-based and 
temporal log data are treated as individual predictors, but merging them 
(e.g. by factoring in their distribution of clicks across the semester) may 
yield patterns that are able to give more insight into dilatory behaviour. 

6. Limitations 

The first limitation in our study concerns a potential sample bias, 
which is a two-fold issue. First, we lost a considerable amount of par
ticipants during data preparation due to missing data. These losses can 
mostly be explained by course characteristics, which is not uncommon 
in field studies. Second, self-selection biases could be involved since 

students who decided to participate in the study may procrastinate less 
than non-participants, rendering the sample less representative. Both of 
these possibilities could affect sampling and lead to a biased sample. 
However, the second possibility presents an additional advantage of 
predicting dilatory behaviour based on log data: unlike subjective pre
dictors, which require participants to fill in a potentially lengthy ques
tionnaire, thus opening the possibility of self-selection biases, objective 
predictors can be extracted from the LMS more directly and without 
interrupting the learning process. Participation would only require a 
permission by the student to extract the data. Biases may still apply since 
students could refuse to grant access to their data, but they at least 
would not be directly related to dilatory behaviour. 

An additional limitation is the focus on mandatory assignments. 
Dilatory behaviour concerns learning as a whole, rather than the timing 
of assignments hand-ins alone. However, analysing delay requires clear 
deadlines, which is often lacking in non-mandatory tasks. Technically, 
optional tasks (e.g. quizzes) and studying for final exams also involve 
deadlines, but they are often implicit and not bound to a specific date. 
Moreover, they may involve blind spots from a data collection point of 
view due to a lack of direct, objective access to offline learning activities. 
How delay can be explored in regards to learning activities other than 
mandatory assignments should be addressed in future studies. 

7. Conclusions 

In conclusion, Bayesian multilevel models that include predictors 
based on questionnaire and log data can be implemented in order to 
predict the extent of dilatory behaviour in a learning management sys
tem, despite not all the involved predictors being equally consistent. Log 
data turned out to be the more relevant type of predictor, indicated by 
the negligible improvement of models that include both types of pre
dictors over ones that only included log data predictors and the strength 
of the individual log data predictors. Predicting achievement yielded 
much weaker results. The results have implications for the timing of 
predictions in practical applications of such models, meaning the ability 
to make early predictions is not guaranteed for all of the predictors. 
Future studies need to take more (fine-grained) context factors into 
consideration, especially on the individual and course levels, in order to 
improve predictions and allow for differentiation between procrastina
tion and other types of dilatory behaviour. 
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Table 5 
Model fit comparison (score).  

Model elpd diff SE diff R2 

Bayes 
R2 Bayes 
marginal 

R2 loo- 
adjusted 

modellogRS  0.00  0.00  0.46 0.19  0.22 
modelallRS  − 1.04  2.80  0.46 0.21  0.22 
modelallRI  − 55.62  50.80  0.31 0.12  0.23 
modellogRI  − 56.85  52.40  0.33 0.15  0.21 
modelquest  − 79.69  47.22  0.14 –  0.05 
modelIO  − 91.82  44.20  0.00 –  0.00 

Note. Comparison of the model fit by leave-one-out cross validation (LOO). Elpd 
diff indicates the difference between the expected log pointwise predictive 
density for a new dataset and SE diff is the standard error of elpd diff. Negative 
elpd diffs favour the first model, in this case model allRS. The marginal R2 in
dicates the percentage of explained variance without random effects. 
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Appendix A. Remaining tables for models predicting delay  

Table 6 
Fixed effects in modelquest.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 1.34  1.13  − 3.56  0.92  1 
GASE_z  2.86  0.72  1.44  4.27  1 
SDLS_z  − 1.81  0.74  − 3.25  − 0.35  1 
APSS_z  0.60  0.59  − 0.53  1.76  1 
APS_z  − 0.64  0.59  − 1.77  0.54  1 
age_z  − 0.56  0.55  − 1.65  0.54  1 
gender_z  − 1.10  0.60  − 2.31  0.09  1 
study_exp_z  1.57  0.63  0.33  2.80  1 
deadline_type_z  − 1.92  0.59  − 3.07  − 0.80  1 
department comp.sci  − 1.43  1.59  − 4.50  1.66  1 
department economics  0.67  1.68  − 2.58  3.93  1 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects.  

Table 7 
Fixed effects in modellogRI.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  0.65  3.31  − 5.62  7.22  1.00 
n_clicks_assign_z  4.65  0.46  3.75  5.54  1.00 
interval_block_click_z  6.20  0.52  5.20  7.23  1.00 
n_clicks_relevant_activity_z  1.64  1.06  − 0.43  3.70  1.00 
age_z  − 0.73  0.72  − 2.14  0.69  1.00 
gender_z  − 1.13  0.80  − 2.72  0.39  1.00 
study_exp_z  3.23  1.45  0.39  6.03  1.01 
deadline_type_z  − 0.30  0.52  − 1.33  0.69  1.00 
department comp.sci  − 3.27  4.14  − 11.37  4.65  1.00 
department economics  2.49  4.23  − 5.95  10.62  1.00 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects.  

Table 8 
Fixed and random effects in modellogRS.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  1.24  3.11  − 5.06  7.15  1.00 
n_clicks_assign_z  3.82  0.84  2.18  5.44  1.00 
interval_block_click_z  6.48  0.98  4.57  8.42  1.00 
n_clicks_relevant_activity_z  1.27  0.75  − 0.21  2.71  1.00 
age_z  − 0.26  0.48  − 1.20  0.67  1.00 
gender_z  − 0.58  0.57  − 1.69  0.54  1.00 
study_exp_z  0.82  0.71  − 0.59  2.25  1.00 
deadline_type_z  − 2.03  0.96  − 3.93  − 0.15  1.00 
department comp.sci  − 3.51  3.49  − 10.19  3.39  1.00 
department economics  − 0.62  3.66  − 7.55  6.63  1.00  

Random effects (course) 
sd(Intercept)  14.34  1.66  11.34  17.95  1.00 
sd(n_clicks_assign_z)  4.88  0.70  3.60  6.32  1.00 
sd(interval_block_click_z)  6.73  0.89  5.03  8.52  1.00 
sd(deadline_type_z)  5.47  0.92  3.75  7.40  1.01 
sd(department comp.sci)  15.87  2.00  12.16  19.96  1.00 
sd(department economics)  3.83  2.74  0.16  9.87  1.01 
cor(n_clicks_assign_z,interval_block_click_z)  0.66  0.15  0.31  0.90  1.02 
cor(Intercept,deadline_type_z)  − 0.84  0.11  − 0.97  − 0.57  1.00 
cor(Intercept,department comp.sci)  − 0.97  0.02  − 0.99  − 0.93  1.01 
cor(deadline_type_z,department comp.sci)  0.88  0.09  0.65  0.98  1.00  

Random effects (student) 
sd(Intercept)  1.35  0.67  0.09  2.67  1.01 
sd(n_clicks_assign_z)  4.65  0.74  3.27  6.14  1.00 
sd(interval_block_click_z)  3.74  0.73  2.33  5.25  1.00 
sd(n_clicks_relevant_activity_z)  0.82  0.61  0.04  2.28  1.00 
sd(deadline_type_z)  0.83  0.57  0.04  2.12  1.01 
cor(n_clicks_assign_z,interval_block_click_z)  0.69  0.14  0.37  0.91  1.00 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects and random effects (both grouping factors). For the random 
effects, the estimates which include 0 in their credible intervals are not shown.  
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Table 9 
Fixed effects in modelallRI.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  0.03  3.47  − 7.03  6.58  1.01 
GASE_z  0.87  0.94  − 0.98  2.69  1.00 
SDLS_z  − 2.06  0.79  − 3.59  − 0.45  1.00 
APSS_z  0.86  0.64  − 0.36  2.12  1.00 
APS_z  0.16  0.62  − 1.06  1.36  1.00 
n_clicks_assign_z  4.68  0.45  3.81  5.58  1.00 
interval_block_click_z  6.10  0.52  5.10  7.15  1.00 
n_clicks_relevant_activity_z  2.12  1.03  0.10  4.15  1.00 
age_z  − 0.99  0.67  − 2.30  0.34  1.00 
gender_z  − 1.03  0.71  − 2.47  0.38  1.00 
study_exp_z  3.27  1.45  0.37  6.10  1.00 
deadline_type_z  − 0.34  0.53  − 1.35  0.68  1.00 
department comp.sci  − 2.61  4.39  − 10.90  6.22  1.01 
department economics  3.94  4.43  − 4.46  13.06  1.00 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects. 

Appendix B. Tables for models predicting score  

Table 10 
Fixed effects in modelquest.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 0.17  0.03  − 0.22  − 0.12  1 
delay_z  − 0.01  0.01  − 0.03  0.01  1 
GASE_z  0.00  0.01  − 0.03  0.02  1 
SDLS_z  0.03  0.01  0.01  0.05  1 
APSS_z  0.03  0.01  0.01  0.05  1 
APS_z  − 0.01  0.01  − 0.03  0.01  1 
age_z  0.01  0.01  − 0.01  0.03  1 
gender_z  − 0.01  0.01  − 0.03  0.01  1 
study_exp_z  − 0.02  0.01  − 0.04  0.00  1 
deadline_type_z  0.01  0.01  − 0.01  0.02  1 
department comp.sci  0.09  0.03  0.03  0.15  1 
department economics  0.01  0.04  − 0.06  0.08  1 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects.  

Table 11 
Fixed effects in modellogRI.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 0.17  0.04  − 0.25  − 0.10  1 
delay_z  0.00  0.01  − 0.02  0.02  1 
n_clicks_assign_z  0.00  0.01  − 0.02  0.02  1 
interval_block_click_z  0.00  0.01  − 0.02  0.02  1 
n_clicks_relevant_activity_z  0.00  0.02  − 0.03  0.03  1 
age_z  0.02  0.01  − 0.01  0.04  1 
gender_z  − 0.03  0.01  − 0.05  0.00  1 
study_exp_z  − 0.03  0.02  − 0.06  0.01  1 
deadline_type_z  0.01  0.01  − 0.01  0.04  1 
department comp.sci  0.08  0.05  − 0.01  0.17  1 
department economics  0.00  0.06  − 0.11  0.12  1 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects.  

Table 12 
Fixed and random effects in modellogRS   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 0.16  0.04  − 0.23  − 0.09  1.00 
delay_z  − 0.01  0.01  − 0.03  0.01  1.00 
n_clicks_assign_z  0.00  0.01  − 0.02  0.02  1.00 
interval_block_click_z  0.00  0.01  − 0.02  0.03  1.00 
n_clicks_relevant_activity_z  − 0.01  0.02  − 0.05  0.03  1.00 
age_z  0.02  0.01  − 0.01  0.04  1.00 
gender_z  − 0.02  0.01  − 0.05  0.00  1.00 
study_exp_z  − 0.08  0.03  − 0.13  − 0.01  1.00 

(continued on next page) 
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Table 12 (continued )  

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

deadline_type_z  0.01  0.01  − 0.01  0.04  1.00 
department comp.sci  0.04  0.08  − 0.11  0.19  1.00 
department economics  − 0.07  0.08  − 0.22  0.08  1.00  

Random effects (course) 
sd(department comp.sci)  0.37  0.08  0.22  0.53  1.01 
sd(department economics)  0.12  0.06  0.02  0.26  1.01 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects and random effects (course only). For the random effects, the 
estimates which include 0 in their credible intervals are not shown.  

Table 13 
Fixed effects in modelallRI.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 0.17  0.04  − 0.25  − 0.10  1 
delay_z  0.00  0.01  − 0.02  0.02  1 
GASE_z  − 0.02  0.01  − 0.05  0.01  1 
SDLS_z  0.03  0.01  0.01  0.05  1 
APSS_z  0.02  0.01  0.00  0.04  1 
APS_z  0.00  0.01  − 0.02  0.02  1 
n_clicks_assign_z  0.00  0.01  − 0.02  0.01  1 
interval_block_click_z  0.00  0.01  − 0.02  0.02  1 
n_clicks_relevant_activity_z  0.00  0.02  − 0.03  0.03  1 
age_z  0.01  0.01  − 0.01  0.03  1 
gender_z  − 0.02  0.01  − 0.04  0.01  1 
study_exp_z  − 0.03  0.02  − 0.06  0.01  1 
deadline_type_z  0.02  0.01  0.00  0.04  1 
department comp.sci  0.09  0.05  − 0.01  0.18  1 
department economics  0.00  0.07  − 0.13  0.13  1 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects.  

Table 14 
Fixed and random effects in modelallRS.   

Estimate Estimated error Lower 95% CI Upper 95% CI Rhat 

Fixed effects 
Intercept  − 0.17  0.03  − 0.23  − 0.10  1.00 
delay_z  0.00  0.01  − 0.02  0.02  1.00 
GASE_z  − 0.02  0.02  − 0.05  0.01  1.00 
SDLS_z  0.04  0.01  0.01  0.06  1.00 
APSS_z  0.02  0.01  − 0.01  0.04  1.00 
APS_z  0.00  0.01  − 0.02  0.02  1.00 
n_clicks_assign_z  0.00  0.01  − 0.02  0.02  1.00 
interval_block_click_z  0.01  0.01  − 0.02  0.03  1.00 
n_clicks_relevant_activity_z  − 0.01  0.02  − 0.05  0.03  1.00 
age_z  0.01  0.01  − 0.01  0.04  1.00 
gender_z  − 0.01  0.01  − 0.04  0.02  1.00 
study_exp_z  − 0.08  0.03  − 0.14  − 0.02  1.00 
deadline_type_z  0.02  0.01  − 0.01  0.04  1.00 
department comp.sci  0.05  0.08  − 0.11  0.19  1.00 
department economics  − 0.07  0.08  − 0.23  0.09  1.00  

Random effects (course) 
sd(department comp.sci)  0.38  0.08  0.22  0.53  1.01 
sd(department economics)  0.12  0.06  0.01  0.27  1.00 

Note. Estimates, standard errors, lower and upper ends of credible intervals, and Rhats for fixed effects and random effects (course only). For the random effects, the 
estimates which include 0 in their credible intervals are not shown. 
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ABSTRACT

Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential
negative consequences include higher risk of drop-outs, increased stress, and reduced mood. Due to
the rise of learning management systems and learning analytics, indicators of such behavior can be
detected, enabling predictions of future procrastination and other dilatory behavior. However, research
focusing on such predictions is scarce. Moreover, studies involving different types of predictors
and comparisons between the predictive performance of various methods are virtually non-existent.
In this study, we aim to fill these research gaps by analyzing the performance of multiple machine
learning algorithms when predicting the delayed or timely submission of online assignments in a
higher education setting with two categories of predictors: subjective, questionnaire-based variables
and objective, log-data based indicators extracted from a learning management system. The results
show that models with objective predictors consistently outperform models with subjective predictors,
and a combination of both variable types perform slightly better. For each of these three options, a
different approach prevailed (Gradient Boosting Machines for the subjective, Bayesian multilevel
models for the objective, and Random Forest for the combined predictors). We conclude that careful
attention should be paid to the selection of predictors and algorithms before implementing such
models in learning management systems.
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1 Introduction

The ubiquity of digitization continues to pervade many aspects of life, including learning. While this ongoing trend
entails numerous advantages for students, such as more flexible schedules, more engaging distance education or a
greater variety of interactive learning tasks Dumford and Miller [2018], drawbacks also need to be considered. One
potential drawback is the increased likelihood of academic procrastination due to the many distractions our digital
world offers. Academic procrastination is a type of dilatory behavior that is commonly defined as the irrational delay
of academic tasks such as writing assignments or studying course literature Steel [2007]. While seemingly harmless,
procrastination may lead to various negative consequences, which include increased stress, lower performance, and
reduced mood Tice and Baumeister [1997]. Moreover, this behavior is linked to increased risk of drop-out Doherty
[2006] and is reportedly highly prevalent among students in higher education Ellis and Knaus [1977], Steel [2007].

However, not all acts of delay are necessarily maladaptive since they can also be used as a deliberate strategy. The
positive, productive counterpart to procrastination is known as purposeful delay Corkin et al. [2011a]. Alternative
names for this concept include active delay, strategic delay or active procrastination, the latter of which is considered to
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be an oxymoron Pychyl [2008]. The term dilatory behavior thus serves as an umbrella term that refers to both positive
and negative forms of delay.

A promising approach to measuring indicators of dilatory behavior comes in the form of Learning Analytics (LA). LA is
often implemented as a conceptual framework to analyse course characteristics, such as prediction of students’ learning
performance, educational data analysis, data collection and measurement, and early intervention Hwang et al. [2017].
Given the potential consequences of negative dilatory behavior, the ability to detect it early utilizing an LA framework
could prove very useful to teachers, lecturers, and students alike. This especially concerns learning management
systems (LMS), which are able to provide objective indicators for such behavior. The earlier the detection, the more
time remains to intervene and to ultimately prevent potential drop-outs.

Predicting dilatory behavior in academic tasks is not trivial for multiple reasons, especially in the field: various courses
must be incorporated to allow for a generalization of such predictions and their timing also needs to be considered.
In this context, data collection and the type of variables (be they predictors or outcome variables) play a crucial role.
Despite the variety of types of Machine Learning (ML) models that could be employed, their predictive performance
may vary as a result of the size of the collected data set, the number of predictor variables, and the point in time
predictions are made. Therefore, the selection of an appropriate prediction model must involve such considerations.

Previous studies indicate the great potential of ML-based prediction models in learning analytics Azimi et al. [2020],
Pardo et al. [2017], Conijn et al. [2017], even when predicting dilatory behavior Akram et al. [2019]. To our knowledge,
however, comparisons between multiple ML algorithms are rather rare in this context (see Akram et al. [2019] and
Cerezo et al. [2017]). Moreover, delay is usually treated as a predictor for other outcome variables rather than being the
outcome variable itself. To fill this gap, we employ eight different ML algorithms to predict dilatory behavior in online
assignments. For our analyses, we used the same data set as in a prior study, where the prediction of dilatory behavior
was investigated, comparing models with subjective and objective predictors using Bayesian multilevel regression
Imhof et al. [2021]. We provide a comparative analysis to determine which algorithms deliver the best predictions and
compare the performance with the Bayesian models as a baseline.

2 Related Work

In this section, we present the related work on dilatory behavior and the machine learning algorithms employed to
predict such tendencies in various tasks. The analytical framework, research questions, and contributions of this paper
are also detailed.

2.1 Theoretical Background of Dilatory Behavior

As stated in the introduction, dilatory behavior is an umbrella term that encompasses at least two types of delay,
procrastination and purposeful delay. However, another important distinction should be made when investigating delay,
namely the one between trait and state delay. State variables are situational, whereas trait variables are stable with
less situation- or time-specific variance. In the case of procrastination, the correlation between trait and state (or in
other words, attitude and actual behavior) is reportedly medium to large at .51 Steel [2007]. This not only implies
that situational factors are important when trying to predict delay, but also that trait procrastination can still serve as a
predictor for state procrastination (or vice versa), albeit not a particularly strong one.

This train of thought leads to the question, which additional predictors besides trait procrastination should then
be considered when predicting procrastination and other types of dilatory behavior. Two broad categories present
themselves: subjective and objective predictors. The former are commonly assessed with questionnaires, while the
latter can be gained by observation, or in the case of LMS, collection of log data.

When predicting delay with subjective predictors, motivational aspects and learning-related factors suggest themselves.
One option are factors in the orbit of self-regulation, given that procrastination is often being considered a "self-
regulation failure" Steel [2007] whereas purposeful delay appears as its successful counterpart Corkin et al. [2011b].
Learning concepts related to self-regulation include academic self-efficacy and self-directed learning. Academic
self-efficacy refers to the belief in one’s ability to succeed at academic tasks such as writing exams Bandura [1986]
and is negatively linked to procrastination Wäschle et al. [2014], forming a vicious circle, but positively connected to
purposeful delay, counteracting that circle Chu and Choi [2005].

Self-directed learning (SDL) is a process in which students take responsibility for their own learning, which involves
self-monitoring, self-management, and self-evaluation of the learning process Bolhuis [1996], Knowles [1975], Garrison
[1997]. Research reveals positive links between SDL and self-efficacy Saeid and Eslaminejad [2017] and negative links
with procrastination Schommer-Aikins and Easter [2018].
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In the context of LMS, it is self-evident to consider objective predictors based on data extracted from such systems.
Popular approaches in learning analytics are to analyze click-based data (e.g., Cirigliano et al. [2020], Knight et al.
[2017]), which provide insights into student activity and engagement with learning content on the platform.

2.2 Delay-related Prediction Models in Learning Analytics

Prediction models that involve delay as a predictor are quite common in the literature. A variety of methods have
been implemented to investigate the relationship between procrastination (as the most commonly researched type of
delay) and other variables, usually achievement. A first example is You [2015], who used multiple regression analysis
to investigate the effects of procrastination on course achievement. Their regression model predicted achievement at
each point in time, with the predictability increasing as time passed. The authors in Levy and Ramim [2012] instead
implemented data analytics techniques to detect anomalies in their data, corroborating the finding that procrastination
negatively predicts performance (grades). The same conclusion was reached by the authors in Gareau et al. [2019],
who used Structure Equation Modeling and discovered a mediating role of task-oriented and disengagement-oriented
coping. Another technique, path analysis, was applied in Yamada et al. [2016], where the authors found that positive
time management promoted early submissions of paper reports. A different method, association rule mining, was
implemented in del Puerto Paule-Ruiz et al. [2015] and Cerezo et al. [2017]. Both research groups identified indicators
of procrastination on Moodle, which were used to create association rules in the form of conditionals by implementing
either Apriori and/or Predictive Apriori algorithms. In both studies, time-related indicators were closely related to
students’ performance. In contrast, models that explicitly try to predict delay as the outcome variable are rather scarce.
Exceptions include studies conducted in Akram et al. [2019], Hooshyar et al. [2020], Abidi et al. [2020], and Yang et al.
[2020], who all intended to classify students based on homework submission data. Ten different ML algorithms (ZeroR,
OneR, ID3, J48, Random Forest, decision stump, JRip, PART, NBTree, and Prism) were implemented in Akram et al.
[2019] to classify students as procrastinators or non-procrastinators based on feature vectors. The optimal amount
of clusters was determined to be three (one non-procrastinating group and two procrastinating classes that differ in
submission scores).

Multiple clustering algorithms were also used in Hooshyar et al. [2020] and Yang et al. [2020] to detect the optimal
amount of clusters, followed by a classification of students into the three resulting clusters (procrastinators, non-
procrastinators, and procrastinator candidates). In both studies, the authors compared eight methods of classification
(linear and radial basis function kernel support vector machine, Gaussian Processes, decision tree, Random Forest,
neural network, AdaBoost, and Naive Bayes). The former implemented a feature vector algorithm involving categorical
and continuous features based on spare time (i.e., interval between submission and deadline) and inactive time (i.e.,
time before the first click on an assignment), and found that neural networks worked best with categorical features and
that linear support vector machines outperformed the others in the case of continuous features. The latter reported that
the linear support vector machine approach delivered the best predictive performance for their clusters.

Binary classifiers were employed in Abidi et al. [2020], using four supervised-learning algorithms (logistic regression,
decision tree, gradient boosting, and Random Forest) to classify students as procrastinators or non-procrastinators based
on data that was extracted from an intelligent tutoring system (ITS). Among the ML algorithms, gradient boosting had
the best performance in terms of classification precision. However, these examples involve a classification of students
into clusters, rather than predictions regarding the extent of the delay itself. This research gap was one of the reasons
we conducted a previous study to determine if dilatory behavior could be predicted based on a mixture of questionnaire
scores and log data Imhof et al. [2021].

In that study, seven predictors were implemented across six different Bayesian multilevel models to determine which
type of predictor (objective vs. subjective) and which individual predictors were able to predict dilatory behavior the
best. The four subjective predictors were questionnaire scores and the three objective predictors were based on log data.
The model fit comparison favored the models that included all seven predictors, but their advantage over the models that
only included objective predictors was minimal at best. This implies that the models with objective predictors barely
improve when subjective predictors are added. However, this result does not imply that subjective predictors should be
discarded altogether. First off, the results may not be the same when following other approaches for prediction models,
for instance models based on ML. Secondly, we focused on individual predictors and comparisons between types of
predictors rather than analyzing the actual performance of the predictions in terms of accuracy and other measures.

2.3 Research Questions

Therefore, the goal of this study was to extend the findings reported in Imhof et al. [2021] by comparing and contrasting
the performance of different approaches to prediction models, determining which ML algorithm delivers the best
predictions for delay and for which type of predictor.

3
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Before the predictive performance of these models can be assessed, it needs to be clarified how the hyperparameters
for each ML algorithm and type of predictor must be determined in order for them to be optimized. We present a
novel cross-validation approach to address this and compare the results of the cross-validation with the rest results.
We then intend to identify the ML model with the best predictive performance for the following three predictor types:
subjective (subj), objective (obj), and a combination between the two (comb). Finally, we determine whether models
with objective predictors still outperform models with subjective predictors when calculated with various ML algorithms
and whether there is still an advantage of models that combine both types of predictors for all of our algorithms. The
research questions are thus as follows:

RQ1: How well do the results of the cross-validation with the proposed measure compare to the test results?

RQ2: Which machine learning algorithm delivers an improvement of the predictive performance compared to the
baseline models based on the subjective, objective, and combined sets of predictors (intra-model comparison)?

RQ3: Which type of predictors (subjective, objective, and combined) allow for the highest predictive performance
(inter-model comparison)?

2.4 Paper Organization

The rest of the paper is organized as follows: In Section III, we present the methods and instruments used to collect the
data. Then, we introduce the prediction framework and briefly illustrate each ML algorithm. A novel cross-validation
procedure is also presented to determine the best set of hyperparameters for all of the models. Next, we present our
results in Section IV, which includes the results of the cross-validations and the test results of each ML model, which
are compared with the performance of the Bayesian multilevel models. This is followed by a discussion of our results
in Section V, including implications and limitations of our findings. Finally, the paper concludes with Section VI.

3 Methods and Prediction Models

3.1 Participants and Courses

We used the same data set as in a prior study, which included 134 students from a distance university located in Central
Europe Imhof et al. [2021]. The sample included 65 male and 69 female participants (mean age 31.61 years, sd = 7.97,
min = 19, max = 61). The students were enrolled in at least one course each during the autumn semester of 2019. The
number of involved online courses was 126, each belonging to one of three departments (computer science, economics,
and health). Every course consisted of several blocks (usually between five and ten), each with their own assignment(s).
The total number of assignments across all students and courses was 1107. The students participated voluntarily and
consented to have their log data extracted from the institution’s LMS by filling in an online survey. As compensation,
all participants automatically entered a raffle with a chance of winning cinema vouchers.

3.2 Instruments, Procedures, and Variables

As described in Imhof et al. [2021], the procedure started with an e-mail invitation that was sent to all students enrolled
at our institution at the end of the semester. The volunteers then followed a link to an online survey, consisting of four
questionnaires, whose scores formed the subjective predictors for our models: the General Academic Self-Efficacy
(GASE) Scale Nielsen et al. [2018], consisting of five items, the Self-Directed Learning Scale (SDLS) Lounsbury et al.
[2009] with ten items, the Academic Procrastination Scale - short form (APSS) McCloskey [2012] with five items, and
the Active Procrastination Scale (APS) Choi and Moran [2009] with four subscales and a total of 16 items.

The three objective predictors, which the authors selected based on log data variables used in other studies del Puerto
Paule-Ruiz et al. [2015], Cerezo et al. [2017], were the number of clicks on an assignment, the interval between the
start of a block and the first click on an assignment, and the number of clicks on relevant activities in the course. The
number of clicks on an assignment reflects the sum of all clicks on the assignment section of the course made before the
deadline had passed. The second predictor, the interval between the start of a block and the first click on an assignment,
indicates the time (in days) that passed between when a block had started and when the first click on the assignment was
made (i.e., when the task description was first read). The final objective predictor was the number of clicks on relevant
activities in the course, which reflected the overall engagement with the course material on the platform (i.e., the sum
of all clicks on learning videos, forums, interactive books, etc.). The interval turned out to be the strongest and most
consistent individual predictor in the previous study, followed by the number of clicks on the assignment.

The to-be-predicted outcome variable was delay, which can assume positive and negative values, with positive values
indicating a delayed submission of an assignment (in hours) and negative values meaning a timely submission. In this
study, delay was used for regression and classification alike, the former to determine the error between predicted and
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Table 1: Description of Subjective and Objective Predictors and Outcome variable
Variable Role Mean SD Min Max Description

GASE subjective predictor 19.71 3.10 8 25

General Academic Self-
Efficacy Scale, measures
belief in one’s academic
abilities

SDLS subjective predictor 38.74 5.29 18 50

Self-Directed Learning
Scale, measures how much
one feels in charge of one’s
learning process

APSS subjective predictor 11.04 4.16 5 21

Academic Procrastina-
tion Scale – Short Form,
measures tendency to pro-
crastinate in academic tasks

APS subjective predictor 72.51 11.87 43 104

Active Procrastination Scale,
measures purposeful delay,
i.e., tendency to delay tasks
strategically

Number of clicks on
assignment objective predictor 6.58 4.91 1 34 Sum of clicks on an assign-

ment before submission
Interval between start
of block and first
click on assignment
(days)

objective predictor -7.13 32.40 -150.30 98.72

Difference between start of a
block (learning unit on Moo-
dle) and the first click on an
assignment (days)

Number of clicks on
relevant activities in
the course

objective predictor 173.83 168.44 0 1237

Sum of all clicks on activities
(quizzes, videos, books, etc.),
indicates general activity in
the course

Delay (days) outcome variable -1.66 18.26 -113.51 132.43

Difference between deadline
of an assignment and time of
submission, positive values
indicating delay and negative
values meaning early submis-
sions

actual values, and the latter to determine whether the two classes (delay vs. timely submission) would be correctly
predicted.

In Table I, we provide an overview of the characteristics of the outcome variable, the four subjective, and the three
objective predictors (i.e., their role in the models, their mean, standard deviation, minimum and maximum values,
and a brief description). These characteristics are very useful in adopting different normalization techniques (e.g.,
standard score or min-max feature scaling). In this paper, we adopt the max-absolute normalization technique to have
the block-click-interval and delay features in the interval of [-1, 1].

3.3 Machine Learning Models

Before training the models, we first removed all missing values (e.g., assignments that were not handed in at all) and
then normalized the data. The processed data set (1107 rows, each representing one individual assignment) was then
split into training and testing sets, the former including 80% of the data (885 rows) and the latter 20% (222 rows). Since
the original data set is rather small, the subsets could differ in their distributions depending on the way the data happens
to be split. We addressed this concern by repeating the randomized splitting process ten times, thus creating ten pairs
of training and testing sets. When individually compared, the testing subsets shared 44.7 rows on average (sd = 5.69,
min = 31, max = 57), ruling out potential split-related biases. For further processing, we then split all training and
testing sets into three subsets each based on the type of predictor: a subset with subjective predictors, one with objective
predictors, and a subset with both types of predictors combined. All sets and subsets were of equal length, the only
difference being the included predictors.

For every training set, we then determined the hyperparameters of each ML algorithm based on cross-validation. Once
the models’ hyperparameters were fixed, we trained each ML algorithm by individually exposing them to all ten
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training data sets to learn predicting the outcome variable delay based on the subjective, objective or both sets of
predictors combined. Our objective was twofold: predicting real values in terms of delay and assessing how accurate
the classifications were. Therefore, the ML algorithms to be analyzed in this paper all needed to be able to produce
both regression and classification models. We thus chose the following eight algorithms: Naive Bayes (NB), K-Nearest
neighbors (KNN), Radial Basis Function Networks (RBFN), Feed-Forward Neural Networks (FFNN), Regression
Trees (RT), Gradient Boosting Machines (GBM), Random Forests (RF), and Support Vector Regression (SVR). Out
of this selection, we aimed to determine the algorithms that a) minimized the error between the predicted and actual
delay values from the testing data sets; and b) obtained the best classification performance when predicting the delay
and timely-submission classes. In the following, we introduce each of these techniques, starting with the Bayesian
multilevel models that serve as the baseline for our comparisons.

3.3.1 Bayesian Multilevel Models

We selected Bayesian multilevel regression models as the baseline for our comparisons since they were already
implemented in Imhof et al. [2021], whose data this study is based on. In that study, Bayesian multilevel models were
chosen to match the nested data structure (students being enrolled in multiple courses, each with their own assignments).
The authors favored a Bayesian approach over frequentist regression models as they intended to use the results of the
study to inform the priors of the models in a planned follow-up study. In total, six models were calculated: one without
any predictors to serve as their baseline (which we do not include in this study), one with questionnaire predictors
only, two with log data predictors only (one with random intercepts and the other with additional random slopes), and
two with all seven predictors (again with random intercepts and additional random slopes respectively). Multilevel
models allow the relationship between predictors and outcome variable to vary depending on a grouping factor, which
is recommended when there is no valid (e.g., theoretical) reason to assume the relationship remains the same for all
values of that factor. For this reason, random slope models were calculated. The grouping factors were the student
or the course, depending on the predictors, with the questionnaire scores being associated with the level 2 - grouping
factor student and the number of clicks on relevant activities being associated with course. The remaining predictors
were associated with the assignment and thus located on level 1.

3.3.2 Naive Bayes

Naive Bayes (NB) utilizes Bayes theorem and assumes that features are independent. In this paper, we use NB for
both classification and regression. When applying NB to regression, we first divide the entire range of the outcome
variable into N parts and consider each part as a new class. The algorithm then classifies them based on the features
and finally reassigns the target values to the classes. The only hyperparameter of NB model is the number of splits,
which is determined through cross-validation.

3.3.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised learning algorithm used for both classification and regression. In order to
predict the class of a new query point in KNN, we first find its k-nearest neighbors in the training set and then assign
the class of the majority of its neighbors to it. The most common metric for measuring the distances and closeness
of the points is the Euclidean distance. We can also have nearer neighbors contributing more by assigning a weight
proportional to the inverse of distance to the neighbors. When applying KNN to regression problems, the (weighted)
average of the neighbors’ target values is calculated and assigned to the test point. The hyperparameter k is determined
based on cross-validation.

3.3.4 Radial Basis Function Network

Conceptually, a neural network is a non-linear function in which the weights must be tuned through training data
samples to fit the testing data or unseen observations. RBFN is a simple type of a neural network that has the weights
structured in only two layers, a hidden and an output layer. RBFN differ from other neural networks in the type of
activation function used in the hidden layer. Each hidden neuron makes use of a radial activation function that calculates
the Euclidian distance between each data point and some data centers which are a priori computed through clustering
algorithms over the training set. For regression tasks, the activation function of the output neuron is a linear one. When
training the RBFN, the weights of hidden and output layers are updated in iterations based on the reinforced error
between the predicted and real values. In this sense, the gradient descent algorithm is used to train the weights, where
the error rate is an important hyperparameter to be optimized together with the number of hidden nodes and Gaussian
parameter.
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3.3.5 Feed-Forward Neural Network

Feed-forward neural networks (FFNN) differ from RBFN in the sense that the number of hidden layers can be greater
than one, the activation function at the level of each hidden node takes simple non-linear representations (e.g., tangent
hyperbolic) and at the output layer, the activation function is linear. The weights are trained similarly to RBFN in
iterations, but the error is back-propagated each time through a greater number of layers, and the weights are updated
by using the same gradient descent algorithm. Alongside the error rate, the number of hidden layers and nodes must be
decided through cross-validation before training and testing the FFNN structure.

Compared to RBFN, training an FFNN is less complex since a clustering approach is no longer needed. Generally, the
most notable disadvantage when training any type of neural network is the lack of criteria when to abort the learning
process to prevent over-fitting. In this paper, we propose the following approach to deal with the issue of setting a
proper stopping criterion: Out of the training data, a number of validation samples are carefully selected to monitor the
performance of the training process. Instead of imposing a fixed stopping criterion, we conducted the training over
a large number of iterations and a multi-objective function (to be detailed in Section III.D). The function aimed at
balancing the classification performance and minimizing the regression error, and was computed over the validation
data. The weights of the neural networks are saved each time a new maximum value is found during the training
process.

3.3.6 Regression Trees

The training process of Regression Trees (RT) is known as a binary recursive partitioning, which splits training data into
partitions or branches. The algorithms work iteratively and continue splitting each partition into smaller sub-partitions
as the training process moves up to each branch. The process of building the tree until each node reaches a specific
minimum node size and becomes a terminal node. Once this node is reached, all the responses from all data points are
averaged. When testing the RT, each new point follows the split values and variables given by the RT, which was built
based on the train data and the predictions are given as a response of the terminal node each new sample ends on. When
the minimum node size is 1, the RT can over-fit the training data. In this paper, we determine the minimum node size
for each training set based on cross-validation. A very important aspect that concerns the performance of RT is the
splitting rule. Standard split criteria (e.g., linear rank statistics, log rank statistics) cannot detect non-linear effects in the
outcome variable. To overcome this potential drawback, we use the maximally selected rank statistics for selecting the
split point in which splitting variables are compared on the p-value scale Wright et al. [2017]. Alongside minimum
node size, the lower quantile of the co-variate distribution and the significance level for splitting are all determined
through cross-validation.

3.3.7 Gradient Boosting Machines

Compared to RT, Gradient Boosting machines (GBM) greedily construct several trees. A new tree is constructed in
each round, minimizing the errors given the previously constructed trees. Hence, in each round, the model focuses
on the errors made by the previous trees Friedman [2001]. The commonly tuned parameters include the number of
trees, maximum depth, minimum samples to split the data, learning rate, and the type of loss function. Moreover, by
manipulating the sub-sample parameter, a stochastic version of GBM Friedman [2002] uses bootstrapping averaging
similar to RF models, when each iteration is trained only on a fraction of the data.

GBM and its variant XGBoost are used in many existing deployed LA systems Hlosta et al. [2021], Ruipérez-Valiente
et al. [2017] and were used in winning solutions for predicting student drop-out in the KDD15 competition 2015 [2015].
Their high performance is due to their ability to learn from previous mistakes without requiring normalization. As a
drawback, the model might suffer from over-fitting, which needs to be overcome by cross-validation and exploring a
relatively large number of hyperparameters.

3.3.8 Random Forest

In regression tasks, Random Forest (RF) collects the efforts of multiple decision trees and predicts each new data
point based on the average responses of all the trees. To decrease the variance of the model without increasing the
bias, the trees must be uncorrelated. In this sense, a bootstrapping procedure is applied, and the training subset of
each tree is randomly sampled with replacement in the standard proportion of 63.21% from the overall training set
Wright and Ziegleri [2017]. Moreover, a random subset of features will be considered at each candidate split when
training the regression trees. This overcomes a high degree of correlation between trees when some variables are very
strong predictors for the delay variable. As a splitting rule, in this paper we employ the principle of ExtraTrees in which
random cut-points are selected in the top-down splitting process Wright and Ziegleri [2017]. For each possible splitting
variable, a number of random cut-points are generated and the one with the highest decrease of impurity is selected
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to split the node. Therefore, the RF algorithm adjusts four hyperparameters based on cross-validation: the number of
regression trees, the minimum node size for all trees, the number of possible variable splits, and the number of cut
values that are randomly generated in the range of min/max values for each possible split variable.

RF is less prone to over-fitting compared to simple RT or GBM. However, the RF algorithm may change considerably by
a small change in the training data. Moreover, the RF training time increases considerably in larger data sets, especially
when computing the optimal cut-point locally for each feature (i.e., based on log-rank statistics, maximal rank statistics,
etc.).

3.3.9 Support Vector Regression

Being originally proposed for binary classification problems, support vector machines aim to find the best hyperplane
that separates a given set of data points. Training points are mapped in space so that the width of the gap or the
soft margin between the two categories would be maximized. Test points are mapped in this space and predicted as
being part of one of such categories depending on which side of the gap they belong. In practice, the soft margin that
separates the two categories of data points can be controlled based on parameter C. When C is relatively small, a larger
separation margin between the classes will be used at the price of higher rate of misclassifications. When C is higher,
the separation gap gets smoother and the rate of misclassifications is lower. A lower misclassification rate increases the
risk of over-fitting the training data that can lead to a much higher rate of misclassification for new data points. An
optimal value of soft-margin hyperparameters must be found on training data to fit the testing data.

The accuracy of classification depends on the shape of the separation hyperplane that can be set through the kernel
function. In this paper, we test different types of kernel functions (linear, polynomial, radial basis function, radial basis
function with vector subtraction, hyperbolic tangent), that can be used to best fit the collected data. Moreover, some of
these kernel functions must be parameterized before properly training and testing the machine. In regression tasks,
the goal of Support Vector Regression (SVR) is comparable to classification tasks with the amendment that a certain
error is tolerated. In this paper, we optimize the soft margin parameter, the kernel function and error tolerance through
cross-validation.

3.4 Proposed Cross-Validation Measure

In order to optimize the hyperparameters of the implemented ML algorithms (NB, KNN, RBFN, FFNN, RT, RF, GBM,
SVR), we employed a cross-validation procedure based on the training sets. Each ML model defines its own grid of
hyperparameter configuration that falls in predefined ranges. Each possible configuration of hyperparameters from the
grid is then evaluated based on the training data. Finally, the trained ML model with the highest evaluation outcome is
employed to predict new data examples from the testing set.

The algorithm splits the training set in K number of sub-partitions. Then, the K-fold cross-validation trains the ML
model iteratively for each hyperparameter configuration band on K − 1 sub-partitions and the results are validated
based on the remaining sub-partition every time. For each configuration, the validation results are averaged over K
number of partitions. Once all hyperparameter configurations are evaluated, the K-fold cross-validation algorithm
selects the scheme with the highest validation outcome. The same procedure is repeated for each ML algorithm with its
predefined grid search of hyperparameter configurations. The validation outcome can be measured by monitoring the
regression error (e.g., mean absolute error). However, in our prediction task, the selected hyperparameters should also
improve the classification performance.

Moreover, the ratio of early and late submissions in the training data is often unbalanced. Therefore, we propose a
novel multi-objective function that measures the validation performance of each hyperparameter configuration on each
split of data set. Based on this proposed function, the cross-validation selects the hyperparameter configuration that
minimizes the regression error and maximizes the classification performance between the two classes (delay and timely
submission).

Given the function f that must be trained by each ML model to best predict delay, we denote by ŷ = f(x) the current
estimate of prediction function f , where x is a test data point. In order to evaluate the prediction performance, the
ground truth values of delay y should be known in advance. In this study, delay y is measured as the difference between
the submission of an assignment and its deadline in days. The deadline is met when y ≤ 0 (timely submission), and the
tasks are submitted after the deadline when y > 0 (delay). When a new data sample from the test set is predicted, the
decision can take one of the following forms: a) true positive (TP ): ŷ > 0 and y > 0; b) false positive (FP ): ŷ > 0
and y ≤ 0; c) true negative (TN ): ŷ ≤ 0 and y ≤ 0; d) false negative (FN ): ŷ ≤ 0 and y > 0. Once all test samples
are predicted, the classification performance is evaluated based on TP , FP , TN and FN indicators which are summed
over the number of test data examples. To measure the ML model performance when dilatory behavior is correctly
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detected, the F1-score function can be employed as follows:

Ftp =
2TP

2TP + FP + FN
(1)

where a higher Ftp value implies a better performance when predicting delay. In unbalanced data sets, Ftp does not
give any measure of how well the prediction performance is for the timely submission class. In this case, a similar
version of F1-score measure can be computed to monitor the ratio of TN over the number of false predictions:

Ftn =
2TN

2TN + FP + FN
(2)

By maximizing both Ftp and Ftn in cross-validation, the hyperparameters will be selected according to the best
prediction balance between the two classes. To measure how close the predicted value ŷ is from its delay pattern ŷ, we
measure the Mean Absolute Error (MAE) E given by:

E =
1

T

T∑
i=1

|ŷi − yi|
ymax

(3)

where T is the number of samples in each data set split and ymax is the maximum absolute value of delay. Considering
(1), (2) and (3), the multi-objective function to be maximized during the cross-validation process becomes:

G =
(1− E) + Ftp + Ftn

3
(4)

The configuration of hyperparameters able to maximize (4) will be selected to train the ML model for the entire training
set and the prediction performance is analyzed in Section IV. Each ML algorithm follows the same cross-validation
principle when tuning the corresponding hyperparameters.

3.5 Analyses

The baseline models (i.e., the Bayesian multilevel models) were calculated with the R package brms Bürkner [2017]
and the NB, KNN and GBM algorithms were employed using the Python scikit-learn package Pedregosa et al. [2011].
The remaining ML approaches (FFNN, RBFN, RT, RF, SVR) were deployed in C/C++ using dedicated functions for
cross-validation, training and testing. For the obj and comb predictors, the Bayesian models included random intercepts
(BA-RI) and random slopes (BA-RS) due to the nested structure of the data, which was not the case for the subj
predictors. The implementation of RT and RF was based on RANGER C++ packages which are publicly available
Wright and Ziegleri [2017]. The proposed SVR ML algorithm followed the regression model from Parrella [2007] with
five different types of kernel functions: linear (SVR-LIN), polynomial (SVR-POL), tangent hyperbolic (SVR-TAH),
radial-basis function (SVR-RBF) and with the vector subtraction function (SVR-VS). All these variants of SVR model
are cross-validated, trained, tested and compared to the other ML algorithms. The FFNN model we used was previously
employed for the optimization of video quality in remote education Comsa et al. [2021], while the RBFN model was
also used to classify high dimensional vectors in radio communications systems Comsa [2014].

The complexity of cross-validation processes depends on the grid size, which differs from one ML algorithm to another.
A special case in cross-validation is represented by RBFN, where the number of hidden nodes is equivalent to the
number of data centers computed for each data set separately based on the clustering analysis. The clustering process is
conducted before cross-validation by employing a heuristic algorithm that iteratively combines a classical k-means
algorithm for a more precise calculation of centers with an algorithm that uses the random swapping of data centers
from the available data set to enhance the searching time of globally optimal solutions Comsa [2014]. Based on the
clustering algorithm, we determined the number of optimal clusters that characterizes each training set by employing an
additional algorithm to calculate the Silhouettes Index (SI) Rousseeuw [1987]. The SI index interprets and validates the
consistency of the clusters for each training set, and provides a measure of how well each data point is matched to its
own cluster compared to the neighboring clusters. Higher SI values (max value of 1) denote that the data points are very
well suited to their clusters, while lower values (min value of -1) indicate that the clustering configuration may have too
many or too few clusters. In general, when a higher number of clusters is obtained through the computation of SI index,
then the data set is much better represented when training the RBFN model and a higher prediction performance is
expected.

We evaluated the performance of the ML algorithms for each type of predictor based on classification metrics and
regression errors (G-Scores for the former and MAE for the latter). As classification measures, we considered the Ftp

and Ftn scores in the computation of the multi-objective G function. When training data is unbalanced, we recommend
the use of both scores to find the best configuration of hyperparameters that can balance precision and robustness in
both directions. This is the case for our original data set, which is unbalanced in favor of the timely-submission class,
meaning that 67% of assignment data points were classified as timely submissions (y < 0), and the remaining 33% as
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Table 2: Comparison of G-scores between different predictor types and ML approaches obtained in cross-validation
and prediction

Cross-validation Test
Mean G-Score (SD) Mean G-Score (SD)

ML Alg. subj obj comb subj obj comb
NB 0.6457 (0.0084) 0.6845 (0.013) 0.6961 (0.0048) 0.6375 (0.021) 0.6628 (0.0267) 0.681 (0.019)

KNN 0.7071 (0.0068) 0.7482 (0.0039) 0.7525 (0.0069) 0.6758 (0.0222) 0.7279 (0.0132) 0.7319 (0.019)
RBFN 0.7401 (0.0051) 0.7707 (0.0072) 0.7688 (0.0054) 0.6778 (0.0179) 0.701 (0.0218) 0.7214 (0.0204)
FFNN 0.7143 (0.012) 0.7631 (0.0102) 0.7673 (0.008) 0.6695 (0.0368) 0.6957 (0.0316) 0.71884 (0.0223)

RT 0.6772 (0.0106) 0.7491 (0.0046) 0.7478 (0.0047) 0.6811 (0.0251) 0.7126 (0.025) 0.7181 (0.035)
RF 0.7081 (0.008) 0.755 (0.0057) 0.7685 (0.0054) 0.7064 (0.0153) 0.7457 (0.018) 0.7626 (0.015)

GBM 0.70686 (0.01143) 0.76012 (0.00919) 0.7713 (0.0071) 0.71624 (0.025) 0.73166 (0.021) 0.7442 (0.0271)
SVR-LIN 0.6785 (0.0071) 0.7253 (0.0083) 0.7275 (0.0069) 0.6591 (0.0422) 0.6888 (0.0264) 0.7134 (0.019)
SVR-POL 0.6975 (0.0056) 0.7348 (0.0041) 0.7413 (0.0055) 0.6835 (0.0312) 0.6934 (0.0273) 0.715 (0.023)
SVR-TAH 0.6833 (0.01) 0.7305 (0.0072) 0.7331 (0.0062) 0.6544 (0.0318) 0.6916 (0.0334) 0.708 (0.024)
SVR-RBF 0.7208 (0.0094) 0.7406 (0.0059) 0.7536 (0.0077) 0.7129 (0.0189) 0.7288 (0.026) 0.7538 (0.018)
SVR-VS 0.7208 (0.0084) 0.7608 (0.0045) 0.7631 (0.0048) 0.7145 (0.0175) 0.7364 (0.0257) 0.7589 (0.018)

delay (y > 0). Therefore, we included the following metrics: Positive Predicted Value (PPV = TP/(TP + FP )),
which is the precision of detecting delay; and the True Positive Rate (TPR = TP/(TP + FN)) that indicates how
well delay can be predicted without negatively affecting the prediction of timely submissions (sensitivity or recall).
However, when data is perfectly balanced, the use of Ftp and Ftn is not needed. In this case, other classification metrics
could be used instead, including accuracy (ACC) as the ratio of the correct and total predictions, and the Matthews
Correlation Coefficient (MCC) as a metric of difference between correct and wrong predictions. Generally, the MCC is
reportedly more informative compared to other measures Chicco and Jurman [2020], Chicco [2017]. We included ACC
and the MCC for the sake of completion.

4 Results

The aim of this section is to evaluate the performance of ML algorithms in regard to cross-validation and prediction.
First, we measured and evaluated the multi-objective function G-Score for each algorithm and type of predictor in the
cross-validation process. This was followed by a calculation of the same G-Scores for the test data sets. These results
were then compared to those of the cross-validation (RQ1). RQ2 is then addressed by comparing the ML approaches for
each type of predictor in more detail while considering the classification performance indicators and the mean absolute
error. Finally, we address RQ3 by evaluating how high the predictive performance is when considering the obj and
comb predictors compared to predictions based solely on subj variables.

As explained above, the ML algorithms were cross-validated, trained and tested separately for ten randomized subsets
to account for the discovered unbalance. The reported results include the mean and SD values over the ten subsets for
each of the three types of predictors.

4.1 Evaluation in Cross-Validation

In this paper, we employed a 4-fold cross-validation scheme for all of the ML algorithms, in which all training sets
were divided in four subsets with 222 elements each. The same cross-validation procedure was conducted for the three
types of predictors and each ML algorithm, resulting in a total of 360 different cross-validation processes.

4.1.1 Mean G-Score in Cross-Validation

To evaluate the performance of the ML algorithms during cross-validation, we computed the mean G-score and SD
over ten data sets for each of the three predictor types. The values exposed in Table II for each ML algorithm are the
maximum G-scores of the best configuration of hyperparameters obtained through the cross-validation averaged over
ten training data sets.

We do not report hyperparameters for the Bayesian multilevel models since we selected non-informative priors, as was
the case in the previous study Imhof et al. [2021]. Looking at the subj and obj predictors, RBFN obtained the highest
scores of 0.74 and 0.771, respectively. The performance regarding the validation sets was higher compared to the other
ML algorithms since the data centers obtained through the proposed clustering approach cover the entire training set.
For the comb predictors, RBFN, RF and GBM obtained comparable G-scores. When using SVR, the LIN and TAH
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Table 3: Intra-model comparison between ML approaches for subj predictors
ML Alg. PPV (SD) [%] TPR (SD) [%] Ftp (SD) [%] Ftn (SD) [%] MCC (SD) [%] ACC (SD) [%] MAE (SD)

BA 36.19 (3.61) 32.59 (8.16) 33.66 (5.59) 71.33 (2.69) 5.91 (4.22) 60.14 (2.39) 9.19 (0.99)
NB 41.1 (4.4) 41.6 (8.5) 40.9 (5.1) 73.3 (2.9) 14.8 (5.4) 63.4 (2.6) 30.38 (2.47)

KNN 39.44 (5.32) 44.84 (8.62) 41.68 (5.84) 70.09 (2.78) 12.4 (7.81) 60.55 (3.27) 11.94 (2.57)
RBFN 40.18 (3.28) 42.66 (7.65) 40.9 (3.37) 71.06 (3.039) 12.73 (3.02) 61.3 (2.4) 11.39 (1.35)
FFNN 40.46 (5.45) 37.1 (14.06) 37.04 (5.33) 71.69 (6.49) 11.21 (5.88) 61.62 (5.09) 10.44 (1.03)

RT 39.35 (4.03) 46.01 (8.97) 42.19 (5.61) 69.76 (2.81) 12.68 (6.57) 60.45 (6.48) 10.09 (1.15)
RF 45.82 (4.15) 45.86 (5.83) 45.43 (2.68) 74.28 (2.74) 20.22 (3.09) 65.18 (2.42) 10.31 (1.1)

GBM 47.69 (4.75) 43.94 (7.18) 45.56 (5.4) 76.2 (1.77) 22.07 (7.04) 66.89 (2.67) 9.11 (0.95)
SVR-LIN 42.46 (7.88) 25.96 (12.69) 29.50 (9.81) 75.42 (3.52) 9.66 (4.35) 64.05 (2.92) 9.54 (0.89)
SVR-POL 42.02 (2.79) 36.47 (10.14) 38.31 (5.59) 73.80 (4.29) 13.30 (3.72) 63.65 (3.19) 9.34 (0.96)
SVR-TAH 39.84 (7.95) 22.39 (8.85) 27.52 (7.66) 75.89 (2.62) 7.28 (6.33) 64.05 (2.78) 9.37 (0.95)
SVR-RBF 50.76 (4.45) 36.56 (5.99) 42.24 (4.88) 78.30 (1.62) 22.14 (5.11) 68.51 (2.02) 8.82 (1.09)
SVR-VS 51.22 (4.29) 36.57 (5.46) 42.51 (4.7) 78.54 (1.31) 22.63 (5.05) 68.78 (1.83) 8.84 (1.03)

Table 4: Intra-model comparison between ML approaches for obj predictors
ML Alg. PPV (SD) [%] TPR (SD) [%] Ftp (SD) [%] Ftn (SD) [%] MCC (SD) [%] ACC (SD) [%] MAE (SD)
BA-RI 47.97 (5.11) 57.53 (4.78) 52.23 (4.51) 74.17 (3.02) 27.13 (6.51) 66.53 (3.32) 8.57 (0.68)
BA-RS 51.02 (3.52) 60.88 (6.75) 55.41 (4.37) 76.14 (2.32) 32.29 (5.4) 69.01 (2.38) 7.57 (0.63)

NB 40.6 (6.1) 29.2 (7.8) 33.7 (7.2) 76.3 (1.7) 11.5 (6.5) 65.2 (2.0) 14.75 (1.19)
KNN 49.1 (1.77) 48.6 (5.24) 48.69 (2.94) 76.26 (1.68) 25.15 (3.27) 67.62 (1.69) 8.72 (0.88)

RBFN 43.49 (4.34) 52.59 (9.99) 46.79 (3.16) 70.72 (4.36) 19.45 (3.08) 62.52 (3.25) 9.64 (1.26)
FFNN 43.55 (3.8) 45.29 (11.01) 43.43 (5.74) 72.54 (4.38) 17.22 (4.44) 63.47 (3.46) 9.57 (0.87)

RT 48.39 (4.25) 40.76 (8.06) 43.8 (5.73) 76.71 (2.62) 21.39 (5.29) 67.25 (2.62) 8.92 (1.09)
RF 50.36 (4.31) 57.12 (5.09) 53.48 (4.4) 76.16 (1.68) 29.98 (5.7) 68.51 (2.25) 7.88 (0.79)

GBM 50.7 (5.04) 45.13 (7.04) 47.51 (5.46) 77.53 (1.74) 25.52 (6.12) 68.61 (2.24) 7.34 (0.86)
SVR-LIN 43.78 (5.21) 35.72 (9.61) 38.48 (6.38) 75.08 (2.27) 14.99 (5.99) 64.69 (2.47) 9.13 (0.93)
SVR-POL 43.13 (6.54) 38.39 (8.43) 40.23 (6.24) 74.32 (2.62) 15.21 (7.79) 64.19 (3.15) 8.66 (0.89)
SVR-TAH 47.18 (5.35) 35.44 (13.82) 38.63 (8.16) 76.26 (3.55) 17.77 (4.93) 66.26 (2.78) 9.81 (2.22)
SVR-RBF 46.47 (5.54) 41.09 (8.14) 43.23 (5.96) 75.76 (2.46) 19.64 (6.31) 66.17 (2.58) 8.39 (0.85)
SVR-VS 49.73 (4.57) 51.81 (9.62) 50.52 (6.82) 76.50 (1.59) 27.35 (7.06) 68.29 (2.07) 8.09 (0.91)

kernel functions are not suitable options to predict delay when employing cross-validation over the training sets. The
non-linear kernels (POL, RBF, VS) can fit the validation sets better in the training K − 1 sub-partitions. In the next step,
we verified if the same prediction trend in cross-validation is followed when predicting new examples from the test sets.

4.1.2 Mean G-Score in Test Data Sets

The hyperparameters obtained through cross-validation were used to train each ML algorithm by using the entire
training sets (K folds) for each type of predictor. Their performance is then evaluated in the test sets for all ML
algorithms based on G-Scores. In Table II (right side), we present the mean G-scores and SD values calculated over the
ten test data sets for each type of predictor. In case of the subj predictors, the GBM and SVR-VS models outperformed
the others with mean G-scores higher than 0.71. When analyzing the obj predictors, the best performance of G = 0.75
was achieved by the baseline Bayesian models with random slopes. When combining both types of predictors, RF and
SVR-VS remained the best options with a mean G-score higher than 0.76.

4.1.3 Mean G-Score Comparison

In order to validate the configuration of hyperparameters selected for each ML algorithm, the G-scores were compared
between cross-validation and testing. The most successful ML approach would have the highest G-score among all
candidates and all types of predictors with the smallest performance deprecation between cross-validation and testing.
NB and KNN both had a rather small difference in G-scores in the validation and testing sets, but the performance level
is much lower compared to the other ML approaches. RT and GBM are well known for over-fitting the training data,
which can also be observed when looking at their G-scores. SVR is sensitive to the training data, and the performance of
delay prediction depends very much on the selected configuration of hyperparameters. This explains the 3% deprecation
between validation and test sets for all types of predictors, especially for the case of kernels that use the linear and
tangent hyperbolic functions. When analyzing the performance of RBFN and FFNN in the validation and test data sets,
we observed the highest degradation in performance. This aspect is explained by the fact that both RBFN and FFNN
were trained on 60% of the data, while the remaining 20% were used for the stopping criteria. Also, the G-scores
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Table 5: Intra-model comparison between ML approaches for comb predictors
ML Alg. PPV (SD) [%] TPR (SD) [%] Ftp (SD) [%] Ftn (SD) [%] MCC (SD) [%] ACC (SD) [%] MAE (SD)
BA-RI 49.72 (5.17) 59.94 (3.82) 54.25 (4.14) 75.14 (2.82) 30.20 (5.85) 67.84 (3.14) 8.56 (0.68)
BA-RS 51.04 (2.65) 61.08 (5.43) 55.55 (3.49) 76.19 (1.6) 32.43 (4.09) 69.05 (1.62) 7.61 (0.66)

NB 42 (5.3) 40.9 (5.5) 41.2 (4.1) 74.4 (3.) 15.9 (6.1) 64.5 (3.3) 15.12 (1.74)
KNN 49.34 (5.22) 51.8 (4.72) 50.41 (4.19) 67.67 (2.19) 26.6 (5.92) 67.67 (2.64) 9.01 (0.89)

RBFN 46.28 (5.02) 59.69 (6.79) 51.69 (3.37) 71.95 (3.69) 25.58 (4.68) 64.64 (3.35) 9.56 (1.22)
FFNN 47.72 (4.45) 47.28 (7.54) 47.21 (5.34) 75.59 (2.16) 23.15 (5.36) 66.76 (2.17) 9.46 (1.07)

RT 48.87 (7.61) 49.42 (10.77) 47.92 (5.09) 74.41 (6.28) 24.02 (6.63) 66.26 (5.31) 9.13 (1.24)
RF 52.75 (3.99) 62.22 (3.8) 57.05 (3.58) 77.23 (1.61) 34.86 (4.6) 70.27 (1.98) 7.27 (0.82)

GBM 51.60 (5.47) 51.35 (8.96) 51.15 (6.58) 77.45 (2.19) 28.98 (7.71) 69.23 (2.94) 7.05 (0.78)
SVR-LIN 47.28 (5.28) 43.79 (4.78) 45.24 (3.85) 75.66 (2.43) 21.26 (5.71) 66.35 (2.84) 9.1 (0.73)
SVR-POL 47.03 (3.59) 44.86 (8.40) 45.55 (5.39) 75.59 (2.22) 21.63 (5.94) 66.39 (2.45) 8.82 (0.91)
SVR-TAH 47.84 (3.28) 38.94 (10.18) 42.27 (6.43) 76.87 (1.48) 20.46 (5.28) 67.12 (1.51) 8.93 (0.87)
SVR-RBF 53.83 (5.27) 54.67 (7.06) 53.92 (4.31) 78.23 (1.88) 32.57 (5.44) 70.5 (2.2) 7.97 (0.89)
SVR-VS 53.12 (4.73) 58.82 (4.54) 55.72 (3.99) 77.66 (2.12) 33.69 (5.86) 70.32 (2.66) 7.57 (0.99)

reported in cross-validation are the best values that could be found while training in each split. RF was the most stable
ML algorithm for all three types of predictors, since the levels of test G-scores were very close to those scores obtained
in cross-validation.

4.2 Intra-Model Comparisons

In this section, we provide a comprehensive report to compare the employed ML algorithms for each type of predictor
(intra-model comparison). Thus, we analyse the mean and SD of the PPV, TPR, Ftp, Ftn, MCC, ACC, and MAE
performance indicators, where the best values of these indicators are highlighted in green. To answer RQ2, the goal of
this section is to determine the most successful ML algorithm for each type of predictor that would maximize the Ftp

measure and minimize the loss in Ftn and regression error (MAE).

4.2.1 Subjective Predictors

In Table III we present the classification and regression performance metrics (mean and SD) for each ML algorithm and
calculated over the data sets with subj predictors. When looking at the PPV metric, we obtained the highest amount
of correct predictions for the delay class when using SVR with RBF and VS kernels. However, the robustness of
these models in predicting the timely submission class is deprecated more than 15% when compared to PPV. The best
trade-off between PPV and TPR was observed with the RF and GBM models. When computing the Ftp score, GBM
performed slightly better than RF with 45.5%. However, the SD of the RF model is reduced by half when compared to
GBM, meaning the RF classifier is less sensitive to the type of data set which is used to train the model. The Ftn score
was also calculated in Table III to measure the trade-off between the precision for timely submission and the robustness
to delay. Since the false predictions of delay have a greater impact than the false predictions of timely submissions
due to the unbalance of the data sets, the SVR model with the RBF and VS kernels achieved the highest Ftn scores.
By monitoring the MCC and ACC classification metrics, it can be concluded that the absolute difference between the
false predictions of delay and timely submission was higher for the SVR model (with RBF and VS kernel functions)
than for the RF and GBM models. Based on the results collected in Table III, a precision to detect delay of nearly 48%
and a classification accuracy of about 67% can be obtained with the GBM model when exclusively considering the
subj predictors. When computing the regression error, SVR model with RBF and VS kernels performed slightly better
than GBM. However, we recommend the use of the GBM model when predicting the subj predictors due to the best
trade-off between regression error, Ftp and Ftn.

4.2.2 Objective Predictors

In Table IV, we present the classification and regression performance metrics (mean and SD) obtained when predicting
delay with obj predictors. When evaluating the predictive performance of the delay class, the Bayesian model with
random slopes (BA-RS) provided the best results among all models with the following metrics: a) the precision (PPV =
51.02%) when predicting delay; b) robustness (TPR = 60.88%) to predict timely submission; c) trade-off between PPV
and TPR (Ftp = 55.41%). Also, BA-RS was the best option when measuring the MCC (32.29%) and accuracy (ACC =
69.01%). On average, the GBM model achieved the highest Ftn score of 77.53% due to higher robustness to predict
delay. Also, its error was lower compared to the other models. When looking at the trade-off between Ftp, Ftn and
mean absolute error, BA-RS was the best option to predict delay with obj predictors.
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Table 6: Inter-model comparison between the highest-performing ML approach for each type of predictor: GBM
(subj), BA-RS (obj) and RF (comb)

Pred type PPV (SD) [%] TPR (SD) [%] Ftp (SD) [%] Ftn (SD) [%] MCC (SD) [%] ACC (SD) [%] MAE (SD)
subj 47.69 (4.75) 43.94 (7.18) 45.56 (5.4) 76.2 (1.77) 22.07 (7.04) 66.89 (2.67) 9.11 (0.95)
obj 51.02 (3.52) 60.88 (6.75) 55.41 (4.37) 76.14 (2.32) 32.29 (5.4) 69.01 (2.38) 7.57 (0.63)
comb 52.75 (3.99) 62.22 (3.8) 57.05 (3.58) 77.23 (1.61) 34.86 (4.6) 70.27 (1.98) 7.27 (0.82)

4.2.3 Subjective and Objective Predictors combined

When looking at the performance of the ML algorithms for the comb predictors in Table V, we observed that the
SVR-RBF performed better in precision (with about 2%) but with lower robustness value (with more than 7%) when
compared to the RF model. This explains the larger gain obtained by the RF algorithm when measuring the Ftp score
of about 57%. The same trend can be observed when comparing the SVR-VS and RF models. When measuring the
Ftn scores, SVR with RBF kernel provided the best results due to better robustness of the model to predict delay. By
comparing the RF, SVR-VS, and SVR-RBF models, we noted that higher Ftp scores involve higher MCC levels, while
higher Ftn scores align with higher accuracy values. When calculating the average regression error, GBM and RF
models outperformed the other ML models. Although SVR-RBF and SVR-VS provided better precision (PPV), the RF
model remained the best option to be employed for the comb predictors due to the best trade-off between precision and
robustness to delay and timely submission classes, and a low regression error.

4.3 Inter-Model Comparison

In this section, we compare the predictive performance between each type of predictor to answer RQ3 by taking into
account the results displayed in Tables II-V.

When analyzing the performance of the mean G-scores in both the cross-validation and testing stages (Table II), we
concluded that the obj predictors are more informative than the subj predictors when predicting delay in assignments.
However, a performance gain can be achieved by combining both types of predictors. When analyzing the best
G-scores in Table II (on the right side), we observe a prediction gain of 4% when comparing the prediction with the
obj and subj predictors, and a gain of 1% when predicting with the comb predictors compared to the obj predictors
alone. By combining both subj and obj predictors, almost all ML candidates benefit from the perspective of both
classification and regression metrics as shown in Table V. For example, the SVR model with all types of kernel functions
obtained higher precision (PPV) and robustness (TPR) when involving the comb predictors compared to the subj or
obj predictors alone. The same performance gain can be observed when measuring MCC, ACC, or MAE. Another
concluding example in this sense is the RF approach that enhanced its Ftp score from 45.43% for subj predictors to
53.48% for obj data, and when combining both, the performance was higher than 57%. An explanation of this gain
is given by the importance of the subj predictors that changes when the obj predictors are added. In this sense, we
computed the Gini importance index or the mean decrease in impurity that gives the feature importance when regression
trees are employed T. Daniya and Kumar [2020]. When training the RF model, we make the following observations
based on the importance index: a) in case of obj predictors, the interval between the start of a block and the first click
on an assignment is the most important predictor, followed by the number of clicks on an assignment and the number of
clicks on relevant activities; b) when training with subj predictors, APS is the most informative, followed by APSS,
SDLS, and GASE; c) by combining both types of predictors, the most important variables are the obj predictors in
the same order as above in a), followed by the subj predictors in the order as before (b), with the only difference that
the GASE variable gained a higher importance than APS. While APS and APSS are more predictive in general, when
combined with obj predictors, they do not add any new information. Therefore, the GASE variable could enhance the
precision and accuracy above 52% and 70% respectively when combining both sets of predictors.

As observed in Tables III-IV, the highest performing ML approach differs from one type of predictor to another when
balancing the performance between Ftp and Ftn scores and the regression error. GBM is recommended to be used
for subj data due to a better trade-off between the indicators above. When using the obj predictors only in the form
exposed in Table I, the BA-RS approach was the best option to be employed. However, for combined predictors, the
RF method outperformed other approaches due to a higher importance of GASE feature among other subj ones. In
Table VI, we summarize the results from Tables III-IV and present the inter-model comparison between the highest
performing ML approach for each type of predictor. The combined predictors brought a performance gain of more
than 1% when compared to obj data sets and more than 11% when compared to subj predictors. The regression error
was the lowest when predicting with the comb data sets while the deprecation in Ftn was negligible between different
types of predictors. The highest accuracy value of 70.23% was achieved when combining the predictors, with a slight

13



Prediction of Dilatory Behavior in eLearning A PREPRINT

depreciation of about 1% for obj and 3% for subj predictors. The same trend was observed when monitoring the MCC
indicator with a much larger performance gap of 10%.

5 Discussion

The aim of this study was to expand the findings in Imhof et al. [2021] by employing multiple ML algorithms to
determine which one delivered the best predictions of delay based on objective and subjective variables. First, due
to the unbalanced nature of the data (meaning there were twice as many timely submissions as there was delay), we
needed to account for it in our approach to optimize each of the ML algorithms. We achieved this by a cross-validation
procedure we conducted based on a novel multi-objective function, the G-score, which involves a trade-off between
positive and negative F1-scores and regression error. We measured the performance degradation of G-score between
test and cross-validation to verify the authenticity of the selected hyper-parameters for each ML algorithm. Except for
RBFN and FFNN, all other approaches provided a low degradation in G-score. We concluded that RBFN and FFNN
need more data to cope with such a performance gap. Among the ML algorithms in our pool, RF obtained the lowest
degradation in performance, meaning that cross-validation was highly efficient (RQ1).

We then identified the best prediction performances for each of the types of predictors (subj, obj, comb) by measuring
the trade-off between Ftp, Ftn, and MAE (RQ2). GBM turned out to be the best approach for subjective predictors,
BA-RS for the objective predictors, and RF for the combined sets.

The highest predictive performance of RF is congruent with the existing literature in Learning Analytics, where RF
consistently ranks among the best models Hlosta et al. [2018], Alcaraz et al. [2021]. To the best of our knowledge, our
second best approach, however, Bayesian multilevel models with random slopes, is not mentioned in any LA studies,
due to its nature as a statistical approach. Since most of the studies in LA are focused on predictions from objective data
and BA-RS was the best algorithm in our case, it might be useful for other researchers to consider multilevel models in
their work. After all, repeated measures are a common occurrence when assessing student data and multilevel models
provide the means to reflect nested data structures. Nevertheless, these comparisons should be taken cautiously since
the outcomes differ in both studies.

Next, we compared the different types of predictors (RQ3). Predicting delay with objective predictors yielded better
results than relying on the subjective variables alone. By mixing both types of predictors, we achieved a slightly higher
predictive performance, meaning that some of the subjective predictors increase their relative predictive power when
combining them with the objective predictors. These results are unsurprisingly in line with the previous study our data
stems from Imhof et al. [2021]. The superiority of the objective predictors was evident in all the ML models regardless
of the underlying algorithm, strengthening the finding of the previous study. Similarly, Pardo et al. [2017] reported that
more objective variables correlated with academic outcomes than subjective variables, and Yu et al. [2020] also found
a higher accuracy of objective features to predict course and next semester outcomes. However, in contrast with the
previous study, the advantage of combining the two sets of predictors was more apparent here since the exact ranking of
the models was rather unclear before.

As expected, the best results across all the performance metrics were achieved when the subjective and objective
variables were combined. This is also in line with Pardo et al. [2017], Tempelaar et al. [2021], despite the different
levels of granularity between our study and theirs. While both of these studies focused on the final course outcome, we
were interested in a much more fine-grained measure (the delay of individual assignments). In both cases, the authors
reported an increase in explained variance when objective variables were added to the subjective variables. Our results
demonstrate that this effect remains consistent across different ML algorithms when predicting delay. However, it
remains unclear if combined data has a long-term predictive advantage. In Yu et al. [2020] for instance, the authors
found that combined data only had higher predictive accuracy for short-term predictions. For long-term predictions (e.g.,
the outcome of the following semester), the authors determined that single objective predictors yielded better results.
We suspect this may be due to fluctuations in students’ learning-related dispositions, which cannot be fully captured by
a single measurement. Despite their trait-like nature, it would thus be advisable to repeatedly assess subjective factors
instead of exclusively relying on once-collected historical student data. This comes with its own risks, e.g., alienating
students by a high frequency of reassessments.

Compared to Pardo et al. [2017], our results show that using ML algorithms might shuffle the order of importance of the
subjective variables and the magnitude of their contribution. While APSS is the most predictive feature for subjective
data, when combined with objective predictors, it is superseded by the GASE factor, which was the least important
factor for subjective-only predictions. This makes it more challenging to determine which variables to favor in a more
parsimonious model. In the work of Pardo et al. [2017], the order of importance remained consistent. We assume that
this discrepancy could either be traced back to the covariance structure of the predictors and/or the complex nature of
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some of the implemented algorithms, particularly the underlying decision trees that empower both RF and GBM. In
decision trees, more complex dependencies of the variables are considered when building the model.

5.1 Limitations

This study has two major limitations that need to be addressed. First off, the comparatively low predictive accuracy of
the models (some even performing barely above chance) raises the question of why it is not as high as one might expect
based on models in other studies. One issue is our rather diminutive sample size. This could be remedied in a number of
ways, for example by collecting more data across multiple semesters with the same students. The data accumulated over
time can then serve as historical data, serving as training data for future predictions. The other contributing factor is the
unbalance of our data. Two thirds of the assignments being handed in on time is not necessarily a representative finding.
Given the reported prevalence of procrastination in higher education Steel [2007], one could assume that there is more
of an equilibrium in other populations. Another plausible possibility is a stricter enforcement of deadlines, resulting in
an even higher proportion of timely submissions and thus more unbalanced data. The ML approaches involved in this
type of prediction thus need to be stable enough to account for such differences in the studied populations.

The second issue concerns the models themselves. Models with objective predictors outperforming models with
subjective predictors is not that surprising, considering that the outcome variable delay and our objective predictors are
all state variables. When interpreting the results, it is also important to note that the two sets of variables are not directly
comparable, mainly due to their different granularity (the subjective predictors being based on data assessed on the
student level and the objective variables being located on the assignment level in two cases and the course level in one
case). This is also reflected in the outcome variable, which shared its granularity only with a few predictors, which were
also revealed to be the most important variables, both in this study and the original one Imhof et al. [2021].

5.2 Implications & future work

The results imply that future research in procrastination and other types of dilatory behavior should include ML
algorithms such as RF, rather than relying on traditional statistical approaches alone. This holds true even for cases with
low numbers of variables. In order to select the best variables to enhance predictions, we thus recommend not to refrain
from implementing ML algorithms and evaluating data sets that include both subjective and objective predictors. This
is particularly crucial when applying such models in the field, e.g., for for real-time predictions, considering these two
types of predictors may not be available simultaneously. While our data was all collected at the end of the semester, the
same set of predictors could be split into early and late predictors if they were to be assessed in an LMS with real-time
predictions in the future.

For instance, our subjective predictors are trait variables, meaning they are supposedly stable across certain periods, and
could thus already be assessed at the start of the semester, making them viable as early predictors. Despite not being as
strong or consistent as their objective counterparts in our models, the subjective predictors could still potentially have
value since they may provide some clues long before the objective predictors become active. Even though a lot of the
algorithms performed below chance when operating with subjective variables alone (meaning the performance was
lower than simply assuming all assignments would be submitted on time), SVR-VS still managed to perform above
chance.

As discussed in Imhof et al. [2021], the objective predictors we used have the drawback of requiring information
about students’ activity across the semester, meaning predictions based on them cannot be made unless that data is
accumulated (at least partially). This again highlights the utility of combining both types of predictors. Moreover,
some of these variables change throughout the course (e.g., the number of clicks on an assignment), and so would
the predictive effect of that variable when doing real-time predictions. From this perspective, the optimal points in
time should be determined during the semester to achieve the best possible predictive performance that allows for
instructional feedback and other interventions to have a positive impact on dilatory behavior and other performance
metrics.

These results also imply that selecting a single algorithm and sticking with it for all models may not be the ideal path to
take. Considering that a different approach was favored for each of the three categories, it may be advisable to employ
multiple ML algorithms for real-time predictions, depending on the current stage of the semester (e.g., starting with
SVR to work with early predictors, which can then be accompanied by a multilevel model for the late predictors or get
replaced entirely by RF once all predictors become available).

Combined, our results show promise that these types of models could be used for real-time predictions of delay in
the future, which would be a necessary step if the end goal is to provide timely interventions to reduce maladaptive
forms of dilatory behavior (e.g., procrastination). However, the sample size is currently not large enough to provide
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accurate real-time predictions, meaning more data needs to be collected first, involving an expanded array of predictors.
This could include task-specific factors (e.g., motivational aspects such as students’ interest in a topic) or predictors
related to students’ time management skills. The latter could be achieved by analyzing behavioral patterns, which was
successfully incorporated in a mixture models study by Park and colleagues Park et al. [2018]. Another promising
avenue is to assess some of the learning-related factors objectively rather than subjectively, e.g., by replacing the
self-directed learning questionnaire with clickstream-based indicators of self-regulated learning (see Li et al. [2020]).

6 Conclusion

In conclusion, when applying ML prediction models in the field, comparisons between various algorithms are needed
to determine which ones deliver the highest performance. The suitability of a given ML algorithm when predicting
dilatory behavior depends on the type of predictor. While objective predictors work best with a statistical approach
(Bayesian multilevel models), subjective predictors are better served with Gradient Boosting Machines. When both
types of variables are combined, Random Forests were the preferable ML algorithm in our case. Future studies need to
increase the predictive performance (e.g., by expanding the roster of predictors) to allow such models to be implemented
in learning management systems, ultimately enabling real-time predictions during a semester. This can then serve as the
basis for interventions aiming at reducing procrastination and promoting timely submissions.
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