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Low levels of physical activity have a major effect on disease 
burden and it is estimated that more than 5 million deaths per 
year might be prevented by ensuring adequate levels1. Despite 

efforts to increase physical activity levels2, an estimated 28% of the 
world's population is insufficiently active, and the prevalence of 
physical inactivity in high-income countries rose from 31.6% in 
2001 to 36.8% in 2016 (ref. 3). Trends of decreasing physical activity 
levels over time coincide with increases in the time spent seden-
tary4, which may pose an independent risk for public health5,6.

Physical activity and sedentary behavior are affected by public 
policy and social support, as well as by cultural, environmental 
and individual factors7. Factors like socioeconomic status, built 
environment and media all influence physical activity at a pop-
ulation level7. In parallel, innate biological factors (for example, 
age, sex hormones, pre-existing medical conditions, epigenetics 
and genetics) also explain a moderate proportion of the interin-
dividual variability in physical activity and sedentary behavior. 
Heritability estimates (h2) range from 31% to 71% in large twin 
studies8,9. Identifying the genetic factors that influence daily 
physical activity will improve our understanding of this complex 
behavior, and may (1) facilitate unbiased causal inference; (2) 
help identify vulnerable subpopulations; and (3) fuel the design 
of tailored interventions to effectively promote physical activity. 
A mechanistic understanding of physical activity at a molecular 
level may even allow its beneficial effects to be attained through 
pharmacological intervention10.

Genome-wide association studies (GWAS) have identified 
thousands of loci associated with cardiometabolic risk factors and 
diseases11. However, similar efforts for physical activity have been 
sparse and initially had limited success. This likely reflects the com-
paratively small sample size of these efforts12, along with heteroge-
neous assessments of physical activity across studies. More recently, 
GWAS using data from UK Biobank identified nine loci associated 
with self-reported moderate and/or vigorous intensity physical 
activity or sports and exercise participation (n ≈ 377,000 individu-
als) and eight associated with accelerometry-assessed physical  

activity and sedentary behavior (n ≈ 91,000)13,14. Hence, on the 
assumption that physical activity is a highly polygenic trait, many 
common variants influencing physical activity undoubtedly remain 
to be identified.

Here, we combine data from up to 703,901 individuals (94.0% 
European, 2.1% African, 0.8% East Asian, 1.3% South Asian ances-
tries, and 1.9% Hispanic) from 51 studies in a multi-ancestry 
meta-analysis of GWAS for MVPA, LST, sedentary commuting and 
sedentary behavior at work. This yields 104 independent associa-
tion signals in 99 loci, implicating brain and muscle, among oth-
ers organs. Follow-up analyses improve our understanding of the 
molecular basis of leisure time physical activity and sedentary 
behavior, and their role in disease prevention.

Results
Genome-wide analyses yield 99 associated loci. In our primary 
meta-analysis of European ancestry men and women combined 
(Supplementary Tables 1, 2), we identify 91 loci that are associ-
ated (P < 5 × 10−9) with at least one of four self-reported traits: 
MVPA (n up to 606,820), LST (n up to 526,725), sedentary com-
muting (n up to 159,606) and sedentary behavior at work (n up to 
372,605) (Supplementary Table 3, Figs. 1 and 2, and Supplementary 
Fig. 1). The non-European ancestry meta-analyses do not provide 
new associations themselves and are only used in multi-ancestry 
meta-analyses. Multi-ancestry and sex-specific meta-analyses 
yield eight additional loci, resulting in a total of 104 independent 
association signals in 99 loci (Supplementary Tables 3 and 4). The 
vast majority of these—89 independent single nucleotide poly-
morphisms (SNPs) in 88 loci (35 not previously reported13,15)—are 
associated with LST, explaining 2.75% of its variance. We also iden-
tify 11 loci for MVPA (six not previously reported13,15,16, four that 
overlap with LST) and four loci for sedentary behavior at work (all 
previously reported13,15; Supplementary Table 3). No loci are identi-
fied for sedentary commuting. To increase statistical power for the 
discovery of new loci, we perform a multi-trait analysis of GWAS 
(MTAG) using summary statistics of MVPA and LST. This yields 
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13 additional loci: eight loci for MVPA and eight for LST, with three 
loci overlapping (Supplementary Table 5)17.

SNP-heritability estimates range from 8% for MVPA to 16% for 
LST (Supplementary Table 6 and Methods). Genetic correlations 
between the four traits range from −0.32 for sedentary behavior 
at work and sedentary commuting, to −0.49 for LST and MVPA  
(Fig. 1b). To ensure adequate statistical power in instrumental vari-
able and enrichment analyses, we focus on LST and MVPA from 
here onwards.

Genetic correlations of self-reported LST and MVPA with 
objective, accelerometry-assessed daily physical activity traits in 
UK Biobank range from 0.14 to 0.44 (Fig. 1b). Importantly, five 
of the eight loci previously identified for objectively assessed daily 
physical activity in UK Biobank data13,14 show directionally consis-
tent associations (P < 0.05) with self-reported LST and/or MVPA 
in our study (Supplementary Table 7). By contrast, 39 LST- and 4 
MVPA-associated loci observed here show directionally consis-
tent associations (P < 0.05) with at least one objectively assessed 
physical activity and/or sedentary trait (using accelerometry) in UK 
Biobank (Supplementary Table 8). In line with this, each additional 
LST-decreasing and MVPA-increasing allele in unweighted genetic 
predisposition scores of the 88 LST- and 11 MVPA-associated 
loci, respectively, are associated with higher objectively assessed 
daily physical activity levels in UK Biobank (P = 5 × 10−23 for LST; 
P = 2 × 10−3 for MVPA, Supplementary Table 8).

As external validation, we use the European ancestry sum-
mary statistics of LST and MVPA to construct polygenic scores 
(PGSs), and examine their associations with MVPA in 8,195 BioMe 
BioBank participants of European (n = 2,765), African (n = 2,224) 
and Hispanic (n = 3,206) ancestry. In general, a higher PGS for 
MVPA is associated with higher odds of engaging in more than 30 
min per week of MVPA, and a higher PGS for LST with lower odds 
of engaging in MVPA. Individuals at the highest decile of the PGS 

for LST are 26% less likely to spend more than 30 min per week 
on MVPA compared with individuals at deciles 4 to 6 (odds ratio 
(OR) [95% confidence intervals (CI)] = 0.74 [0.55–0.99]) (Fig. 3 
and Supplementary Table 9).

Shared genetic architecture. Using linkage disequilibrium (LD) 
score regression implemented in the LD-Hub18, we observe sig-
nificant (P < 4.6 × 10−4) genetic correlations of LST and MVPA with 
adiposity-related traits (r = −0.41 to −0.20), especially with body  
fat percentage (rg = 0.4 and −0.3, respectively; Fig. 4, Supplementary 
Fig. 2 and Supplementary Table 10). In line with moderate genetic cor-
relations, 11 of the 99 self-reported loci for physical activity and sed-
entary behavior have previously been associated with obesity-related 
traits19–25. In addition, PGSs for lower LST and higher MVPA are 
associated with lower BMI in up to 23,723 participants from the 
BioMe BioBank (Supplementary Table 9), and a phenome-wide asso-
ciation study (PheWAS) in 8,959 BioMe European ancestry samples 
shows a negative association between the PGS for MVPA and mor-
bid obesity (P = 1.1 × 10−5, Supplementary Fig. 3). Strikingly, genetic 
correlations with body fat percentage are similar for self-reported 
LST, MVPA (Fig. 4) and accelerometer-assessed physical activity 
traits13,14 (Supplementary Fig. 2).

Besides adiposity, less sedentary behavior and higher physical 
activity levels are also genetically correlated with a more favorable 
cardiometabolic status, including lower triglyceride, total choles-
terol, fasting glucose and fasting insulin levels, and lower odds of 
type 2 diabetes and coronary artery disease; as well as with better 
mental health outcomes, a lower risk of lung cancer and with lon-
gevity (Fig. 4 and Supplementary Fig. 2).

Causal inference. To assess directions of causality between sed-
entary behavior/physical activity and BMI, we next perform two- 
sample Mendelian randomization (MR) analyses using multiple  
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Fig. 1 | Overview of the four self-reported physical activity and sedentary traits and correlations with objectively assessed traits. a, An overview of 
the four self-reported physical activity and sedentary traits. b, Phenotypic (upper left) and genetic (lower right) correlation coefficients between the four 
self-reported physical activity and sedentary traits studied here and three accelerometer-assessed traits quantified in UK Biobank participants. AccMod, 
accelerometer-assessed proportion of time spent in moderate intensity physical activity; AccSed, accelerometer-assessed proportion of time spent 
sedentary; AccWalking, accelerometer-assessed proportion of time spent walking; SDC, sedentary commuting behavior; SDW, sedentary behavior at work.
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MR methods that utilize genome-wide full summary results 
or genome-wide significant loci (Supplementary Table 11 and 
Methods)26–30. Causal Analysis Using Summary Effect Estimates 
(CAUSE)26 as well as traditional MR methods consistently show that 
LST and BMI causally affect each other, with the causal effect (the 
per 1 s.d. unit increase in each trait) of higher LST on higher BMI 
being two- to threefold larger than the effect of BMI on LST (Fig. 5a, 
Table 1 and Supplementary Table 11). Results are similar for bidi-
rectional causal inference tests using body fat percentage instead of 
BMI (Table 2). However, CAUSE cannot distinguish a model of cau-
sality from horizontal pleiotropy for body fat percentage and LST 
(Table 2). CAUSE also illustrates a causal effect of higher LST on 
higher recalled adiposity and height in childhood (Table 2), sup-
porting our hypothesis that a genetic predisposition for higher LST 
later in life represents a lifelong predisposition that already influ-
ences adiposity through sedentary behavior early in life. We observe 
similar evidence for causal effects between MVPA and adiposity, 
with smaller effects when compared with LST.

We next investigate the causal effects of LST and MVPA on 
common diseases and risk factors, with and without adjusting for 
BMI (Supplementary Tables 12 and 13). In univariate analyses, we 
observe effects of lower LST on higher high-density lipoprotein 
cholesterol levels, higher parental age at death, and on lower odds of 
type 2 diabetes, attention deficit hyperactivity disorder and depres-
sion. The CAUSE model only supports evidence for a causal effect 
of LST on attention deficit hyperactivity disorder and parental age at 

death. Importantly, multivariable MR analyses show that all protec-
tive causal effects of lower LST are either mediated or confounded 
by BMI.

Directions of causal effects are consistent across LST and MVPA, 
but only reach significance for MVPA on parental age at death when 
using the CAUSE model. As for LST, multivariable MR results sug-
gest that the protective causal effects of higher MVPA are either 
mediated or confounded by BMI, but results should be interpreted 
with caution for MVPA because of weak instrument bias (condi-
tional F statistics <10)31 (Fig. 5b and Supplementary Table 13).

Gene expression in skeletal muscle following training. Although 
behavior is mainly influenced by signals from the brain, in the case 
of physical activity, characteristics of skeletal muscle can play a 
facilitating or restricting role32. Therefore, we next examine whether 
genes in LST- and MVPA-associated loci are enriched for altered 
messenger RNA expression in skeletal muscle following an acute 
bout of exercise or a period of training or inactivity33 (Methods). 
A mild enrichment for transcripts with an altered expression in 
skeletal muscle after resistance training is observed for genes near-
est to lead SNPs in LST-associated loci (P = 0.02) (Extended Data 
Figs. 1 and 2, and Supplementary Table 14). Of the ten genes driv-
ing the enrichment, PDE10A may play a critical role in regulating 
cyclic AMP and cyclic GMP levels in the striatum, a brain region 
that harbors the central reward system and is important for physical 
activity regulation34, and in regulating striatum output35; ILF3 and 
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Fig. 2 | Main results of GWAS and downstream gene prioritization for LST and MVPA. a, Circular Manhattan plot summarizing the results from European 
ancestry meta-analyses for LST and MVPA. Outer track, LST; inner track, MVPA. Genome-wide significant variants (P < 5 × 10−9) are highlighted in orange 
for loci associated with MVPA and in blue for loci associated with LST. b, Dendrogram showing the 101 independent association signals in LST- and 
MVPA-associated loci from European ancestry or multi-ancestry meta-analyses. Moving outwards from the center are: (1) chromosome; (2) lead SNP 
identifiers, in orange for loci associated with MVPA, in blue for loci associated with LST; (3) the most promising gene(s) prioritized in the locus (closest 
genes are highlighted by filled circles); and (4) the approach(es) by which the gene was prioritized, that is, DEPICT gene prioritization (Dg) or tissue 
enrichment (Dt); SMR of eQTL signals in blood (Sbl), brain (Sbr) or skeletal muscle (Ssm); credible variants identified by FINEMAP that (i) are coding and 
likely to have a detrimental effect on protein function (Fcadd) or (ii) show evidence of three-dimensional interactions with the candidate gene in central 
nervous system cell types (Fcrt); activity-by-contact (ABC) in 26 relevant tissues and cell types; a contribution to enrichment for altered expression in 
skeletal muscle following a resistance training intervention (RTsm); and/or proximity to an association signal for spontaneous running speed (Ms), time 
run (Mt) or distance run (Md) in a GWAS of 100 inbred mouse strains.
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NECTIN2—near APOE—influence the host response to viral infec-
tions36,37; EXOC4 plays a role in insulin-stimulated glucose uptake in 
skeletal muscle38; and IMMP2L influences the transport of proteins 
across the inner mitochondrial membrane39 (Supplementary Note).

Visual information processing and the reward system. To fur-
ther improve the understanding of the biological factors that influ-
ence sedentary behavior and physical activity, we perform a tissue 
enrichment analysis using DEPICT40. LST- and MVPA-associated 
loci (P < 1 × 10−5) are most significantly enriched for genes 
expressed in the retina, visual cortex, occipital lobe and cerebral 
cortex. This suggests that: (1) possibly subtle differences in the abil-
ity to receive, integrate and process visual information influence 
the likelihood to engage in MVPA; (2) MVPA alters the expression 
of genes that play a role in visual processes in these tissues; and/or 
(3) MVPA can slow age-related perceptual and cognitive decline41. 
The LST-associated loci yield similar tissue enrichment results, 
with retina having the lowest P value for enrichment. Interestingly, 
enrichment for genes expressed in retina was also observed in the 
High Runner mouse model42. Areas related to the reward system 
(for example, the hippocampus and limbic system) and to memory 
and navigation (for example, the entorhinal cortex, parahippocam-
pal gyrus, temporal lobe and limbic system) are also enriched in 
both LST- and MVPA-associated loci (Extended Data Fig. 3 and 
Supplementary Table 15).

We next use CELLECT43 to identify enriched cell types using 
single-cell RNA sequencing data from the Tabula Muris and mouse 
brain projects44. In Tabula Muris data, we observe enrichment in 
nonmyeloid neurons for MVPA and LST, and of nonmyeloid oligo-
dendrocyte precursor cells for MVPA, possibly highlighting a role 
for signal transduction (Extended Data Fig. 4 and Supplementary 
Table 16). In mouse brain data, we identify enrichment for 13 and 
45 cell types from 3 and 12 distinct brain regions for MVPA and 
LST, respectively, including enrichment in dopaminergic neurons 
(Extended Data Fig. 4 and Supplementary Table 16); a key feature of 
physical activity regulation in mice45.

Candidate gene prioritization. To explore mechanisms by which 
the identified loci may influence LST and MVPA, we next pinpoint 
genes in GWAS-identified loci: (1) contributing to tissue enrich-
ment or identified by DEPICT’s gene prioritization algorithm 
(Supplementary Tables 15 and 17); (2) whose expression in brain, 
blood and/or skeletal muscle is anticipated to mediate the association 
between locus and outcome based on Summary-based MR46 (SMR; 
Supplementary Table 18); (3) harboring credible variants with a 
high posterior probability of being causal (>0.80)47 and a predicted 
deleterious effect on protein function (Supplementary Table 19)48;  
(4) showing chromatin–chromatin interactions with credible vari-
ants in central nervous system cell types (such genes may be fur-
ther from lead SNPs, Supplementary Table 19); (5) that—across 
26 tissues and cell types—are activated by contact with enhanc-
ers presumably affected by causal variants flagged by GWAS hits49 

(Supplementary Tables 20–22); (6) associated with physical activity 
in GWAS in humans and mice and located <100 kb from the lead 
variant in humans or mice (Supplementary Note, Supplementary 
Fig. 4 and Supplementary Tables 23 and 24); and (7) driving enrich-
ment of altered expression in skeletal muscle following resistance 
exercise training (Supplementary Table 14). Twelve (14%) of the 
LST-associated loci harbor a variant with a high (>80%) poste-
rior probability of being causal, whereas such variants were not 
identified among the 11 MVPA-associated loci (Supplementary 
Table 19). Integrating results across approaches yields 268 candi-
date genes in 70 LST-associated loci and 39 candidate genes in 8 
MVPA-associated loci. Forty-six candidate genes are prioritized 
by multiple approaches (42 for LST and 6 for MVPA; 2 overlap) 
and point to endocytosis (CNIH2, RAB1B, KLC2, PACS1, REPS1, 
DNM3, EXOC4), locomotion (CADM2, KLC2) and myopathy 
(MLF2, HERC1, KLC2, SIL1) as relevant pathways (Supplementary 
Tables 25 and 26, and Supplementary Note). Seven clusters of pro-
tein–protein interactions are predicted, involving 17 of the 46 genes 
(Extended Data Fig. 5). In vivo perturbation in model systems is 
required to confirm or refute a role in sedentary behavior and phys-
ical activity.

Enrichment of previously reported candidate genes. Candidate 
gene studies in humans have aimed to identify and characterize 
the role of genes in exercise (physical activity behavior) and fitness 
(physical activity ability) for decades. We next examine whether 
variants in genes that have been linked to or associated with exercise 
and fitness show evidence of associations with self-reported LST and 
MVPA12,50–54. Of the 58 previously described candidate genes (13 for 
exercise; 45 for fitness), 56 (13 for exercise and 43 for fitness) har-
bor variants with P < 0.05 for associations with LST and/or MVPA 
(Pbinomial = 2.1 × 10−70; Supplementary Fig. 5 and Supplementary 
Table 27). Associations reach traditional genome-wide significance 
(P < 5 × 10−8) for variants in three genes: APOE55, PPARD56 and 
ACTN3 (ref. 57) (Methods).

The SNP in APOE with the lowest P value for association with 
LST is rs429358, for which the C allele associated with lower LST 
was previously associated with higher self-reported MVPA13 and 
forms part of the Ɛ4 risk allele for Alzheimer’s disease (Discussion). 
The SNP with the lowest P value for association with LST in the 
locus is rs6857 (D′ = 0.90; r2 = 0.78 with rs429358), in the 3′ untrans-
lated region of NECTIN2. Neither rs429358 (P = 0.16) nor rs6857 
(P = 0.18) is associated with MVPA in this study.

The C allele in rs1625595, ~300 kb upstream of ACTN3, is asso-
ciated with higher MVPA (P = 1.9 × 10−11) as well as with higher 
ACTN3 expression in skeletal muscle (GTEx, P = 6.6 × 10−5). 
Alpha-actinin-3 (ACTN3) forms a structural component of the 
muscle’s Z-disc that is exclusively expressed in type IIA and IIX 
muscle fibers58. rs1815739, a common ACTN3 variant that intro-
duces a premature stop codon, p.Arg577Ter, also known as 
p.Arg620Ter, has been extensively studied in the context of exer-
cise performance57. Although we observe little evidence for a role 

Table 1 | Bidirectional MR results for LST and MVPA with BMI or body fat percentage using significant loci only

Exposure Outcome Beta s.e. P value Exposure Outcome Beta s.e. P value

LST Body fat % 0.16 0.07 0.016 LST BMI 0.40 0.04 8.4 × 10−14

Body fat % LST 0.12 0.03 0.005 BMI LST 0.16 0.01 1.4 × 10−74

MVPA Body fat % −0.21 0.17 0.22 MVPA BMI −0.25 0.04 0.002

Body fat % MVPA −0.001 0.036 0.97 BMI MVPA −0.10 0.01 5.8 × 10−12

We use MR-PRESSO with outliers removed for all pairs of traits except for the causal effect estimation between body fat percentage (body fat %) and MVPA because no outliers were detected by 
MR-PRESSO. For body fat percentage → MVPA, we reported the causal estimates using an inverse variance-weighted test; for MVPA → body fat percentage, we reported the weighted median method 
because these two methods were selected by the machine learning framework (Methods) to be the most appropriate approaches for each analysis, respectively. P < 0.0125 indicates significant effects.
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of rs1815739 in leisure time sedentary behavior or physical activity 
(PLST = 0.017, PMVPA = 0.17), the intronic ACTN3 variants rs679228 
(PLST = 4.3 × 10−8) and rs2275998 (PMVPA = 1.8 × 10−7) do show evi-
dence of such associations. Of these, rs2275998—located 646 bp 
downstream of p.Arg577Ter—is in full LD (r2 = 1.0) with the mis-
sense variant rs2229456 (p.Glu635Ala), which likely affects protein 
function (Combined Annotation Dependent Deletion (CADD) 
score for the derived, minor, p.635Ala variant =28.6). Each C 
allele in rs2229456 is associated with less LST (P = 1.4 × 10−4) and 
higher odds of engaging in MVPA (P = 8.3 × 10−7). Of note, given 
its downstream location from p.Arg577Ter, a potentially causal 
effect of rs2229456 on physical activity requires absence of the 
protein-truncating p.Arg577Ter variant in rs1815739. Haplotype 
analyses support this (Supplementary Table 28).

Greater ACTN3 flexibility with p.635Ala. Given the striking 
finding that MVPA and LST are associated with the ACTN3 mis-
sense variant rs2229456, but not with the ACTN3-truncating vari-
ant rs1815739, we next examine whether rs2229456 (p.Glu635Ala 

variant) has functional consequences for ACTN3’s mechanistic 
properties at the molecular level. We add ACTN2 to this com-
parison because it likely compensates for the loss of ACTN3 in the 
presence of the truncating p.Arg577Ter variant59. The results of 
computer-based (steered) molecular dynamics (MD) simulations 
and umbrella sampling (see Methods and Supplementary Note for 
more details) show that the ancestral p.Glu635 variant facilitates 
salt-bridge and hydrogen-bonding interactions at residue 635 with 
surrounding residues (for example, R638 and Q639; Fig. 6a,b and 
Supplementary Fig. 6) via its glutamate side chain. Such interac-
tions are not formed in the presence of the ACTN3 p.635Ala prod-
uct. They are also less likely to be formed in ACTN2, because of a 
kink that is present at exactly this location in ACTN2 (Fig. 6c and 
Supplementary Fig. 6). Moreover, p.635Ala and ACTN2 show dis-
tinctly different behavior from p.Glu635, with a greater magnitude 
of root mean squared fluctuations (r.m.s.f.) in the middle section 
of the spectrin repeats under no-load conditions (Fig. 6d), suggest-
ing a more flexible structural region. When placed under simulated 
compressive loads that are likely experienced in vivo, p.635Ala 
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shows a more linear force versus distance relationship, with greater 
variance in the potential of mean force (Fig. 6e and Supplementary  
Fig. 6). Taken together, these results indicate that the ACTN3 
p.635Ala dimer—associated with higher MVPA—exhibits similar 
flexibility to ACTN2 and greater flexibility than the p.Glu635 dimer.

Maximal force and fiber power lower with ACTN3 p.635Ala. We 
next examine whether a higher predicted ACTN3 dimer flexibility 
in the presence of p.635Ala has functional consequences in isolated 
human skeletal muscle fibers. To this end, we compare functional 
readouts in 298 isolated type I and IIA fibers from vastus lateralis 
biopsies obtained from eight healthy, young, untrained male partici-
pants before and after an eccentric exercise bout60,61. Results from a 
15,000 iteration Markov chain Monte Carlo model show that stable 
maximal force—with fibers submerged in activating solution—and 
fiber power during isotonic load clamps are similar in 32 ± 7 fibers 
(mean ± s.d.) from three p.Arg577 homozygous, p.Glu635Ala het-
erozygous individuals compared with 39 ± 6 fibers from four indi-
viduals homozygous for the p.577Ter variant; and lower in both 

groups when compared with 46 fibers from an individual that is 
homozygous for both the p.Arg577 and p.Glu635 variants (Fig. 6f 
and Methods). Associations are most striking after an eccentric 
exercise intervention and are, as expected, more pronounced in 
type IIA than in type I fibers (Supplementary Fig. 7). Taken together, 
these results suggest that a more flexible ACTN dimer with lower 
peak performance (ACTN3 p.635Ala or ACTN2) may be less sus-
ceptible to exercise-induced muscle damage than the ancestral 
ACTN3 p.Glu635, thereby facilitating a more active lifestyle.

Discussion
By doubling the sample size compared with earlier GWAS, we 
identify 104 independent association signals in 99 loci, including 
42 newly identified loci, for self-reported traits reflecting MVPA 
and sedentary behavior during leisure time. Around half of these 
also show evidence of directionally consistent associations with 
objectively assessed physical activity traits. Genetic correlations 
and two-sample MR analyses show that lower LST results in lower 
adiposity. Protective causal effects of higher MVPA and lower 
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LST—acting through or confounded by BMI—are observed for lon-
gevity. Tissue and cell-type enrichment analyses suggest a role for 
visual information processing and the reward system in MVPA and 
LST, including enrichment for dopaminergic neurons. Loci associ-
ated with LST are enriched for genes whose expression in skeletal 
muscle is altered by resistance training. Forty-six candidate genes 
are prioritized by more than one approach and point to pathways 
related to endocytosis, locomotion and myopathy. Finally, results 
from MD simulations, umbrella sampling and single fiber experi-
ments suggest that a missense variant (rs2229456 encoding ACTN3 
p.Glu635Ala) likely increases MVPA, at least in part by reducing 
susceptibility to exercise-induced muscle damage.

Recent MR studies reported causal protective effects of 
self-reported and objectively assessed physical activity on breast and 
colorectal cancer62,63. One study concluded that a 1 s.d. increase in 
self-reported MVPA was associated with lower odds of colorectal 
cancer (OR = 0.56), with BMI only mediating 2% of the protective 
effect63. Our results—on lung cancer rather than colorectal cancer—
show that instrumental variables of MVPA in multivariable MR are 
weak, and results should be interpreted with caution. Furthermore, 
a causal effect of objectively assessed, but not self-reported physi-
cal activity (MVPA) on depression has been reported64. Our MR 
results for LST on depression show that although the physical activ-
ity trait matters, the self-reported nature of it seems inconsequen-
tial. According to an earlier study, TV viewing has an attenuated 
effect but still causes coronary artery disease when adjusting for 
BMI15. The discrepancy with our results—suggesting mediation 
or confounding by BMI—highlights the importance of including 
physical activity, as well as BMI-associated variants in multivari-
able MR analysis, to prevent loss of precision and potentially even  
biased estimates31.

It is of interest that a proxy of rs429358, part of the established 
APOE Ɛ4 risk allele for Alzheimer’s disease, is associated with 
lower LST. Klimentidis et al. previously showed that the associa-
tion of rs429358 with MVPA was stronger in those reporting a 
family history of Alzheimer’s disease, and among older individu-
als13. Based on the direction of the association, it was hypothesized 
that individuals at higher risk of developing Alzheimer’s disease 
may adopt a healthy lifestyle to mitigate their risk, especially later 
in life13. However, our MR analyses show no evidence of a causal 
role of MVPA or LST in Alzheimer’s disease, and lower average 
physical activity levels in individuals with a first-degree family his-
tory of Alzheimer’s disease or dementia13 suggest other explana-
tions are more likely, although a role for survival bias cannot be 
ruled out13. For example, APOE Ɛ4 carriers have a greater increase 
in aerobic capacity following exercise training65, which may rein-
force a physically active lifestyle independently of Alzheimer’s risk. 
Furthermore, several studies have investigated the moderating role 
of the APOE Ɛ4 allele in the relationship between physical activity 

and Alzheimer prevention66. Although more studies are needed to 
resolve inconsistencies in the literature, Ɛ4 carriers seem to benefit 
more from physical activity in terms of reducing the risk of demen-
tia and brain pathology66.

To investigate the molecular basis for the association of ACTN3 
with MVPA, we compare the ACTN3 p.Glu635 and p.635Ala vari-
ants (rs2229456) with each other and with ACTN2—as a func-
tional proxy for ACTN3 p.577Ter—using MD simulations and 
single fiber experiments. Previous studies using normal mode 
analysis of alpha-actinin show that several of the natural fre-
quencies have bending flexibility near residue 635. This is inter-
esting because ACTN3’s residue 635—the 356th residue of the 
spectrin repeat region (Fig. 6)—lies outside the linkers between the 
α-helices of the spectrin repeats, where most flexibility is expected 
and observed67. The absence of salt-bridge and hydrogen-bonding 
interactions between position 635 (628 in ACTN2) and surround-
ing residues—due to either the presence of the alanine substitution 
at ACTN3’s residue 635, or a kink in the α-helix at ACTN2’s resi-
due 628—increases the flexibility of the dimer under a compres-
sive load, with far less work required to deform the homodimer 
beyond a compressive distance of 1.2 nm. The p.635Ala substitu-
tion may reduce the stiffness of the muscle fiber while undergoing 
elastic deformation during exercise to a level that is comparable 
with ACTN2. Although at the expense of the maximal force that 
single fibers can generate, this may reduce exercise-induced micro-
trauma caused by Z-disc rupture or streaming1, alleviating delayed 
onset muscle soreness2 and risk of injuries3, enabling a more active 
lifestyle. Our results suggest it would be interesting to revisit the 
plethora of data on p.Arg577Ter, and differentiate between effects 
of the p.Arg577Ter and p.Glu635Ala variants.

In conclusion, our results shed light on genetic variants and 
molecular mechanisms that influence physical activity and sed-
entary behavior in daily life. As would be expected for complex 
behaviors that involve both motivation and physical ability, these 
mechanisms occur in multiple organs and organ systems. In addi-
tion, our causal inference supports the important public health mes-
sage that a physically active lifestyle mitigates the risk of multiple 
diseases, in major part through or confounded by an effect on BMI.
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Table 2 | Bidirectional MR results for LST and MVPA during leisure time with BMI or body fat percentage using genome-wide 
summary results (CAUSE method)

Exposure Outcome Gammaa 95% CI P valueb Exposure Outcome Gammaa 95% CI P valueb

LST Body fat % 0.18 0.13 to 0.24 1.8 × 10−3 LST BMI 0.31 0.28 to 0.35 6.7 × 10−28

Body fat % LST 0.12 0.04 to 0.18 0.14 BMI LST 0.18 0.16 to 0.19 1.1 × 10−14

MVPA Body fat % −0.12 −0.20 to −0.04 0.07 MVPA BMI −0.14 −0.20 to −0.07 6.0 x 10−3

Body fat % MVPA −0.03 −0.09 to 0.02 0.53 BMI MVPA −0.09 −0.11 to −0.06 7.4 x 10−3

LST Comparative height at age 10 0.03 0.01 to 0.04 0.04 LST Comparative body 
size at age 10

0.02 0.01 to 0.03 0.04

aPosterior median of gamma, which can be taken as a point estimate of the causal effect. This estimate tends to be shrunk slightly toward zero compared with other methods. bThe P value for comparing the 
causal model with the sharing model. P < 0.05 indicates that posteriors estimated under the causal model predict the data significantly better than posteriors estimated under the sharing model.
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type IIA fibers from three p.Arg577 homozygous, p.Glu635Ala heterozygous individuals (orange); and from four p.577Ter homozygous individuals (green).

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics 1339

http://www.nature.com/naturegenetics


Articles NATurE GEnETICS

References
	1.	 Lee, I. M. et al. Effect of physical inactivity on major non-communicable 

diseases worldwide: an analysis of burden of disease and life expectancy. 
Lancet 380, 219–229 (2012).

	2.	 Global Action Plan for the Prevention and Control of Noncommunicable 
Diseases 2013–2020 (World Health Organization, 2013).

	3.	 Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in 
insufficient physical activity from 2001 to 2016: a pooled analysis of 358 
population-based surveys with 1.9 million participants. Lancet Glob. Health 6, 
e1077–e1086 (2018).

	4.	 Wang, Y. et al. Secular trends in sedentary behaviors and associations with 
weight indicators among Chinese reproductive-age women from 2004 to 
2015: findings from the China Health and Nutrition Survey. Int J. Obes. 
(Lond.) 44, 2267–2278 (2020).

	5.	 Wijndaele, K. et al. Television viewing time independently predicts all-cause 
and cardiovascular mortality: the EPIC Norfolk study. Int J. Epidemiol. 40, 
150–159 (2011).

	6.	 Wijndaele, K., Sharp, S. J., Wareham, N. J. & Brage, S. Mortality risk 
reductions from substituting screen time by discretionary activities.  
Med Sci. Sports Exerc. 49, 1111–1119 (2017).

	7.	 Bauman, A. E. et al. Correlates of physical activity: why are some people 
physically active and others not? Lancet 380, 258–271 (2012).

	8.	 den Hoed, M. et al. Heritability of objectively assessed daily physical activity 
and sedentary behavior. Am. J. Clin. Nutr. 98, 1317–1325 (2013).

	9.	 Stubbe, J. H. et al. Genetic influences on exercise participation in 37,051 twin 
pairs from seven countries. PLoS ONE 1, e22 (2006).

	10.	Fan, W. et al. PPARδ promotes running endurance by preserving glucose.  
Cell Metab. 25, 1186–1193.e4 (2017).

	11.	Buniello, A. et al. The NHGRI-EBI GWAS catalog of published genome-wide 
association studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 47, D1005–D1012 (2019).

	12.	Sarzynski, M. A. et al. Advances in exercise, fitness, and performance 
genomics in 2015. Med. Sci. Sports Exerc. 48, 1906–1916 (2016).

	13.	Klimentidis, Y. C. et al. Genome-wide association study of habitual physical 
activity in over 377,000 UK Biobank participants identifies multiple variants 
including CADM2 and APOE. Int. J. Obes. 42, 1161–1176 (2018).

	14.	Doherty, A. et al. GWAS identifies 14 loci for device-measured physical 
activity and sleep duration. Nat. Commun. 9, 5257 (2018).

	15.	van de Vegte, Y. J., Said, M. A., Rienstra, M., van der Harst, P. & Verweij, N. 
Genome-wide association studies and Mendelian randomization analyses for 
leisure sedentary behaviours. Nat. Commun. 11, 1770 (2020).

	16.	Kilpeläinen, T. O. et al. Multi-ancestry study of blood lipid levels identifies 
four loci interacting with physical activity. Nat. Commun. 10, 376 (2019).

	17.	Turley, P. et al. Multi-trait analysis of genome-wide association summary 
statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

	18.	Zheng, J. et al. LD Hub: a centralized database and web interface to perform 
LD score regression that maximizes the potential of summary level GWAS 
data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 
272–279 (2016).

	19.	Shungin, D. et al. New genetic loci link adipose and insulin biology to body 
fat distribution. Nature 518, 187–196 (2015).

	20.	Kichaev, G. et al. Leveraging polygenic functional enrichment to improve 
GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

	21.	Astle, W. J. et al. The allelic landscape of human blood cell trait variation and 
links to common complex disease. Cell 167, 1415–1429.e19 (2016).

	22.	Pulit, S. L. et al. Meta-analysis of genome-wide association studies  
for body fat distribution in 694 649 individuals of European ancestry.  
Hum. Mol. Genet. 28, 166–174 (2019).

	23.	Winkler, T. W. et al. The influence of age and sex on genetic associations  
with adult body size and shape: a large-scale genome-wide interaction study. 
PLoS Genet. 11, e1005378 (2015).

	24.	Locke, A. E. et al. Genetic studies of body mass index yield new insights for 
obesity biology. Nature 518, 197–206 (2015).

	25.	Justice, A. E. et al. Genome-wide meta-analysis of 241,258 adults accounting 
for smoking behaviour identifies novel loci for obesity traits. Nat. Commun. 
8, 14977 (2017).

	26.	Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian 
randomization accounting for correlated and uncorrelated pleiotropic effects 
using genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020).

	27.	Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread 
horizontal pleiotropy in causal relationships inferred from Mendelian 
randomization between complex traits and diseases. Nat. Genet. 50,  
693–698 (2018).

	28.	Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization 
analysis with multiple genetic variants using summarized data. Genet. 
Epidemiol. 37, 658–665 (2013).

	29.	Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary 
data Mendelian randomization via the zero modal pleiotropy assumption.  
Int. J. Epidemiol. 46, 1985–1998 (2017).

	30.	Hemani, G. et al. Automating Mendelian randomization through machine 
learning to construct a putative causal map of the human phenome. Preprint 
at bioRxiv https://doi.org/10.1101/173682 (2017).

	31.	Sanderson, E., Smith, G. D., Windmeijer, F. & Bowden, J. An examination of 
multivariable Mendelian randomization in the single-sample and two-sample 
summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

	32.	Lightfoot, J. T. et al. Biological/genetic regulation of physical activity level: 
consensus from GenBioPAC. Med. Sci. Sports Exerc. 50, 863–873 (2018).

	33.	Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to 
exercise and inactivity. Nat. Commun. 11, 470 (2020).

	34.	Saul, M. C. et al. High motivation for exercise is associated with altered 
chromatin regulators of monoamine receptor gene expression in the striatum 
of selectively bred mice. Genes Brain Behav. 16, 328–341 (2017).

	35.	Threlfell, S., Sammut, S., Menniti, F. S., Schmidt, C. J. & West, A. R. 
Inhibition of phosphodiesterase 10A increases the responsiveness of striatal 
projection neurons to cortical stimulation. J. Pharmacol. Exp. Ther. 328, 
785–795 (2009).

	36.	Harashima, A., Guettouche, T. & Barber, G. N. Phosphorylation of the NFAR 
proteins by the dsRNA-dependent protein kinase PKR constitutes a novel 
mechanism of translational regulation and cellular defense. Genes Dev. 24, 
2640–2653 (2010).

	37.	Zhu, Y. et al. Identification of CD112R as a novel checkpoint for human 
T cells. J. Exp. Med. 213, 167–176 (2016).

	38.	Inoue, M., Chang, L., Hwang, J., Chiang, S. H. & Saltiel, A. R. The exocyst 
complex is required for targeting of Glut4 to the plasma membrane by 
insulin. Nature 422, 629–633 (2003).

	39.	Burri, L. et al. Mature DIABLO/Smac is produced by the IMP protease 
complex on the mitochondrial inner membrane. Mol. Biol. Cell 16, 
2926–2933 (2005).

	40.	Pers, T. H. et al. Biological interpretation of genome-wide association studies 
using predicted gene functions. Nat. Commun. 6, 5890 (2015).

	41.	Muiños, M. & Ballesteros, S. Does physical exercise improve perceptual skills 
and visuospatial attention in older adults? A review. Eur. Rev. Aging Phys. Act. 
15, 2 (2018).

	42.	Hillis, D. A. et al. Genetic basis of aerobically supported voluntary  
exercise: results from a selection experiment with house mice. Genetics 216, 
781–804 (2020).

	43.	Timshel, P. N., Thompson, J. J. & Pers, T. H. Genetic mapping of etiologic 
brain cell types for obesity. eLife 9, e55851 (2020).

	44.	Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a 
Tabula Muris. Nature 562, 367–372 (2018).

	45.	Roberts, M. D., Ruegsegger, G. N., Brown, J. D. & Booth, F. W. Mechanisms 
associated with physical activity behavior: insights from rodent experiments. 
Exerc. Sport Sci. Rev. 45, 217–222 (2017).

	46.	Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies 
predicts complex trait gene targets. Nat. Genet. 48, 481 (2016).

	47.	Benner, C. et al. FINEMAP: efficient variable selection using summary data 
from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

	48.	Kircher, M. et al. A general framework for estimating the relative 
pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

	49.	Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease 
genes. Nature 593, 238–243 (2021).

	50.	Bray, M. S. et al. The human gene map for performance and health-related 
fitness phenotypes: the 2006–2007 update. Med. Sci. Sports Exerc. 41,  
35–73 (2009).

	51.	de Geus, E. J., Bartels, M., Kaprio, J., Lightfoot, J. T. & Thomis, M. Genetics 
of regular exercise and sedentary behaviors. Twin Res. Hum. Genet 17, 
262–271 (2014).

	52.	Weyerstraß, J., Stewart, K., Wesselius, A. & Zeegers, M. Nine genetic 
polymorphisms associated with power athlete status – a meta-analysis.  
J. Sci. Med. Sport 21, 213–220 (2018).

	53.	Moir, H. J. et al. Genes and elite marathon running performance: a systematic 
review. J. Sports Sci. Med. 18, 559–568 (2019).

	54.	Kim, D. S., Wheeler, M. T. & Ashley, E. A. The genetics of human 
performance. Nat. Rev. Genet. 23, 40–54 (2021).

	55.	Hagberg, J. M. et al. Apolipoprotein E genotype and exercise training-induced 
increases in plasma high-density lipoprotein (HDL)- and HDL2-cholesterol 
levels in overweight men. Metabolism 48, 943–945 (1999).

	56.	Gielen, M. et al. Heritability and genetic etiology of habitual physical activity: 
a twin study with objective measures. Genes Nutr. 9, 415, 1–12 (2014).

	57.	Pickering, C. & Kiely, J. ACTN3: more than just a gene for speed.  
Front. Physiol. 8, 1080 (2017).

	58.	Vincent, B. et al. ACTN3 (R577X) genotype is associated with fiber type 
distribution. Physiol. Genomics 32, 58–63 (2007).

	59.	Norman, B. et al. Strength, power, fiber types, and mRNA expression  
in trained men and women with different ACTN3 R577X genotypes.  
J. Appl. Physiol. (1985) 106, 959–965 (2009).

	60.	Broos, S. et al. Evidence for ACTN3 as a speed gene in isolated human 
muscle fibers. PLoS ONE 11, e0150594 (2016).

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics1340

https://doi.org/10.1101/173682
http://www.nature.com/naturegenetics


ArticlesNATurE GEnETICS

	61.	Broos, S. et al. The stiffness response of type IIa fibres after eccentric 
exercise-induced muscle damage is dependent on ACTN3 r577X 
polymorphism. Eur. J. Sport Sci. 19, 480–489 (2019).

	62.	Papadimitriou, N. et al. Physical activity and risks of breast and  
colorectal cancer: a Mendelian randomisation analysis. Nat. Commun. 11,  
597 (2020).

	63.	Zhang, X. et al. Genetically predicted physical activity levels are associated 
with lower colorectal cancer risk: a Mendelian randomisation study. Br. J. 
Cancer 124, 1330–1338 (2021).

	64.	Choi, K. W. et al. Assessment of bidirectional relationships between physical 
activity and depression among adults: a 2-sample Mendelian randomization 
study. JAMA Psychiatry 76, 399–408 (2019).

	65.	Thompson, P. D. et al. Apolipoprotein E genotype and changes in serum 
lipids and maximal oxygen uptake with exercise training. Metabolism 53, 
193–202 (2004).

	66.	de Frutos-Lucas, J. et al. Does APOE genotype moderate the relationship 
between physical activity, brain health and dementia risk? A systematic 
review. Ageing Res. Rev. 64, 101173 (2020).

	67.	Golji, J., Collins, R. & Mofrad, M. R. Molecular mechanics of the 
alpha-actinin rod domain: bending, torsional, and extensional behavior.  
PLoS Comput. Biol. 5, e1000389 (2009).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Zhe Wang   1 ✉, Andrew Emmerich   2, Nicolas J. Pillon   3, Tim Moore   4, Daiane Hemerich1, 
Marilyn C. Cornelis5, Eugenia Mazzaferro6, Siacia Broos7,8, Tarunveer S. Ahluwalia9,10,11, 
Traci M. Bartz12,13, Amy R. Bentley14, Lawrence F. Bielak15, Mike Chong16, Audrey Y. Chu17,18, 
Diane Berry19, Rajkumar Dorajoo20,21, Nicole D. Dueker22,23, Elisa Kasbohm24,25, Bjarke Feenstra26, 
Mary F. Feitosa27, Christian Gieger28, Mariaelisa Graff29, Leanne M. Hall30,31, Toomas Haller32, 
Fernando P. Hartwig33,34, David A. Hillis35, Ville Huikari36, Nancy Heard-Costa37,38, 
Christina Holzapfel28,39, Anne U. Jackson40, Åsa Johansson41, Anja Moltke Jørgensen10, 
Marika A. Kaakinen42,43, Robert Karlsson44, Kathleen F. Kerr13, Boram Kim45, Chantal M. Koolhaas46, 
Zoltan Kutalik47,48,49, Vasiliki Lagou50, Penelope A. Lind51,52, Mattias Lorentzon53,54, 
Leo-Pekka Lyytikäinen55,56, Massimo Mangino57,58, Christoph Metzendorf6, Kristine R. Monroe59, 
Alexander Pacolet7, Louis Pérusse60,61, Rene Pool62,63, Rebecca C. Richmond64, Natalia V. Rivera65,66,67, 
Sebastien Robiou-du-Pont68, Katharina E. Schraut69, Christina-Alexandra Schulz70,71, 
Heather M. Stringham40, Toshiko Tanaka72, Alexander Teumer24,73, Constance Turman74, 
Peter J. van der Most75, Mathias Vanmunster7, Frank J. A. van Rooij46, 
Jana V. van Vliet-Ostaptchouk76,77, Xiaoshuai Zhang78,79, Jing-Hua Zhao80, Wei Zhao15, 
Zhanna Balkhiyarova43,81,82, Marie N. Balslev-Harder10, Sebastian E. Baumeister24,83, John Beilby84, 
John Blangero85, Dorret I. Boomsma62,63, Soren Brage78, Peter S. Braund30,31, Jennifer A. Brody12, 
Marcel Bruinenberg86, Ulf Ekelund87,88, Ching-Ti Liu89, John W. Cole90, Francis S. Collins91, 
L. Adrienne Cupples37,89, Tõnu Esko32, Stefan Enroth41, Jessica D. Faul92, Lindsay Fernandez-Rhodes93, 
Alison E. Fohner94, Oscar H. Franco46,95, Tessel E. Galesloot96, Scott D. Gordon51, Niels Grarup10, 
Catharina A. Hartman97, Gerardo Heiss29, Jennie Hui84,98,99, Thomas Illig100,101, Russell Jago102, 
Alan James103, Peter K. Joshi69,104, Taeyeong Jung45, Mika Kähönen56,105, Tuomas O. Kilpeläinen10, 
Woon-Puay Koh106,107, Ivana Kolcic108, Peter P. Kraft74, Johanna Kuusisto109, Lenore J. Launer110, 
Aihua Li68, Allan Linneberg111,112, Jian’an Luan78, Pedro Marques Vidal113, Sarah E. Medland51,114, 
Yuri Milaneschi115, Arden Moscati1, Bill Musk99,174, Christopher P. Nelson30,31, Ilja M. Nolte75, 
Nancy L. Pedersen44, Annette Peters116, Patricia A. Peyser15, Christine Power19, Olli T. Raitakari117,118,119, 
Mägi Reedik32, Alex P. Reiner120, Paul M. Ridker17,121, Igor Rudan69, Kathy Ryan122, Mark A. Sarzynski123, 
Laura J. Scott40, Robert A. Scott78, Stephen Sidney124, Kristin Siggeirsdottir125, Albert V. Smith40,125, 
Jennifer A. Smith15,92, Emily Sonestedt70, Marin Strøm26,126, E. Shyong Tai127,128,129, Koon K. Teo68,130, 
Barbara Thorand116, Anke Tönjes131, Angelo Tremblay60,61, Andre G. Uitterlinden132, 
Jagadish Vangipurapu109, Natasja van Schoor133, Uwe Völker73,134, Gonneke Willemsen62,63, 

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics 1341

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8046-4969
http://orcid.org/0000-0002-0908-9924
http://orcid.org/0000-0003-1107-9490
http://orcid.org/0000-0003-4250-3370
http://www.nature.com/naturegenetics


Articles NATurE GEnETICS

Kayleen Williams13, Quenna Wong13, Huichun Xu122, Kristin L. Young29, Jian Min Yuan135,136, 
M. Carola Zillikens132, Alan B. Zonderman137, Adam Ameur   41, Stefania Bandinelli138, Joshua C. Bis   12, 
Michael Boehnke   40, Claude Bouchard   139, Daniel I. Chasman   17,121, George Davey Smith   34,140, 
Eco J. C. de Geus   62,63, Louise Deldicque141, Marcus Dörr   73,142, Michele K. Evans137, Luigi Ferrucci   72, 
Myriam Fornage   143, Caroline Fox144, Theodore Garland Jr 145, Vilmundur Gudnason125,146, 
Ulf Gyllensten   41, Torben Hansen   10, Caroline Hayward147, Bernardo L. Horta   33, 
Elina Hyppönen   148,149,150, Marjo-Riitta Jarvelin36,151, W. Craig Johnson   13, Sharon L. R. Kardia15, 
Lambertus A. Kiemeney   96, Markku Laakso   109, Claudia Langenberg   78,152, Terho Lehtimäki   55,56, 
Loic Le Marchand153, Lifelines Cohort Study*, Patrik K. E. Magnusson   44, Nicholas G. Martin   51, 
Mads Melbye   154,155,156,112, Andres Metspalu   32, David Meyre   16,68, Kari E. North   29, 
Claes Ohlsson   157,158, Albertine J. Oldehinkel   97, Marju Orho-Melander   70, Guillaume Pare   16, 
Taesung Park   45,159, Oluf Pedersen   10, Brenda W. J. H. Penninx115, Tune H. Pers   10, 
Ozren Polasek   160, Inga Prokopenko   81,82,161, Charles N. Rotimi   14, Nilesh J. Samani30,31, 
Xueling Sim   127, Harold Snieder   75, Thorkild I. A. Sørensen   10,162, Tim D. Spector   57, 
Nicholas J. Timpson   163, Rob M. van Dam127,164, Nathalie van der Velde132,165,166, 
Cornelia M. van Duijn46,167, Peter Vollenweider113, Henry Völzke24,73, Trudy Voortman   46, 
Gérard Waeber   113, Nicholas J. Wareham   78, David R. Weir   92, Heinz-Erich Wichmann116, 
James F. Wilson   69,147, Andrea L. Hevener168, Anna Krook   3, Juleen R. Zierath   3,10,169, 
Martine A. I. Thomis   8, Ruth J. F. Loos   1,10,170 and Marcel den Hoed   6 ✉

1The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 2Department of Cell and 
Molecular Biology, Uppsala University, Uppsala, Sweden. 3Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. 
4Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA. 5Department of Preventive Medicine, Northwestern 
University Feinberg School of Medicine, Chicago, IL, USA. 6The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala 
University and SciLifeLab, Uppsala, Sweden. 7Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Exercise Physiology 
Research Group, KU Leuven, Leuven, Belgium. 8Faculty of Movement and Rehabilitation Sciences, Department of Movement Sciences - Physical Activity, 
Sports & Health Research Group, KU Leuven, Leuven, Belgium. 9Steno Diabetes Center Copenhagen, Herlev, Denmark. 10Novo Nordisk Foundation Center 
for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 11The Bioinformatics Center, 
Department of Biology, University of Copenhagen, Copenhagen, Denmark. 12Cardiovascular Health Research Unit, Department of Medicine, University of 
Washington, Seattle, WA, USA. 13Department of Biostatistics, University of Washington, Seattle, WA, USA. 14Center for Research on Genomics and Global 
Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. 15Department of Epidemiology, School of Public 
Health, University of Michigan, Ann Arbor, MI, USA. 16Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, 
Canada. 17Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA. 18GlaxoSmithKline, Cambridge, MA, USA. 19Division of 
Population, Policy and Practice, Great Ormond Street Hospital Institute for Child Health, University College London, London, UK. 20Genome Institute of 
Singapore, Agency for Science, Technology and Research, Singapore, Singapore. 21Health Services and Systems Research, Duke-NUS Medical School, 
Singapore, Singapore. 22John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA. 23Department of Epidemiology & Public 
Health, University of Maryland School of Medicine, Baltimore, MD, USA. 24Institute for Community Medicine, University Medicine Greifswald, Greifswald, 
Germany. 25Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany. 26Department of Epidemiology Research, 
Statens Serum Institut, Copenhagen, Denmark. 27Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. 
Louis, MO, USA. 28Research Unit of Molecular Epidemiology, Helmholtz Zentrum München –Deutsches Forschungszentrum für Gesundheit und Umwelt 
(GmbH), Munich, Germany. 29Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA. 30Department of Cardiovascular Sciences, 
University of Leicester, Leicester, UK. 31NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK. 32Estonian Genome Centre, Institute 
of Genomics, University of Tartu, Tartu, Estonia. 33Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. 34MRC Integrative 
Epidemiology Unit, NIHR Bristol Biomedical Research Center, University of Bristol, Bristol, UK. 35Genetics, Genomics, and Bioinformatics Graduate 
Program, University of California, Riverside, CA, USA. 36Institute of Health Sciences, University of Oulu, Oulu, Finland. 37Framingham Heart Study, 
Framingham, MA, USA. 38Department of Neurology, Boston University School of Medicine, Boston, MA, USA. 39Institute for Nutritional Medicine, School 
of Medicine, Technical University of Munich, Munich, Germany. 40Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 
Ann Arbor, MI, USA. 41Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. 42Section of 
Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK. 43Department of Metabolism, Digestion 
and Reproduction, Imperial College London, London, UK. 44Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 
Sweden. 45Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea. 46Department of Epidemiology, Erasmus MC, 
University Medical Center Rotterdam, Rotterdam, the Netherlands. 47University Center for Primary Care and Public Health, University of Lausanne, 
Lausanne, Switzerland. 48Swiss Institute of Bioinformatics, Lausanne, Switzerland. 49Department of Computational Biology, University of Lausanne, 
Lausanne, Switzerland. 50Wellcome Sanger Institute, Cambridge, UK. 51Mental Health and Neuroscience Research Program, QIMR Berghofer Medical 
Research Institute, Brisbane, Queensland, Australia. 52School of Biomedical Science, Faculty of Medicine, University of Queensland, Brisbane, Queensland, 

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics1342

http://orcid.org/0000-0001-6085-6749
http://orcid.org/0000-0002-3409-1110
http://orcid.org/0000-0002-6442-7754
http://orcid.org/0000-0002-0048-491X
http://orcid.org/0000-0003-3357-0862
http://orcid.org/0000-0002-1407-8314
http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0001-7471-475X
http://orcid.org/0000-0002-6273-1613
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0002-7916-3552
http://orcid.org/0000-0002-6316-3355
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-9843-412X
http://orcid.org/0000-0003-3670-9399
http://orcid.org/0000-0002-3161-3753
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-3394-7749
http://orcid.org/0000-0002-5017-7344
http://orcid.org/0000-0002-2555-4427
http://orcid.org/0000-0002-7315-7899
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0001-8264-6785
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0003-4850-7444
http://orcid.org/0000-0002-8903-0366
http://orcid.org/0000-0002-9633-2805
http://orcid.org/0000-0003-3925-3913
http://orcid.org/0000-0002-3578-2503
http://orcid.org/0000-0002-6795-4760
http://orcid.org/0000-0002-8294-590X
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0003-0207-4831
http://orcid.org/0000-0002-5765-1862
http://orcid.org/0000-0003-1624-7457
http://orcid.org/0000-0001-5759-053X
http://orcid.org/0000-0002-1233-7642
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0003-4821-430X
http://orcid.org/0000-0002-9795-0365
http://orcid.org/0000-0002-7141-9189
http://orcid.org/0000-0003-2830-6813
http://orcid.org/0000-0003-4193-788X
http://orcid.org/0000-0003-1422-2993
http://orcid.org/0000-0002-1661-2402
http://orcid.org/0000-0001-5751-9178
http://orcid.org/0000-0002-0891-0258
http://orcid.org/0000-0001-6891-7497
http://orcid.org/0000-0001-9093-2191
http://orcid.org/0000-0002-8532-5087
http://orcid.org/0000-0001-8081-428X
http://www.nature.com/naturegenetics


ArticlesNATurE GEnETICS

Australia. 53Geriatric Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital Mölndal, Gothenburg, Sweden. 54Mary 
MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia. 55Department of Clinical Chemistry, Fimlab 
Laboratories, Tampere, Finland. 56Finnish Cardiovascular Research Center – Tampere, Department of Clinical Chemistry, Faculty of Medicine and Health 
Technology, Tampere University, Tampere, Finland. 57Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK. 58NIHR 
Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK. 59Department of Preventive Medicine, Keck School of Medicine, 
University of Southern California, Los Angeles, CA, USA. 60Department of Kinesiology, Université Laval, Quebec, Quebec, Canada. 61Centre Nutrition Santé 
et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada. 62Department of Biological 
Psychology, Vrije Universiteit, Amsterdam, the Netherlands. 63Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the 
Netherlands. 64MRC Integrative Epidemiology Unit and Avon Longitudinal Study of Parents and Children, University of Bristol Medical School, Population 
Health Sciences and Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK. 65Respiratory Division, Department of Medicine, 
Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 66Rheumatology Division, Department of Medicine, Karolinska Institutet, 
Karolinska University Hospital, Stockholm, Sweden. 67Center of Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden. 68Department of 
Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. 69Centre for Global Health Research, Usher Institute, 
University of Edinburgh, Edinburgh, UK. 70Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden. 71Department of Nutrition and Food 
Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany. 72Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, 
USA. 73German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany. 74Department of Epidemiology, Harvard T.H. 
Chan School of Public Health, Boston, MA, USA. 75Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 
the Netherlands. 76Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 
77Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 78MRC Epidemiology Unit, 
University of Cambridge, Cambridge, UK. 79School of Public Health, Department of Biostatistics, Shandong University, Jinan, China. 80Department of Public 
Health and Primary Care, University of Cambridge, Cambridge, UK. 81Department of Clinical and Experimental Medicine, University of Surrey, Guilford, UK. 
82People-Centred Artificial Intelligence Institute, University of Surrey, Guilford, UK. 83University of Münster, Münster, Germany. 84Diagnostic Genomics, 
PathWest Laboratory Medicine WA, Perth, Western Australia, Australia. 85South Texas Diabetes and Obesity Institute, University of Texas Rio Grande 
Valley, Brownsville, TX, USA. 86Lifelines Cohort Study, Groningen, the Netherlands. 87Department of Sports Medicine, Norwegian School of Sport Sciences, 
Oslo, Norway. 88Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway. 89Department of Biostatistics, Boston University 
School of Public Health, Boston, MA, USA. 90Vascular Neurology, Department of Neurology, University of Maryland School of Medicine and the Baltimore 
VAMC, Baltimore, MD, USA. 91Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, USA. 92Survey 
Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA. 93Department of Biobehavioral Health, College of Health and 
Human Development, Pennsylvania State University, University Park, PA, USA. 94Department of Epidemiology, Institute of Public Health Genetics, 
Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA. 95Institute of Social and Preventive Medicine (ISPM), University of 
Bern, Bern, Switzerland. 96Radboud Institute for Health Sciences, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the 
Netherlands. 97Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, 
Groningen, the Netherlands. 98School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia. 
99Busselton Population Medical Research Institute, Busselton, Western Australia, Australia. 100Hannover Unified Biobank, Hannover Medical School, 
Hannover, Germany. 101Department of Human Genetics, Hannover Medical School, Hannover, Germany. 102Centre for Exercise Nutrition & Health Sciences, 
School for Policy Studies, University of Bristol, Bristol, UK. 103Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, , 
Western Australia, Perth, Australia. 104Humanity Inc, Boston, MA, USA. 105Department of Clinical Physiology, Tampere University Hospital, Tampere, 
Finland. 106Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 
107Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore, Singapore. 108Department of Public Health, University 
of Split School of Medicine, Split, Croatia. 109Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, 
Kuopio, Finland. 110Laboratory of Epidemiology and Population Sciences, National Institutes of Health, Baltimore, MD, USA. 111Center for Clinical Research 
and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark. 112Department of Clinical Medicine, Faculty of Health and Medical Sciences, 
University of Copenhagen, Copenhagen, Denmark. 113Division of Internal Medicine, Department of Medicine, Lausanne University Hospital and University 
of Lausanne, Lausanne, Switzerland. 114School of Psychology and Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia. 
115Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands. 116Institute of Epidemiology, Helmholtz Zentrum München 
–Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany. 117Centre for Population Health Research, University of Turku and 
Turku University Hospital, Turku, Finland. 118Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland. 
119Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland. 120Department of Epidemiology, University of 
Washington, Seattle, WA, USA. 121Harvard Medical School, Boston, MA, USA. 122Division of Endocrinology, Diabetes and Nutrition, Department of 
Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. 123Department of Exercise Science, University of South Carolina, Columbia, SC, 
USA. 124Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA. 125Icelandic Heart Association, Kópavogur, Iceland. 126Faculty of 
Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands. 127Saw Swee Hock School of Public Health, National University of Singapore, 
Singapore, Singapore. 128Duke-NUS Medical School, Singapore, Singapore. 129Department of Medicine, Yong Loo Lin School of Medicine, National 
University of Singapore, Singapore, Singapore. 130Department of Medicine, McMaster University, Hamilton, Ontario, Canada. 131Department of Medicine, 
University of Leipzig, Leipzig, Germany. 132Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands. 
133Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, the 
Netherlands. 134Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany. 135Division of Cancer 
Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA. 136Department of Epidemiology, Graduate 
School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. 137Laboratory of Epidemiology and Population Science, National Instiute on Aging, 
National Institutes of Health, Bethesda, MD, USA. 138Geriatric Unit, Azienda USL Toscana Centro, Florence, Italy. 139Human Genomics Laboratory, 
Pennington Biomedical Research Center, Baton Rouge, LA, USA. 140Population Health Science, Bristol Medical School, NIHR Bristol Biomedical Research 
Center, University of Bristol, Bristol, UK. 141Faculty of Movement and Rehabilitation Sciences, Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, 
Belgium. 142Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany. 143Brown Foundation Institute of Molecular 
Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA. 144Genetics and Pharmacogenomics (GpGx), Merck Research 
Labs, Boston, MA, USA. 145Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA. 146Faculty of 
Medicine, University of Iceland, Reykjavik, Iceland. 147MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK. 
148Australian Centre for Precision Health, Unit of Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia. 149South 
Australian Health and Medical Research Institute, Adelaide, South Australia, Australia. 150Population, Policy and Practice, Great Ormond Street Hospital 
Institute for Child Health, University College London, London, UK. 151Department of Epidemiology and Biostatistics and HPA-MRC Center, School of Public 

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics 1343

http://www.nature.com/naturegenetics


Articles NATurE GEnETICS

Health, Imperial College London, London, UK. 152Computational Medicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, 
Germany. 153Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA. 154K.G.Jebsen Center for 
Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway. 155Department of Genetics, Stanford University School of 
Medicine, Stanford, CA, USA. 156Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway. 157Centre for Bone and Arthritis 
Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 
Sweden. 158Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden. 159Department of Statistics, Seoul National University, 
Seoul, South Korea. 160University of Split School of Medicine, Split, Croatia. 161UMR 8199 – EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, 
France. 162Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 
Denmark. 163MRC Integrative Epidemiology Unit, University of Bristol Medical School, University of Bristol, Bristol, UK. 164Department of Exercise and 
Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA. 165Section of Geriatrics, Department of 
Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. 166Amsterdam Public Health, Aging and Later Life, 
Amsterdam, the Netherlands. 167Nuffield Department of Population Health, University of Oxford, Oxford, UK. 168Division of Endocrinology, Department of 
Medicine, University of California, Los Angeles, CA, USA. 169Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. 
170The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 174Deceased: Bill Musk. *A list of 
authors and their affiliations appears at the end of the paper. ✉e-mail: zhe.wang@mssm.edu; marcel.den_hoed@igp.uu.se

Lifelines Cohort Study

Behrooz Z. Alizadeh75, H. Marike Boezen75, Lude Franke77, Morris Swertz77, Cisca Wijmenga77, 
Pim van der Harst171, Gerjan Navis172, Marianne Rots173 and Bruce H. R. Wolffenbuttel76

171Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 172Department of Internal 
Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 173Department of Medical 
Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 

Nature Genetics | VOL 54 | September 2022 | 1332–1344 | www.nature.com/naturegenetics1344

mailto:zhe.wang@mssm.edu
mailto:marcel.den_hoed@igp.uu.se
http://www.nature.com/naturegenetics


ArticlesNATurE GEnETICS

Methods
Each study (Supplementary Table 2) obtained informed consent from participants 
and approval from the appropriate institutional review boards or committees.

Samples and study design. We conducted a large meta-analysis for physical 
activity traits, including results from up to 703,901 individuals (including nearly 
half-a-million from the UK Biobank) to identify genetic loci associated with 
physical activity and sedentary behavior across different ancestries. We first 
examined genome-wide, ancestry- and sex-stratified associations in 51 studies 
with questionnaire-based data on: (1) MVPA; (2) LST; (3) sedentary commuting 
behavior; and/or (4) sedentary behavior at work, using study-specific, tailored 
analysis plans (Supplementary Table 2, see Supplementary Note for rationale). 
Next, we performed ancestry-specific, inverse variance-weighted fixed-effects 
meta-analyses of summary statistics for each of the four self-reported traits  
(Fig. 1a), including data from up to 703,901 individuals consisting of European 
(94.0%), African (2.1%), East Asian (0.8%) and South Asian (1.3%) ancestries; as 
well as Hispanics (1.9%) (Supplementary Table 1). Our primary meta-analyses were 
restricted to 661,399 European ancestry participants. Secondary meta-analyses 
were also conducted for: (1) all ancestries (European + other ancestries), (2) 
European ancestry men, (3) European ancestry women, and (4) each non-European 
ancestry separately. Details of participating studies are described in Supplementary 
Tables 1 and 2. Although modest genomic inflation68 was observed (lambda 
1.2–1.4) (Supplementary Fig. 1), LD score regression analyses indicated this reflects 
true polygenic architecture rather than cryptic population structure69.

Self-reported physical activity and sedentary behavior traits. The self-reported 
outcomes in this study are domain- and intensity-specific physical activity 
and sedentary traits that, unlike accelerometry-based outcomes, are subject to 
misclassification and bias by recall and awareness of the beneficial effects of 
physical activity, among others. Furthermore, different studies used different 
questionnaires to capture physical activity, and so we defined cohort-specific 
traits that make optimal use of the available data, while striving for consistency 
across studies (Supplementary Table 2). As a result, and based on the zero-inflated 
negative binomial nature of the distribution of MVPA in most studies, we had 
to analyze MVPA as a dichotomous outcome, which had a negative impact on 
statistical power. Descriptive information of these four outcomes is reported by 
study in Supplementary Table 1.

Genotyping, imputation and quality control. Detailed information about the 
genotyping platform used, and quality control measures applied within each study 
are presented in Supplementary Table 2. Quality control following study level 
analyses was conducted using standard procedures70.

GWAS and meta-analyses. GWAS were performed within each study in a sex- 
and ancestry-specific manner. Additive genetic models accounting for family 
relatedness (where appropriate) were adjusted for age, age-squared, principal 
components reflecting population structure and additional study-specific 
covariates as presented in Supplementary Table 2. Analyses were limited 
to genotyped and imputed variants with minor allele frequency >0.1% in 
UK Biobank, and minor allele count >3 in other studies. Study-, sex- and 
ancestry-specific GWAS results were meta-analyzed using the fixed-effects, inverse 
variance-weighted method implemented in METAL71, for 19.1 to 22.5 million 
SNPs per trait. Because we did not include a replication stage and given the high 
SNP density, we applied a stricter than usual Bonferroni correction and considered 
associations with P < 5 × 10−9 statistically significant72.

To identify genome-wide significant loci, we defined a distance criterion 
of ±1 Mb surrounding each genome-wide significant peak (P < 5 × 10−9). We 
extracted previously reported genome-wide significant associations within 1 Mb 
of any index variants we identified from the NHGRI-EBI GWAS Catalog11 and 
PhenoScanner V2 (ref. 73). A locus is considered previously reported if any variant 
we extracted at that locus was in LD (r2 > 0.1) with a lead variant that has been 
associated with objectively assessed or self-reported physical activity and sedentary 
traits previously. To identify physical activity- and sedentary behavior-associated 
loci that were previously associated with obesity-related traits, we performed a look 
up for each lead variant (and their proxies with LD r2 > 0.2) in the GWAS catalog 
and PhenoScanner V2.

SNP-based heritability estimation. To estimate the heritability explained 
by genotyped SNPs for each physical activity and sedentary trait, we used 
BOLT-REML variance components analysis74, a Monte Carlo average information 
restricted maximum likelihood algorithm implemented in the BOLT-LMM v.2.3.3 
software. As in most GWAS for complex traits, the SNP heritability (up to 16%) 
was lower than the heritability estimates from twin studies (31%–71%)8,9, likely at 
least in part due to the absence of rare variants in GWAS75.

Although we performed a multi-ancestry meta-analysis, data from relatively 
few individuals of non-European ancestries were available to us, and our functional 
follow-up analyses were conducted based on the European ancestry results. Studies 
with data from more individuals of non-European ancestry will no doubt further 
increase the understanding of physical activity etiology.

Joint and conditional analyses. To identify additional independent signals in 
associated loci, we performed approximate joint and conditional SNP association 
analyses in each locus, using GCTA76. Any lead SNPs identified in known 
long-range high-LD regions77 were treated as a single large locus in the GCTA 
analysis. We used unrelated European ancestry participants from the UK Biobank 
as the reference sample to acquire conditional P values for association.

MTAG. MTAG results were calculated using the European ancestry meta-analysis 
results of LST and MVPA, using standard settings17. Because MTAG's estimates 
are biased away from zero when SNPs are null for one trait but non-null for other 
traits, we applied it to only the two outcomes that were most strongly genetically 
correlated: MVPA and LST (absolute value of genetic correlation 0.49).

PheWAS with physical activity PGSs. To assess the out-of-sample predictive 
power of the variants associated with self-reported sedentary behavior and physical 
activity, we constructed two PGSs—for LST and for MVPA—in up to 23,723 
Mount Sinai BioMe BioBank participants, using summary statistics of the primary 
European ancestry meta-analyses and PRSice software78. We subsequently assessed 
the association of MVPA and BMI with the PGSs in individuals of European 
and African ancestry, as well as in Hispanic participants, within the BioMe 
BioBank. Among the 2,765 European ancestry individuals with physical activity 
measurements and genotypes, the PGSs were calculated on common variants 
(minor allele frequency >1%) using P value thresholds from 5 × 10−8 to 1 (all 
variants) in the LST and MVPA GWAS, and clumping parameters of r2 < 0.5 over a 
250-kb window. Logistic regression models were used to examine the associations 
between MVPA (defined as at least 30 min per week of MVPA yes/no in BioMe) 
and the PGSs in European ancestry participants of BioMe. In each analysis, we 
estimated the variance in MVPA explained by the PGS, adjusting for age, sex and 
the top ten principal components for population structure. For both LST and 
MVPA, the P value threshold resulting in the best performing PGS was defined 
based on the highest R2 increase upon adding the PGS to the regression model. To 
examine the generalizability of the two PGSs, we next examined their associations 
with MVPA in 3,206 Hispanic individuals and 2,224 African ancestry participants 
of BioMe. We then tested each PGS for classification performance and examined 
whether the generated PGS was associated with any other trait by performing a 
PheWAS. Briefly, International Classification of Diseases 9 and 10 codes from 
electronic health records were mapped to phecodes using the PheWAS package79. 
Among 8,959 BioMe European ancestry participants, the 1,039 disease outcomes 
with at least ten cases were analyzed. We used logistic regression to separately 
model each phecode as a function of the two PGSs, adjusting for age, age-squared, 
sex and the top ten principal components. Interpretation of results was restricted 
to outcomes with more than ten cases. Multiple testing thresholds for statistical 
significance were set to P < 4.8 × 10−5 (0.05/1,039).

Genetic correlations. To explore a possibly shared genetic architecture, we next 
estimated genetic correlations of the four self-reported traits examined in this study 
and five accelerometry-assessed physical activity traits assessed in UK Biobank14 
with relevant complex traits and diseases based on established associations at the 
trait level using LD score regression implemented in the LD-Hub web resource18. 
To define significance, we applied a Bonferroni correction for the 108 selected 
phenotypes available on LD-Hub (P < 4.6 × 10−4). Supplementary Table 10 shows 
the complete set of pairwise genetic correlations of the four self-reported physical 
activity traits with relevant complex traits and diseases. Next, we prioritized traits 
and diseases showing evidence of genetic overlap (associated with at least one 
of the physical activity traits). These can be divided into six categories: lifestyle 
traits, anthropometric traits, psychiatric diseases, other diseases (cardiometabolic 
diseases and cancer), biomarkers and others (Fig. 4). Using objectively assessed 
physical activity traits (accelerometry) instead of self-reported traits yielded similar 
results (Supplementary Fig. 2).

Two-sample MR. We performed MR analyses to disentangle the causality between 
LST and MVPA, on the one hand, and BMI, on the other hand. We further 
investigated the causal effects of LST and MVPA on common diseases and risk 
factors, while considering BMI through multivariable MR. For multivariable MR, we 
used BMI (exposure 2) summary statistics based on UK Biobank data, and summary 
statistics for disease outcomes and other relevant traits based on data from the 
largest publicly available GWAS without data from UK Biobank participants on the 
MR-Base platform and OpenGWAS database80,81. This way, we aimed to minimize 
bias due to sample overlap in the two-sample MR analysis82. The source of each 
of the instruments is presented in Supplementary Table 12. Genetic instrumental 
variables for each of the traits and diseases consisted of genome-wide significant 
(P < 5 × 10−8) index SNPs. Index SNPs were LD clumped (r2 > 0.001 within a 10-Mb 
window) to remove any correlated variants. In the multivariable MR that evaluates 
the independent effects of each risk factor, the genetic instrumental variables 
from two risk factors were combined. For both LST and MVPA, independent loci 
associated with physical activity or BMI were used as instrumental variables.

We followed several steps to evaluate potential causality. Because MR results 
can be severely biased if instrumental SNPs show horizontal pleiotropy and violate 
the instrumental variable assumptions28, we prioritized methods that are robust 
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to horizontal pleiotropy when calculating causal estimates. We did not use the 
MR-Egger intercept test to identify the presence of potential pleiotropy, because 
the MR-Egger intercept parameter estimate is positively biased when the NO 
Measurement Error assumption is violated, as indicated by lower values of I2

GX in 
our two-sample MR setting83. Instead, we applied MR-PRESSO (pleiotropy residual 
sum and outlier)27, which removes pleiotropy by identifying and discarding 
influential outlier predictors from the standard inverse variance-weighted test28. 
For analyses with evidence of no distortion due to pleiotropy (MR-PRESSO 
Global test P > 0.05), we considered other robust methods, for instance fixed- and 
random-effect inverse variance-weighted, weighted- or simple- median and mode 
methods. We also conducted Steiger filtering to remove variants likely influenced 
by reverse causation and used Cook’s distance filtering to remove outlying 
heterogeneous variants as deemed necessary. To select the most appropriate 
approach, we implemented a machine learning framework30. Finally, we performed 
a leave-one-out analysis to identify potential outliers among the variants included 
in the instrumental variables tested. We set the multiple testing significance 
threshold for MR analyses with disease outcomes at 1.9 × 10−3, that is, Bonferroni 
correction for 13 disease outcomes and 2 types of risk factors: physical activity or 
sedentary behavior and adiposity (0.05/(13 × 2)).

We also applied the recently published Bayesian-based MR method CAUSE, 
which accounts for both correlated and uncorrelated pleiotropy26, in evaluating 
bidirectional causal effects between physical activity and adiposity. Compared with 
the other two-sample MR methods, CAUSE calculates the posterior probabilities 
of the causal effect and the shared effect, and tests whether the causal model 
fits the data better than the sharing model. That is, it examines whether the 
association between the traits is more likely to be explained by causality than 
horizontal pleiotropy. In addition, CAUSE improves the power of MR analysis by 
using full genome-wide summary results (LD pruned at r2 < 0.1 with P < 1 × 10−3, 
as recommended by the CAUSE authors). In addition, we took advantage of the 
robustness of the CAUSE method—which allows overlapping GWAS samples—to 
test the assumption that a genetic predisposition for LST assessed later in life 
reflects a lifetime liability. Using the summary statistics of SNPs for childhood 
adiposity (comparative body size at age 10) and height (comparative height at age 
10) in UK Biobank84, we examined bidirectional causal effects between LST and 
these two recalled childhood traits.

Enrichment for genes with altered expression in skeletal muscle after an 
intervention. A high degree of physical fitness and a strong adaptive response to 
exercise interventions facilitate a physically active lifestyle. To identify plausible 
candidate genes in GWAS-identified loci, we examined enrichment for transcripts 
whose expression in skeletal muscle was changed after an acute bout of aerobic 
exercise, aerobic training, an acute bout of resistance exercise, resistance training 
and inactivity33. We excluded individuals with pre-existing conditions such as 
chronic kidney disease, chronic obstructive pulmonary disease, frailty, metabolic 
syndromes and obesity. We also excluded athletes because in this subgroup, 
transcripts with differential expression in response to (in)activity interventions are 
likely not representative for the general population85. Enrichment was examined 
for genes nearest to, or within 1 Mb of lead variants for LST- and MVPA-associated 
loci. We used false discovery rate <0.01 as the threshold for altered expression after 
intervention. A sensitivity analysis with a series of different false discovery rate 
cut-offs (0.001 to 0.5) showed that results were robust.

Gene, tissue and cell-type prioritization. We used DEPICT40 to identify enriched 
gene sets and tissues, as well as to prioritize candidate genes in the identified loci, 
using variants with P < 1 × 10−5 in the primary meta-analysis of European ancestry 
men and women combined as input. We also used CELLECT43 to identify enriched 
cell types for physical activity, by combining MVPA and LST GWAS summary 
statistics with single-cell RNA sequencing data. We sought to further refine the set 
of prioritized candidate genes using SMR and HEIDI tests46. Briefly, this approach 
integrates summary-level data from GWAS and expression quantitative trait loci 
(eQTL) studies to test whether a transcript and phenotype are likely associated 
because of a shared causal variant (pleiotropy). We considered genes candidates 
if they had a Bonferroni-corrected PSMR < 1.02 × 10−5 and showed no evidence of 
heterogeneity (PHEIDI > 0.05), as in earlier studies46. Based on tissue enrichment 
results from DEPICT, the SMR analyses were performed using brain eQTL 
information obtained from GTEx-brain (n = 72)86,87, CommonMind Consortium 
(n = 467)88, ROSMAP (n = 494)89, and Brain-eMeta (n = 1,194)87; blood eQTL 
summary information obtained from the eQTLGen Consortium90, which is based 
on peripheral blood samples from 31,684 individuals; and skeletal muscle eQTL 
information from the GTEx project (n = 803)91.

To identify variants in GWAS-identified loci with a high posterior 
probability of being causal, we used LST and MVPA summary statistics as input 
for FINEMAP47. We used default parameters and selected a maximum of ten 
putative causal variants per locus. The output variants identified as credible were 
mapped to genes using tissue-specific HiC chromatin conformation capture 
data92. We integrated all HiC data in the brain (dorsolateral prefrontal cortex, 
hippocampus, neural progenitor cell, and adult and fetal cortex) available 
on FUMA v.1.3.5, using the same approach. Genes in GWAS-identified loci 
containing FINEMAP-identified credible coding variants with a CADD score 

>12.33 were also prioritized. Finally, we used data from 26 of the 131 available 
tissues and cell types deemed relevant for sedentary behavior and physical activity 
(Supplementary Table 20) to identify genes that are contacted by enhancers 
affected by causal variants flagged by GWAS lead SNPs, using the recently 
described activity-by-contact model49.

Enrichment for previously reported candidate genes. We next conducted a 
literature review of previously reported genes with evidence of a role in exercise 
(physical activity behavior) and fitness (physical activity ability) and identified 
58 such candidate genes (13 for exercise; 45 for fitness)12,50–53. For each gene, we 
identified all variants within the gene, examined their associations with LST 
and MVPA in our meta-analysis of European ancestry individuals and, for each 
gene–trait combination, retained the summary statistics for the variant with the 
lowest P value for association. Variants in three genes reached the traditional 
threshold for genome-wide significance (PPARD, APOE and ACTN3). Based on 
LD and predicted effects on protein function, rs2229456 in ACTN3 (encoding 
p.Glu635Ala) may have a causal effect.

MD simulation for p.Glu635Ala. Because no structure for human ACTN3 
has yet been experimentally determined, we constructed a homology model 
of the p.Glu635 variant monomeric filament using the fully annotated protein 
(UniProt ID Q08043) using Phyre2 (ref. 93), with the p.635Ala variant mutated in 
silico. Residue 635 of ACTN3 resides in the 356th residue of the spectrin repeat 
region and corresponds with residue 628 in ACTN2 (see the Supplementary 
Methods for more information). For each variant, the spectrin repeats of the 
ACTN3 monomer were aligned with the crystal structure of the rod domain of 
alpha-actinin (PDB ID 1HCI), to give the dimeric form of ACTN3. MD system 
preparation and simulation was conducted with GROMACS 2020.1 (ref. 94) and 
using mdanalysis v.2.0. The MD topology was created with GROMACS pdb2gmx 
using the ACTN2 and ACTN3 dimer models and parameterized with the 
CHARMM36 all-atom force field95. The ACTN2 and ACTN3 dimers were placed 
in a rectangular simulation box with a 1.0-nm buffer between the protein and 
the box extent, with periodic boundary conditions in all three spatial axes. The 
system was solvated with TIP3P water molecules and using GROMACS genion, 
random solvent molecules were replaced with K+ and Cl− to a concentration of 
150 mM with additional K+ ions added to provide an electrostatically neutral 
system. Energy minimization was accomplished using the steepest descent 
algorithm. To equilibrate the system, two 100-ps simulations were conducted 
using a constant temperature ensemble (NVT, that is, a constant number 
of particles [N], volume [V] and temperature [T]) at 310 K via a Berendsen 
thermostat, followed by a constant pressure ensemble (NPT, that is, a constant 
number of particles [N], pressure [P] and temperature [T]) at 1 bar with a 
Parinello–Rahman barostat. MD simulation parameters were set in accordance 
with the recommendations for the CHARMM36 force field in GROMACS. A 
short production run of 1 ns without position restraints was followed by a full 
simulation of 150 ns with weak position restraints on the ABD of chain B to 
prevent self-interaction across the periodic boundaries.

Steered MD and umbrella sampling for p.Glu635Ala. We next compared the 
properties of ACTN2 and of ACTN3 p.635Ala and p.Glu635 when placed under 
the simulated compressive loads that are likely experienced in vivo. The final frame 
of the 1-ns MD production run was used as the starting topology for steered MD 
simulations using fully relaxed dimers. Steered MD simulations were run for 2 ns 
with a pulling rate of 0.005 nm ps−1 and a harmonic potential of 50 kJ mol−1 nm−2. 
Center-of-mass pull groups were defined as the ABD of each respective monomer, 
with a weak position restraint placed on the Cα atom of threonine 52 (ACTN3) or 
threonine 45 (ACTN2)—a centrally located residue in the core of the ABD—on 
one ABD, enabling full rotational freedom of each ABD during the course of the 
steered MD simulations. The pulling vector was oriented along the axis on which 
the spectrin repeats were initially aligned. Suitable frames from each steered MD 
simulation were selected that differed by no more than 0.2 nm from 0 to −5.5 nm 
(a contraction of the dimer by 5.5 nm or ~18%) and were used as the starting 
topology for a series of 10-ns umbrella sampling simulations. Analysis of the 
umbrella sampling simulations was conducted using g_wham, to yield the potential 
of mean force versus reaction coordinate for each variant.

Single skeletal muscle fiber functional characteristics in relation to 
p.Glu635Ala. Single muscle fibers from eight nonathletic young men in which 
contractile and morphological properties were previously characterized in 
vastus lateralis biopsies obtained before and after an eccentric exercise bout60,61 
were genotyped for rs2229456. A hierarchical linear mixed effects model was 
constructed for each fiber type and time point using rstanarm96 to test the genotype 
fixed effect, with muscle fibers nested within each of the eight individuals as 
random factors for each contractile and morphological variable. Genotypes at 
p.Arg577Ter and p.Glu635Ala were clustered into three groups: RR-AA (n = 1 
individual, 46 fibers, reference group); RR-AC (n = 3 individuals, 32 ± 5 fibers); 
and XX-AA (n = 4 individuals, 39 ± 6 fibers). Using weakly informative priors, the 
posterior distribution was estimated with Markov chain Monte Carlo sampling 
(20,000 samples total with 5,000 sample burn-in). We calculated 90% credible 
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intervals of the posterior density and distribution-free overlapping indices97 to 
compare single fiber properties between genotypes.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
European and multi-ancestry meta-analyses summary statistics for the 
genome-wide association study are available through the NHGRI-EBI GWAS 
Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics, GCP ID: 
GCP000358). UK Biobank individual-level data can be obtained through a data 
access application available at https://www.ukbiobank.ac.uk/. In this study we 
made use of data made available by: MetaMex https://www.metamex.eu/; Tabula 
Muris https://www.czbiohub.org/tabula-muris/; Open GWAS https://gwas.mrcieu.
ac.uk/; MR Base https://www.mrbase.org/; GTEx Consortium https://gtexportal.
org/home/; eQTLGen Consortium https://www.eqtlgen.org/; CommonMind 
Consortium https://www.synapse.org/#!Synapse:syn2759792/wiki/69613; 
Brain zQTLServe http://mostafavilab.stat.ubc.ca/xqtl/; MetaBrain https://www.
metabrain.nl/.

Code availability
We made use of publicly available software and tools such as METAL (https://
genome.sph.umich.edu/wiki/METAL), GCTA (https://yanglab.westlake.edu.cn/
software/gcta/), LD score regression (https://github.com/bulik/ldsc), SMR (https://
cnsgenomics.com/software/smr/) and PLINK (www.cog-genomics.org/plink/).
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Extended Data Fig. 1 | LST-associated loci are enriched for genes with altered expression in skeletal muscle following resistance training. Fold-change 
plot in log scale for the ratio between: (1) the proportion of genes in physical activity-associated loci that showed an altered expression in skeletal muscle 
(FDR < 0.01) across five categories: inactivity, acute bout of resistance exercise, acute bout of aerobic exercise, resistance training, or aerobic training; 
and (2) the proportion of all genes that showed an altered expression following such (in)activity in the MetaMex database (PMID: 31980607). Tested loci 
were MVPA or LST-associated loci. In a given set of loci, we either considered only the genes nearest to the lead SNP, or all genes within 1 Mb of the lead 
SNP. Only loci harboring at least five genes with altered gene expression levels after intervention were included in this figure. A one-sided Fisher exact test 
was used to calculate the P-value for enrichment.
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Extended Data Fig. 2 | A sensitivity analysis shows the analysis of altered gene expression following resistance training is robust to FDR threshold. We 
examined the effect of different FDR thresholds on Fisher’s exact test results for the enrichment analysis of alteration in gene expression in skeletal muscle 
following resistance training. Red square, genes within 1 Mb of the LST lead SNP; green circle, genes within 1 Mb of the MVPA lead SNP; blue triangle, 
nearest gene LST lead SNP; purple diamond, nearest gene MVPA lead SNP. The horizonal dotted line indicates nominal significance level (P < 0.05), and 
the vertical dashed line indicates the FDR threshold that was used. FDR thresholds explored range from 0.001 to 0.5.
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Extended Data Fig. 3 | DEPICT-derived tissue enrichment of MVPA and LST. a, MVPA. b, LST. SNPs with P < 1 x 10−5 for association in the European 
ancestry GWAS of men and women combined were used as input. The dashed line indicates the FDR corrected significance threshold (FDR < 0.05).
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Extended Data Fig. 4 | Cell type prioritization using CELLECT for MVPA and LST. a, Prioritization of 115 Tabula Muris cell types across 19 tissues identified 
two cell types from the brain as significantly associated (stratified linkage disequilibrium score regression) with MVPA (left) and LST (right), namely 
oligodendrocyte precursor cells and neurons (shown in black; Bonferroni-corrected significance threshold, P < 0.05/115). b, Prioritization of 265 mouse 
nervous system cell types identified 13 and 45 cell types from 12 distinct brain regions as significantly associated (stratified linkage disequilibrium score 
regression) with MVPA and LST, respectively (highlighted; Bonferroni-corrected significance threshold, P < 0.05/265.
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Extended Data Fig. 5 | Protein-protein interactions involving 17 of the 46 candidate genes in GWAS-identified loci prioritized by at least two 
approaches. Protein-protein interactions were visualized using String. LONRF2 and CHST10 were prioritized in loci associated with MVPA; the remaining 
genes were prioritized in loci associated with LST.
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