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Abstract
We consider repetitions in infinite words by making a novel inquiry to the maximum eventual
growth rate of the exponents of abelian powers occurring in an infinite word. Given an increasing,
unbounded function f : N → R, we construct an infinite binary word whose abelian exponents have
limit superior growth rate f . As a consequence, we obtain that every nonnegative real number is
the critical abelian exponent of some infinite binary word.
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1 Introduction

Two finite words u and v are abelian equivalent, denoted u ∼ v, if u is obtained from v by
permuting its letters. For example, the words 01120 and 20011 are abelian equivalent. The
study of abelian properties of words dates back to 1957 when P. Erdős asked for arbitrarily
long 4-letter words that do not contain two consecutive abelian equivalent words [10], that is,
he asked if abelian squares can be avoided on a 4-letter alphabet. The question was finally
answered in the positive by V. Keränen in 1992 [14]. A word of the form u0 · · ·ue−1 is an
abelian power of period m and exponent e if u0, . . ., ue−1 have length m and u0 ∼ · · · ∼ ue−1.
For example, the word 010 · 100 · 010 · 001 is an abelian power of period 3 and exponent 4.
During the last decade, various abelian properties of words have been studied; this includes
not only research on avoidability of abelian powers or patterns (see, e.g., [3, Ch. 5]), but
also on abelian complexity [26], abelian periods and period sets [29, 11, 19], abelian returns
[24, 28], and abelian subshifts [12, 23]. Related algorithms have been developed as well; see,
e.g., [15] and the references therein. Generalizations of abelian equivalence, such as k-abelian
equivalence [13, 30] and k-binomial equivalence [27], have also been considered. See [23] for
a recent survey on abelian properties of words.

In this paper, we focus on growth rates exponents of abelian powers occurring in infinite
words. While a significant portion of the commonly studied words, such as Sturmian words,
episturmian words, and automatic sequences, avoid ordinary powers with large enough
exponent (in an ordinary power the adjacent words are identical), it is often the case that
arbitrarily high abelian exponents occur. Indeed, the main result of [26] states that if the
abelian complexity of an infinite word w is bounded (as in Sturmian and episturmian words
mentioned above), then abelian powers of arbitrarily high exponent are found in w.
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It is desirable to have more information than this; how fast or slowly do the exponents
approach infinity? In this paper, we show that the growth rate of the exponents can be
arbitrarily slow. Let Aew(m) be the supremum of exponents of abelian powers of period m
occurring in an infinite word w.

I Definition 1. Let w be an infinite word and f : N→ R a function. We say that the abelian
exponents of w have growth rate f if lim supm→∞ Aew(m)/f(m) = 1.

The question is now if we can find an infinite word whose abelian exponents have growth
rate given by any (reasonable) function. We provide, given such a function, a constructive
proof that such a word can be produced over an alphabet of optimal size. This is stated in
the following theorem which is the main result of this paper.

I Theorem 2. Let f : N → R be an unbounded increasing function. Then there exists an
infinite binary word w such that the abelian exponents of w have growth rate f .

Our construction also works if abelian powers are replaced in the definitions by ordinary
powers or certain generalizations of abelian powers such as k-abelian powers or k-binomial
powers. According to our knowledge, even the analogue of Theorem 2 for ordinary powers
is new, so our inquiry to the growth rates of the exponents is novel. The closest result to
ours seems to be the paper [16] of D. Krieger and J. Shallit where it is shown that for every
real number α > 1 there exists an infinite word w such that the supremum of exponents of
fractional powers occurring w equals α. The number α is called the critical exponent of w.

Let us then describe some earlier research and show its connection to Theorem 2. In
order to study abelian powers in Sturmian words, it was proposed in [11] to define the abelian
critical exponent Ac(w) of an infinite word w as

Ac(w) = lim sup
m→∞

Aew(m)
m

. (1)

This quantity Ac(w) can be seen to measure linear growth of the exponents. The notion
is particularly suitable for exponents of abelian powers in Sturmian words and leads to
surprising results. A main result of [11] is that the set of finite abelian critical exponents of
Sturmian words coincides with the so-called Lagrange spectrum L, a mysterious set arising
from Diophantine approximation theory [11, Thm. 5.10]. In the context of this paper, it
suffices to say that L is a subset of [

√
5,∞) that has an initial discrete part in [

√
5, 3] and

contains the half-line [cF ,∞), where cF is the Freiman constant

cF = 2221564096 + 283748
√

462
491993569 = 4.5278295661 . . . .

There are many long-standing open problems concerning the set L ∩ [3, cF ]. For example, it
is known that it contains gaps, but it is unknown if it contains an interval. Good sources
on the Lagrange spectrum are the books [7, 1, 25]. For more recent results, see [18] and its
references. The abelian critical exponent was studied in relation to k-abelian equivalence
and Sturmian words in [22].

The result of [11] connecting the abelian critical exponents of Sturmian words to the
Lagrange spectrum showed that every large enough real number is an abelian critical exponent
of a Sturmian word. This raised the obvious question if for each nonnegative real number θ
there exists an infinite word w such that Ac(w) = θ. This was answered positively by the
authors of this paper in [20] where it was proved that such a word w can be taken over an
alphabet of at most 3 letters. The proof uses the deep fact that the Lagrange spectrum
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contains a half-line. It was stated as an open problem if the result can be improved by
reducing the number of required letters from 3 to 2 (which is optimal). Our Theorem 2
is a much more general result concerning nonlinear growth rates as well, and it implies
the following result that positively solves this open problem. This corollary is the main
motivation for us to pursue proving Theorem 2.

I Theorem 3. Let θ be a nonnegative real number. Then there exists an infinite binary word
w such that Ac(w) = θ.

Before the preliminary definitions and results, let us make a few remarks on our proof of
Theorem 2. Our proof is constructive once the function f is given. The word w constructed
for Theorem 2 is obtained by pasting together long repetitions of words with special properties.
The special property here is cyclic avoidance of abelian powers with large enough exponent;
see Section 2. This notion is developed here to suit our needs, but we believe that it can
potentially be a useful tool for constructing words with prescribed properties outside the
scope of this paper. Indeed, words avoiding abelian powers cyclically allow to control the
propagation of abelian powers between two adjacent words. We provide some open problems
related to these words in Section 5. Notice as well that we consider integer exponents for
abelian powers. Fractional powers are often used in relation to ordinary powers [16], and
some versions of fractional abelian exponents have been proposed in [5, 29]. Our results
apply in the fractional setting as well since the statement of Theorem 2 is unchanged if a
constant is added to Aew(m).

2 Preliminaries

We use here standard notation in combinatorics on words; a standard reference is [17, Ch. 1].
An alphabet A is a finite set of letters (symbols); here we focus on the binary alphabet {0, 1}.
A (finite) word over A is a finite sequence of letters of A such as 00110. We denote by A∗ the
set of words over A. The length of w (the number of letters) is denoted by |w|. An infinite
word is a mapping N→ A (we index words from 0). The concatenation of the words u and v
is denoted by uv. A word u is a factor of a word w if w = xuy for some words x and y. If x
(resp. y) is empty, then u is a prefix (resp. suffix) of w. If u is a factor of w, we sometimes
say that w contains u. If w = u · · ·u where u is repeated N times, then w is an N -power,
and we write w = uN . For clarity, we sometimes refer to powers as ordinary powers. The
infinite word uu · · · is denoted by uω. Let w = a0 · · · an−1 be a word of length n, and define
C(w) as the word a1 · · · an−1a0, the left cyclic shift of w. The words w, C(w), C2(w), . . .
Cn−1(w) are called the conjugates of w.

As was mentioned in the introduction, two words u and v are abelian equivalent if u
is a permutation of v. An abelian power of period m and exponent e is a word u0 · · ·ue−1
such that u0, . . ., ue−1 are abelian equivalent and |u0| = . . . = |ue−1| = m; we also call this
word an abelian e-power. If all factors of a word w that are abelian powers have exponent
strictly less than N , then we say that w avoids abelian N -powers. The definitions of growth
rate of abelian exponents of an infinite word and abelian critical exponent are given in the
introduction.

Let A be an alphabet. A substitution σ is a map A∗ → A∗ such that σ(uv) = σ(u)σ(v)
for all u, v ∈ A∗. We extend the action of σ on an infinite word w = a0a1 · · · over A by
setting σ(w) = σ(a0)σ(a1) · · · . If σ(a) has prefix a and limn→∞|σn(a)| = ∞, then we say
that σ is prolongable on the letter a. If σ is prolongable on a, then repeated application of σ
on the letter a produces an infinite word σω(a) that is a fixed point of σ.

MFCS 2020
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3 Avoiding Abelian Powers Cyclically

In order to construct the word w for Theorem 2, we need to insert into w abelian powers
of the form u0 · · ·ue−1 with |u0| = . . . = |ue−1| = m and e = f(m). The easiest way is to
set u0 = . . . = ue−1. This raises the difficulty of controlling the exponents of abelian powers
with period different from m. Indeed, while a word x itself might avoid abelian N -powers
with period less than |x|, its repetition might not. For example, if x = 1000100, then x and
x2 both avoid abelian 5-powers, but the word x3 has an abelian 5-power of period 3 as a
prefix. In order to work around this problem, we introduce the following notion of avoiding
abelian powers in a cyclic sense. We believe that this notion is useful in other constructions
outside the scope of this paper.

I Definition 4. Let w be a word. Then w avoids abelian N -powers cyclically if every abelian
power of period m with m < |w| occurring in the infinite word wω has exponent less than N .

For example, any letter avoids abelian N -powers cyclically. In the above discussion, we
noted that the word x does not avoid abelian 5-powers cyclically. It does not avoid abelian
6-powers either, as x4 contains an abelian 6-power of period 4 beginning from the second
letter. By inspection, the word x does avoid abelian 7-powers cyclically. Notice that a word
cannot avoid abelian N -powers cyclically for any N if it is conjugate to an abelian power.

In order to construct words avoiding abelian powers cyclically, we introduce the following
notion.

I Definition 5. A substitution σ : A∗ → A∗ preserves abelian N -powers if the following is
satisfied for all words w ∈ A∗: if σ(w) contains an abelian N-power u0 · · ·uN−1, then w

contains an abelian N -power v0 · · · vN−1 such that σ(v0 · · · vN−1) is a conjugate of u0 · · ·uN−1.

In other words, a substitution σ preserves abelian N -powers if each abelian N -power in
an image can be decoded by σ up to a cyclic shift. A similar but weaker notion is the notion
of an abelian N -free substitution found in, e.g., [4].

Preserving abelian N -powers is by no means a trivial property to verify. We identify two
examples from results of Dekking in [8].

I Example 6. Consider the substitutions

τ2 :
{

0 7→ 011,
1 7→ 0001

and τ3 :


0 7→ 0012,
1 7→ 112,
2 7→ 022.

(2)

Dekking proved that the fixed point τω
2 (0) of τ2 avoids abelian 4-powers, and the fixed point

τω
3 (0) of τ3 avoids abelian 3-powers [8, Thms. 1, 2]. These parameters are optimal, as it is
straightforward to verify that every binary word of length 10 contains an abelian 3-power
and every ternary word of length 8 contains an abelian 2-power. A careful read of Dekking’s
article reveals, in fact, that τ2 preserves abelian 4-powers and τ3 preserves abelian 3-powers.
Furthermore, any substitution satisfying the properties in [8, Lemma] for the parameter n
preserves abelian n-powers.

Substitutions that preserve abelian N -powers have a property that is crucial for our
arguments in the following section.

I Lemma 7. Let σ : A∗ → A∗ be a substitution that preserves abelian N-powers and is
prolongable on the letter 0. Then the sequence (σn(0))n is a sequence of words avoiding
abelian N -powers cyclically.
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Proof. Let zn = σn(0), and set zn = zω
n . Then zn = σ(zn−1) for all n ≥ 1. We proceed

by induction. Suppose, for the sake of a contradiction, that there exists a least n such
that zn does not cyclically avoid abelian N -powers. Since z0 = 0, we have n ≥ 1. This
means that zn contains an abelian N -power u0 · · ·uN−1 with period m, m < |zn|. Since σ
preserves abelian N -powers, the word zn−1 contains an abelian N -power v0 · · · vN−1 such
that |σ(v0)| = m < |zn|. By the minimality of n, it must be that |v0| ≥ |zn−1|. Since
v0 · · · vN−1 is a factor of zn−1, it must be that v0 has a conjugate z′ of zn−1 as a factor.
Therefore m = |σ(v0)| ≥ |σ(z′)| = |σ(zn−1)| = |zn|. This is a contradiction. J

Hence by applying Lemma 7 to the substitutions τ2 and τ3 defined in (2), we see that
the next theorem is true. See the final section for a comment on the case of 4-letter alphabet
and abelian 2-powers.

I Theorem 8. The following holds:
(i) there exist arbitrarily long words over {0, 1} that cyclically avoid abelian 4-powers and
(ii) there exist arbitrarily long words over {0, 1, 2} that cyclically avoid abelian 3-powers.

For the purposes of our main result, the following corollary of Theorem 8 is sufficient.

I Corollary 9. There is an integer N such that there exist arbitrarily long binary words that
cyclically avoid abelian N -powers.

4 Proofs of Main Results

We are now ready to construct the word w required by Theorem 2. Let f : N → R be
an increasing function such that limn→∞ f(n) = ∞, and let N be the number given by
Corollary 9. We need an increasing sequence (ni) of integers satisfying
(i) f(ni) ≥ max{2N,N + 2} for all i;
(ii) f(ni+1) > f(ni) for all i;
(iii) ni+1 ≥

∑i
k=1bf(nk)cnk for all i ≥ 1; and

(iv) there exists a word xi of length ni avoiding abelian N -powers cyclically.
The existence of such a sequence (ni) is guaranteed by Corollary 9 and the fact that f is
unbounded. Having obtained the required sequences (ni) and (xi), we set

Xi = x
bf(ni)c
i

and define an infinite binary word w as follows:

w =
∞∏

i=1
Xi.

I Proposition 10. The abelian exponents of w have growth rate f .

Proof. Let j be a fixed positive integer. Consider an abelian power z of period m and
exponent e occurring in w such that m ≥ nj (due to the definition of the growth rate of
abelian exponents, we may ignore finitely many values of Aew(m)), and set z = u0 · · ·ue−1
with |u0| = . . . = |ue−1| = m. Let us suppose that nj ≤ m < nj+1. Our aim is to show that
e ≤ bf(nj)c+N + 1.

B Claim 11. The word z cannot have Xi with i ≥ j + 1 as a factor.

MFCS 2020
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Proof. Suppose that z has Xi as a factor with i ≥ j + 1. This means that there exists a
least ` such that the word Xi is a factor of a product of ` consecutive words ui. Thus the
word Xi contains at least `− 2 consecutive words ui and, since xi cyclically avoids abelian
N -powers, we have `− 2 < N , that is, ` < N + 2. Now m < nj+1 ≤ ni as the sequence (nk)
is increasing and, by assumption (i), we have f(ni) ≥ N + 2. Therefore

(N + 2)nj+1 ≤ bf(ni)cni = |Xi| < (N + 2)m ≤ (N + 2)nj+1,

which is a contradiction. C

B Claim 12. If z is a factor of the suffix
∏∞

i=j+1 Xi, then e < 2N .

Proof. Suppose that z is a factor of the suffix
∏∞

i=j+1 Xi. If z is contained in a word Xi with
i ≥ j + 1, then e < N as xi avoids abelian N -powers cyclically. By Claim 11, the factor z
cannot contain Xi as a factor for i ≥ j + 1. Thus if z is not a factor of Xi with i ≥ j + 1,
there exist k ≥ j+ 1 and t such that u0 · · ·ut−1 is a factor of Xk and ut+1 · · ·ue−1 is a factor
of Xk+1. Since both xk and xk+1 avoid abelian N -powers cyclically, it follows that t < N

and e− 1− (t+ 1)− 1 < N , so e < 2N . C

Suppose that z is not a factor of the suffix
∏∞

i=j+1 Xi, for otherwise e < 2N by Claim 12.
Then z is a factor of (

∏j
i=1 Xi)Xj+1 since z cannot have Xj+1 as a factor by Claim 11. Our

assumption (iii) means that |
∏j−1

i=1 Xi| ≤ nj ≤ m. This indicates that the contribution of
the prefix

∏j−1
i=1 Xi of w to the exponent e of z is at most 1, so we may focus on the case

that z occurs in the factor XjXj+1. Since xj+1 avoids abelian N -powers cyclically, we have
e < N if z is a factor of Xj+1, and thus we assume that z is not a factor of Xj+1. We now
have two cases: either z is a factor of Xj or not. Let us first derive a helpful claim.

B Claim 13. Let t be an integer such that 0 ≤ t < e. If u0 · · ·ut−1 is a factor of Xj , then
t ≤ bf(nj)c.

Proof. Suppose that u0 · · ·ut−1 is a factor of Xj with t < e. Then bf(nj)cnj = |Xj | ≥
|u0 · · ·ut−1| = tm ≥ tnj , so bf(nj)c ≥ t. C

If z is a factor of Xj , then Claim 13 implies that e ≤ bf(nj)c. Taking into account the
possible contribution of 1 to e, we have thus shown that e ≤ bf(nj)c+ 1. Suppose then that
z is not a factor of Xj . Since we assume that z is not a factor of Xj+1, there exists t such
that u0 · · ·ut−1 is a factor of Xj and ut+1 · · ·ue−1 is a factor of Xj+1. Claim 13 applied to
the word u0 · · ·ut−1 yields t ≤ bf(nj)c. Since xj+1 avoids abelian N -powers cyclically, we
see that e− 1− (t+ 1) + 1 < N . Thus by taking into account the possible contribution of 1
to e, we see that e ≤ bf(nj)c+N + 1. Overall, we have thus shown that

e ≤ max{N, 2N, bf(nj)c+ 1, bf(nj)c+N + 1} = bf(nj)c+N + 1.

By repeating the preceding arguments for the values j + 1, j + 2, . . . in place of j, we
see that Aew(m) ≤ bf(nj)c+N + 1 for all m < nj+1 and j ignoring finitely many values of
m (recall our assumption (ii)). This together with the fact that f is increasing, shows for
nj ≤ m < nj+1 that

Aew(m)
f(m) ≤

bf(nj)c+N + 1
f(nj)

j→∞−−−→ 1.

Since Xj is a factor of w, we have Aew(nj) ≥ bf(nj)c for all j so, in conclusion, we have

lim sup
m→∞

Aew(m)
f(m) = 1,

that is, the abelian exponents of w have growth rate f . J



J. Peltomäki and M.A. Whiteland 79:7

Proposition 10 now implies Theorem 2. Next we use Theorem 2 to prove Theorem 3. This
strengthens [20, Thm. 1] and solves an open problem of [20] as stated in the introduction.

Proof of Theorem 3. As stated previously, the fixed point of Dekking’s substitution τ2
avoids abelian 4-powers, so the claim is clear if θ = 0. Assume thus that θ > 0. Define
f : N → R by setting f(n) = θn. By Theorem 2, there exists an infinite binary word w
having growth rate f . Thus

lim sup
m→∞

Aew(m)
θm

= 1

which implies that

Ac(w) = lim sup
m→∞

Aew(m)
m

= θ. J

We note that Theorems 2 and 3 actually generalize for k-abelian equivalence and k-
binomial equivalence. We discuss this in the next section.

5 Remarks and Open Problems

The proof of Theorem 2 applies analogously when abelian equivalence is replaced by other
equivalence relations. Indeed, the required growth rate of w is attained by an abelian power
that is also an ordinary power. Every ordinary power is an abelian power, so the arguments
of the proof of Proposition 10 go through if we remove the word “abelian” from it and the
appropriate definitions. The same applies for generalizations of abelian equivalence such as
k-abelian equivalence [13, 30] and k-binomial equivalence [27]: k-abelian (resp. k-binomial)
power is an abelian power and an ordinary power is a k-abelian (resp. k-binomial) power. In
summary, we have the following result.

I Theorem 14. Let f : N→ R be an increasing function such that limn→∞ f(n) =∞. Then
there exists an infinite binary word w such that the exponents (resp. k-abelian exponents,
k-binomial exponents) of w have growth rate f .

Consequently an analogue of Theorem 3 is true for ordinary powers, k-abelian powers,
and k-binomial powers. In the case of ordinary powers, it was shown in [22, Proposition 3.16]
that for each nonnegative θ there exists a Sturmian word that has critical exponent θ (defined
as in (1) by dropping the word “abelian”).

While our proof works in these other settings, there is one drawback: the growth rates
of abelian exponents and ordinary exponents of w coincide, but surely this is generally
not necessary. For example, the Thue-Morse word t, a fixed point of the substitution
0 7→ 01, 1 7→ 10, is known not to contain ordinary 3-powers (see, e.g., [2, Sect. 4.2.3]) but, as
the word t is a concatenation of the abelian equivalent words 01 and 10, we have Aet(m) =∞
for all even m. It is conceivable that the growth rate of abelian exponents of an infinite word
matches a prescribed function while the growth rate of ordinary exponents is bounded. We
do not know how to approach this problem – our tool of cyclic avoidance of abelian powers
is useless.

I Question 15. Let f : N→ R be an increasing function such that limn→∞ f(n) =∞. Does
there exist an infinite word w such that the ordinary exponents of w have bounded growth
rate and the abelian exponents of w have growth rate f?

MFCS 2020
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The result [20, Thm. 1] is weaker than Theorem 3: three letters are required instead of
two, but the constructed words have better properties than the word w constructed here.
Indeed, the words constructed for [20, Thm. 1] are images of Sturmian words by a uniform
substitution meaning that they are, for example, uniformly recurrent. An infinite word is
uniformly recurrent if each of its factors occurs infinitely many times and for each factor u
there exists a constant B such that the distance between two occurrences of u is at most B.
In fact, it can be shown that the constructed words are even linearly recurrent (the slopes
of the Sturmian words used in the construction have bounded partial quotients and such
Sturmian words are always linearly recurrent [9, Proposition 5.1]). The word w constructed
here is not uniformly recurrent. This raises the following question we are unable to answer.

I Question 16. Let f : N→ R be an increasing function such that limn→∞ f(n) =∞. Does
there exist a uniformly recurrent (or a linearly recurrent) infinite binary word w such that
the abelian exponents of w have growth rate f?

In order to prove our main results, we exhibited arbitrarily long binary words avoiding
abelian 4-powers cyclically. This was sufficient for our purposes, but raises the obvious
question if such words exist for all lengths. The answer is “no”. It is straightforward to check
that there exists no binary word of length 8 avoiding abelian 4-powers cyclically. Bizarrely
for lengths n = 9, . . . , 150, computations show that such a word exists. This makes us believe
that the answer to the above question is “yes” with the exception of n = 8. We formulate
this as the following question we are unable to answer.

I Question 17. Does there exist a binary word of length n avoiding abelian 4-powers cyclically
for all n 6= 8?

Recall that there exist arbitarily long factors of the fixed point τω
2 (0) of Dekking’s

substitution τ2 that avoid abelian 4-powers cyclically. However, computer experiments
suggest that it is often the case that no such factor of length n exists. The factors of the
fixed point of the substitution

0 7→ 0010001011101000101100010
1 7→ 1101110100010111010011101

that is known to avoid abelian 4-powers [6] provide more examples, but neither substitution
yields such a factor of length 22, for instance. However, the word

0001000100011101110111

of length 22 avoids abelian 4-powers cyclically.
Questions analogous to Question 17 can be asked for alphabets of size 3 and 4. In the case

of a 4-letter alphabet, we do not know if arbitrarily long words avoiding abelian 2-powers
cyclically exist. Keränen provided in [14] a 85-uniform substitution σ defined on a 4-letter
alphabet whose fixed point avoids abelian 2-powers. However, for all letters a, none of the
words σn(a), n ≥ 1, avoid abelian 2-powers cyclically because the image σ(a) begins and
ends with the same letter.

Note added in proof: The research on cyclic avoidance of abelian powers is continued in
the recent preprint [21]. [21, Thm. 1.2] shows that there exist arbitrarily long words over a
4-letter alphabet that avoid abelian 2-powers cyclically. Question 17 is still open.
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