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ABSTRACT
We study asymptotic Abelian complexities of morphic binary words. We complete
the classification of upper Abelian complexities of pure morphic binary words initiated
recently by F. Blanchet-Sadri, N. Rampersad, and N. Fox. We also study a class of
morphic binary words having different asymptotic factor complexities despite having
the same asymptotic Abelian complexity.
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1. Introduction

The study of complexity measures of infinite words is a well-motivated and actively
studied research area. The factor complexity function

Pw : N→ N

of an infinite word w ∈ ΣN counts, for each n ∈ N, the number of distinct factors of w
of length n. The notion is a fundamental one in combinatorics of infinite words. This
can be seen, for instance, from the theorem of M. Morse and G.A. Hedlund [14], which
characterises ultimately periodic words as exactly the words admitting P(n0) ≤ n0
for some n0 ∈ N. For surveys on factor complexity we refer the reader to [3, 4].

Inspired by the notion of factor complexity, other complexity measures have been
developed. One such measure is the Abelian complexity of infinite words, the topic of
this note. For other related complexity measures, see for instance [10, 17, 20]. Two
finite words u, v are said to be Abelian equivalent, denoted by u ∼ v, if, for each
letter a, the word u contains equally many a’s as the word v. Note that the Abelian
equivalence is an equivalence relation on words. The Abelian complexity function

Pab
w : N→ N

of an infinite word w then counts, for each n, the number of distinct Abelian equiva-
lence classes of length n occurring in the word w. (The subscript is omitted when w
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is clear from context.) E.M. Coven and G.A. Hedlund [5] characterise purely periodic
words to be exactly the words w for which

Pab
w (n0) = 1

for some n0 ≥ 1. This creates the starting point of the study of the Abelian complexity
function. While the notion has been around for a while, the study was formally
initiated only recently by G. Richomme, K. Saari, and L.Q. Zamboni in [19].

The subject of this paper is the asymptotic Abelian complexity of morphic binary
words. This has been motivated by the classification of asymptotic factor complexities
of pure morphic words initiated by A. Ehrenfeucht, K. P. Lee, and G. Rozenberg ([8])
and completed by J.-J. Pansiot ([15], see also [3, 4]). It is thus natural to turn
to other complexity classifications of such an important class of words. One such
classification result by B. Adamczewski [1] classifies the upper bound growth of the
balance function (see Definition 2) of primitive pure morphic words over arbitrary
alphabets. The classification of the asymptotic Abelian complexities for pure morphic
words was initiated in [2]. In that paper, the upper bound growth of the Abelian
complexities of primitive binary words are classified (using the equivalence of the
balance function and the Abelian complexity function in the binary case). They also
classify the Abelian complexities of a large family of words fixed by non-primitive
morphisms.

In this paper, we complete the classification of the limit superior Abelian com-
plexities in the case of pure morphic binary words. The words studied here admit
fluctuating Abelian complexity, that is, the limit inferior and limit superior Abelian
complexities are of different order. This is in contrast to other words fixed by non-
primitive binary morphisms. These words are uniformly recurrent, enabling the use
of the notion of derivated words (see Definition 10) of uniformly recurrent words.
We associate the limit superior Abelian complexity of a word to the limit superior
balance function of one of its derivated words. We then apply the above mentioned
result of [1] dealing with the balance function of primitive pure morphic words.

We also study the Abelian complexities of a class of morphic binary words which are
not pure morphic. In particular, we focus on the relation between factor complexity
and Abelian complexity. We define a sequence of morphic binary words having (pair-
wise) the same asymptotic Abelian complexities (up to a constant) despite having
different asymptotic factor complexities.

The paper is organized as follows. In Section 2, we introduce basic notation and
concepts. In Section 3, we gather results from the literature and state the main
result: the classification of the upper bound growth of the Abelian complexities of
pure morphic binary words. In Section 4, we prove the remaining cases from the
classification theorem. Finally, in Section 5, we extend our interest to morphic, but
not pure morphic, binary words having Abelian complexity of order Θ(nr) and factor
complexity of order Θ(ns) for some r, s ∈ Q, r < 1 < s. We construct, for any r ∈ Q
with 0 < r < 1 a sequence of morphic binary words (ys)s≥1 having

Pys+1(n) = o(Pys(n)) and Pab
ys (n) = Θ(nr)

for all s ≥ 1.
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2. Preliminaries and Notation

In this section, we introduce the notation used in the paper as well as recall relevant
notions and results from the literature.

An alphabet Σ is a non-empty set of symbols called letters. In this paper, alphabets
are assumed to be finite, unless explicitly otherwise stated. A finite or infinite sequence
of letters over the alphabet Σ is called a word. The empty word is denoted by ε.
The set of finite words over Σ is denoted by Σ∗, the set of non-empty finite words
by Σ+, and the set of infinite words by ΣN. More generally, for a set of words (or
language) S ⊆ Σ∗, S∗ denotes the language of finite sequences of elements of S
interpreted as words over Σ. The sets S+ and SN are defined analogously. For u ∈ Σ+,
we let u∗ and u+ denote the sets {u}∗ and {u}+, respectively. The infinite word uω
denotes the singleton element of {u}N. When talking about the binary alphabet, we
mean the alphabet B = {a, b}. For a word w ∈ Σ∗, the length |w| of w is the number
of letters occurring in w. The set of words of length n over Σ is denoted by Σn.

A word u ∈ Σ∗ is a factor of w ∈ Σ∗ if there exist p, q ∈ Σ∗ such that w = puq.
For a non-empty word u, we let |w|u denote the number of occurrences of u in w as
a factor. The set of factors of w is denoted by F (w). We let Fn(w) denote the set

F (w) ∩ Σn.

For w as above, if p = ε (resp., q = ε) then u is called a prefix (resp., suffix) of w.
Further, if q 6= ε (resp., p 6= ε) then u is called proper prefix (resp., proper suffix).
For w = pq, we define p−1w = q. Similarly, we define wq−1 = p. The set of
prefixes (resp., suffixes) of w is denoted by pref(w) (resp., suff(w)) and the length k
prefix (resp., suffix) of w, |w| ≥ k, is denoted by prefk(w) (resp., suffk(w)).

For an infinite word x ∈ ΣN, we define factors, prefixes, and left quotients anal-
ogously and we use the same notation as for finite words. An infinite word y ∈ ΣN

such that x = uy, for some u ∈ Σ∗, is called a tail of x. We call x ultimately periodic
if there exist u ∈ Σ∗, v ∈ Σ+ such that x = uvω. If, in the above, u = ε then x is
called purely periodic. If no such u and v exist, then x is called aperiodic. The word x
is called recurrent if each nonempty factor u ∈ F (x) occurs infinitely many times
in x. Moreover, x is called uniformly recurrent if, for each factor u ∈ F (x), there
exists an N ∈ N depending on u such that u occurs in each factor of x of length N .
Further, x is called linearly recurrent if, for each u ∈ F (x), there exists K ∈ N such
that u occurs in each factor of x of length K|u|. We refer the reader to [4, 12] for
more on basic notions in combinatorics on words.

Let x ∈ Σ∗ ∪ ΣN and suppose u is a non-empty factor of x. The set of complete
first returns to u in x, denoted by <u(x), is defined as

<u(x) = { v ∈ F (x) | u ∈ pref(v), u ∈ suff(v), and |v|u = 2 }.

We make use of the following result later on.

Proposition 1 [6, part of Proposition 2.6.]. Let p1, . . . , pn ∈ <u(x)u−1. Then

|p1 · · · pnu|u = n+ 1 and u ∈ pref(pi · · · pnu)
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for all i = 1, . . . , n.
Consequently, the set

<u(x)u−1

is a code. That is, if p1 · · · pn = q1 · · · qm for some pi, qi ∈ <u(x)u−1 then m = n
and pi = qi for all i = 1, . . . , n.

We refer the reader to [6, 21] for more on the notion of first return words.
A mapping

ϕ : ∆∗ → Σ∗

between two alphabets ∆ and Σ is called a morphism if

ϕ(uv) = ϕ(u)ϕ(v)

for all u, v ∈ ∆∗. The notion of a morphism extends naturally to infinite words, and
we will not make a distinction between the two. We say that ϕ is uniform if, for all
letters a, b ∈ Σ,

|ϕ(a)| = |ϕ(b)|.

Throughout the text, when speaking of binary morphisms, we specifically mean mor-
phisms

B∗ → B∗.

For an ordering of

Σ = {a1, a2, . . . , a|Σ|}

and a morphism

ϕ : Σ∗ → Σ∗,

the incidence matrix Aϕ of ϕ is defined as

Aϕ[i, j] = |ϕ(aj)|ai .

In other words, the j-th entry of the i-th row equals the number of occurrences of ai
in ϕ(aj). For a morphism

ϕ : Σ∗ → Σ∗,

we have

Aϕn = Anϕ for all n ∈ N.
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The morphism ϕ is called primitive if there exists n0 ∈ N such that An0
ϕ contains only

positive entries. In the case of the binary alphabet B, we fix a1 = a, a2 = b so that,
given a binary morphism ϕ, Aϕ is of the form

Aϕ =
(
|ϕ(a)|a |ϕ(b)|a
|ϕ(a)|b |ϕ(b)|b

)
.

Let ϕ be a morphism satisfying ϕ(a) = ah for some a ∈ Σ and a word h ∈ Σ+ such
that

lim
n→∞

|ϕn(h)| =∞.

Then the word

ϕω(a) = lim
n→∞

ϕn(a)

exists and is a fixed point of ϕ. A word x ∈ ΣN is called pure morphic if there exist
a letter a ∈ Σ and a morphism ϕ such that x = ϕω(a). Further, w is called primitive
pure morphic, if such a primitive ϕ exists. A word is said to be morphic if it is a
morphic image of a pure morphic word. In other words, y ∈ ΣN is morphic if there
exist a pure morphic word x ∈ ∆N and a morphism γ : ∆→ Σ∗ such that y = γ(x).

We recall the Bachmann-Landau notation for asymptotic comparison of functions.
Let f, g : N→ R be functions with f non-negative and g positive. We write
• f(n) = O(g(n)) if there exist n0 ∈ N and C > 0 such that f(n) ≤ Cg(n) for

all n ≥ n0;
• f(n) = Ω(g(n)) if there exist n0 ∈ N and C > 0 such that f(n) ≥ Cg(n) for

all n ≥ n0;
• f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n));
• f(n) = o(g(n)) if limn→∞

f(n)
g(n) = 0.

We also make brief use of the following notation in Theorem 3:

• f(n) = Ω̂(g(n)) if lim supn→∞
f(n)
g(n) > 0 and

• f(n) = (O ∩ Ω̂)(g(n)) if both f(n) = O(g(n)) and f(n) = Ω̂(g(n)).
In general, the Abelian complexity function Pab can be strongly fluctuat-

ing (see, e. g., [13, 11]), so, for our needs, it is more meaningful to study the asymptotic
behavior of the Abelian complexity function. To this end, we define the upper (resp.,
lower) Abelian complexity functions, Uab

x (resp., Lab
x ), of a word x ∈ ΣN as

Uab
x (n) = max{ Pab

x (m) | 0 ≤ m ≤ n } (resp., Lab
x (n) = min{ Pab

x (m) | m ≥ n }).

The asymptotic growth rates of these functions indicates how large the fluctuation of
the Abelian complexity of x can be.
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3. Background

We recall some related results from the literature. We define a complexity function
closely related to the Abelian complexity. For this we need the following notation.
For an infinite word w ∈ ΣN and a letter a ∈ Σ, we define

maxw,a(n) = max { |u|a | u ∈ Fn(w) } .

The function minw,a : N→ N is defined analogously.

Definition 2. Let u ∈ ΣN. The balance function Bu of u is defined as

Bu(n) = max { maxu,a(n)−minu,a(n) | a ∈ Σ } .

It is straightforward to verify that, for x ∈ BN,

Pab
x (n) = Bx(n) + 1 for all n ∈ N.

The following result of B. Adamczewski is the first and deep starting point of the
classification of the Abelian complexities of morphic words. The result classifies the
asymptotic growth of the balance function of primitive pure morphic words. The
asymptotic behaviour of Uab

x for binary words x can be extracted from the above,
as was done in [2]. We state the theorem here since we shall make use of it in our
later considerations. Before we do so, however, we recall some basic notions of linear
algebra. When talking about eigenvalues of a morphism ϕ, we mean eigenvalues
of Aϕ. The multiplicity of the eigenvalue λ in the minimal polynomial of Aϕ is
denoted by αλ. We let θ1, θ2, . . . , θn be the distinct eigenvalues of ϕ ordered in such
a way that |θi| ≥ |θi+1| and if |θi| = |θi+1| then αθi ≥ αθi+1 . For a primitive ϕ, the
Perron-Frobenius theorem (see, e. g., [18]) implies that θ1 ∈ R, θ1 > 1, θ1 > |θ2|,
and αθ1 = 1. The eigenvalue θ1 is called the Perron-eigenvalue of ϕ. We also make
use of the eigenvalue θ2, which can be seen as the second most significant eigenvalue
of ϕ.

In the following, we let α2 = αθ2 − 1.

Theorem 3 [1] (as formulated in [2]). Let x be a fixed point of a primitive mor-
phism ϕ. Then the following hold:
(I) If |θ2| < 1, then Bx(n) = (O ∩ Ω̂)(1).
(II) If |θ2| > 1, then Bx(n) = (O ∩ Ω̂)((logn)α2nlogθ1 |θ2|).
(III) If |θ2| = 1 and θ2 is not a root of unity, then Bx(n) = (O ∩ Ω̂)((logn)α2+1).
(IV) If |θ2| = 1 and θ2 is a root of unity, then either

• Bx(n) = (O ∩ Ω̂)((logn)α2+1), or
• Bx(n) = (O ∩ Ω̂)((logn)α2),

according to whether a certain constant Aϕ,x equals zero or not, respectively.

We refer the interested reader to [1] for more on computing the constant Aϕ,u.
From the above, we immediately have that Uab

x (n), for a primitive pure morphic
binary word x, is of order Θ(1), Θ(logn), or Θ(nlogθ1 θ2) (since α2 = 0). In [2],
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F. Blanchet-Sadri, N. Fox, and N. Rampersad go on to study Abelian complexities of
fixed points of non-primitive binary morphisms. Before stating their result, we recall
a straightforward characterization of such morphisms.

Proposition 4. Let ϕ be a non-primitive binary morphism which admits an infinite
fixed point y = ϕω(a). Then either ϕ(a) ∈ aa+ and ϕ(b) ∈ B∗, or ϕ is of the form

ϕ(a) ∈ aΣ∗bΣ∗ and ϕ(b) ∈ b∗, (1)

where, if ϕ(b) = ε, then |ϕ(a)|a ≥ 2. Further, y is ultimately periodic if and only
if ϕ(a) ∈ aa+ or ϕ is of the form (1) and satisfies one of the following conditions:
• ϕ(a) ∈ ab+,
• ϕ(b) = ε, or
• ϕ(a) = (abr)sa and ϕ(b) = b for some r, s ≥ 1.

Theorem 5 [2]. Let ϕ be a non-primitive binary morphism as in (1) with ϕ(b) = bk

for some k ≥ 1. Suppose further that ϕ admits an aperiodic infinite fixed
point y = ϕω(a). Then the following holds:
(I) If k = 1 and ϕ(a) ends with b, then Pab

y (n) = Θ(n).
(II) If k ≥ 2, then

• Pab
y (n) = Θ(n) if |ϕ(a)|a > k,

• Pab
y (n) = Θ(n/ logn) if |ϕ(a)|a = k, and

• Pab
y (n) = Θ

(
nlogk |ϕ(a)|a

)
if |ϕ(a)|a < k.

It is straightforward to check that the words fixed by non-primitive morphisms
whose asymptotic (upper) Abelian complexities are not yet classified are as in (1),
where k = 1 and ϕ(a) ends with a. More precisely, ϕ is of the form

ϕ(a) = abk1abk2 · · · abksa, ϕ(b) = b, (2)

where ki ≥ 0 for all i = 1, . . . , s and there exist i, j such that ki < kj . Our aim is to
complete the classification by proving the following in Section 4:

Theorem 6. Let ϕ be as in (2) and y = ϕω(a). Then

Uab
y (n) = Θ(logn) and Lab

y (n) = Θ(1).

In particular, morphisms of the form (2) are the only non-primitive binary morphisms
whose fixed points have upper and lower Abelian complexities of different orders of
growth.

4. The Proof of Theorem 6

In this section, we prove Theorem 6. We shall first consider the lower Abelian com-
plexities of words fixed by morphisms of the form (2). After this, we focus on the
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upper Abelian complexity. We achieve this by finding a connection between the up-
per Abelian complexities and the balance functions of some derivated words of these
words (see Subsection 4.1).

We first fix the notation for the remainder of this section. We let ϕ be a morphism
as in (2) and we let Y = ϕω(a). We also let km (resp., kM ) denote the minimal (resp.,
maximal) of the exponents ki, i = 1, . . . , s in (2).

We start with some elementary properties of the word Y.

Lemma 7. The word Y has the following properties.
(I) The set <a(Y) equals <a(ϕ(a)) = { abkia | i = 1, . . . , s }.
(II) For any fixed m ∈ N, we have Y ∈ { ϕm(a)bki | i = 1, . . . , s }ω.
(III) The word Y is linearly recurrent (so, in particular, uniformly recurrent).

Proof. (I) Suppose this is not the case, abra ∈ F (Y) \ F (ϕ(a)) for some r ∈ N.
Suppose that abra ∈ ϕ(w), where w ∈ F (ϕt(a)), t ≥ 1, t is the least such integer,
and w is the shortest such factor of Y. Now w /∈ B, and since |abra|a = 2, we
have w = absa for some s ≥ 0. Now

abra ∈ F (ϕ(a)bsϕ(a)).

Since abra /∈ <a(ϕ(a)), it follows that s = r, that is, abra ∈ F (ϕt−1(a)), a contradic-
tion.

(II) The claim is true for m = 0 by the previous item. Suppose then that the claim
is true for some m ≥ 0;

Y =
∞∏
i=1

ϕm(a)bri , ri ∈ {k1, . . . , ks} for all i ≥ 1.

But then

Y = ϕ(Y) =
∞∏
i=1

ϕm+1(a)bri .

(III) Let um = ϕm(a) for each m ≥ 0. It is straightforward to conclude that um+1
contains each factor of length |um| of Y for each m ∈ N. Further, by Item (II),
any factor of length 2|um+1| + kM contains um as a factor. The claim follows
since |um+1| ≤ |u1||um|. �

Remark 8. Observe that

lim
n→∞

minY,c(n)
n

> 0

for both c ∈ B. This is immediate by Item (II) (case m = 1) in the above lemma
together with |ϕ(a)|a, |ϕ(a)|b > 0. Observe that the limit always exists as the sequence

(minY,c(n))n≥0
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is subadditive. In fact, since Y is linearly recurrent, we have

lim
n→∞

min
v∈Fn(Y)

|v|u
n

= lim
n→∞

max
v∈Fn(Y)

|v|u
n

for any u ∈ F (Y) ([7, Theorem 15] and [9, Proposition 7.2.10]). For us however, the
first observation above is enough.

We are ready to show that the lower Abelian complexity of Y is bounded.

Lemma 9. Let ϕ and Y be as above. Then Lab
Y (n) = Θ(1).

Proof. Let um = ϕm(a) for each m ∈ N. We claim that Pab
Y (|um|) is bounded by a

constant depending only on ϕ. Let now v ∈ F (Y) have length |um|. By Item (II) in
the above lemma, it follows that v is a factor of umbkium for some i ∈ {1, . . . , s}. In
other words, we have v = qbrp, where p (resp., q) is a (possibly empty) prefix (resp.,
suffix) of um and r ≤ kM . On the other hand, we have um = puq, for some u ∈ Fr(Y).
We thus conclude

|um|b = |p|b + |u|b + |q|b ≤ |p|b + r + |q|b = |v|b ≤ |um|b + r ≤ |um|b + kM .

It follows that Pab
Y (|um|) ≤ kM + 1 for all m ∈ N. The claim follows. �

The rest of this section is devoted to the upper Abelian complexity of Y. We
develop the tools needed in the following.

4.1. On Derivated Words of Uniformly Recurrent Words

We recall the definition of a derivated word of a uniformly recurrent word from [6].
We then study the derivated words of uniformly recurrent pure morphic words, and
remark a slight generalization of a result from [6].

To this end, let x ∈ ΣN be uniformly recurrent and let p ∈ pref(x) be non-empty.
We recall the following property used in [6] implicitly. Let y ∈ ΣN and assume that y
admits a factorisation

y =
∞∏
i=0

qi,

where qi ∈ <p(x)p−1 for all i ≥ 0. Then this factorisation is unique. Indeed, the
claim follows straightforwardly from the observation that

p ∈ pref(
∞∏
i=n

qi)

for each n ≥ 0 and p occurs nowhere else in y. To see this, we apply Proposition 1 to
see that p is a prefix of qn · · · qn+|u|p (and thus a prefix of qn · · · qn+|u| since |qi| ≥ 1
for each i ≥ 0) for each n ≥ 0. Furthermore, if p occurs somewhere else in y,
then |qnp|p ≥ 3 for some n ≥ 0, which contradicts the assumption qn ∈ <p(x)p−1.
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Definition 10. Let x ∈ ΣN be uniformly recurrent and p ∈ pref(x) be non-empty.
By the above discussion, we may write uniquely

x =
∞∏
i=0

qi,

where qi ∈ <p(x)p−1 for each i ∈ N. Let ∆p,x be an alphabet with |∆p,x| = |<p(x)|,
and let

πp,x : ∆p,x → <p(x)p−1

be a bijection. The derivated word of x with respect to p, denoted by Dp(x), is defined
as

Dp(x) =
∞∏
i=0

π−1
p,x(qi) ∈ ∆ω.

In the following, we order the elements of

<p(x) = {p1, . . . , pd}

in the order they occur for the first time in x. We then set

∆p,x = {δ1, . . . , δd}

and fix πp,x by πp,x(δi) = pi, i = 1, . . . , d. We often omit the subscripts from ∆p,x

and πp,x whenever the word x and prefix p are clear from context.
Note that πp,x can be interpreted as a morphism

πp,x : ∆∗p,x → Σ∗,

whence x = πp,x(Dp(x)). Note also that, since x is uniformly recurrent, then so
is Dp(x). The following result is a minor generalisation of [6, Proposition 5.1]. The
proof is essentially the same, as suggested by Jarkko Peltomäki (personal communi-
cation).

Proposition 11. Let ρ : Σ∗ → Σ∗ be a morphism admitting a uniformly recurrent
fixed point x = ρω(a). Let p be a non-empty prefix of x. Then Dp(x) is primitive pure
morphic.

The ingredients of the proof of the above result are essential to our later consider-
ations. In particular, we recall the construction of the primitive morphism

µ : ∆p,x → ∆∗p,x

satisfying µω(δ1) = Dp(x). To this end, it can be proved that ρπ(δ) is a return to p
in x for any δ ∈ ∆p,x. In other words, by Proposition 1, we may uniquely write

ρπ(δ) = q1 · · · qn,
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where qi ∈ <p(x)p−1 for each i = 1, . . . , n. Finally, we define

µ(δ) = π−1ρπ(δ) = π−1(q1) · · ·π−1(qn)

for each δ ∈ ∆p,x. We clarify the above construction by an example.

Example 12. Let

ϕ(a) = aabab2a and ϕ(b) = b

so that ϕ is of the form (2). Let y = ϕω(a). By Lemma 7,

<a(y) = {aa, aba, ab2a}

so we set ∆a,y = {δ1, δ2, δ3}. Now π is defined by π(δi) = abi−1 for each i = 1, 2, 3.
The primitive morphism µ is now defined by

µ(δi) = π−1ϕπ(δi) = π−1(aabab2abi−1) = δ1δ2δ3δi

for each i = 1, 2, 3. The incidence matrix Aµ of µ is thus

Aµ =

|µ(δ1)|δ1 |µ(δ2)|δ1 |µ(δ3)|δ1

|µ(δ1)|δ2 |µ(δ2)|δ2 |µ(δ3)|δ2

|µ(δ1)|δ3 |µ(δ2)|δ3 |µ(δ3)|δ3

 =

2 1 1
1 2 1
1 1 2

 .

Note that, for example, the word fixed by the morphism a 7→ ab2abab3a, b 7→ b, has
the same derivated word Da(y).

We note that in the above example, the obtained morphism µ is uniform with
length 4 = |ϕ(a)|a. This is no coincidence when the morphism ϕ is of the form (2).
Indeed, consider the construction of µ for our word Y and prefix a. We have

∆ = ∆a,Y = {δ1, . . . , δd}.

Now <a(Y)a−1 ⊆ ab∗ so we may define π = πa,Y by π(δi) = abri ∈ <a(ϕ(a))a−1, for
each i = 1, . . . , d. By the definition of µ in the above construction, we obtain

µ(δi) = π−1ϕπ(δi) = π−1(ϕ(a)bri) = π−1(ϕ(a)a−1abri) = pδi, (3)

where p = π−1(ϕ(a)a−1). The morphism µ is thus uniform with length |ϕ(a)|a.

Proposition 13. We have BDa(Y)(n) = O(logn).

Proof. We aim to show that µ has eigenvalues |ϕ(a)| and 1, both with multiplici-
ties 1 (as roots of the minimal polynomial of Aµ). The claim then follows by the
fourth point of Theorem 3. Indeed, the incidence matrix Aµ is of the form

Aµ =
(
Ψ(p)T | Ψ(p)T | · · · | Ψ(p)T

)
+ Id×d = A + Id×d,
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where Ψ(p) is the Parikh vector of p in (3), Id×d is the d× d identity matrix, and A
is a d× d matrix, where each column is the same vector Ψ(p)T .

Now let λ be an eigenvalue of Aµ. This implies that

0 = det(Aµ − λId×d) = det(A + Id×d − λId×d) = det(A− (λ− 1)Id×d).

It is straightforward to check that the only eigenvalues of A are

d∑
i=1
|p|δi = |p| and 0

from which it follows that the eigenvalues of Aµ are |ϕ(a)|a and 1. We now claim that
the minimal polynomial of Aµ is

x2 − (|p|+ 2)x+ |p|+ 1.

Indeed, it is straightforward to check that A2 = |p|A, from which it follows that

A2
µ − (|p|+ 2)Aµ + (|p|+ 1)Id×d = 0.

Now the minimal polynomial of Aµ is of degree 2 implying that the eigenvalue 1 has
multiplicity 1, as was to be shown. �

4.2. The Upper Abelian Complexity

We are now ready to prove the upper Abelian complexity of Y to be of order

Uab
Y (n) = Θ(logn).

For this, we bound the upper Abelian complexity of Y in terms of asymptotic balance
function of Da(Y). We then show that for infinitely many m, we have

Pab
Y (m) = Θ(logm).

Lemma 14. We have Uab
Y (n) = O(logn).

Proof. Let Da(Y), µ and π be as above and let n ∈ N with Pab(n) > 2. There
exists a factor uM ∈ Fn(Y) such that |uM |a = maxY,a(n) and uM begins with a.
Indeed, if |v|a = maxY,a(n) with v ∈ braΣ∗, then, by considering a factor vw ∈ F (Y)
with |w| = r, we have

| suffn(vw)|a = |v|a + |w|a and suffn(vw) ∈ aΣ∗.

Similarly, there exists a factor um ∈ Fn(Y) such that |um| begins with a and

|um|a ≤ minY,a(n) + 1.
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Observe that now |uM |a > |um|a by the choice of n.
As um begins with a, we may write um ∈ pref(π(x)) for some x ∈ F|um|a(Da(Y)),

whence

|um|a = |π(x)|a and |um|b ≤ |π(x)|b ≤ |um|b + kM .

Similarly, we may write uM = π(z)v, where z ∈ F|um|a(Da(Y)) and v begins with a.
We now have |uM |a − |um|a = |v|a so that

Pab
Y (n) ≤ |v|a + 2.

We claim that |v| = O(logn) to conclude the proof. As

|π(z)|+ |v| = |uM | ≤ |π(x)|

and

|π(z)|a = |π(x)|a,

we have |v| ≤ |π(x)| − |π(z)| = |π(x)|b − |π(z)|b. Moreover, |x| = |z| so, by Proposi-
tion 13,

|π(x)|b − |π(z)|b =
d∑
i=1

ri(|x|ai − |z|ai) ≤ dkMBDa(Y)(|x|) = O(log |x|).

Finally, |x| = |um|a ≤ n and thus |v| = O(logn). The claim follows. �

We now proceed to show that

Uab
Y (n) = Ω(logn).

To this end, let ϕ(a) = gauah for some g, u, h ∈ Σ∗. We shall now construct a
sequence of factors of Y defined recursively by

ug,h0 = a and ug,hn+1 = g−1ϕ(ug,hn )h−1 for n ≥ 0.

Note that the sequence is well-defined, as

ϕ(un) ∈ gaB∗ah

for each n ≥ 0. We now make some observations of the words in the sequence. In the
following we let α = |ϕ(a)|a and β = |ϕ(a)|b for ease of notation.

Lemma 15. For all n ∈ N,

• |ug,hn |a =
(

1− |gh|a
α− 1

)
αn + |gh|a

α− 1 ,

• |ug,hn |b = β

α− 1

(
1− |gh|a

α− 1

)
(αn − 1) +

(
β

α− 1 |gh|a − |gh|b
)
n.
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Proof. Define

Ψ̂g,h(v) = (|v|a, |v|b,−|gh|a,−|gh|b)T ∈ Z4

for all v ∈ Σ∗. Consider the following 4× 4 matrix (in block form)

Âϕ =
(
Aϕ I
0 I

)
,

where I = I2×2 and 0 = 02×2 are the 2× 2 identity matrix and zero matrix, respec-
tively. It is readily verified that, for any v ∈ aΣ∗a, we have

ÂϕΨ̂g,h(v) = Ψ̂g,h(g−1ϕ(v)h−1).

This implies that ÂnϕΨ̂g,h(a) = Ψ̂g,h(ug,hn ) for all n ∈ N. We then have, for all n ∈ N,

Ânϕ =

Anϕ
n−1∑
i=0

Aiϕ

0 I

 ,

where

Anϕ =
(

αn 0
β α

n−1
α−1 1

)
and

n−1∑
i=0

Aiϕ =
(

αn−1
α−1 0

β α
n−1−n(α−1)

(α−1)2 n

)
,

by straightforward induction. We finally have, for all n ∈ N,

ÂnϕΨ̂g,h(a)[1, 2] =
(

αn − αn−1
α−1 |gh|a

β α
n−1
α−1 − β

αn−1−n(α−1)
(α−1)2 |gh|a − n|gh|b

)
.

Rearranging the terms gives our claim. �

Recall that there exist gm, hm, gM , hM ∈ Σ∗ such that

ϕ(a) = gmab
kmahm = gMab

kMahM ,

where km and kM are as fixed in the beginning of this section. Let then

(un) = (ugm,hmn ) and (vn) = (ugM ,hMn )

be sequences constructed as above. Note that

|gmhm|a = |gMhM |a = α− 2

and

|gmhm|b − |gMhM |b = kM − km
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whence, by the above lemma,

|vn| − |un| = |vn|b − |un|b = −n|gMhM |b + n|gmhm|b = n(kM − km) (4)

for all n ∈ N. We are now in the position to complete the proof of Theorem 6.

Proof of Theorem 6. By Lemma 9 and Lemma 14, it is enough to show that

Uab
Y (n) = Ω(logn).

Let (un)n and (vn)n be the sequences as discussed above. Let then unfn ∈ F (Y),
so that |unfn| = |vn|, that is,

|fn| = n(kM − km).

Now, by Remark 8, for all large enough n there exists γ < 1 such that |fn|b ≤ γ|fn|.
From (4) we obtain

Pab
Y (|vn|) ≥ |vn|b − |unfn|b ≥ (1− γ)(kM − km)n.

Further, from the above lemma, we have

|vn| = |vn|a + |vn|b = |ϕ(a)| − 1
(α− 1)2 αn +O(n) = Θ(αn).

We thus conclude that Pab
Y (|vn|) = Ω(log |vn|), whence Uab

Y (n) = Ω(logn). �

We have shown that aperiodic words fixed by a morphism of the form (2) have
Abelian complexity which fluctuates between constant and logarithmic growth. This
completes the classification of the Abelian complexities of pure morphic words fixed
by non-primitive binary morphisms. Further, the classification of upper Abelian com-
plexities of pure morphic binary words is completed.

5. On Families of Words Having Asymptotically the Same Abelian Com-
plexity

In this section, we extend our analysis to morphic binary words. In particular, we are
interested in morphic words having Abelian complexity of the order Θ(np/q), p < q.

We note that, in the case of pure morphic binary words, one can achieve such
Abelian complexity with both primitive and non-primitive morphisms. Primitive
morphisms having adjacency matrix, e. g., of the form(

2q − 1 2q − 2p − 1
1 2p + 1

)
, p < q,

yield words with Uab(n) = Θ
(
np/q

)
(Item (II) of Theorem 3). On the other hand,

non-primitive morphisms having adjacency matrix of the form, e. g.,(
2p 0
s 2q

)
, p < q, s ≥ 1,
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yield fixed points having Pab(n) = Θ
(
np/q

)
(Item (II) of Theorem 5, third point).

What is worth noting is that both of the above types of words give Θ(n) factor
complexity:

Lemma 16. Let y = ϕω(a) for some binary morphism ϕ. If

Pab
y (n) = Θ(nr)

for some r ∈ Q, 0 < r < 1, then

Py(n) = Θ(n).

Proof. Note that y is necessarily aperiodic. We show that the morphism ϕ is
everywhere-growing and quasi-uniform (for definitions see [15, 16], or [3, Defini-
tions 4.7.35 and 4.7.39]), that is, there exists β > 1 such that |ϕn(a)|, |ϕn(b)| = Θ(βn)
as n tends to infinity. The claim follows, as aperiodic fixed points of everywhere-
growing quasi-uniform morphisms have linear factor complexity by Pansiot’s re-
sult [15].

It is a simple exercise to show that a primitive morphism ϕ is everywhere-growing
and quasi-uniform. If ϕ is non-primitive, then, by Theorems 5 and 6, |ϕ(a)|a < |ϕ(b)|b.
It is simple to see that in this case the parameter β above equals |ϕ(b)|, and |ϕ(b)| > 1.

�

The main result of this section is the following.

Theorem 17. For each pair p, q ∈ N, p < q, there exists a sequence of morphic
binary words (ys)s∈N satisfying

Pab
ys (n) = Θ(np/q) and Pys+1(n) = o (Pys(n)) .

There thus exists a family of morphic binary words having the same asymptotic
Abelian complexity while the asymptotic factor complexities are different. We shall
construct such sequences for each pair p, q ∈ N.

5.1. The Construction and Initial Properties

We first fix the notation of the remainder of the section. For convenience, we use the
infinite alphabet

ΣN = { ai | i ≥ 0 }

indexed by the natural numbers. Let also

Σs = {a0, . . . , as}

and

Γs = { ai | i ≥ s }.
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Define then the morphism

γ : ΣN → Σ∗N
by

γ(a0) = a0 and
γ(ar) = arar−1 for r ≥ 1.

Further, for each s ∈ N, we define the morphism

σs : ΣN → B∗

by

σs(ar) =
{
b if ar ∈ Γs and
a otherwise.

Now the infinite fixed point γω(ar) exists for each r ≥ 1. For the remainder of this
section we set, for each r ≥ 1,

Xr = γω(ar).

Further, we let Xs,r denote the morphic word σs(Xr) for all s ≥ 0, r ≥ 1.

Example 18. We illustrate the words defined above. (Here we identify ai with i
for i = 0, 1, 2, 3.)

X3 = 3221211021101002110100100021101001000100002 · · ·
X1,3 = b b b b b b bab b babaab b babaabaaab b babaabaaabaaaab · · ·
X2,3 = b b babaaabaaaaaabaaaaaaaaaabaaaaaaaaaaaaaaab · · · .

We recall that words similar to the words Xs,s+1 have been studied previously [16] (see
also [3, Subsection 4.7.1]) as examples of morphic, but not pure morphic, words.

The aim is to prove the following proposition.

Proposition 19. Let r, s ∈ N with 1 ≤ s < r, and let x = Xs,r. Then
(I) Px(n) = Θ

(
n1+1/s) and

(II) Pab
x (n) = Θ

(
n1−s/r).

Let us first see how Theorem 17 follows from the above proposition.

Proof of Theorem 17. Let us fix p, q ∈ N, 1 ≤ p < q. For each s ≥ 1, let

ys = Xs(q−p),sq.

By Proposition 19, ys has

Pys(n) = Θ
(
n1+1/s(q−p)

)
and

Pab
ys (n) = Θ

(
n1−s(q−p)/sq

)
= Θ

(
np/q

)
.

It is clear that Pys+1(n) = o (Pys(n)) as claimed. �
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Before proving the above proposition, we shall list some properties of γ and its
fixed points Xr, r ≥ 1. For this, we let

Λm,l,r =
l∏

i=m
γi(ar−1)

for all m, r ∈ N and l ∈ N ∪ {∞}, with r ≥ 1 and l ≥ m. For technical reasons, we
also allow l = m− 1, and we set Λm,m−1,r = ε.

Lemma 20. The following properties hold for all r ≥ 1.
(I) Xr ∈ arΣωr−1. In particular, X1 = a1a

ω
0 and Xr,r = baω.

(II) For all n,m ∈ N, n ≥ m ≥ 0, we have

γn(ar) = arΛ0,n−1,r = γm(ar)Λm,n−1,r and Xr = γn(ar)Λn,∞,r.

(III) F (Xt) ⊆ F (Xr) and F (Xs,t) ⊆ F (Xs,r) for all t, r, s ∈ N, 1 ≤ t ≤ r.

Proof. Item (I) is clear by the definition of γ and Item (II) is easily shown by induction.
Item (III) is immediate by Item (II). �

To simplify notation, we define, for all r ∈ N, the functions pr, ps,r : N→ N by

pr(n) = |γn(ar)| and
ps,r(n) = |γn(ar)|as .

Thus,

pr(n) =
r∑
i=0

pi,r(n).

Lemma 21. Let r, s ∈ N with r ≥ s ≥ 0 and r > 0. Then,

(I) ps,r(n) =
(

n

r − s

)
= 1

(r − s)!n
r−s +O(nr−s−1) and

(II) pr(n) =
r∑
i=0

(
n

i

)
= 1
r!n

r +O(nr−1).

Proof. For each s ∈ Σr, let Is denote the (r + 1) × (r + 1) matrix having the en-
try aij = 1 if j = i + s and aij = 0 otherwise. It is easy to check that It1 = It for
each t = 1, . . . , r, that It1 = 0 for t ≥ r, and that I0 is the identity matrix.

Consider then the adjacency matrix Aγ,r of γ restricted to the alphabet Σr (the
top-left entry being |γ(a0)|a0 while the bottom-right entry being |γ(ar)|ar ). We
have Aγ,r = I0 + I1 so that

Anγ,r =
r∑
i=0

(
n

i

)
Ii1 =

r∑
i=0

(
n

i

)
Ii.
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The rightmost column contains the entries |γn(ar)|ai for i = 0, . . . , r, whence

ps,r(n) = Anγ,r[s, r] =
(

n

r − s

)
= 1

(r − s)!n
r−s +O(nr−s−1).

Finally,

pr(n) =
r∑
i=0

(
n

i

)
= 1
r!n

r +O(nr−1).

The claims follow. �

5.2. Analysing the Factor Complexity

We shall first analyse the factor complexity of Xs,r for any pair 1 ≤ s < r. Our aim
is to prove Proposition 19, Part (I). We start with a technical lemma.

Lemma 22. Let 0 ≤ s ≤ r. Then σs (γn(ar)) ends with

baps(n−r+s)−1

for all n > r − s.

Proof. Let s be fixed. We shall prove the claim by induction on r. The base case r = s
is trivial, as

σs(γn(as)) = baps(n)−1

for all n ≥ 1. Suppose the claim is true for r and consider the case of r + 1.
Let n > r + 1 − s. By Item (II) of Lemma 20, γn(ar+1) ends with γn−1(ar).
As n− 1 > r − s, the induction hypothesis asserts that σs(γn−1(ar)) ends with

baps(n−(r+1)+s)−1.

We have thus completed the induction step. �

We are in the position to analyse the factor complexity.

Proof of Proposition 19, Item (I). Let s ≥ 1 be fixed. We prove, by induction
on r, that Xs,r has the claimed factor complexity. The base case r = s+ 1 is a result
in [16] (see also [3, Proposition 4.7.2]). Suppose then that the claim is true for the
case r and consider the word Xs,r+1. Let us fix n and estimate the size of

Fn(Xs,r+1) \ Fn(Xs,r).

Factorize Xs,r+1 into three parts

Xs,r+1 = σs (ar+1Λ0,k1,r+1) · σs (Λk1+1,k2,r+1) · σs (Λk2+1,∞,r+1) ,
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where k1 is minimal in the sense that pr(k1) ≥ n and k2 is minimal in the sense
that σs(γk2(ar)) ends with at least n a’s. By Lemma 21,

pt(x) = 1
t!x

t +O(xt−1)

for each t ∈ N, so that k1 = Θ(n1/r) and, by the above lemma, k2 = Θ(n1/s).
Consider first the prefix. We first note that, by Lemma 20,

ar+1Λ0,k1,r+1 = γk1+1(ar+1).

Trivially,

|Fn (σs (ar+1Λ0,k1,r+1)) | ≤ |γk1+1(ar+1)|

and we obtain, by Lemma 21, the rough upper bound

|γk1+1(ar+1)| = 1
(r+1)!k

r+1
1 +O(kr1) = O

(
n1+1/r

)
.

Consider then the factors occurring in σs(Λk1+1,k2,r+1). Now any factor occurring
in σs(γi(ar)) occurs already in Xs,r. By the choice of k1, it suffices to consider factors
that are of the form σs(u1u2), where

u1 ∈ suff(γi(ar)) and
u2 ∈ pref(γi+1(ar))

for some i satisfying k1 ≤ i < k2. For each such i, there are at most n − 1 choices
of u1 and u2, and we obtain the upper bound

k2∑
i=k1

n = nO(n1/s) = O(n1+1/s).

Finally, the factors occurring in the infinite tail have already been counted previ-
ously, either as factors of Xs,r, or as a prefix of Xs,r preceded by a block of a’s. We
conclude, by the induction hypothesis,

PXs,r+1(n) = PXs,r
(n) +O(n1+1/s) +O(n1+1/r) = Θ

(
n1+1/s

)
.

�

5.3. Analysing the Abelian Complexity

We shall secondly analyse the Abelian complexity of Xs,r for 1 ≤ s < r. Our aim is
to prove Proposition 19, Part (II), the following lemma being crucial in doing so. In
what follows, for w ∈ Σ∗N and s ∈ N, we let

|w|Γs =
∑
a∈Γs

|w|a.
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Lemma 23. Let 1 ≤ s ≤ r and let n,m ∈ N. Then

|v|Γs ≤ |prefn(Λm,∞,r)|Γs

for all v ∈ Fn(Λm,∞,r). Further,

|prefn(Xr)|Γs = max
v∈Fn(Xr)

|v|Γs

for all n ∈ N.

Proof. We prove these claims, for any fixed s ≥ 1, by induction on r. Both of these
are trivial for the base case r = s. Suppose the claims are true for some r ≥ s, and
consider the case of r + 1. Let n be fixed. We start by proving the following:

Claim 24. If v ∈ Fn(Λm,∞,r+1) is of the form

v = eΛm+1,l,rf (5)

for some l,m ∈ N with l ≥ m ≥ 0, e ∈ suff(γm(ar)), and f ∈ pref(γl+1(ar)), then

|v|Γs ≤ |prefn(Λm,∞,r+1)|Γs .

Proof. Let

v ∈ Fn(Λm,∞,r+1)

be as in (5). Let

z ∈ pref(γl(ar)f)

so that

|Λm,l−1,r+1z| = |v|.

Thus, γm(ar) = ue for some u ∈ Σ∗r and

|z| = |γl(ar)|+ |f | − |u|.

Note that these notations are valid for the technical case l = m also. The situation is
illustrated in Figure 1.

Suppose first that |z| ≥ |γl(ar)| whence |u| ≤ |f | and thus u is a prefix of f . In
Figure 1, this corresponds to z ending at point 2). Let v′ = suff |u|(f). We have

|Λm,l−1,r+1z|Γs − |v|Γs = |u|Γs − |v′|Γs ≥ 0

by applying the induction hypothesis to u ∈ pref(Xr) and v′ ∈ F (Xr).
Suppose then that |z| < |γl(ar)| whence |f | < |u| and f is a proper prefix of u. In

Figure 1, this corresponds to z ending at point 1). If e = ε and l = m, then

z = v = f ∈ pref(γm(ar))
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Λm,l+1,r+1

γm(ar) Λm+1,l,r+1 γl+1(ar)

u e f

v

Λm,l−1,r+1 z 1) 2)

Figure 1: The words v and Λm,l−1,r+1z in the proof of Claim 24.
Here z ends at point 1) if |z| < |γl(ar)|, otherwise z ends at point 2).
If l = m, then Λm+1,l,r+1 = Λm,l−1,r+1 = ε, v = ef , and z is a prefix of uef .

and there is nothing to prove. Assume then that either e 6= ε or l > m. Let

v′ = suff |u|−|f |(γl(ar)).

If f = ε, then we have

|Λm,l−1,r+1z|Γs − |v|Γs = |u|Γs − |v′|Γs ≥ 0

by applying the induction hypothesis to v′ ∈ F (Xr) and u ∈ pref(Xr).
We are left with the case of f being a non-empty proper prefix of u. Write u = fu′

for some u′ ∈ Σ+
r , whence

|Λm,l−1,r+1z|Γs − |v|Γs = |u′|Γs − |v′|Γs .

Hence, to conclude the proof, it suffices to show that

|u′|Γs ≥ |v′|Γs .

There exist m1 ∈ N, 0 ≤ m1 < m, and words g1, g2 ∈ Σ∗r such that

f = γm1(ar)g1 and γm1+1(ar) = γm1(ar)γm1(ar−1) = fg2,

that is, g1g2 = γm1(ar−1). Now, by Item (II) of Lemma 20,

γl(ar) = γm1(ar)Λm1,l−1,r.

We may thus write

g1u
′ = pref |g1u′|(Λm1,l−1,r) ∈ F (Xr).

Observe now that

γl+1(ar) = γl(ar)γl(ar−1).

Since

v′ ∈ suff(γl(ar)) and
g1 ∈ pref(γm1(ar−1)) ⊆ pref(γl(ar−1)),
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it follows that we may write

v′g1 = e′Λm2,l−1,rg1 ∈ F (Λm1,∞,r),

where m2 is minimal and e′ ∈ suff(γm2−1(ar)). Note that m2 > m1 since e 6= ε
or l > m. We apply the induction hypothesis on v′g1 and g1u to obtain

|v′g1|Γs ≤ |g1u
′|Γs ,

from which it follows that |u′|Γs ≥ |v′|Γs . This concludes the proof of Claim 24. ��

From Claim 24, it follows that

|prefn(Λm′,∞,r+1)|Γs ≤ |prefn(Λm,∞,r+1)|Γs

for all m′ > m. Indeed, since prefn(Λm′,∞,r+1) has a factorization of the form (5)
(with m′ in the role of m+ 1 and e = ε), we obtain

|prefn(Λm′,∞,r+1)|Γs ≤ |prefn(Λm′−1,∞,r+1)|Γs ≤ . . . ≤ |prefn(Λm,∞,r+1)|Γs .

Assume now that v ∈ Fn(Λm,∞,r+1) has a factorization of the form v = eΛm′+1,l′,r+1f

for some l′ ≥ m′ ≥ m, e ∈ suff(γm′(ar)), and f ∈ prefn(γl′+1(ar)). By Claim 24 and
the previous observation, we have

|v|Γs ≤ |prefn(Λm′,l′,r+1f)|Γs ≤ |prefn(Λm,∞,r+1)|Γs .

If, on the other hand, v ∈ Fn(Λm,∞,r+1) has no factorization of the form (5),
then v ∈ F (Xr). By the induction hypothesis and the above observation, we have

|v|Γs ≤ |prefn(Xr)|Γs = |prefn(Λm′,∞,r+1)|Γs ≤ |prefn(Λm,∞,r+1)|Γs ,

where m′ is minimal such that

|γm
′
(ar)| ≥ n.

We have proved that, for all v ∈ F (Λm,∞,r+1),

|v|Γs ≤ |prefn(Λm,∞,r+1)|Γs ,

that is, the first part of Lemma 23. It remains to prove that

|prefn(Xr+1)|Γs = max
v∈Fn(Xr+1)

|v|Γs .

But this is trivial since for all

v ∈ Fn(Xr+1) \ {prefn(Xr+1)} = Fn(Λ0,∞,r+1),

we have

|v|Γs ≤ |prefn(Λ0,∞,r+1)|Γs = |prefn(a−1
r+1Xr+1)|Γs ≤ |prefn(Xr+1)|Γs .

We have thus completed the induction step, completing the proof of Lemma 23. �
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Proof of Proposition 19, Item (II). We now complete the proof by analysing
the Abelian complexity of Xs,r. Note that Pab

Xs,r
is monotonously increasing,

since minXs,r,b(n) = 0 for all n ∈ N. By Lemmas 21 and 23, we have

Pab
Xr,s

(pr(k)) = |γk(ar)|Γs + 1 = 1
(r−s)!k

r−s +O(kr−s−1).

In other words, we have

Pab(nk) = Θ(n1−s/r
k )

for a sequence (nk) of indices. Note also that there exists α ∈ R such that nk+1 ≤ αnk
for all large enough k. Let now n ∈ N, such that nk < n ≤ nk+1 for some large
enough k ∈ N. Now there exist C1, C2 ∈ R such that

Pab(n) ≤ Pab(nk+1) ≤ C1n
1−s/r
k+1 ≤ C1α

1−s/rn1−s/r and

Pab(n) ≥ Pab(nk) ≥ C2n
1−s/r
k ≥ C2

α1−s/r n
1−s/r.

Thus Pab(n) = Θ(n1−s/r). �

6. Conclusions

We completed the classification of the asymptotic Abelian complexities of pure mor-
phic binary words fixed by non-primitive morphisms. We note that the classification
of lower Abelian complexities remains open for primitive pure morphic binary words.
It is worth mentioning that the lower Abelian complexities of a large family of uniform
binary morphisms is obtained in [2].

Classifying the Abelian complexities for primitive pure morphic words over larger
alphabets remains totally open. The methods used here are specific to binary words
and cannot be applied to larger alphabets directly. More precisely, the techniques
rely on the equivalence of the balance function and the Abelian complexity of binary
words. For larger alphabets, the link is not that clear.
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