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Summary

Ferredoxin�NADP+ reductase (FNR) catalyzes the last step of linear electron transfer in

photosynthetic light reactions. The FAD cofactor of FNR accepts two electrons from

two independent reduced ferredoxin molecules (Fd) in two sequential steps, first

producing neutral semiquinone and then the fully anionic reduced, hydroquinone,

form of the enzyme (FNRhq). FNRhq transfers then both electrons in a single hydride

transfer step to NADP+. We are presenting the recent progress in studies focusing on

Fd:FNR interaction and subsequent electron transfer processes as well as on

interaction of FNR with NADP+/H followed by hydride transfer, both from the

structural and functional point of views. We also present the current knowledge about

the physiological role(s) of various FNR isoforms present in the chloroplasts of higher

plants and the functional impact of subchloroplastic location of FNR. Moreover, open

questions and current challenges about the structure, function and physiology of FNR

are discussed.
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1. Photosynthetic Ferredoxin NADP+ reductase: general features and structure

The primary function of photosystem I (PSI) at the end of the linear

photosynthetic electron transfer (PET) chain is to reduce NADP+ to NADPH, mainly

used as reducing power in the assimilation of CO2 (Vishniac and Ochoa 1952). In plants

and cyanobacteria this occurs via reduction of the soluble plant type [2Fe�2S]

ferredoxin (Fd) by PSI (Setif 2006), with the subsequent reduction of NADP+ being

catalyzed by the flavoenzyme ferredoxin�NADP+ reductase (FNR, EC 1.18.1.2),

according to the reaction 2Fdrd + NADP+ 2Fdox + NADPH (Arnon 1991, Arnon and

Chain 1975). In this process the FAD cofactor of FNR accepts two electrons in two

sequential steps from two independent Fdrd molecules, first producing the neutral

semiquinone and then the fully anionic reduced or hydroquinone form of the enzyme

(FNRhq). FNRhq transfers then both electrons in a single hydride transfer (HT) step to

NADP+ (Batie and Kamin 1984b, Carrillo and Ceccarelli 2003, Medina and Gómez

Moreno 2004). The reaction is a reversible process proposed to work in an ordered

two substrate process within a ternary Fd:FNR:NADP+ complex, with the pyridine

nucleotide binding first to FNR (Batie and Kamin 1984a, Batie and Kamin 1984b).

The relationships of plastidic FNRs ( 35 36 kDa) with other enzymes showing

FNR activity indicated that they share evolutionary origin with bacterial FNRs (also

known as FPRs) (Aliverti, et al. 2008, Arakaki, et al. 1997, Ceccarelli, et al. 2004).

Plastidic and bacterial FNRs all together form the plant type FNR family, whose two

domain structure provides the basic scaffold for an extended superfamily of electron

transfer (ET) flavoproteins (Fig. 1A) (Deng, et al. 1999, Dorowski, et al. 2001, Karplus, et

al. 1991, Kurisu, et al. 2001, Muraki, et al. 2010, Serre, et al. 1996). The N terminal

FAD binding domain is made up of six antiparallel strands organized in two

perpendicular sheets, with a short helix at the bottom and another helix and a

long loop that is maintained by a small two stranded antiparallel sheet at the top,

while the C terminal NADP+ binding domain consists of a core of five parallel strands

surrounded by seven helices (Fig. 1A). The FAD is bound outside the antiparallel

barrel, and its isoalloxazine ring lies between two tyrosines, one belonging to the FAD

binding domain (Y79 in Anabaena FNR, AnFNR) and the other to the NADP+ binding

domain (the C terminal Tyr, Y303 in AnFNR) (Fig. 1B). Although the main physiological
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function of plastidic FNRs is the production of reducing power in the form of NADPH,

these enzymes are reversible and also catalyze the reduction of Fdox by NADPH to

provide reducing power to various metabolic processes (Hanke and Mulo 2013). This is

possible because the midpoint reduction potentials of the molecules involved in the

reaction are in the same range. The two one electron midpoint potentials of the FAD

cofactors in plastidic FNRs are close to each other, and therefore they stabilize only

10�20% of the maximal amount of semiquinone, with Eox∧hq values ranging among 325

mV and 370 mV when considering different species (Batie and Kamin 1986, Cassan, et

al. 2005, Corrado, et al. 1996, Faro, et al. 2002b, Sánchez Azqueta, et al. 2012). Eox∧hq

for Fd is 420 mV and that of NADP+ 320 mV (Pueyo and Gómez Moreno 1991).

Differences in redox potentials explain that the reaction goes more easily towards the

production of NADPH, required in high yields in photosynthetic carbon assimilation,

than into the opposite direction for the production of compounds required in lower

amounts in dark metabolism. In addition, interaction makes PET thermodynamically

more favorable. Fd:FNR complex formation makes the Fd midpoint potential more

negative (~15 mV in AnFd) and that of FNR less negative (27�40 mV in AnFNR). In

addition, formation of the FNR:NADP+ complex makes de the midpoint reduction

potential for reduction of NADP+ less negative as compared to the free coenzyme form

(Batie and Kamin 1984a, Batie and Kamin 1986, Hurley, et al. 1997).

Higher plants contain a small gene family encoding at least two distinct

chloroplast targeted FNR isoforms (Green, et al. 1991, Grzyb, et al. 2008, Hanke, et al.

2005, Morigasaki, et al. 1993). Despite high sequence identity between the FNR

isoforms, in all higher plant species studied to date one of them appears to be basic (pI

above 6) and the other one acidic (pI around 5) (Hanke, et al. 2005). The single fnr

knock out mutants are viable indicating redundancy of function, whereas double

mutants are lethal (Hanke, et al. 2008, Lintala, et al. 2009, Lintala, et al. 2007, Lintala,

et al. 2012). In cyanobacteria, the two forms of FNR, differing in size (FNR(S) and

FNR(L)), originate from a single gene (Thomas, et al. 2006). The longer form FNR(L),

which is bound to the phycobilisome antenna, has been indicated in the

photoreduction of NADP+, whereas the small, soluble FNR(S) has been suggested to

function in opposite direction (Thomas, et al. 2006). In addition to the well
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characterized photosynthetic role of FNR in the last step of linear PET, it has been

suggested to participate in cyclic electron transfer (CET) around PSI (DalCorso, et al.

2008, Iwai, et al. 2010, Joliot and Joliot 2002, Laisk, et al. 2007, Shahak, et al. 1981). In

CET, lumenal pH accumulates without production of reducing equivalents (i.e.

NADPH), which enables to fulfil the high demand of ATP in C4 plants (Rumeau, et al.

2007). In C3 plants CET has been suggested to play a crucial role upon acclimation to

adverse environmental conditions, yet the exact functional details and components

are not known (Suorsa 2015). Accordingly, also the role of FNR in CET has remained

elusive (Goss and Hanke 2014). Similarly to cyanobacteria, in higher plants FNR is

distributed between the membrane bound and the soluble pool (Forti and Bracale

1984, Fredricks and Gehl 1982, Matthijs, et al. 1986). Recently, novel mechanisms and

components of FNR membrane tethering have been revealed (see below; (Benz, et al.

2009, Juri , et al. 2009, Yang, et al. 2016), but the ultimate physiological significance of

FNR allocation on energy distribution still requires further studies.

2. Molecular interactions and electron transfer processes between FNR and its

photosynthetic redox partners: Fd and NADP+

PET from Fd to NADP+ requires the formation of at least two binary transient

complexes: Fd:FNR and FNR:NADP+. These complexes arrange their respective [2Fe

2S], isoalloxazine and nicotinamide redox centers, when present in the adequate redox

states, at the proper distance and orientation for the high efficiency exhibited in the

overall PET process. Extensive kinetics, chemical modification, mutational,

thermodynamic, binding and structural determinations were reported in the last 50

years to characterize the interaction surfaces in the Fd:FNR and FNR:NADP+ complexes.

These studies identified key residues for the interaction, binding induced

conformational changes and ET processes, reviewed in the previous decade (Carrillo

and Ceccarelli 2003, Hurley, et al. 2002, Medina 2009, Medina and Gómez Moreno

2004). Recent breakthroughs in computational structural biology have also provided

interesting clues to the overall dynamics of interaction and ET processes within the

Fd:FNR and FNR:NADP+ complexes at the molecular and atomic levels. Indeed,

integration of experimental data accumulated during the years with results from
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theoretical methods has proved to be essential for the better understanding of these

processes.

2.1. Fd:FNR interaction and subsequent ET processes.

Early studies already pointed to the role of electrostatic forces in facilitating

productive Fd:FNR interactions (Batie and Kamin 1984a, Batie and Kamin 1984b,

Bhattacharyya, et al. 1987, Foust, et al. 1969, Jelesarov, et al. 1993, Medina, et al.

1992a, Medina, et al. 1992b, Medina, et al. 1992c, Walker, et al. 1990, Zanetti, et al.

1984, Zanetti, et al. 1979), and soon it was also accepted that hydrophobic effects

would play a key role in complex stability (Jelesarov and Bosshard 1994). Site directed

mutagenesis, steady state and transient kinetic measurements, together with

structural determinations and calorimetric studies, were then used in an attempt to

describe this system at the molecular level (Aliverti, et al. 1991, Aliverti, et al. 1993,

Hurley, et al. 1993a, Hurley, et al. 1993b). Combination of these methodologies

identified key residues at the interaction surfaces of these proteins as well as in the

modulation of their redox centers, ascribing major and specific functions to some of

them as reviewed elsewhere (Hurley, et al. 1999, Hurley, et al. 1994, Hurley, et al.

2002, Medina and Gómez Moreno 2004) (Fig. 1C E). Moreover, FNR active site

residues, namely S80, E301 and the C terminal Y303, as well as some residues at the

FAD binding domain, namely R16, L76, L78 and particularly K75 (Anabaena numbering,

Figures 1A C) are crucial in modulating the midpoint reduction potential and stabilizing

the semiquinone, a key factor for efficient one ET processes between Fd and FNR

(Aliverti, et al. 1995, Aliverti, et al. 1998, Faro, et al. 2002a, Martínez Júlvez, et al.

1998a, Martínez Júlvez, et al. 2001, Medina, et al. 1998, Nogués, et al. 2004). These

studies indicated that charged residues on the surfaces of Fd and FNR provided with a

dipole moment that helped their mutual relative orientation and made possible their

first encounter (Fig. 1). In addition, it was shown that the mutual disposition between

Fd and FNR after the first encounter is not optimal, but a reorientation situating the

[2Fe 2S] and isoalloxazine redox centers at the right distance and orientation is

required for efficient electron exchange. Short range electrostatic interactions

(particularly salt bridges) were then shown to contribute to such reorganization, in

general Fd providing negative charged residues and FNR positive ones (Fig. 1C and 1F)
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(Aliverti, et al. 1994, Hurley, et al. 1999, Hurley, et al. 1996, Martínez Júlvez, et al.

1998a, Martínez Júlvez, et al. 1998b, Mayoral, et al. 2005, Medina and Gomez Moreno

2004, Medina and Gómez Moreno 2004). Moreover, coupling hydrophobic patches of

residues and the release of water molecules at the protein protein interface upon

complexation were described as key elements to provide the reorganization energy

favoring the orientation in which the ET occurs efficiently (Hurley, et al. 1993a, Hurley,

et al. 2002, Jelesarov and Bosshard 1994, Kinoshita, et al. 2015, Martínez Júlvez, et al.

2001, Medina and Gómez Moreno 2004). The FNR two domain arrangement was also

shown to play an important role in the overall process (Fig. 1A and 1C). The open inter

domain cavity at the interface and the loops at its edge (particularly the loop allocating

the FAD adenosine, loop 102 114 in AnFNR) provide additional flexibility to

accommodate the protein partner during the catalysis (Sánchez Azqueta, et al. 2014c).

Finally, some negative residues on the FNR surface introduce repulsive interactions for

Fd approaching the NADP+ binding domain (as E139 in AnFNR), also contributing to

improve the optimal orientation for the ET (Faro, et al. 2002a, Hurley, et al. 2000).

As expected for a transient interaction, dissociation constants for the Fd:FNR

complex are in the low micromolar range for all the evaluated species (4 10 µM)

(Aliverti, et al. 1994, Hurley, et al. 2002, Martínez Júlvez, et al. 2009, Medina and

Gómez Moreno 2004, Medina, et al. 1998, Nogués, et al. 2004, Velázquez Campoy, et

al. 2006). Formation of the complex is both enthalpically and ectopically driven at pH

8, with a release of water molecules and protonation of at least one ionizable group

(proposed as at least E82 in Spinacea oleracea Fd, SpFd, and H299 in AnFNR) (Jelesarov

and Bosshard 1994, Martínez Júlvez, et al. 2009, Piubelli, et al. 1997). Nevertheless,

intrinsic binding parameters obtained at high pH values where no protonation occurs

indicated that complex formation is entropically driven with negligible enthalpic

contribution.

Crystallographic three dimensional structures corresponding to the Anabaena

and maize binary Fd:FNR complexes were reported almost simultaneously (Kurisu, et

al. 2001, Morales, et al. 2000). In these structures the redox centers of both proteins

are in close proximity; the shortest distances being 7.4 and 6.0 Å, respectively,

between the C8 of the flavin isoalloxazine and the [2Fe 2S] cluster (Fig. 2A and 2B). In
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agreement with biochemical and biophysical studies, these structures show a dipole

moment complementarity as well as short range electrostatic intermolecular

interactions occurring through salt bridges, with the interfaces near the prosthetic

groups being hydrophobic (Fig. 1 and 2). Noticeably, structures of Fd and FNR in the

complex and in the free state show some differences. In Zea mays, Fd binding to FNR

(ZmFNR) induces the formation of a H bond between E312 and S96 in the FNR active

site, proposed to determine the optimal orientation of the two proteins for ET as well

as to modulate the FNR enzymatic and redox properties (Aliverti, et al. 1998, Bruns and

Karplus 1995, Kurisu, et al. 2001). In Anabaena FNR the same two residues (E301 and

S80) are proposed to mediate proton transfer from the external medium to the FNR

isoalloxazine N5 atom (Serre et al., 1996). In this crystallographic association E301 is no

more exposed to solvent but H bonded to Fd S64, suggtesting a proton transfer

pathway between the external medium and the FNR isoalloxazine in the complex

(Faro, et al. 2002b, Mayoral, et al. 2000, Medina, et al. 1998). Moreover,

conformational differences at the 46 47 peptide bond between the oxidized and

reduced forms in AnFd were suggested to trigger complex dissociation as a function of

the Fd redox state (Fig. 1C and 1D). Such changes might induce the transient

displacement of the aromatic side chain of AnFd F65, a key residue for the interaction

with hydrophobic patches on FNR (Hurley, et al. 1993a, Martínez Júlvez, et al. 2001,

Morales, et al. 1999, Morales, et al. 2000).

Therefore, a dynamic mechanism in which the initially formed Fd:FNR complex

reorganizes prior to each ET and then disassembles upon a Fd redox linked

conformational change, is nowadays accepted. This mechanism balances a high

turnover biological requirement with the need for specific binding, as also shown in

other transient complexes (Schilder and Ubbink 2013, Ubbink 2012).

Although the formation of a transient complex between Fd and FNR during ET

was extensively described using mutational, kinetic and crystallographic studies,

recently computational tools have also added new aspects to our understanding of the

mechanism. Rigid body docking simulations with interface side chain refinement

(Medina, et al. 2008) as well as Brownian dynamics simulations (Khruschev, et al. 2015)

explained the existence of alternative binding modes along the transient Fd:FNR



9

(For nomenclature and classification of FNR isoforms in different higher plant species, please
seeMulo 2011)

interaction. These observations were in good agreement with crystallographic data

and explained some previous experimental data by supporting formation of several

transitory interactions during the overall process (Faro, et al. 2002a, Hurley, et al.

2002, Medina and Gómez Moreno 2004). More recently, a multiscale modelling

approach (including coarse grained and all atom protein protein docking, the QM/MM

e Pathway analysis and electronic coupling calculations) has in addition provided a

comprehensive electronic analysis of the ET process (Saen Oon, et al. 2015). This study

is consistent with ET within the Fd:FNR complex taking place in a dominant

interprotein complex orientation through a bridge mediated ET mechanism facilitated

by Fd residues at the loop 40 49 (Fig. 2C). It also indicates a major role of the critical

hydrophobic and salt bridge interactions experimentally determined to discriminate

the efficient ET configurations to the fraction placing the Fd loop at the interface and

at short donor acceptor distances between redox centers (Hurley, et al. 2002, Medina

2009, Medina and Gómez Moreno 2004). Such conformations are similar to those

identified by crystallography (Kurisu, et al. 2001, Morales, et al. 2000). It is worth to

remember that the loop 40 49 in Fd contains the peptide bond (Fig. 1E) whose redox

conformational differences are suggested to modulate complex association and

dissociation (Morales, et al. 1999). Therefore, such a loop appears critical not only in

the ET process itself but also in transient complex formation and dissociation.

2.2. FNR:NADP+/H interaction and HT event.

The final photosynthetic reduction of NADP+ by FNRhq occurs by a HT from the

N5 of isoalloxazine anionic hydroquinone of the FAD cofactor to the N4 nicotinamide

ring of the coenzyme (C4N). In photosynthetic enzymes this process is reversible and

has been thoroughly analyzed from the mechanistic and structural points of view in

higher plant and cyanobacterial enzymes (Arakaki, et al. 1997, Carrillo and Ceccarelli

2003, Tejero, et al. 2007). Two different transient charge transfer complexes (CTC)

form prior to and upon HT regardless of the HT direction, known as FNRox NADPH

(CTC 1) and FNRhq NADP+ (CTC 2), producing an equilibrium mixture of CTCs (See Fig.

2 7 in (Tejero, et al. 2007) and Fig. 2 and 3 in (Sánchez Azqueta, et al. 2012). Many of

the factors and key residues which govern conformational changes in regions involved

in coenzyme binding, as well as in determining coenzyme specificity for NADP+ versus
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NAD+ and reaction reversibility have been described in detail. Moreover, crucial

residues in the isoalloxazine environment facilitate HT by modulating the isoalloxazine

midpoint reduction potential and/or by contributing to the catalytically competent

binding of the nicotinamide (Aliverti, et al. 2001, Arakaki, et al. 2001, Faro, et al.

2002b, Medina 2009, Medina, et al. 2001, Musumeci, et al. 2008, Peregrina, et al.

2009, Piubelli, et al. 2000, Sánchez Azqueta, et al. 2014b, Sánchez Azqueta, et al.

2014c, Sánchez Azqueta, et al. 2012, Tejero, et al. 2003, Tejero, et al. 2005).

The different X ray structures so far reported for the FNR:NADP+ interaction in

plant and cyanobacterial enzymes, using both wild type (WT) and mutant proteins,

further contributed to the mechanistic understanding of the process at the molecular

level (Carrillo and Ceccarelli 2003, Deng, et al. 1999, Hermoso, et al. 2002, Serre, et al.

1996, Tejero, et al. 2005). Altogether experimental information indicated an

enzyme:coenzyme interaction stepwise mechanism to approximate the C4N of the

nicotinamide to the N5 of FAD to attaint efficient HT. NADP+/H behaves as a bipartite

ligand that binds to FNR with its two dinucleotide moieties in partially independent

ways, with the complex being mainly stabilized by interactions involving the 2�P AMP

moiety of the dinucleotide (Batie and Kamin 1986). Three main FNR regions are

responsible for the NADP+∧H coenzyme binding to attain the catalytically competent

complex: the binding sites for the 2� phospho AMP (2�P AMP), the pyrophosphate (PPi)

and nicotinamide mononucleoside (NMN) moieties of NADP+ (Deng, et al. 1999,

Hermoso, et al. 2002, Tejero, et al. 2005). Recognition of the 2 P AMP moiety of the

coenzyme is presented as the first interaction stage, with Ser, Arg or Lys, and Tyr

residues at the 2 P AMP binding cavity determining coenzyme specificity and

orientation (C I in Fig. 3A and 3B) (Aliverti, et al. 1991, Medina, et al. 2001, Tejero, et

al. 2007) (See Fig. 4 in (Tejero, et al. 2005)). The interaction of these residues with the

2�P AMP portion induces conformational changes in both the protein and the

coenzyme to perfectly fit the adenine and pyrophosphate moieties in their binding

cavities (C II in Fig. 3A and 3B). In such intermediate arrangement the 155�160 and

261�268 loops accommodate the coenzyme pyrophosphate portion additionally

conferring specificity, while the volume of residues in the 261�268 loop also fine tunes

the enzyme catalytic efficiency (Catalano Dupuy, et al. 2011, Hermoso, et al. 2002,
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Peregrina, et al. 2009, Sánchez Azqueta, et al. 2014c, Tejero, et al. 2003). The loop

allocating the FAD adenosine and a positively charged residue (R100 in AnFNR or K166

in Spinacea oleracea FNR, SpFNR) at the FAD binding domain address the NMN moiety

of NADP+ towards the active site (Aliverti, et al. 1991, Martínez Júlvez, et al. 1998a,

Peregrina, et al. 2009, Sánchez Azqueta, et al. 2014c). These concerted changes bring

the NMN moiety to a surface pocket near the isoalloxazine FAD cofactor (C II in Fig. 3A

and 3B). However, in this arrangement the stacking of the C terminal Tyr (Y303 in

AnFNR) against the re face of the isoalloxazine ring blocks the approximation of the

nicotinamide ring of the coenzyme to the flavin isoalloxazine ring.

It was proposed that the C terminal Tyr had to be displaced to allow the

nicotinamide entrance into the active site to approximate the C4N atom to the flavin

N5 atom (Carrillo and Ceccarelli 2003, Hermoso, et al. 2002). Nevertheless, crystal

structures with such an apparent productive rearrangement were only available for

complexes in which the C terminal Tyr was replaced with Ser or Trp (C III in Fig. 3C and

3D) (Deng, et al. 1999, Tejero, et al. 2005). These mutants however produced large

accumulation of CTC 2 when evaluating their ability to catalyze the photosynthetic

reaction but were not able to evolve through HT to produce NADPH, while the reverse

HT process was only slightly less efficient than for WT. These results therefore indicated

that the C terminal Tyr despite not being involved in the HT itself was surely critical for

modulating the flavin midpoint potential and the NADP+∧H biding affinity and

selectivity, as well as for the formation of the catalytically competent complex (Piubelli,

et al. 2000, Tejero, et al. 2005). So far experimental methods have not provided a

molecular image of the final architecture and relative orientation of the isoalloxazine,

nicotinamide, and Tyr rings that allocates the C4N at adequate distance and

orientation for HT to the N5 in the active site of the WT FNR HT competent complex

(Carrillo and Ceccarelli 2003, Deng, et al. 1999, Hermoso, et al. 2002, Tejero, et al.

2005).

Fast kinetic methods have proven to be very efficient in the determination of

the spectral properties of both CTCs and the corresponding interconversion HT rates

(Peregrina, et al. 2010, Tejero, et al. 2007). An adequate initial interaction between the

2'P AMP portion of NADP+/H and FNR is critical for the subsequent conformational
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changes leading to CTC formation. Nevertheless, not strict correlation exits between

the stability of the transient CTCs formation and the rate of the subsequent HT when

analyzing different FNR mutants. The combined use of fast kinetic methods with

kinetic isotope effects and the analysis of their temperature dependence reaction also

provided a powerful tool to explore the dynamics of the FNR HT process (Lans, et al.

2010, Peregrina, et al. 2010, Sánchez Azqueta, et al. 2014a). WT FNR evolved with

active dynamics vibrational modulation of the active site narrowing the distance

between the donor and acceptor atoms and enhancing the tunnel and the catalytic

efficiency. The effect in donor acceptor distance dynamics resulted larger in plant

enzymes than in cyanobacterial ones, in agreement with previous experimental data

indicating lower nicotinamide occupancy of the active site in the cyanobacterial

enzymes (Aliverti, et al. 1995, Aliverti, et al. 1991, Nogués, et al. 2004, Sancho and

Gómez Moreno 1991, Sánchez Azqueta, et al. 2014a). On the contrary, similar studies

on bacterial FPRs were consistent with passive environmental reorganization

movements dominating the HT coordinate and no contribution of donor acceptor

donor sampling or gating fluctuations (Sánchez Azqueta, et al. 2014a). This indicated

that active sites of FPRs are more rigid than those for FNRs. Analysis of site directed

mutants in plastidic FNRs indicated in addition the requirement of a minimal optimal

architecture in the catalytic complex to provide a favorable gating contribution,

particularly in complexes of C terminal residue mutants whose crystal structures

predicted a close flavin:nicotinamide stacking. In these later cases the relative

movement of the isoalloxazine and nicotinamide rings along the HT reaction

coordinate was hardly allowed, indicating that the presence of the C terminal Tyr has

important thermodynamic and kinetic consequences in the overall process (Lans, et al.

2010, Peregrina, et al. 2010, Velázquez Campoy, et al. 2006). In turn, application of the

ensemble averaged variational transition state theory with multidimensional tunneling

calculations using the crystal structure of the complex of NADP+ with Y303S AnFNR

provided reaction rate constants and kinetic isotope effects in agreement with

experimental results. These calculations indicated that formation of a close contact

ionic pair FADH :NADP+ surrounded by the polar enzyme environment in the FNRhq

NADP+ reactant complex was the cause of the huge difference between the direct and
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the reverse reaction efficiencies (Lans, et al. 2010). Altogether these studies indicated

that the architecture of the WT FNR active site and, particularly, the C terminal Tyr

side chain organization contribute to reduce the stacking probability between the

isoalloxazine and nicotinamide rings in the catalytically competent complexes,

precisely modulating the angle and distance between the N5 and the C4N to values

that ensure both reversibility and efficient HT processes.

Since WT FNR models for such architecture have not been elucidated by

experimental methods, a molecular dynamics (MD) theoretical approach was used to

model a putative organization at the active site of the transient catalytically competent

interaction (Peregrina, et al. 2012). Such simulation produced theoretical structures for

putative WT FNRhq NADP+ and FNRox NADPH catalytically competent complexes which

allocated the C terminal Tyr side chain breaking the parallelism between the

isoalloxazine and the nicotinamide rings and decreasing their mutual stacking, while

keeping the reacting N5 and C4N atoms at a HT distance. Such control of the stacking

was also shown to increase the N5 hydride�C4N angle and to produce a near co linear

disposition of the reacting atoms that will favor an efficient HT process (C III* in Fig. 3A

and 3B). These putative catalytically competent structures also showed stabilization of

N4 and N7 atoms of the nicotinamide by key active site residues (S80, C261, and E301

in AnFNR and S90, C263 and E306 and in Pisum sativa FNR, PsFNR) (See Fig. 3 and 4 in

(Peregrina, et al. 2012)). In addition, simulations show how the interaction with the

ribose of the NMN moiety is improved by the dynamic displacement of the bulky

residues in the 261�268 loop and how the 2�P AMP binding cavity is narrowed to

sandwich this coenzyme moiety between highly conserved Leu and Tyr residues.

Using the MD model structures for the complexes a fully microscopic simulation

of the HT between FNRhq/FNRox and NADP+/H, also accounting for the solvation, was

used to describe the potential energy surface of the whole system using a dual level

quantum mechanics/molecular mechanics (QM/MM) hybrid approach (Lans, et al.

2012). The results confirmed that the MD structural model of the reactants evolved to

a catalytically competent transition state through very similar free energy barriers for

both the forward and reverse reactions (See Fig. 6 in (Lans, et al. 2012)), in good

agreement with the experimental HT rate constants reported for the system (Sánchez
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Azqueta, et al. 2014a, Tejero, et al. 2007). This theoretical approach additionally

provided subtle structural details of the mechanism in WT FNR and provided a

structural explanation of why the C terminal Tyr makes possible the photosynthetic

reaction, a process that cannot occur when this Tyr is replaced by smaller residues

(Lans, et al. 2010, Sánchez Azqueta, et al. 2012, Tejero, et al. 2005). The presence of

the C terminal Tyr reduced the stacking probability between both rings and increased

the collinearity between the reacting atoms, allowing arrangements compatible with

HT.

2.3. The ternary complex.

As already indicated in early Batie and Kamin studies (Batie and Kamin 1984a,

Batie and Kamin 1984b), nowadays it is fully accepted that ET from Fd to NADP+ occurs

through an ordered two substrate process with the formation of at least two transient

Fd:FNR:NADP+ complexes (See Fig. 2 in (Carrillo and Ceccarelli 2003)). The process

starts with the initial formation of Fdrd:FNRox:NADP+ complex that evolves to

Fdox:FNRsq:NADP+, from which Fdox liberation has been identified as the rate limiting

step in the overall ET process. Release of Fdox will then allow the entrance of a second

Fdrd molecule to form the Fdrd:FNRsq:NADP+ complex that will become the

Fdox:FNRhq:NADP+ complex and from which HT from FNRhq to NADP+ will take place.

Although such mechanism indicates that NADP+ is able to occupy a site on FNR without

displacing Fd (Batie and Kamin 1984a, Carrillo and Ceccarelli 2003, Hermoso, et al.

2002, Sancho and Gómez Moreno 1991), ternary complexes show negative

cooperativity and an increase in the enthalpic contribution (more favorable) and a

decrease in the entropic contribution (less favorable), with regard to the binary

complexes (Martínez Júlvez, et al. 2009, Velázquez Campoy, et al. 2006). Thus, the

presence of Fd lowers the FNR affinity for NADP+ and occupation of the NADP+ binding

site makes the Fd:FNR interaction weaker (Batie and Kamin 1984a, Martínez Júlvez, et

al. 2009, Velázquez Campoy, et al. 2006). These facts therefore indicate that the Fd

and NADP+ binding sites on FNR are not completely independent. However, this

negative cooperativity in the ternary interaction is translated into positive

cooperativity at the kinetic level, since complex formation between Fdrd and
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FNRox:NADP+ increases the rate of ET by facilitating the rate limiting dissociation of the

Fdox product (Carrillo and Ceccarelli 2003, Hurley, et al. 2002, Medina 2009).

Despite efforts to obtain them, crystal structures of transient Fd:FNR:NADP+

ternary complexes have not been achieved so far. Nevertheless, putative models were

been produced on the bases of the crystal structures for binary Fd:FNR and FNR:NADP+

interactions (See Fig. 4A in (Hermoso, et al. 2002)). These models confirmed that the

NADP+ binding site on FNR is not at the Fd:FNR interface, indicating that previous

NADP+ binding to FNR should not affect the protein protein interaction. They also

suggested that structural rearrangements in the NADP+ binding domain of FNR

(particularly in the 261�265 loop) upon coenzyme binding influence the conformation

and orientation of residues involved not only in the productive Fd:FNR interaction for

ET (See Fig. 4B in (Hermoso, et al. 2002)), but also in triggering Fdox release once ET is

completed (Hurley, et al. 1993a, Morales, et al. 2000). Advance computational tools

have not yet been used to simulate neither the formation of the ternary transitory

Fd:FNR:NADP+ complexes nor the ET and HT processes. Moreover, proton transfer

associated to ET processes also remains to be investigated. It is envisaged that new

atomistic information will be described in the coming years using as starting models

the Fd:FNR:NADP+ ternary complexes that can already been constructed on the bases

of binary experimental and theoretical complexes (Fig. 4) together with the use of

newly coming computational tools.

3. Physiology of FNR

3.1 The diversity of FNR isoforms

The first apparent physiological question concerning chloroplast FNR isoforms

is whether they play unique functional roles in metabolism. Arabidopsis thaliana

(AtFNRs) (Hanke, et al. 2005) and wheat (Triticum aestivum, TaFNRs) contain two

(Gummadova, et al. 2007), and maize three (ZmFNRs) (Okutani, et al. 2005) chloroplast

FNR isoforms*, which may reflect the different metabolic demands of C3 and C4

photosynthesis. Although the AtFNR isoforms share circa 80% sequence identity

(Hanke, et al. 2005, Lintala, et al. 2009, Lintala, et al. 2007), they possess some unique

properties. Under standard conditions the AtFNR1 gene is expressed in higher levels

than the AtFNR2, 68% of FNR transcripts representing AtFNR1 (Lintala, et al. 2009). The
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expression of the AtFNR2 gene, however, is induced by high nitrate concentrations,

while that of AtFNR1 is not (Hanke, et al. 2005) . Moreover, the Atfnr2 knock out

plants show higher flexibility and somewhat better performance under low

temperature conditions than Atfnr1 (Lintala, et al. 2009). The most striking difference

between the isoforms is evident only at molecular level, as the presence of AtFNR1

isoform is required for membrane binding of AtFNR2 (see 4.2; (Lintala, et al. 2007)).

This finding is in line with the study of Hanke and collaborators (Hanke, et al. 2005)

showing that AtFNR1 is the most abundant form at the thylakoid membrane, while

AtFNR2 is mostly present in the soluble stroma. Additionally, both AtFNR isoforms are

targets of multiple post translational modifications (PTMs), including alternative

processing of the N termini, N terminal as well as Lys acetylation (Lehtimäki, et al.

2014). Both isoforms (AtFNR1 and AtFNR2) exist as two distinct spots after 2 D gel

electrophoresis, the more acidic spot representing N terminally acetylated form of the

enzyme (Lehtimäki, et al. 2014). Although the physiological significance of the N

terminal acetylation is not yet known, it is important to note that the ratio of N

terminally acetylated:non acetylated FNR isoforms changes upon dark light shifts

(Lehtimäki, et al. 2014). As one of the conserved Lys residues modified by acetylation is

located in a close proximity to the catalytic site of the enzyme (in both isoforms), it is

conceivable that the PTMsmight affect the activity of FNR (Lehtimäki, et al. 2014) .

In wheat more detailed information about the specificity of FNR isoforms is

available. The unprocessed TaFNRII isoform showed higher catalytic activity, but lower

affinity to Fd than the unprocessed TaFNRI (Gummadova, et al. 2007). N terminal

processing of TaFNRI and TaFNRII leads to differences in function: truncation of the

TaFNRI N termini by two to three amino acids resulted in decreased activity without

any effect on Fd affinity (Gummadova, et al. 2007). In contrast, the unprocessed form

of TaFNRII was able to distinguish between the different Fd isoforms, but upon

truncation of the N terminus the discrimination capacity was lost (Bowsher, et al.

2011, Gummadova, et al. 2007). Additionally, accumulation of differently processed

TaFNRI responded to changes in developmental stage of the leaf and nitrogen regime,

as well as upon challenging with methyl viologen (Moolna and Bowsher 2010).

Processing of the N termini also affected distribution of TaFNRI between the soluble
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and thylakoid pool (Moolna and Bowsher 2010). Also the N termini of the three leaf

type FNR isoforms identified in maize affects the subchloroplastic location of each

form (Okutani, et al. 2005, Twachtmann, et al. 2012). In general, ZmFNR1 is bound to

the thylakoids and ZmFNR3 exists in a soluble form, while ZmFNR2 has a dual location

(Okutani, et al. 2005). The distribution of the isoforms between the cell types

(mesophyll vs. bundle sheath) reflects the metabolic needs of a given tissue. The

soluble ZmFNR2 and ZmFNR3 are found in the mesophyll cells, predominantly

performing linear PET, while the membrane bound isoforms ZmFNR1 and ZmFNR2 are

abundant in the bundle sheath cells known to conduct CET (Twachtmann, et al. 2012).

It is also worth noting that the catalytic activities of ZmFNR2 and ZmFNR3 were higher

than that of ZmFNR1, and that the isoforms showed unique properties in the

formation of the Fd:FNR complex in response to changes in pH and on the dependence

of specific intermolecular salt bridges (Okutani et al. 2005).

3.2 Dynamic allocation of FNR

The physiological significance of FNR distribution between the soluble and

membrane bound pools has puzzled plant scientists for decades. It has been shown

that the photoreduction activity of NADP+ is much higher for membrane bound than

for soluble FNR (Forti and Bracale 1984), and that the soluble FNR cannot complement

the NADP+ photoreduction activity of mutant thylakoid membrane devoid of FNR

(Hanke, et al. 2008). However, as the Arabidopsis mutant plants lacking membrane

bound FNR do not show drastic visual phenotype or marked deficiencies in

photosynthetic reactions (Benz, et al. 2009, Hanke, et al. 2008, Lintala, et al. 2007,

Lintala, et al. 2012, Yang, et al. 2016), it seems plausible that also the soluble FNR can

support autotrophic growth of the plants.

Moreover, the site, mechanism and functional consequences of membrane

binding have been under debate for a long time (for a review, see (Mulo 2011)).

Earlier, membrane tethering of FNR was suggested to occur via specific FNR binding

proteins, such as base protein (Chan, et al. 1987, Pessino, et al. 1994, Soncini and

Vallejos 1989, Vallejos, et al. 1984) or connectein (Shin, et al. 1985, Shin, et al. 1990).

FNR has also been indicated in interaction with PSI (Andersen, et al. 1992), NDH

complex (Guedeney, et al. 1996, Quiles and Cuello 1998) as well as Cytochrome b6f



18

(For nomenclature and classification of FNR isoforms in different higher plant species, please
seeMulo 2011)

complex (Clark, et al. 1984, Zhang, et al. 2001) (Fig. 5). Although SpFNR, as well as

ZmFNR1 and ZmFNR2 (but not ZmFNR3), have been shown to copurify with the Cyt b6f

complex (Clark, et al. 1984, Okutani, et al. 2005, Zhang, et al. 2001), a novel Tic62

and/or Trol dependent mechanism was recently revealed to be responsible for

membrane binding of FNR in Arabidopsis (Benz, et al. 2009, Juri , et al. 2009), and later

for maize (Twachtmann, et al. 2012) and rice (Yang, et al. 2016). Tic62 is a 62 kDa

protein originally identified as an extrinsic subunit of the Tic (Translocon of Inner

Chloroplast membrane) complex, which was shown to interact with FNR (Balsera, et al.

2007, Küchler, et al. 2002). It was also shown that Tic62 exists as a soluble protein in

stroma (Stengel, et al. 2008), and that it accumulates in high molecular weight protein

complexes at the thylakoid membrane together with FNR (Benz, et al. 2009).

Accumulation of these complexes is highly dynamic and dependent on light:

accumulation of protein complexes takes place in darkness, while increase in

illumination results in disassembly of complexes and release of FNR from the

membrane. Similarly, the integral thylakoid membrane protein Trol (Thylakoid

Rhodanase Like protein) forms a high molecular weight complex together with FNR

(Juri , et al. 2009). Intriguingly, Tic62 and Trol contain one or more serine/proline �rich

motifs in their C termini, which have been shown to bind FNR (Alte, et al. 2010,

Balsera, et al. 2007, Benz, et al. 2010). This domain is present only in Tic62 protein of

vascular plants (Balsera, et al. 2007), but also the C4 plants maize and Sorghum bicolor

seem to lack it (Twachtmann, et al. 2012). These differences indicate variation in the

membrane tethering mechanisms of FNR depending on the physiological properties of

a given organism. These differences may be exemplified by the unicellular

cyanobacterium Synechocystis sp. PCC6803, which lacks the Tic62 protein and binds

FNR to the phycobilisome via an extension in the N terminus of FNR (Thomas, et al.

2006).

Recently, a novel component of the FNR containing protein complexes in

higher plants was described. The LIR1 (Light Induced Rice1) protein interacts with FNR

and accumulates in FNR containing thylakoid protein complexes (Yang, et al. 2016).

Indeed, the rapid light dependent degradation of the LIR1 protein coinciding with the

disassembly of the FNR containing protein complexes might provide a mechanism for
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regulation of FNR (re)allocation between the soluble and membrane pools within the

chloroplast (Yang, et al. 2016).

3.3 Physiological impacts of the FNR action

Despite numerous studies, our understanding of the functional specificity of

distinct FNR isoforms and physiological significance of FNR distribution between

soluble and membrane fractions is still insufficient. Obviously, FNR is essential for

linear electron flow and plant survival (Lintala, et al. 2012), but there is plenty of

contradictory data concerning the role of FNR in CET. In maize, the distribution of

specific FNR isoforms between the mesophyll and bundle sheath cells indicates unique

functional properties required for C3 or C4 photosynthesis, but it is not clear whether

this specificity originates from the structural and/or catalytic differences of the

isoforms, or is it rather due to differential subchloroplastic location (Twachtmann, et

al. 2012). The situation is even more complicated in C3 plants, in which the pathways

and regulation of CET is still under debate (Suorsa 2015). The presence of FNR in the

close proximity to Cyt b6f complex (Clark, et al. 1984, Zhang, et al. 2001) and to the

other components of Fd dependent CET (DalCorso, et al. 2008), ET from FNR to

quinones (Bojko et al. 2003) as well as FNR inhibitors disrupting cyclic electron flow

(Shahak, et al. 1981) have prompted suggestions of FNR being involved in CET.

FNR has also been implicated in the responses to oxidative stress. Firstly,

expression of a PsFNR gene in methyl viologen sensitive, FNR deficient strain of

Escherichia coli restored the tolerance of bacteria to oxidative stress (Krapp, et al.

2002). In line with these studies, over expression of FNR in tobacco (Nicotiana

tabacum) plants increased the tolerance against oxidative stress (Rodriguez, et al.

2007), while the decrease of chloroplast FNR amount leads to chlorosis, reduced

growth and oxidative stress of the plants (Lintala, et al. 2009, Lintala, et al. 2007,

Palatnik, et al. 2003). It has also been shown that oxidative stress, propagated either

by exposure of the plant to methyl viologen (Palatnik, et al. 1997) or to intense

illumination (Benz, et al. 2009) or water stress (Lehtimäki, et al. 2010), leads to release

of FNR from the thylakoid membrane. This, again, raises the question about the effect

of subchloroplastic location on the regulation of FNR function (see 3.2).
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Another important but poorly understood aspect is the role of FNR in the dark

metabolism of chloroplasts. It is assumed that during the dark periods FNR oxidizes

NADPH, originating from pentose phosphate pathway, and reduces Fd which then

provides reducing power to the assimilation on nitrogen and sulfur. Due to

methodological difficulties it has been challenging to measure the FNR activity in

planta and to determine the physiological conditions and molecular factors regulating

the function of FNR in darkness. For instance, it will be interesting to reveal whether

the specific isoforms of FNR and/or Fd are primarily used under heterotrophic

conditions.

4. Concluding remarks and perspectives

Despite marked progress during the past decades in understanding the

structure function relationships behind the kinetics of the ET and HT process involving

FNR as well as the physiological properties of FNR, there are still numerous

fundamental open questions about the regulation of the FNR function. For instance,

future research is required to reveal the main molecular intermediates and final

species of the equilibrium mixture in the ET and HT processes within competent

ternary complexes, and the contribution of proton transfer coupled to the efficiency of

ET between Fd and FNR in binary and ternary complexes. We also do not know yet

how does the presence of Fd modulate HT among FNR and the coenzyme, or how does

the presence of the coenzyme modulate the interaction and ET among Fd and FNR at

the atomistic, molecular and dynamic levels. Furthermore, the functional roles of

soluble and membrane bound FNR pools, the unique functional properties of the

distinct FNR isoforms and the functional determinants of FNR activity upon various

conditions remain to be elucidated. It is likely that future research will provide further

knowledge and detailed mechanisms for the Fd:FNR:NADP(H) complexation as well as

for the electron and proton exchange processes involving FNR. As these reactions are

of utmost importance for the plant productivity, answers to these questions will be

useful for biotechnological engineering of plants and algae towards sustainable

production of food and energy for the mankind.

Figure Legends.
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Figure 1. AnFNR and AnFd crystal structures. (A) Molecular surface and cartoon

representation of AnFNR (PDB CODE: 1que). Binding domains for each cofactor, FAD

and NADP+, are colored in pale pink and in metallic violet, respectively. (B) Detail of the

AnFNR active center showing in CPK colored sticks key residues. (C) Molecular surface

with the electrostatic potential of AnFNR at the ligands binding environment. Positions

of key residues for the Fd interaction are highlighted. In all cases FAD is represented in

CPK sticks with carbons colored orange. (D) Cartoon representation of AnFd in oxidized

and reduced state (PDB CODE: 1czp). (E) Detail of the environment of the AnFd [2Fe

2S] redox center. The C46 C47 and C47 C48 peptide bonds are highlighted as sticks

CPK colored with carbons in green and grey respectively for the Fdox and Fdrd redox

states. The [2Fe 2S] and cysteine residues binding it are shown in sticks. Key residues

for the interaction with FNR are shown in sticks and CPK colored with carbons in blue.

(F) Molecular surface with the electrostatic potential of AnFd at the FNR binding

environment. Positions of key residues for the FNR interaction are highlighted. Figure

produced using PyMOL (Delano 2002).

Figure 2. Structural models for the Fd:FNR complex. Cartoon representation of (A) the

crystallographic complex in Zea mays (PDB CODE: 1gaq), (B) the crystallographic

complex in Anabaena (PDB CODE: 1ewy) and (C) superimposition of the 20 lowest

energy structures from a coarse grained protein�protein docking followed by all atom

refinement (Saen Oon, et al. 2015). FNR binding domains for FAD and NADP+ are

colored in pale pink and metallic violet respectively. ZmFd is colored in pale magenta

and AnFd in magenta. FNR key residues for Fd binding at the FAD binding domain and

key catalytic residues at the C terminal are shown as sticks with carbons in beige and

lemon respectively. The loop 37 47 in ZmFd and the loop 39�49 in AnFd are colored in

light blue. The side chain of F65 AnFd is shown in dark blue for each of the predicted

Fd conformation in (C). Fd orientation regarding FNR rotates when comparing Zm and

An crystallographic complexes. Nevertheless, both conformations might be included

between the different docking predicted conformations. This suggests more than one

orientation might bring redox centers to adequate distance and orientation for ET. In

all cases FAD is represented in CPK sticks with carbons colored orange and the [2Fe 2S]

cluster in spheres with Fe and sulfur in orange and yellow respectively.
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Figure 4. Structural conformations proposed for the different steps in the interaction

of AnFNR with the coenzyme to attain the catalytically competent complex for HT. (A)

Relative disposition of the isoalloxazine and the coenzyme with regard to the protein

surface and (B) detail of the isoalloxazine nicotinamide structural relationships for the

different complexes. C 1, crystallographic FNRox:NADP+ obtained by soaking, (PDB

CODE 1quf), related with the initial recognition of the 2 P AMP moiety of NADP+ by

FNR (Serre, et al. 1996). C II, crystallographic FNRox:NADP+ (PDB CODE 1gjr) showing

the narrowing of the 2 P AMP and the PPi binding cavity with Y303 preventing stacking

of the nicotinamide against the isoalloxazine ring (Hermoso, et al. 2002). C III*,

equilibrium molecular dynamics conformation representing a putative catalytically

competent WT FNRox:NADPH CTC complex in which the Y303 situates its hydroxyl

between the N10 of the isoalloxazine and the N1N of the nicotinamide helping to

provide a favorable orientation (almost co linear) among the N5 acceptor, the hydride

to be transferred and the C4N donor while preventing a close non productive stacking

between the reacting rings (a similar organization is predicted for the FNRhq:NADP+ CTC

structure when similarly analyzed) (Peregrina, et al. 2012). These MD FNRhq:NADP+ and

FNRox:NADPH C III* structures show the simultaneous allocation in the isoalloxazine

active site environment of the nicotinamide and the Y303 and when evaluating their

HT efficiency resulted compatible with experimental data (Lans, et al. 2012). (C)

Isoalloxazine and coenzyme disposition with regard to the protein surface and (B)

detail of the isoalloxazine nicotinamide coupling in the crystallographic structure of

the Y303S FNRox:NADP+ complex (PDB CODE: 2bsa) showing a close isoalloxazine

nicotinamide stacking that prevents reaction in the photosynthetic direction (Lans, et

al. 2010, Tejero, et al. 2005). In all cases FAD and NADP+/H are represented in CPK

sticks with carbons colored orange and green respectively. The C terminal residue

(Y303 or S303) is shown in CPK with carbons in lime green.

Figure 5. Possible models for transient Fd:FNR:NADP+ ternary complexes in Anabaena.

(A) Model obtained by superposition of FNR coordinates in the crystallographic Fd:FNR

(PDB CODE: 1ewy) complex (Morales, et al. 2000) with FNR coordinates in a theoretical

FNR:NADP+ complex compatible with efficient HT from N5 to C4N (Lans, et al. 2012,

Peregrina, et al. 2012). Fd from the crystallographic complex and FNR from the
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theoretical one are shown as magenta and grey, respectively, transparent molecular

surfaces. The inset shows a detail of the active site in the ternary complexes with the

flow of electrons and hydride in the photosynthetic direction. (B) Model obtained by

superposition of FNR coordinates in a theoretical FNR:NADP+ complex compatible with

efficient HT from N5 to C4N (Lans, et al. 2012, Peregrina, et al. 2012) with FNR

coordinates in one of the 20 lowest energy structures from a coarse grained protein�

protein docking followed by all atom refinement (Saen Oon, et al. 2015). The 20

lowest energy positions for Fd are represented as in Fig. 2C, while FNR from the

theoretical FNR:NADP+ complex is shown in grey molecular surface. In all cases, the

FAD and NADP+ are shown in sticks with carbons in orange and green respectively.

Position of the C terminal Tyr is shown in lemon color.

Figure 5. A simplified scheme of photosynthetic ET reactions. Electrons abstracted

from water are transferred via Photosystem II (PSII), Cytochrome b6f complex (Cyt b6f),

plastocyanin (PC) and Photosystem I (PSI) to ferredoxin (Fd). Two independent Fd

molecules provide reducing power to FNR for the production of NADPH. Apparently

both the soluble FNR and the membrane bound FNR, interacting with the Tic62, LIR1

and Trol proteins, are active in the photoreduction of NADP+. In addition to linear

electron transfer, electrons may be circulated around PSI either via the NDH

dependent pathway (1) or the Fd dependent pathway (2). See text for details.
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