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1. Introduction

The term “convexity” is a subject of many mathematicians’ research in the last century. This
term has assumed a key part and has gotten exceptional consideration by numerous scientists in the
improvement of different fields of pure and applied sciences. The theory of convexity portrays a crucial
role in the field of financial mathematics, mathematical statistics, and functional analysis. Optimization
of convex functions has many practical applications (circuit design, controller design, modeling, etc.).
Due to a lot of uses and importance, the term “convexity” has become a rich factor of inspiration and
mesmerizing field for scientists and mathematicians. We encourage the interested readers to see the
references [1–7] for some discussion about convexity and its properties.

The term inequalities along with convexity property play an essential part in the present-day
mathematical investigations. Both terminologies are closely related to each other. The term inequalities
have a wide range of importance in mechanics, functional analysis, probability, numerical quadrature
formulas, and statistical problems. In this manner, the hypothesis of inequalities might be viewed as
an autonomous field of mathematical analysis. Interested readers can refer to [8–11].

Nowadays, the theory of inequality and fractional analysis have shown synchronous development.
Fractional calculus has become a popular and promising research field in the past few decades in
the diverse field of applied sciences. Some mathematicians have utilized newly introduced fractional
derivatives and integrals with variant views and perspectives to be examined and solved by real-life
problems in the various fields of applied sciences. Fractional calculus can be understood precisely by
knowing some of the simple mathematical definitions like Gamma function, Beta function, Laplace
transform, and Mittag-Leffler function. Probably, the first logical definition of a fractional derivative
was given by Joseph Liouville and he published approximately nine papers on the fractional calculus
between 1832 and 1837 and the last was in 1855. Probably the first application of fractional calculus
was made by N. H. Abel during the year 1802–1829.

In this field, numerous mathematicians have concentrated on presenting new fractional operators
and modeling that bring off real-world issues depending on their properties. The properties that make
the various operators different from one another incorporate locality and singularity. The concept
of Caputo owns several impressive characteristics and acknowledges traditional initial and boundary
conditions to be incorporated in the problem formulation. Consequently, Caputo and Fabrizio in [12]
studied a new fractional operator known as Caputo-Fabrizio fractional operator. The avocation behind
introducing this new sort of derivative was to search for fractional derivatives with the nonsingular
kernel and without the Gamma function. The feature of the said operator is exceptionally compelling
in portraying heterogeneousness and frameworks with various scales with memory impacts, hence
it is utilized in the investigation of many real-life modeling problems. Starting now and into the
foreseeable future various experts have inspected and applied this new fractional operator for modelling
of COVID-19 [13], modelling of Hepatitis-B epidemic [14], groundwater flow [15], and integro-
differential equations [16–19]. Several scientists also worked on the generalized Atangana-Baleanu
operator for fuzzy hybrid systems (see [20, 21]).

The rest of our article has the following organization. In Section 2, we briefly review some basic
concepts and notions about preinvexity and fractional operators. We devote Section 3 to present new
versions of Hermite-Hadamard type integral inequality and Pachpatte type integral inequalities with
the aid of Caputo-Fabrizio fractional operator for preinvex function. Section 4 deals with the main
findings, we establish an integral identity and employing this identity as the auxiliary result, some
refinements of Hermite-Hadamard type inequality are discussed. In Section 5, we prove the usefulness
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of the main findings through applications to special means. Conclusion and future scopes are discussed
in the last Section 6 .

2. Preliminaries

In this section, we recall some known concepts.
In the year 1994, Mititelu [22] investigated and explored the terminology of invex set, which is

defined as

Definition 2.1. Let η : X×X , ∅ → R be a real valued function, then X is said to be invex with respect
to η(., .) if g1 + [η(g2, g1) ∈ X, ∀ g1, g2 ∈ X and [ ∈ [0, 1].

Note: The concept of invex set is more general than convex set. Means that every invex set is not
convex but but the converse is true with the help of η(g1, g2) = g1 − g2 (see [22] and [23]).

In the year 1988, Weir and Mond [24] utilized the concept of invex set to investigate the concept of
preinvexity.

Definition 2.2. [24] Let X , ∅ ∈ R be an invex set with respect to η : X × X , ∅ → R. Then the
function Υ : X→ R is said to be preinvex with respect to η if

Υ (g1 + [η (g2, g1)) ≤ (1 − [)Υ (g1) + [Υ (g2) , ∀g1 , g2 ∈ X , [ ∈ [0, 1] .

Note: The above function Υ is said to be preincave if and only if −ψ is preinvex.
We can clearly see that every preinvex function is not convex but every convex function is preinvex

by using the property of η(g2, g1) = g2−g1 (see [25]). Many researchers proved that the concept of the
preinvexity has interesting importance in the theory of optimization and mathematical programming.

In the year 2007, Noor [26] established a new version of the Hermite-Hadamard inequality for
preinvex functions:

Theorem 2.1. Let Υ : X = [g1, g1 + η(g2, g1)] → (0,∞) be a preinvex function on the interval of real
numbers X◦ and g1, g2 ∈ X with g1 < g1 + η(g2, g1). Then

Υ(
2g1 + η(g2, g1)

2
) ≤

1
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ(x)dx ≤
Υ(g1) + Υ(g2)

2
.

In the year 2011, Dragomir [27] examined the Hermite-Hadamard type inequality for differentiable
preinvex function, which is stated as:

Theorem 2.2. Suppose X ⊆ R be an open invex subset with respect to η : X × X → R. Suppose
Υ : X → R is a differentiable function. If |Υ

′

| is preivex on X then, for every g1, g2 ∈ A with
η(g2, g1) , 0. Then∣∣∣∣∣∣Υ(g1) + Υ(g1 + η(g2, g1)

2
−

1
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ(x)dx

∣∣∣∣∣∣ ≤ |η(g2, g1)|
8

[Υ(g1) + Υ(g2)] .

Lemma 2.1. [27] Let Υ : I0 ⊆ R → R be a differentiable mapping on I0, g1, g2 ∈ I0 with g1 <
g1 + η(g2, g1) if Υ

′

∈ L[g1, g1 + η(g2, g1)], then

−
Υ(g1) + Υ(g1 + η(g2, g1))

2
+

1
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ(x)dx

≤
η(g2, g1)

2

∫ 1

0
(1 − 2[)Υ

′

(g1 + [η(g2, g1))d[.
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Later, several authors examined and collaborated their perspectives on the concept of preinvexity.
We suggest interested readers to follow the published articles [28–31] for to know more about the
concept of preinvexity.

Definition 2.3. [32–34] Let Υ ∈ H′(g1, g2), g1 < g2, λ ∈ [0, 1], then the fractional derivative and
integral of Caputo-Fabrizio sense becomes(

CFC
g1

DλΥ
)

([) =
B(λ)

(1 − λ)

∫ [

g1

Υ
′

(x)e
−λ([−x)λ

1−λ dx,

(
CF
g1

IλΥ
)

([) =
(1 − λ)

B(λ)
Υ([) +

λ

B(λ)

∫ [

g1

Υ(x)dx,

(
CFCDλ

g2
Υ
)

([) =
−B(λ)
(1 − λ)

∫ g2

[

Υ
′

(x)e
−λ(x−[)λ

1−λ dx,

and (
CF Iλg2Υ

)
([) =

(1 − λ)
B(λ)

Υ([) +
λ

B(λ)

∫ g2

[

Υ(x)dx.

where B(λ) > 0 is a normalization function that satisfies B(0) = B(1) = 1.

In the year 2019, Imdat İşcan [35] provided the refinements of Hölder inequality called (Hölder-
İşcan integral inequality), which is stated in the following theorem.

Theorem 2.3. Let the real two functions namely Υ1 and Υ2 are defined on [g1, g2] and |Υ1|
q, |Υ2|

q ∈

L[g1, g2] for p > 1 and 1
p + 1

q , then∫ g2

g1

|Υ1(x)Υ2(x)| dx

≤
1

g2 − g1

[( ∫ g2

g1

(g2 − x)|Υ1(x)|pdx
) 1

p
( ∫ g2

g1

(g2 − x)|Υ2(x)|qdx
) 1

q

+

( ∫ g2

g1

(x − g1)|Υ1(x)|pdx
) 1

p
( ∫ g2

g1

(x − g1)|Υ2(x)|qdx
) 1

q
]
.

In the year 2019, another team of mathematicians namely M. Kadakal, I. İşcan and H. Kadakal [36]
presented the refinements of power mean inequality(commonly called Improved power mean integral
inequality), which is stated in the following theorem.

Theorem 2.4. Let Υ1 and Υ2 be two real functions defined on [g1, g2] and |Υ1|
q, |Υ2|

q ∈ L[g1, g2] for
p ≥ 1, then ∫ g2

g1

|Υ1(x)Υ2(x)| dx

≤
1

g2 − g1

[( ∫ g2

g1

(g2 − x)|Υ1(x)|dx
)1− 1

q
( ∫ g2

g1

(g2 − x)|Υ2(x)|qdx
) 1

q

+

( ∫ g2

g1

(x − g1)|Υ1(x)|dx
)1− 1

q
( ∫ g2

g1

(x − g1)|Υ2(x)|qdx
) 1

q
]
.

Note: Throughout the paper we will use B(λ) as a normalization function.
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3. Hermite-Hadamard type inequality via fractional operator

Theorem 3.1. Let Υ : [g1, g1 + η(g2, g1)] → (0,∞) be a preinvex function on I0 and Υ ∈ L[g1, g1 +

η(g2, g1)]. If λ ∈ [0, 1], then the following inequality holds:

Υ

(
2g1 + η(g2, g1)

2

)
≤

B(λ)
λη(g2, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k) −
2(1 − λ)

B(λ)
Υ(k)

]
≤

Υ(g1) + Υ(g2)
2

, (3.1)

where k ∈ [g1, g1 + η(g2, g1)].

Proof. Since Υ is a preinvex function on [g1, g1 + η(g2, g1)], we can write

2Υ

(
2g1 + η(g2, g1)

2

)
≤

2
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ(x)dx

=
2

η(g2, g1)

(∫ k

g1

Υ(x)dx +

∫ g1+η(g2,g1)

k
Υ(x)dx

)
. (3.2)

By multiplying both sides of (3.2) with λη(g2,g1)
2B(λ) and adding 2(1−λ)

B(λ) Υ(k) we have

2(1 − λ)
B(λ)

Υ(k) +
λη(g2, g1)

B(λ)
Υ

(
2g1 + η(g2, g1)

2

)
≤

2(1 − λ)
B(λ)

Υ(k) +
λ

B(λ)

(∫ k

g1

Υ(x)dx +

∫ g1+η(g2,g1)

k
Υ(x)dx

)
=

(
(1 − λ)

B(λ)
Υ(k) +

λ

B(λ)

∫ k

g1

Υ(x)dx
)

+

(
(1 − λ)

B(λ)
Υ(k) +

λ

B(λ)

∫ g1+η(g2,g1)

k
Υ(x)dx

)
=

(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k). (3.3)

This completes the proof of the first inequality (3.1). For the proof of the second inequality, we use

2
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ(x)dx ≤ Υ(g1) + Υ(g2). (3.4)

By making the same operation with (3.2) in (3.4), we have(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k) ≤
2(1 − λ)

B(λ)
Υ(k) +

λη(g2, g1)
2B(λ)

(Υ(g1) + Υ(g2)) . (3.5)

By recognising (3.5), the proof is completed. �

Corollary 3.1. If we put η(g2, g1) = g2 − g1 in Theorem 3.1, we get Theorem 2 in [37].

Theorem 3.2. Let Υ1,Υ2 : [g1, g1 + η(g2, g1)] → (0,∞) be a preinvex functions. If Υ1Υ2 ∈

L[g1, g1+η(g2, g1)], and k ∈ [g1, g1+η(g2, g1)]. Then the following Caputo-Fabrizio fractional integral
inequality holds:

2B(λ)
λη(g2, g1)

[(
CF
g1

IλΥ1Υ2

)
(k) +

(
CF Iλg1+η(g2,g1)Υ1Υ2

)
(k) −

2(1 − λ)
B(λ)

Υ1(k)Υ2(k)
]
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≤
2
3

M(g1, g2) +
1
3

N(g1, g2),

where
M(g1, g2) = Υ1(g1)Υ2(g1) + Υ1(g2)Υ2(g2)

and
N(g1, g2) = Υ1(g1)Υ2(g2) + Υ1(g2)Υ2(g1).

Proof. Since Υ1 and Υ2 are preinvex function on [g1, g1 + η(g2, g1)], we have

Υ1(g1 + [η(g2, g1)) ≤ (1 − [)Υ1(g1) + [Υ1(g2)

and
Υ2(g1 + [η(g2, g1)) ≤ (1 − [)Υ2(g1) + [Υ2(g2).

Multiplying both the inequalities side by side, we have

Υ1(g1 + [η(g2, g1))Υ2(g1 + [η(g2, g1))
≤ (1 − [)2Υ1(g1)Υ2(g1) + [2Υ1(g2)Υ2(g2) + [(1 − [)[Υ1(g1)Υ2(g2) + Υ1(g2)Υ2(g1)]. (3.6)

Integrating (3.6) over [0, 1] and changing the variables, we obtain

2
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ1(x)Υ2(x)dx ≤
2
3

[Υ1(g1)Υ2(g1)+Υ1(g2)Υ2(g2)]+
1
3

[Υ1(g1)Υ2(g2)+Υ1(g2)Υ2(g1).

Which implies

2
η(g2, g1)

[∫ k

g1

Υ1(x)Υ2(x)dx +

∫ g1+η(g2,g1)

k
Υ1(x)Υ2(x)dx

]
≤

2
3

M(g1, g2) +
1
3

N(g1, g2).

By multiplying both side with λη(g2,g1)
2B(λ) and adding 2(1−λ)

B(λ) Υ1(k)Υ2(k) we have

λ

B(λ)

[∫ k

g1

Υ1(x)Υ2(x)dx +

∫ g1+η(g2,g1)

k
Υ1(x)Υ2(x)dx

]
+

2(1 − λ)
B(λ)

Υ1(k)Υ2(k)

≤
λη(g2, g1)

2B(λ)

[
2
3

M(g1, g2) +
1
3

N(g1, g2)
]

+
2(1 − λ)

B(λ)
Υ1(k)Υ2(k).

Thus,(
CF
g1

IλΥ1Υ2

)
(k)+

(
CF Iλg1+η(g2,g1)Υ1Υ2

)
(k) ≤

λη(g2, g1)
2B(λ)

[
2
3

M(g1, g2) +
1
3

N(g1, g2)
]
+

2(1 − λ)
B(λ)

Υ1(k)Υ2(k).

The proof gets completed after some rearrangements. �

Corollary 3.2. If we put η(g2, g1) = g2−g1 in Theorem 3.2, we get the inequality in Theorem 3 in [37].

Theorem 3.3. Let a function Υ1,Υ2 : [g1, g1 + η(g2, g1)] → (0,∞) be a preinvex function . If Υ1Υ2 ∈

L[g1, g1 + η(g2, g1)], the set of integral function, then

2Υ

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
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−
B(λ)

λη(g2, g1)

[(
CF
g1

IλΥ1Υ2

)
(k) +

(
CF Iλg1+η(g2,g1)Υ1Υ2

)
(k) −

2(1 − λ)
B(λ)

Υ1(k)Υ2(k)
]

≤
1
6

M(g1, g2) +
1
3

N(g1, g2), (3.7)

where M(g1, g2),N(g1, g2) are given in Theorem 3.2 and k ∈ [g1, g1 + η(g2, g1)].

Proof. Since Υ1 and Υ2 are preinvex function on [g1, g1 + η(g2, g1)] for [ = 1/2, we have

Υ1

(
2g1 + η(g2, g1)

2

)
=

Υ1 (g1 + [η(g2, g1)) + Υ1 (g1 + (1 − [)η(g2, g1))
2

, ∀g1, g2 ∈ I, [ ∈ [0, 1]

and

Υ2

(
2g1 + η(g2, g1)

2

)
=

Υ2 (g1 + [η(g2, g1)) + Υ2 (g1 + (1 − [)η(g2, g1))
2

, ∀g1, g2 ∈ I, [ ∈ [0, 1].

Multiplying the above inequalities side by side, one has

Υ

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
≤

1
4

[
Υ1 (g1 + [η(g2, g1)) Υ2 (g1 + [η(g2, g1)) + Υ1 (g1 + (1 − [)η(g2, g1)) Υ2 (g1 + (1 − [)η(g2, g1))

+ Υ1 (g1 + [η(g2, g1)) Υ2 (g1 + (1 − [)η(g2, g1)) + Υ1 (g1 + (1 − [)η(g2, g1)) Υ2 (g1 + [η(g2, g1))
]

≤
1
4

[
Υ1 (g1 + [η(g2, g1)) Υ2 (g1 + [η(g2, g1)) + Υ1 (g1 + (1 − [)η(g2, g1)) Υ2 (g1 + (1 − [)η(g2, g1))

+ 2
{
[(1 − [)[Υ1(g1)Υ2(g1) + Υ1(g2)Υ2(g2)] + (1 − [)2Υ1(g1)Υ2(g2) + [2Υ1(g2)Υ2(g1)

}]
. (3.8)

Integrating the inequality (3.8) over [0, 1] and changing the variables, we have

Υ1

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
≤

1
4

[
2

η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ1(x)Υ2(x)dx +
1
3

[Υ1(g1)Υ2(g1) + Υ1(g2)Υ2(g2)]

+
2
3

[Υ1(g1)Υ2(g2) + Υ1(g2)Υ2(g1)]
]
.

Thus,

4Υ1

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
≤

2
η(g2, g1)

∫ g1+η(g2,g1)

g1

Υ1(x)Υ2(x) +
1
3

M(g1, g2) +
2
3

N(g1, g2).

By multiplying both sides with λη(g2,g1)
2B(λ) and subtracting 2(1−λ)

B(λ) Υ1(k)Υ2(k) we have

2λη(g2, g1)
B(λ)

Υ1

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
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−
λ

B(λ)

[∫ k

g1

Υ1(x)Υ2(x)dx +

∫ g1+η(g2,g1)

k
Υ1(x)Υ2(x)dx

]
−

2(1 − λ)
B(λ)

Υ1(k)Υ2(k) ≤
λη(g2, g1)

2B(λ)

[
1
3

M(g1, g2) +
2
3

N(g1, g2)
]
−

2(1 − λ)
B(λ)

Υ1(k)Υ2(k).

Cnsequently, we arrive at

2λη(g2, g1)
B(λ)

Υ1

(
2g1 + η(g2, g1)

2

)
Υ2

(
2g1 + η(g2, g1)

2

)
−

[(
CF
g1

IλΥ1Υ2

)
(k) +

(
CF Iλg1+η(g2,g1)Υ1Υ2

)
(k)

]
≤
λη(g2, g1)

2B(λ)

[
1
3

M(g1, g2) +
2
3

N(g1, g2)
]
−

2(1 − λ)
B(λ)

Υ1(k)Υ2(k).

Multiplying both sides of the above inequality by B(λ)
λη(g2,g1)

, we get the required inequality (3.7). �

Corollary 3.3. If we put η(g2, g1) = g2−g1 in Theorem 3.3, we get the inequality in Theorem 4 in [37].

4. Further consequences related to Caputo-Fabrizio fractional operator

Lemma 4.1. Let Υ : I = [g1, g1 + η(g2, g1)] → (0,∞) be a differentiable mapping on I0, g1, g2 ∈ I0

with g1 < g1 + η(g2, g1) if Υ
′

∈ L[g1, g1 + η(g2, g1)], then the following equality holds:

η(g2, g1)
2

∫ 1

0
(1 − 2[)Υ

′

(g1 + [η(g2, g1))d[ +
2(1 − λ)
λη(g2, g1)

Υ(k)

= −
Υ(g1) + Υ(g1 + η(g2, g1))

2
+

B(λ)
λη(g2, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
]
,

where k ∈ [g1, g1 + η(g2, g1)].

Proof. It is easy to see that∫ 1

0
(1 − 2[)Υ

′

(g1 + [η(g2, g1))d[

= −
Υ(g1) + Υ(g1 + η(g2, g1))

2
+

2
(η(g2, g1))2

(∫ k

g1

Υ(x)dx +

∫ g1+η(g2,g1)

k
Υ(x)dx

)
.

By multiplying both sides with λ(η(g2,g1))2

2B(λ) and adding 2(1−λ)
B(λ) Υ(k) we have

λ(η(g2, g1))2

2B(λ)

∫ 1

0
(1 − 2[)Υ

′

(g1 + [η(g2, g1))d[ +
2(1 − λ)

B(λ)
Υ(k)

= −
λη(g2, g1)

B(λ)
Υ(g1) + Υ(g1 + η(g2, g1))

2
+

(
(1 − λ)

B(λ)
Υ(k) +

λ

B(λ)

∫ k

g1

Υ(x)dx
)

+

(
(1 − λ)

B(λ)
Υ(k) +

λ

B(λ)

∫ g1+η(g2,g1)

k
Υ(x)dx

)
= −

λη(g2, g1)
B(λ)

Υ(g1) + Υ(g1 + η(g2, g1))
2

+
[(

CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
]
.

This completes the proof. �
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Corollary 4.1. If we put η(g2, g1) = g2 − g1 in Lemma 4.1, we get the equality in Lemma 2.1 in [37].

Theorem 4.1. Let Υ : I = [g1, g1 + η(g2, g1)]→ (0,∞) be a differentiable mapping on I0 and |Υ
′

| be a
preinvex on [g1, g1 + η(g2, g1)] if Υ

′

∈ L[g1, g1 + η(g2, g1)], where g1, g2 ∈ I with g1 < g1 + η(g2, g1).
Then, the following inequalities holds:∣∣∣∣∣ − Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
] ∣∣∣∣∣

≤
η(g2, g1)

(
|Υ
′

(g1)| + |Υ
′

(g2)|
)

8
,

where k ∈ [g1, g1 + η(b, g1)].

Proof. Applying lemma 4.1, properties of modulus and |Υ
′

|q as a preinvex function, we have∣∣∣∣∣ − Υ(g1) + Υ(g1 + η(g2, g1))
2

−
2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(b, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
] ∣∣∣∣∣

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[||Υ

′

(g1 + [η(g2, g1))|d[

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[|

(
(1 − [)|Υ

′

(g1)| + [|Υ
′

(g2)|
)

d[

=
η(g2, g1)

2

( ∫ 1/2

0
(1 − 2[)

(
(1 − [)|Υ

′

(g1)| + [|Υ
′

(g2)|
)

d[

+

∫ 1

1/2
(1 − 2[)

(
(1 − [)|Υ

′

(g1)| + [|Υ
′

(g2)|
)

d[
)

=
η(g2, g1)

(
|Υ
′

(g1)| + |Υ
′

(g2)|
)

8
.

So the proof is completed. �

Corollary 4.2. If we put η(g2, g1) = g2−g1 in Theorem 4.1, we get the inequality in Theorem 5 in [37].

Theorem 4.2. Let Υ : I = [g1, g1 + η(g2, g1)]→ (0,∞) be a differentiable mapping on I and |Υ
′

|q be a
preinvex on [g1, g1 + η(g2, g1)] ,where p > 1, 1

p + 1
q = 1, g1, g2 ∈ I. If Υ

′

∈ L[g1, g1 + η(g2, g1)], with
g1 < g1 + η(g2, g1) and λ ∈ [0, 1], the following inequalities holds∣∣∣∣∣ − Υ(g1) + Υ(g1 + η(g2, g1))

2
+

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
] ∣∣∣∣∣

≤
η(g2, g1)

2

(
1

p + 1

)1/p (
|Υ
′

(g1)|q + |Υ
′

(g2)|q

2

)1/q

,

where k ∈ [g1, g1 + η(g2, g1)].

Proof. By using Lemma 4.1, the Hölder inequality and preinvexity of |Υ
′

|q, we get∣∣∣∣∣ − Υ(g1) + Υ(g1 + η(g2, g1))
2

−
2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[(
CF
g1

IλΥ
)

(k) +
(

CF Iλg1+η(g2,g1)Υ
)

(k)
] ∣∣∣∣∣

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[||Υ

′

(g1 + [η(g2, g1))|d[
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≤
η(g2, g1)

2

(∫ 1

0
|1 − 2[|pd[

)1/p (∫ 1

0
|Υ
′

(g1 + [η(g2, g1))|qd[
)1/q

≤
η(g2, g1)

2

(
1

p + 1

)1/p (
|Υ
′

(g1)|q + |Υ
′

(g2)|q

2

)1/q

.

So, we have the desired result. �

Corollary 4.3. If we put η(g2, g1) = g2−g1 in Theorem 4.2 we get the inequality in Theorem 6 in [37].

Theorem 4.3. Let Υ : I = [g1, g1 + η(g2, g1)]→ (0,∞] be differentiable function on I◦ and g1, g2 ∈ I◦

with g1 < g1 + η(g2, g1), q ≥ 1, and assuming that Υ
′

∈ L[g1, g1 + η(g2, g1)]. If |Υ
′

|q is a preinvex
function on interval [g1, g1 + η(g2, g1)], then following inequality holds for [ ∈ [0, 1],∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, a)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣

≤
η(g2, g1)

4

(
|Υ
′

(g1)|q + |Υ
′

(g2)|q

2

) 1
q

,

where k ∈ [g1, g1 + η(g2, g1)].

Proof. Applying lemma 4.1, properties of modulus, power mean inequality and |Υ
′

|q as a preinvex
function, we have∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[|

∣∣∣Υ′

(g1 + [η(g2, g1))
∣∣∣ d[

≤
η(g2, g1)

2

(∫ 1

0
|1 − 2[|d[

)1− 1
q (
|1 − 2[|

∣∣∣Υ′

(g1 + [η(g2, g1))
∣∣∣q d[

) 1
q

≤
η(g2, g1)

2

(
1
2

)1− 1
q
(∫ 1

0
|1 − 2[|

(
|Υ
′

(g1)|q[1 − [] + |Υ
′

(g2)|q[
)

d[
) 1

q

≤
η(g2, g1)

2

(
1
2

)1− 1
q
(
|Υ
′

(g1)|q
∫ 1

0
|1 − 2[|[1 − []d[ + |Υ

′

(g2)|q
∫ 1

0
|1 − 2[|[d[

) 1
q

≤
η(g2, g1)

2

(
1
2

)1− 1
q
(
|Υ
′

(g1)|q + |Υ
′

(g2)|q

4

) 1
q

.

Further simplifications lead us to the desired proof. �

Remark 4.1. If we put η(g2, g1) = g2 − g1 in the above theorem, then we get∣∣∣∣∣Υ(g1) + Υ(g2
2

+
2(1 − λ)
λη(g2, g1)

Υ(k) −
B(λ)

λη(g2, a)

[
CF
g1

IλΥ(k) +CF Iλg2Υ(k)
]∣∣∣∣∣

≤
(g2 − g1)

4

(
|Υ
′

(g1)|q + |Υ
′

(g2)|q

2

) 1
q

.
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Theorem 4.4. Let Υ : I = [g1, g1 + η(g2, g1)] → (0,∞] be differential function on I◦ and g1, g2 ∈ I◦

with g1 < g1 + η(g2, g1), q ≥ 1, 1
p + 1

q = 1 and assume that Υ
′

∈ L[g1, g1 + η(g2, g1)]. If |Υ
′

|q is a
preinvex function on interval [g1, g1 + η(g2, g1)], then following inequality holds for [ ∈ [0, 1],∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣

≤
η(g2, g1)

4

(
1

p + 1

) 1
p
(2|Υ

′

(g1)|q + |Υ
′

(g2)|q

3

) 1
q

+

(
|Υ
′

(g1)|q + 2|Υ
′

(g2)|q

3

) 1
q
 ,

where k ∈ [g1, g1 + η(g2, g1)].

Proof. Applying lemma 4.1, properties of modulus, Hölder İşcan inequality and preinvexity of |Υ
′

|q,
we have∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[||Υ

′

(g1 + [η(g2, g1))|

≤
η(g2, g1)

2

(∫ 1

0
(1 − [)|1 − 2[|pd[

) 1
p
(∫ 1

0
(1 − [)|Υ

′

(g1 + [η(g2, g1))|qd[
)

+
η(g2, g1)

2

(∫ 1

0
[|1 − 2[|pd[

) 1
p
(∫ 1

0
[|Υ

′

(g2 + [η(g2, g1))|qd[
)

≤
η(g2, g1)

2

(
1

2(p + 1)

) 1
p
(
|Υ
′

(g1)|q
∫ 1

0
(1 − [)(1 − [)d[ + |Υ

′

(g2)|q
∫ 1

0
(1 − [)[d[

) 1
q

+
η(g2, g1)

2

(
1

2(p + 1)

) 1
p
(
|Υ
′

(g1)|q
∫ 1

0
[(1 − [)d[ + |Υ

′

(g2)|q
∫ 1

0
[2d[

) 1
q

≤
η(g2, g1)

4

(
1

p + 1

) 1
p
(2|Υ

′

(g1)|q + |Υ
′

(g2)|q

3

) 1
q

+

(
|Υ
′

(g1)|q + 2|Υ
′

(g2)|q

3

) 1
q
 .

This completes the proof. �

Remark 4.2. If we put η(g2, g1) = g2 − g1 in the above theorem, then we get∣∣∣∣∣Υ(g1) + Υ(g2)
2

+
2(1 − λ)
λ(g2 − g1)

Υ(k) −
B(λ)

λ(g2 − g1)

[
CF
g1

IλΥ(k) +CF Iλg2Υ(k)
]∣∣∣∣∣

≤
(g2 − g1)

4

(
1

p + 1

) 1
p
(2|Υ

′

(g1)|q + |Υ
′

(g2)|q

3

) 1
q

+

(
|Υ
′

(g1)|q + 2|Υ
′

(g2)|q

3

) 1
q
 .

Theorem 4.5. Let Υ : I = [g1, g1+η(g2, a)]→ (0,∞] be differential function on I◦ and g1, g2 ∈ I◦ with
g1 < g1 + η(g2, g1), q ≥ 1, and assume that Υ

′

∈ L[g1, g1 + η(g2, g1)]. If |Υ
′

|q is a preinvex function on
interval [g1, g1 + η(g2, g1)], then following inequality holds for [ ∈ [0, 1],∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, a)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣
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≤
η(g2, g1)

8

(3|Υ
′

(g1)|q + |Υ
′

(g2)|q

4

) 1
q

+

(
|Υ
′

(g1)|q + 3|Υ
′

(g2)|q

4

) 1
q
 ,

where k ∈ [g1, g1 + η(g2, g1)].

Proof. Applying Lemma 4.1, properties of modulus, improved power mean inequality and |Υ
′

|q is a
preinvex function, we have∣∣∣∣∣−Υ(g1) + Υ(g1 + η(g2, g1))

2
−

2(1 − λ)
λη(g2, g1)

Υ(k) +
B(λ)

λη(g2, g1)

[
CF
g1

IλΥ(k) +CF Iλg1+η(g2,g1)Υ(k)
]∣∣∣∣∣

≤
η(g2, g1)

2

∫ 1

0
|1 − 2[||Υ

′

(g1 + [η(g2, g1))|

≤
η(g2, g1)

2

(∫ 1

0
(1 − [)|1 − 2[|d[

)1− 1
q
(∫ 1

0
(1 − [)|1 − 2[||Υ

′

(g1 + [η(g2, g1))|qd[
) 1

q

+
η(g2, g1)

2

(∫ 1

0
[|1 − 2[|d[

)1− 1
q
(∫ 1

0
[|1 − 2[||Υ

′

(g1 + [η(g2, g1))|qd[
) 1

q

≤
η(g2, g1)

2

(
1
4

)1− 1
q
(
|Υ
′

(g1)|q
∫ 1

0
(1 − [)2|1 − 2[|d[ + |Υ

′

(g2)|q
∫ 1

0
[(1 − [)|1 − 2[|d[

) 1
q

+
η(g2, g1)

2

(
1
4

)1− 1
q
(
|Υ
′

(g1)|q
∫ 1

0
[(1 − [)|1 − 2[|d[ + |Υ

′

(g2)|q
∫ 1

0
[2|1 − 2[|d[

) 1
q

≤
η(g2, g1)

8

(3|Υ
′

(g1)|q + |Υ
′

(g2)|q

4

) 1
q

+

(
|Υ
′

(g1)|q + 3|Υ
′

(g2)|q

4

) 1
q
 .

This completes the proof. �

Remark 4.3. If we put η(g2, g1) = g2 − g1 in the above theorem, then we get∣∣∣∣∣Υ(g1) + Υ(g2)
2

+
2(1 − λ)
λ(g2 − g1)

Υ(k) −
B(λ)

λ(g2 − g1)

[
CF
g1

IλΥ(k) +CF Iλg2Υ(k)
]∣∣∣∣∣

≤
(g2 − g1)

8

(3|Υ
′

(g1)|q + |Υ
′

(g2)|q

4

) 1
q

+

(
|Υ
′

(g1)|q + 3|Υ
′

(g2)|q

4

) 1
q
 .

5. Applications

In this section, we examine and attain some applications regarding the above results.

(1) The arithmetic mean

A = A(g1, g2) =
g1 + g2

2
, g1, g2 ∈ R.

(2) The generalized logarithmic mean

L = Lr
r(g1, g2) =

g2
r+1 − g1

r+1

(r + 1)(g2 − g1)
, r ∈ R \ {−1, 0}, g1, g2 ∈ R, g1 , g2.
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Now using the results in Section 4, we present our results to attain some inequalities related to
special means.

In all the results to follow we have taken B(λ) = B(1) = 1

Proposition 5.1. Let g1, g1 + η(g2, g1) ∈ R+, g1 < g1 + η(g2, g1), then∣∣∣∣∣ − A(g12, (g1 + η(g2, g1))2) + L2
2(g1, g1 + η(g2, g1))

∣∣∣∣∣ ≤ η(g2, g1)
4

[|g1| + |g2|].

Proof. If we prefer Υ(z) = z2 with λ = 1 in Theorem 4.1, then we have the desired result. �

Corollary 5.1. If we set η(g2, g1) = g2 − g1 in Proposition 5.1 we get the inequality in Proposition 1
in [37].

Proposition 5.2. Let g1, g1 + η(g2, g1) ∈ R+, g1 < g1 + η(g2, g1), then∣∣∣∣∣ − A(eg1 , g1(g1+η(g2,g1))) + L(eg1 , e(g1+η(g2,g1)))
∣∣∣∣∣ ≤ η(g2, g1)

8
(eg1 + eg2).

Proof. If we prefer Υ(z) = ez with λ = 1 and B(λ) = B(1) = 1 in Theorem 4.1, then we have the desired
result. �

Corollary 5.2. If we set η(g2, g1) = g2 − g1 in Proposition 5.2 we get the inequality in Proposition 2
in [37].

Proposition 5.3. Let g1, g1 + η(g2, g1) ∈ R+, g1 < g1 + η(g2, g1), then∣∣∣∣∣ − A(g1n, (g1 + η(g2, g1))n) + Ln
n(g1, g1 + η(g2, g1))

∣∣∣∣∣ ≤ nη(g2, g1)
8

[
|g1

n−1| + |g2
n−1|

]
.

Proof. If we prefer Υ(z) = zn with λ = 1 and B(λ) = B(1) = 1 in Theorem 4.1, then we have the desired
result. �

Corollary 5.3. If we put η(g2, g1) = g2 − g1 in Proposition 5.3 we get the inequality in Proposition 3
in [37].

6. Conclusions

Due to the potential applications fractional calculus has, the literature on fractional integral
inequalities has become a rich source of attraction for many researchers in various fields. Refinements
and estimations attained via preinvex functions produce better and sharper bounds when compared to
convex functions. Finally, the innovative concept of Caputo-Fabrizio operator for preinvex function
has a wide range of potential applications and importance in the direction of applied sciences. In this
work, we investigated and explored a new version of Hermite-Hadamard type inequality involving a
fractional integral operator in Caputo-Fabrizio sense. As a result, a new Kernel is attained and a new
theorem valid for preinvex function is investigated for fractional-order integrals. To add more beauty
to the paper, we attained the refinements of Hermite-Hadamard inequality with the help of Hölder,
Hölder-İscan, power mean and improved power-mean inequality. One can observe that Theorem 4.2
provides better results when compared to Theorem 4.4. Similarly Theorem 4.5 provides better results
when compared to Theorem 4.3. Finally, some applications of our main findings are provided. Our
findings are the refinements and generalizations of the existing results that stimulate futuristic research.
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35. İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 304
(2019). doi: 10.1186/s13660-019-2258-5.
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