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ABSTRACT Noise and motion artifacts in Positron emission tomography (PET) scans can interfere in
diagnosis and result in inaccurate interpretations. PET gating techniques effectively reduce motion blurring,
but at the cost of increasing noise, as only a subset of the data is used to reconstruct the image. Deep
convolutional neural networks (DCNNs) could complement gating techniques by correcting such noise.
However, there is little research on the specific application of DCNNs to gated datasets, which present
additional challenges that are not considered in these studies yet, such as the varying level of noise depending
on the gate, and performance pitfalls due to changes in the noise properties between non-gated and gated
scans. To extend the current status of artificial intelligence (AI) in gated-PET imaging, we present a post-
reconstruction denoising approach based on U-Net architectures on cardiac dual-gated PET images obtained
from 40 patients. To this end, we first evaluate the denoising performance of four different variants of
the U-Net architecture (2D, semi-3D, 3D, Hybrid) on non-gated data to better understand the advantages
of each type of model, and to shed more light on the factors to take in consideration when selecting a
denoising architecture. Then, we tackle the denoising of gated-PET reconstructions, revising challenges and
limitations, and propose two training approaches, which overcome the need for gated targets. Quantification
results show that the proposed deep learning (DL) frameworks can successfully reduce noise levels while
correctly preserving the original motionless resolution of the gates.

INDEX TERMS Artificial intelligence, convolutional neural networks, biomedical imaging, cardiac gating,
deep learning, positron emission tomography, respiratory gating.

I. INTRODUCTION

POSITRON emission tomography (PET) is the state-
of-the-art imaging modality for various oncologic and

cardiac imaging applications [1]. However, PET imaging is
very susceptible to noise and motion artifacts, typically due
to conscious, respiratory, and cardiac movements [2]. These
lead to blurring and distortion in the images that can interfere
in diagnosis and result in inaccurate interpretations.

Motion correction techniques based on gating are proven
to be effective in reducing motion blurring artifacts [3]–[5].
Gating in PET imaging consists in dividing the collected data
into different groups or subsets (“gates”) by correlating the
acquisition time with its corresponding amplitude or phase of
the respiratory or cardiac motion [4], [6], [7]. For example, in

device-driven dual gating a Real-time Position Management
(RPM) system (Varian Medical Systems, Inc., Palo Alto, CA,
USA) can be used to track longitudinal respiratory motion,
while electrocardiography (ECG) is used to measure the car-
diac electrical activity [5]. Dual gating considers the different
phases of cardiac or respiratory motion, and divides the list-
mode PET data into specific bins based on their overlapping
phase or amplitude in time. Each of the subsets can then
be used to reconstruct an image dataset, which should have
greatly reduced motion blur as compared to the non-gated
image. Figure 1 illustrates the measurement setup used in the
dual-gating PET data acquisition process. The RPM system
includes an infrared (IR) camera which captures reflected
beams from a marker block placed on the chest or abdomen
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of the subject.
Despite enhancing spatial resolution, the division of the

data into multiple bins comes with a subsequent cost in
image quality as only a fraction of the data is available for
image reconstruction, resulting in increased levels of noise
and thus image degradation. Reconstruction of images of
reduced quality can likewise lead to quantitative inaccuracy
and complicate clinical interpretation [4]. Thus, elevated
noise levels of gated PET images represent a serious problem,
currently holding back these gating techniques from being
widely used in practice.

Existing conventional post-reconstruction denoising tech-
niques include: Gaussian filtering, Non-Local Mean filtering
(NLM) [8], [9], anisotropic diffusion [10], [11] and block-
matching 3D (BM3D) [12], [13]. Variational PDE (partial
differential equation) [14], one of the most recent techniques,
have also gained popularity in many applications, such as
image denoising [15] and segmentation [16]. However, deep
learning could be a more effective technique to tackle these
problems. Neural network’s capability to learn non-linear
complex relationships from data comes highly convenient
in medical imaging denoising, where the statistical charac-
teristics of noise are complex and difficult to model math-
ematically. Compared to traditional methods, DL models
have the ability to model higher level features, and to in-
tegrate inter-patient information. Deep learning techniques
have been extensively studied with promising performance
in many medical imaging applications, such as reconstruc-
tion [17], [18], segmentation [19]–[21] and denoising [17],
[18]. Recently, denoising methods based on convolutional
neural networks, such as deep auto-context CNN [22], U-
Net [23], and Generative Adversarial Networks (GANs) [24],
have also been applied to non-gated low dose PET image
achieving superior performance compared to conventional
methods [25].

However, denoising of gated-PET images presents addi-
tional challenges. These methods usually require a high-
resolution target or ground truth for training and evaluation of
the denoising performance, whereas in gated-PET, high-dose
targets are rarely available, except for the non-gated version,
which intrinsically suffers from motion blurring. Only the
work of Bo Zhou et al. [26] in 2020 tackles the denoising
and motion estimation of gated-PET images using a Siamese
Adversarial Network (SAN). Nevertheless, their proposed
solution still depends on the availability of high-quality gated
images.

Unsupervised denoising methods have also been studied
in the literature, such as the Deep Image Prior [27]–[29].
However, the numerous limitations of the Deep Image Prior
approach – e.g. no clear stopping criteria or method to guar-
antee the consistency of the outputs, requires a new model
to be fitted for each individual prediction, stochasticity of the
results – make it rarely applicable in real practice. Other pop-
ular frameworks that can work without high-quality targets
are usually based on the Noise2Noise (N2N) [30] approach,
which will be further discussed in Section III-C. N2N based

methods consist in pairing noise independent images, which
still share the same underlying distribution [31], [32], or are
highly correlated in structure [33].

In this work, we study the post-reconstruction denoising of
cardiac dual-gated PET images using deep neural networks
inspired by the U-Net architecture [19]. First, four U-net
variants (2D, 2.5D, 3D, Hybrid) are trained on non-gated data
for the purposes of selecting the best denoising architecture.
Next, we apply the chosen denoising network (Hybrid) to
the gated data in order to investigate whether the denoising
capabilities of a neural network trained on non-gated scans
can be extended to gated reconstructions, thus overcoming
the need of high-quality gated targets. Finally, an additional
training strategy based on the N2N [30] approach, was also
investigated for comparison.

We show that our proposed denoising approach based on
using non-gated low-count PET reconstructions as training
data can successfully reduce noise levels while correctly
preserving motionless resolution and anatomical details of
the gated-PET images. It should be noted that the presented
methods do not require additional or longer acquisition times,
which broadens their utility.

II. MATERIALS AND METHODS
A. PET DATA
Our study consists of cardiac PET data from 40 coro-
nary artery disease patients. The study protocol for clinical
PET imaging was approved by the Ethical Committee of
the Hospital District of the South-Western Finland (ETMK
44/180/2012). The subjects were scanned with the standard
protocol used for vulnerable coronary plaque imaging at
Turku PET Center on a GE Discovery 690 (D690) PET/CT
system. The D690 is a fully 3D PET system containing a 64-
slice Lightspeed CT system [34]. Demographic information
of the subjects is described in Table 1.

Patients underwent contrast-enhanced coronary CT an-
giography (CTA) using the standard prospective ECG gated
low dose CTA protocol with 50-100 ml of contrast agent (3.5
ml/s) and simultaneous acquisition of 64 parallel slices. After
completion of the CTA study, a 3D PET scan of the heart was
acquired in list-mode with ECG and respiratory gating with
an acquisition time of 24 minutes. CTAC and CINE CT were
acquired by using a low-dose CT with a tube voltage of 120
keV.

TABLE 1. Demographic information of the subjects.

Clinical variable Range
Sex (M / F) 36/4 -
Age (Y) 64 ± 9 44 − 84
Weight (kg) 86 ± 15 47 − 116
Height (m) 1.75 ± 0.09 1.53 − 2.00
Dose (MBq) 309 ± 26 277 − 400
Values are presented as number and mean±standard deviation.

The 3D PET scans over the heart region were acquired in
list-mode with ECG and respiratory triggering with the ac-
quisition time of 24 minutes. 18F-fluorodeoxyglucose (18F-
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FDG) was used as the radiotracer. Subjects were advised to
keep their arms raised above the head by a supporting foam
cushion to avoid truncation artifacts.

B. ACQUISITION AND PROCESSING OF GATED-PET
For dual gating, 5 amplitude-based respiratory bins and 5
ECG-gated bins were used. Respiratory gating was per-
formed using the exported respiratory curve from the RPM
system. Cardiac gating (ECG-gating) was performed using
5 gating bins divided according to fixed-time intervals from
the R-peak. The RPM system consists of a marker block, an
infrared reflective marker placed on a plastic box positioned
on the patient’s thorax, and an infrared camera, which uses
the IR beam reflected by the RPM marker block to track
the respiratory cycle. For respiratory gating in PET and CT,
amplitude gating was applied. The bins were divided equally
by amplitude from end-inspiration to end-expiration. The
gating thresholds were determined by equidistant sampling.
The maximum threshold was defined as the mean plus one
standard deviation of the amplitude maxima, whereas the
minimum was determined from mean of the amplitude min-
ima of the respiratory cycles. Only the cycles considered as
“valid cycles” by the RPM system were used.

For cardiac gating, 5 bins using the cardiac triggers from
list-mode data were determined. Non-equidistant, fixed-time
gate assignment between subsequent R-peaks were used to
define bins from end-systole to end-diastole. The time divi-
sion to cardiac cycles was defined as 50 ms, 120 ms, 420 ms,
550 ms and 1500 ms (or until the next R-peak, whichever
comes first) from the R-peak. Figure 1 illustrates our gating
scheme based on the cardiac and respiration signals.

Static PET images were reconstructed using full 24 min-
utes of acquisition time. All gated and non-gated PET images
were reconstructed with three-dimensional ordered subsets
expectation maximization (3D-OSEM) reconstruction, using
2 iterations and 24 subsets. The reconstruction matrix size
and field of view (FOV) were 256 × 256 × 47 and 350 mm,
respectively. A Gaussian post-filter of 6 mm was applied
on all images. All quantitative corrections including decay,
attenuation, scatter and randoms were applied to the recon-
structed images.

C. DENOISING PROBLEM
In PET, images are reconstructed from a set of independent
detector events, or count data. The acquired data is assumed
to follow a Poison’s distribution due to the stochastic decay
process of the radiotracer, which corrupts the reconstructed
image. Thus, the corrupted input x̂ ∼ p(x̂|y) is assumed to
be a random variable distributed according to the clean target.
In a low-count data set, the noise corruption is more severe
due limited data counts.

Differently to traditional denoising methods, which usu-
ally require an explicit statistical modeling of the noise,
NNs can learn the denoising function from existing data.
Considering the corruption process (η) of an image xi as

xi = η(yi), (1)

our goal is to find a mapping function f(·) such as f(xi)
is as close to yi as possible. Using the MAE error, this
is formulated mathematically as the following minimization
problem:

min
Hf

||Hf (xi)− yi||, (2)

where in the mapping function f(·) is modeled by the neural
network.

We can determine f(·) by training the network on a known
dataset consisting of xi (noisy) - yi (clean) pairs such that
Eq. (1) is optimized under the loss function minimizing the
distance between input and target.

D. ARCHITECTURES
All the models were developed using the Pytorch (v1.5.0)
[35] and Fastai (v2.0.0.18) [36] libraries. Training was car-
ried out on a single NVIDIA V100 GPU with 32GB of
memory.

1) 2D and 2.5D U-Nets
In our 2D U-Net model as shown in Fig. 2.a, we use a
modified version of the original residual networks (ResNet-
34) concept [37] as the encoder backbone, deploying some
of the improvements introduced by He et al. [38] in 2015.
These modifications include the replacement of the 7 × 7
convolutional kernel in the start block by three 3 × 3 layers
for improved computational efficiency, and the application of
average pooling followed by a stride 1 convolution instead of
a stride 2 convolution on the residual connections of the con-
tracting residual block. In addition, we apply the ResNeXt
configuration introduced by Xie et al. [39] for increased
cardinality in the backbone residual blocks, consisting of
independent convolutions, which are then aggregated by a
1×1 convolutional layer, instead of a single convolutional
path. Xie et al. [39] showed that by increasing the number of
convolutional paths, we can increase the model capacity to
learn more complex transformations with a minimum impact
in model performance, as the number of additional trained
parameters is small.

In a similar manner, the structure of the up-sampling path
is composed of blocks, which first apply an up-sampling
operation followed by two 3 × 3 CNN layers and their ac-
tivations. Pixel Shuffling ICNR [40] is used as the up-scaling
operation in order to prevent the generation of “checker-
board” artifacts on the output images. Instead of a simple
deconvolution operation, Pixel Shuffling ICNR performs a
nearest neighbour resizing of the image in combination a
series of convolution operations, random pixel translocations
and a special weight initialization that have proven to be
effective in preventing these undesirable patterns caused by
standard deconvolution operations [41].
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FIGURE 1. Left: General schematic of the set up used for gated-PET data acquisition, including an RPM marker block and ECG measurement electrodes. Right:
Schemes of the respiratory (top-right) and ECG (bottom-right) dual-gating protocol. Respiratory bins (n=5) were defined based on amplitude per breathing cycle,
whereas cardiac bins (b=5) were defined based on time from R-peak using non-equidistant fixed-time intervals.

FIGURE 2. Illustration of the 2D (a), 3D U-Net (b) architectures, the decoder convolutional block (c) used in both architectures, and a scheme of the denoising
process of a PET volume by the hybrid network (d). Dotted-lines in the architectures describe U-Net cross-connections between encoder and decoder. Residual
connections between ResBlocks are represented by blue lines and dashed blue lines. On the contracting residual connections (blue dashed-line) an average
pooling layer (stride=2, kernel=2) followed by a convolutional layer (1×1) is applied to the feature maps to match dimension of the main path. The input and output
channels (m,n) of each layer is indicated between parenthesis. The semi-3D (or 2.5D) U-Net model follows the same base 2D (a) architecture but using
three-channel input data. (×3)*: Only used in the 3D architecture (3×3×3 kernel dimensions).

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3122194, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The Rectified Linear Unit (ReLU) is used as activation
function in all blocks except for the last 1 × 1 output kernel
which uses a linear activation. We use reflection padding
[42] and the weights are initialized using the Kaiming ran-
dom initialization [43]. U-Net dense connections between
encoder and decoder concatenate the activation maps of
the convolutional layers with kernel of stride 2 (contracting
residual blocks) and the activation maps of the corresponding
upscaling block of the decoder. In order to better model
relationships between distant spatial regions in the image, we
also added a self-attention module [44] at the third block of
the decoder before the end. The scheme of the architecture is
shown in Fig. 2.a.

In our 2.5D model, instead of individual slices (256×256)
from the PET volume, we use three neighbouring planes as
input (3×256×256) by adding the two most adjacent planes
as additional channels. This network, usually referred in
literature as semi-3D or 2.5D, uses extra spatial information
without applying full 3D convolutions, thus having a lower
computational cost and number of parameters. On the other
hand, the amount of spatial information is limited to only the
two more adjacent planes.

2) 3D and 2D/3D-Hybrid U-Nets
In PET imaging, where the data is represented in 3D volume
formats, the use of the 3D CNNs allows the network to
have access to all the spatial context information available
in the volume, as opposed to 2D CNNs. On the other hand,
3D networks have higher computational costs and a larger
number of parameters that increases exponentially as the
model gets deeper, and as a consequence, the memory costs
limit in high degree the size and depth of 3D DCNNs. A
larger number of trainable parameters also require of larger
amounts of training data for optimization, which is rarely
abundant in the medical field. Hybrid architectures that ex-
ploit the advantages of both, 2D and 3D convolutions, in a
single model have been proposed [20] with promising results.
Following a similar approach, we developed a hybrid model
by combining our 2D U-Net architecture with a 3D U-Net
counterpart.

Our 3D U-Net deploys a similar configuration to the 2D
U-Net described above, using the same block configuration
of 2 convolutional layers (3 × 3 × 3 kernel) followed by
Batch Normalization (BN) and ReLU activation. Due to the
memory costs (GPU) of 3D convolutions, no residual con-
nections between encoder blocks are used, and the encoder
part is simplified to only 5 convolutional blocks both in the
encoder and the decoder, corresponding filters of size 32, 64,
128, 256, and 512.

As Fig. 2.d shows the input volume is first denoised slice-
by-slice through the 2D counterpart of the hybrid network.
The outputs of the 2D network are subsequently concatenated
with the original input volume and then fed as input to the
3D model to obtain the refined final prediction. The 3D
counterpart of the hybrid in this architecture can take full
advantage of the spatial information of the volume while the

2D part assists on the denoising and alleviates the amount
of data required. Hence, the combination of both structures
allows for an efficient extraction of intra-slice and inter-slice
features.

E. PREPROCESSING AND DATA AUGMENTATION

We calculate the mean and standard deviation over the
training set to perform a z-score normalization of the PET
volumes. The next step differs depending on the U-Net
architecture. For the 2D network, which requires 2D input
images, the volumes are decomposed on its individual planes.
In the case of the 2.5D U-Net models, the volumes are also
decomposed on individual planes but with the addition of the
two most adjacent planes as additional channels so that the
input shape is 256 × 256 × 3. The 3D U-Nets take as input
the full PET volume of shape 256× 256× 47 (x, y, z).

Due to the limited amount of data available, we use data
augmentations to avoid overfitting and to improve general-
ization. The transformations we use for data augmentation
in our pipeline include random rotations (z axis, 0-360◦,
p=0.25), flips (x and y axes, p=0.33), and in/out zooming
(z axis, 0.85%-1.15%, p=0.15). The probabilities (p) and
intensity of the transformations are randomized and applied
dynamically on every generated training batch and epoch,
which allows for applying arbitrarily many combinations of
different augmentations. The parameters of the transforma-
tion were empirically selected. We deliberately avoided the
use of deformation transforms that could result in unrealistic
anatomical scans. Some of the used transformations might
still result in unrealistic anatomical configurations, e.g. flip-
ping left-right would put the heart on the opposite side of the
chest relative to what is normally seen in the PET images.
However, due to the small size of the dataset, these trans-
forms helped in reducing overfitting and improving overall
performance, especially on the 3D models.

After training, in the case of the 2D and 2.5D U-Net
models, the volumes are reconstructed from the individually
denoised planes before evaluation. Finally, the denoised PET
volumes are denormalized using the original mean and stan-
dard deviation in order to recover the absolute activity values.

F. EVALUATION

Performance metrics are calculated as average of an 8-fold
subject cross-validation (CV). All PET reconstructions of
the subjects included in the test set are always excluded
from training. For each fold, we follow the same pipeline
as described above from start to end. In order to assess the
denoising performance of the different networks objectively,
we need to establish a set of quantitative metrics. For com-
parison against the target, we choose two widely adopted
image quality metrics, the peak signal to noise ratio (PSNR)
and the mean structural similarity index measure (SSIM).
These are two well-known objective image quality metrics
that have been extensively used in the literature to measure
image degradation, quality and information loss [45], [46].
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1) Peak signal-to-noise ratio
The term peak signal-to-noise ratio (PSNR) is the ratio be-
tween the maximum possible power of a signal and the power
of noise that distorts the quality of its representation [47, Ch.
4, pp. 127-135]. It is defined as follows:

PSNR = 20 log10

(
MAXf√

MSE

)
(3)

where MAXf is the number of maximum possible intensity
levels (minimum intensity level is supposed to be 0 in an
image) and the mean-squared-error (MSE) is given by:

MSE =
1

xyz

x−1∑
i=0

y−1∑
j=0

z−1∑
z=0

‖f(i, j, k)− g(i, j, k)‖2 (4)

where f(i, j, k) and g(i, j, k) refer to the pixel values at
location i, j, k in the reference and reconstructed image re-
spectively. As PET images are usually reconstructed without
a predefined maximum voxel value for the radioactive inten-
sity, before calculation of the PSNR we rescale every volume
to the range 0–1 and set MAXf equal to 1.

2) Structural similarity index measure
The main limitation of the PSNR is that it only performs a
numerical comparison without taking in consideration how
the difference in values is perceived by the human eye. A
high PSNR score does not always correlate with the best
perceptual and textural quality at visual inspection. The
structural similarity index measure (SSIM) [48], on the other
hand, tries to measure and correlate the characteristic of an
image that have the most noticeable impact the human eye.
The factors that the SSIM takes into consideration are the loss
of correlation, luminance distortion and contrast distortion.
The SSIM is defined as

SSIM(f, g) = l(f, g) · c(f, g) · s(f, g), where
l(f, g) =

2µfµg+C1

µ2
f+µ

2
g+C1

c(f, g) =
2σfσg+C2

σ2
f+σ

2
g+C2

s(f, g) =
σfg+C3

σfσg+C3

(5)

where f and g refer to an image patch of the reference and
reconstructed image respectively, and µ and σ are the mean
and standard deviation of that image patch. The SSIM index
is calculated using a sliding window over the whole image
and the average of the resulting values is used as the final
mean SSIM score between the 2 images. Its values range
from 0 to 1, where 0 meaning no correlation and 1 meaning
that the images are identical. C1, C2 and C3 are small
constants used to avoid division by zero. The reformulated
equivalent equation can be expressed as

SSIM(f, g) =
(2µfµg+C1)(2σfg+C2)

(µ2
f+µ

2
g+C1)(σ2

f+σ
2
g+C2)

(6)

In our implementation we set a non-overlapping window
of size 17× 17 pixels with zero-padding on image edges. As

the SSIM metric was originally designed to compare RGB
images, after denormalization of the PET volumes we rescale
the voxel values to the range 0–255 before its calculation.
We use the recommended [48] values of C1 = 1 × 10−4,
C2 = 3× 10−4, and C3 = C2/2.

3) VOIs
In a typical medical imaging scenario, a large portion of
the scan does not contain relevant or useful information for
clinicians when rendering diagnostics or treatment decisions.
In order to evaluate the model’s performance on the critical
areas, we calculate the mean absolute error (MAE) over the
two selected volumes of interest (VOIs) surrounding the heart
and thoracic regions. The VOI’s dimensions are: 82.2 mm×
112.4 mm×22.9 mm (VOI-1); 82.2 mm×95.9 mm×9.8 mm
(VOI-2).

4) Profile Analysis
A profile analysis was performed to quantify the reduction in
motion and ensure that no additional blurring was introduced
on the denoised gates. The profiles were manually selected
from a single-plane image patch overlapping the opposing
walls of the left ventricle.

The peaks of the aggregated voxel values across the pro-
file were used to calculate the full width at half maximum
(FWHM). The FWHM difference relative to the non-gated
image was used as measurement for motion minimisation
and spatial resolution. The relative FWHM difference was
calculated as follows:

∆% = (FWHMG − FWHMNG)/FWHMNG × 100% (7)

where FWHMNG refers to the FWHM measured from the
non-gated image and FWHMG to the FWHM calculated
from a gated image. As baseline for the half maximum
location, we use the local minimum between the peak of the
interventricular septum and the peak of the lateral wall of the
left ventricle.

As the motion of the wall of the interventricular septum
is relatively slow, the corresponding gated and non-gated
profiles are quite similar (see Figs. 6 and 8). Thus only
FWHM measurements of the right-most peaks of these fig-
ures, corresponding to the lateral wall of the left ventricle,
were calculated and included in the profile Tables 3 and 4.

III. EXPERIMENTS
A. NON-GATED PET STUDY
In order to better understand the potential benefits of each
model in denoising, we validate them by using the non-
gated PET data for training and evaluation, as it leads to
deploy the full-count reconstructions as the ground truth. We
train the networks on non-gated low-count reconstructions
(5%, 10% and 14% list-mode data) as input, while using the
images reconstructed using 100% of the list-mode data as
targets. The part of the list-mode data used in the low-count
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FIGURE 3. Performance comparison of the different U-Net models. The
results are calculated from an 8-fold subject cross-validation.

reconstructions is randomly selected by dividing the total list-
mode data points in 20, 10 and 7 groups of equal size. That
is, for every subject we obtain 1 target (Y ) and 37 training
instances (X), all of which paired to the same target.

All models were trained for 15 epochs, using the Adam
optimizer [49] with a weight decay of 1x10−3 and the MAE
loss. The MAE loss was empirically selected based on pre-
liminary experiments in which we evaluated four different
losses (MAE, MSE, MAE-SSIM, MSE-SSIM). The MAE
loss consistently yielded the best performance scores, and
highest output quality at visual inspection. For the learn-
ing rate and momentum, we used the Leslie Smith’s one
cycle scheduling policy [50], which consists of 2 training
phases. In phase 1 of the training cycle, we start training at
minimum learning rate (lrmax/25) and linearly increase it to
lrmax = 1x10−3, while letting the momentum to decrease
from mmax = 0.95 to mmin = 0.85 linearly. In phase 2,
the learning rates follows a cosine annealing from lrmax to
0, where the momentum goes from mmin to mmax with the
same annealing.

No stopping criteria was used as higher number of epochs
didn’t show any significant worsening or improvements in
performance. We kept 15 epochs on all models for equal
training conditions between models, and to ensure that the
number of epochs was not a limiting factor on any of the
U-Net architectures. In order to improve stability during
training and achieve a better convergence, the training of the
hybrid U-Net was executed following the same method but
in 3 different steps:

1) Fitting of the 2D part of the network independently for
1 cycle of 5 epochs.

2) Fitting of the 2D/3D hybrid network with the parame-
ters of the 2D part fixed for 1 cycle of 5 epochs.

3) Unfreezing of the 2D part and training of the whole
network jointly a lower learning rate (lrmax/10) for 1
cycle of 5 epochs.

The 2D and 3D sub-models that compose the hybrid model
use the configuration and architecture shown in Fig. 2. The
scores reported for these models are always calculated over
the 3D volumes (or VOIs) after reconstruction as indicated
in the Section II-E to ensure the comparability of the results
between models.

TABLE 2. Average MAE scores of the selected VOIs around the heart and
thoracic regions of two different test subjects. Location illustrated in Fig. 4.

MAE
VOI-1 VOI-2

Gaussian 985.6 236.8

NLM 906.5 278.9

BM3D 997.5 335.4

Prior 981.3 274.4

3D 890.5 264.0

2D 626.7 186.4

2.5D 622.1 172.0

Hybrid 624.0 170.5

Units: Bq/ml.

Quantitative comparison of the scores (Fig. 3) showed that
the hybrid model outperforms the other models achieving
the best performance in all three evaluation metrics. The 3D
model, despite having access to extra spatial information,
showed lower performance on the MAE and SSIM scores
(106.5 and 0.664) as compared to the 2D U-Net model (105.7
and 0.685). Only on the PSNR score the 3D network ranked
differently, achieving a slightly better score than the 2D
network. Despite the 2D and 3D networks having a similar
MAE score, the MSE of the 2D network (63.0 kBq/ml) is
higher than the 3D network (54.2 kBq/ml), which is used in
the calculation of the PSNR score. It suggests that the 2D
network has a smaller overall error but with specific voxels
containing large errors, which are amplified by the MSE. The
MSE score of the 2.5D and hybrid models was consistent at
44.7 kBq/ml and 39.4 kBq/ml respectively.

We can also observe a clear overall improvement between
the 2D and 2.5D U-Nets, with a reduction of the MAE error
from 105.7 to 95.2, showing that adding neighboring slices
as extra channels can significantly improve the denoising
performance of the 2D-CNNs while avoiding the heavy
memory/computation cost of the 3D-CNNs. In this particular
case, the training of the 3D models took approximately 4 to
5 times longer than the 2D models.

The error calculated from the selected VOI’s (Table 2)
also showed a similar trend with 2.5D and hybrid models
achieving the best MAE scores. All deep learning models
outperformed the conventional methods in MAE score as
well as in perceived visual quality as shown in Fig. 4.

Based on these results, the hybrid network was selected for
the subsequent denoising experiments.

B. GATED-PET STUDY
In this section, we use the previous models to perform in-
ference on gated PET data. Here, we must face a different
scenario where we have 25 gates with a fraction of the total
count-data that ranges between 1% and 15% depending on
the gate. This means that the model should be able to account
for a wider range of noise levels. This was indeed the first
problem affecting model performance we encountered in
our preliminary experiments. We noted that the denoising

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3122194, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. Non-gated low-count (5%), full-count (100%) and denoised images comparing the performance of three conventional methods (Gaussian and NLM
filtering and BM3D), the Deep Image Prior and our 2D, 2.5D and Hybrid U-Nets. The zoom-in region indicated in red correspond to the VOIs 1 and 2 with MAE
scores shown in Table 2. Gaussian filter σ: 2; NLM window: 5× 5× 5; NLM patch-distance: 13 pixels; BM3D σ: 20; Deep Image Prior: Author’s original
implementation [29], using the drunet-gray model with a noise level of 12.

performance degraded when the considered gate contained
a fraction of data that was significantly smaller than the
fraction of the training set (only 10% reconstructions). How-
ever, this problem was partially solved after the addition
of training instances of the same subjects reconstructed at
different fractions (5%, 10% and 14%) of the total count data
as described in Section III-A.

Another major challenge is the lack of a ground-truth to be
used as target. In this case, the absence of a gated high-quality

version to be used as a ground truth hampers the use of
the previous noise-to-clean (N2C) training approach. On the
above premises, in this section we study the feasibility and
performance of the networks trained using only non-gated
low-count reconstructions as in the previous section when
denoising also the gated reconstructions of the test subjects.

The results displayed in Fig. 5 and 6 demonstrate the
feasibility of denoising gated PET images using models
exclusively trained on non-gated low-count reconstructions.
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FIGURE 5. Examples of gated-PET reconstructions before and after denoising by the Hybrid U-Net model. The signal-to-noise ratio (SNR) is indicated on the
top-left corner of each PET image. The indicated SNR was calculated as Imean/Isd, where Imean and Isd are the average and standard deviation uptake of the plane
shown in the figure.

FIGURE 6. Profile analysis of the selected region (red box) in 2 different subjects. In the profile chart, the horizontal lines indicate the location of the half-maximum.
FWHM measurements are shown in Table 3. Non-gated full-count image (NG); Gated image (G); Denoised gated image (DG).

The learned denoising capability of the network was suc-
cessfully transferred to the gated reconstructions of the test
subjects (non-gated data was also completely excluded from
training set) achieving to restore the quality of the images and
effectively reducing noise without introducing observable
side-effects or artifacts. As shown in Fig. 5, the noise of the
gated-PET images due to the inherently lower data count has
been significantly reduced while correctly preserving the mo-
tionless resolution, sharpness, and anatomical characteristics
of the myocardial regions.

The profile analysis (Fig. 6 and Table 3) also indicate an
improvement in image sharpness. The higher spatial reso-

lution and lower motion blurriness of the gated images is
still preserved after denoising. Furthermore, noise artifacts
present in the gated images, which yield fluctuations and
small "bumps" in the profiles, have been corrected on the
denoised outputs.

C. NOISE-TO-NOISE APPROACH TO PET DENOISING

Conventional image restoration tasks using DCNNs consist
of pairing a noisy or low-quality image xi to a clean target
of higher quality or resolution yi. However, recent studies
suggest that same or even better results can be potentially
achieved by simply pairing noisy images. This approach
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TABLE 3. FWHM measurements of the profiles (a) and (b) shown in Fig. 6.
The peaks selected for the measurements correspond to the right-most peak
(lateral wall of the left ventricle).

Profile A Profile B
FWHM ∆% FWHM ∆%

Non-gated 25.2 0% 24.8 0%

Gated 20.2 19.8% 19.5 21.3%

Denoised gated 19.5 22.6% 19.6 21.0%

FIGURE 7. Examples of non-gated and gated outputs denoised by the hybrid
model using the N2C and N2N training approaches. The signal-to-noise ratio
(SNR) is indicated on the top-right corner of each PET image. The indicated
SNR was calculated as Imean/Isd, where Imean and Isd are the average and
standard deviation uptake of the plane shown in the figure.

is called Noise-to-Noise (N2N) [30] as it does not require
higher quality images to be used as targets, instead, noise
realization of the same underlying distribution are considered
as targets. In PET imaging the N2N approach is appealing,
as it allows to use motion-mitigated gated images as targets
instead of motion-blurred non-gated images.

As explained in II-C, the denoising of corrupted images
using NNs is a minimization problem expressed as

min
Hf

||Hf (xi)− yi||, (8)

where xi and yi denote the noisy and clean reconstructed
images, and the function f(·) represents the neural network.
Unfortunately, the acquisition of clean targets to be used has
ground truth is rarely possible in many clinical settings, e.g.
gated-PET. Moreover, It assumes that the corrupted input
x̂ ∼ p(x̂|y) is a random variable distributed according to
y. However, it is not totally true, as even “clean” images,
reconstructed from high count datasets, are inevitably af-
fected by some level of noise. The hypothesis of the N2N
approach states that it is possible to determine f(·) by using
only noisy reconstructions. Following this approach, Eq. (8)
optimization is reformulated as

min
Hf

||Hf (xi)− xii||, (9)

where xi and xii are two different noisy realizations of the
same unobserved yi.

In our dataset we have a high-count target y for each noise
realization x at a lower percentage of total count data. In the
classical approach where we pair all the noise realizations
to the same target y, e.g. at 10%, a total of 10 pairs or
training instances is obtained. In the N2N approach, however,
each noise realization is paired against each other giving a
total of 90 combinations. As long as the input and target are
conditioned on the same underlying unobserved clean target,
the loss minimization then becomes a maximum expectation
problem that should model the real underlying distribution.
Theoretically, the authors [30] showed that with infinite data
Eq. (8) and Eq. (9) are equivalent, whereas under finite data,
the variance of the estimate should be equal to the average
variance of the corruptions in the targets, divided by the
number of training samples.

In order to study the performance of the N2N approach on
PET data, we train again the network as in Section III-A, but
pairing within subject’s low-count reconstructions with each
other instead of using high-quality targets.

TABLE 4. FWHM measurements of the profiles (a) and (b) shown in Fig. 8.
The peaks selected for the measurements correspond to the right-most peak
(lateral wall of the left ventricle).

Profile A Profile B
FWHM ∆% FWHM ∆%

Non-gated 22.3 0% 24.9 0%

Gated 16.2 27.3% 19.6 21.3%

Denoised gated 16.4 26.5% 19.7 20.9%

Denoised gated N2N 17.2 22.9% 19.6 21.3%

Results showed that the N2N approach can effectively
remove noise and motion artifacts achieving comparable
results to the N2C approach in non-gated as well as in gated
reconstructions. The profile analysis of the N2N outputs (Fig.
8) are also consistent with the profiles obtained following the
N2C approach. The relative FWHM measurements indicated
that both training approaches achieved similar motion reduc-
tion levels.

Particularly, we observed the most substantial improve-
ment in scans with higher levels of noise, such as the gates
with lower percentage of data available for image reconstruc-
tion, or the first and last volume slices where the loss of
sensitivity of the detector causes significant levels of noise
even in the high-quality targets reconstructed using 100% of
the count data. When using the N2C approach, noise artifacts
present in the targets are often reproduced by the model
on the outputs. This supports the hypothesis that the N2N
approach could potentially be a good solution in the absence
of good targets.

IV. DISCUSSION
In the quantitative comparisons of Section III-A it was seen
that the hybrid model yields the best overall performance
followed closely by the 2.5D model, whereas the 3D model
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FIGURE 8. Profile analysis of the selected region (red box) in 2 different subjects. In the profile chart, the horizontal lines indicate the location of the half-maximum.
FWHM measurements are shown in Table 4. Non-gated full-count image (NG); Gated image (G); Denoised gated image (D); N2N denoised gated image (DN).

FIGURE 9. PSNR and SSIM scores on a 6 subjects test set versus the number of subjects available for training, each include 37 low-count reconstructions as
described in Section III-A. Evaluation results are represented as the average (dots) and 95% confidence interval (vertical lines) of the scores obtained by each
model after 5 repetitions of the same experiment.

showed a significantly lower performance despite having
access to further spatial information. Two factors related to
the limitations of 3D convolutions could explain it. First,
we have the computational cost and memory allocation of
3D convolutions, which in our case (32GB of GPU mem-
ory available) limited the size of the 3D models to only
28 convolutional layers as opposed to the 56 layers of the
2D models. The second factor is the higher number of the
training parameters of 3D convolutions. Despite having less
convolutional layers, the number of the parameters of the 3D
model is approximately 4 times higher at 172M as opposed to
the 41M parameters of the 2D model. In ideal situations and
with enough training data, such high number of parameters
could be advantageous and would enable a better modelling.

However, it also supposes an optimization burden, demand-
ing of higher amounts of training data, condition that clearly
could not be fulfilled with the present training dataset (35
subjects). In the hybrid model, this burden is partly alleviated
as the outputs of the 2D counterpart can effectively assist the
3D counterpart during the training phase facilitating a faster
and more efficient convergence.

The above hypothesis is supported by the experimental
results shown in Fig. 9 where the represented model per-
formance versus amount of training data shows that with
limited training data the 2.5D U-Net is favoured. Figure 9
also suggest that the improvement achieved by the hybrid
network over the 2D networks could be more significant in
conditions where the number of training instances available
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FIGURE 10. Coronal view of a subject illustrating the higher quality and
consistency between slices achieved by the 2.5D (d) and hybrid (e) networks,
as opposed to the 2D (c) network.

for training is higher. Although the 2D CNN achieved similar
scores as compared to the hybrid network, extra training
data did not yield any significant improvements. Due to the
higher complexity and more parameters of the 3D U-Net,
larger number of training datasets is indispensable to achieve
a stable state of the trained network. The PSNR and SSIM
curve on Figure 9 showed that the 2D and 2.5D U-Net already
reached the state of convergence when 34 subjects were used
for training while the curve of 3D U-Net was still in the
rising state. This suggested that data from more patient might
be required for the 3D U-Net training. Another insight to
extract from this experiment is that the size of the training
dataset should be taken into consideration when selecting the
denoising network.

An additional advantage of network architectures that use
extra adjacent slices for denoising, such as the 3D models,
and even the 2.5D models, is the noticeable higher visual
quality in coronal and sagittal perspectives. These perspec-
tives specially benefit of the extra context information as it
helps the network in achieving a better inter-slice consistency
in the reconstructed output volumes. A clear example of this
side-effect can be seen in Fig. 10.c, where the lack of inter-
slice consistency of the 2D U-Net results in a pronounced
blurriness of the coronal view.

In the gated-PET study, we hypothesized that the denoising
capabilities of a network trained on non-gated data by map-
ping high quality targets to downsampled reconstructions can
be extended to gated reconstructions, overcoming the need of
high-quality gated targets. When following this approach, we
assume the characteristics of the noise to be similar in gated

and non-gated images. The results in Figs. 5 and 6 show
a successful restoration of the images quality and effective
reduction of noise levels without introducing observable side-
effects or artifacts in the gated outputs. However, further
research is needed to ensure that such assumption is safe
and verify that any possible effects caused by distribution
changes between non-gated images used for training and
gated images at the time of inference will not cause major
effects in performance. In future, we intend to re-assess in
depth this assumption and measure any possible effects in
performance. For example, high quality gated reconstructions
could be used as evaluation targets against the denoised
outputs. Such an approach requires longer PET acquisition
times and radiotracer dosages for acquiring the high quality
gated images, and could be implemented for example as a
phantom study.

In Section III-C, results showed that the N2N approach
can also be applied to gated-PET as an alternative solution to
overcome the need of gated targets or even achieve higher de-
noising performance, especially when the performance of the
models is limited by the low quality and/or presence of noise
in the targets. Nevertheless, since this is not an unsupervised
method, it still requires of additional data acquired under
similar conditions and/or noise realizations for training. A
method consisting in the use of bootstrap resampling [51]
for the artificial generation of extra noise realization in PET
has been proposed as a possible solution to alleviate this
problem and would be worth further research [52]. Taking
into consideration all factors and limitations of the N2N
method, it might not offers much benefits for normal PET
scans, however, it still makes sense for gated images where
the noise levels are significantly higher than in normal non-
gated scans.

V. CONCLUSION

We presented a deep learning post-reconstruction denoising
study for cardiac gated-PET images using patient data, and
considered solutions that do not require simulated ground
truths or gated targets for training. The results showed that the
proposed models can successfully reduce noise levels while
correctly preserving the motionless resolution and anatom-
ical characteristics of the gates. We applied and evaluated
different networks on both, gated and non-gated scans, pro-
viding further evidence of the denoising performance of U-
Net based architectures. The results also showed the benefits
of a hybrid solution in addressing the limited access to
spatial context information of the 2D DCNNs and the high
data requirements of 3D DCNNs. Finally, we showed the
effectiveness of the N2N approach in restoring the underlying
activity distribution of the gates, indicating that N2N could be
a practical solution in the absence of high-quality targets.
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