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Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from
the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to
maternal prenatal smoking with offspring’s adult cardio-metabolic health.

Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal
smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe,
Australia, and USA (n = 18,212). DNA methylation at the GFI/1-locus was measured in whole-blood. Multivari-
able regression models were fitted to examine its association with exposure to prenatal and own adult smoking.
DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting
glucose (FG), high-density lipoprotein cholesterol (HDL—C), triglycerides (TG), diastolic, and systolic blood pres-
sure (BP).

Findings: Lower DNA methylation at three out of eight GFIT1-CpGs was associated with exposure to maternal pre-
natal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at
cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when ad-
justed for sex, age, and adult smoking with Bonferroni-corrected P < 0-012. In contrast, lower DNA methylation
at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted
1x 1077 <P<0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and
cg18146737 was associated with decreased BMI and WC (5 x 1078 <P <0.001). Lower DNA methylation at all
the CpGs was consistently associated with higher TG levels.

Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and ro-
bustly associated with cardio-metabolic risk factors.

Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595

DynaHEALTH.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cigarette smoking, including second-hand exposure, is estimated to
account for nearly 6 million deaths annually [1]. First and second-hand
exposures are widely recognized as independent risk factors for cardio-
vascular diseases (CVD), largely determined by dose and duration [1,2].
Proposed direct mechanisms linking cigarette smoking and CVD include
increased heart rate and myocardial contractility, inflammation, insulin
resistance, and oxidative stress [3,4]. Moreover, the risk may remain
even after successful long-term smoking cessation [5]. Similarly, mater-
nal prenatal smoking has implications for birth outcomes, including low
birth weight and risk of preterm birth [6], as well as increased risk to the
offspring's later cardio-metabolic health [7,8]. A recent global review re-
ported the highest estimated prevalence of maternal prenatal smoking
in Europe, despite the widely known risks [9].

Emerging research suggests that part of the downstream impact of
smoking likely persists through altered epigenetic patterns, many of

which have been associated with alterations in the gene expression
[10]. Of particular importance, altered DNA methylation at AHHR, GFI1,
and MYO1G genes is consistently observed among both adult smokers
and new-borns exposed to maternal prenatal smoking [10-13]. Evi-
dence on the stability of smoking-related-loci DNA methylation over
the lifetime is inconsistent. Many CpGs in former smokers show a rever-
sal of disrupted DNA methylation equivalent to non-smokers within
five years of cessation, whereas others show no reversibility even 20-
30 years after cessation [10,14]. Similarly, Richmond et al. suggested
there were both reversible and permanent changes at smoking-related
DNA methylation loci in offspring exposed to maternal smoking during
pregnancy [15].

Furthermore, eight GFI1-linked-CpGs with aberrant DNA methyla-
tion were reported to partially mediate the association of maternal pre-
natal smoking with birthweight.!® Considering the consistent
association observed between low birth weight and adverse adult car-
dio-metabolic health [8], we aimed to pursue a life-course approach to
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Research in context
Evidence before this study

Maternal prenatal smoking is associated with unfavourable birth
outcomes and has implications on offspring cardio-metabolic
health in later life. Despite the widely known risk, a recent global
systematic review reported that 52.9% of women, who smoke
daily, continue smoking during pregnancy, with the highest prev-
alence in the European region and most stable over the years. As
of yet, the mechanism underlying smoking associated adverse
cardio-metabolic health outcomes remains poorly understood
and is suggestive of the associated DNA methylation changes.
We searched PubMed for articles on maternal smoking associated
DNA methylation changes in offspring using the search terms ‘ma-
ternal smoking’, ‘pregnancy’, ‘DNA methylation’, ‘epigenetic
markers’, and ‘offspring’ for work published until December
2017. We noted that previous studies have identified many epige-
netic markers, especially DNA methylation changes in the off-
spring exposed to maternal prenatal smoking, but no study has
investigated the potential underlying role of these epigenetic
markers on long-term health. One study identified the mediating
role of maternal smoking related DNA methylation changes at
the GF/7 in the association between maternal prenatal smoking
and low birth weight, and thus our research aimed to go beyond
the direct effect of maternal smoking on birth weight.

Added value of this study

To the best of our knowledge, our study is one of the largest meta-
analysis conducted and includes 22 studies from Europe, US and
Australia to substantiate the debate of the epigenetic pathways
of life-long health. Our research is key to understanding the
causal, molecular pathways associated with such consistently ob-
served DNA methylation patterns, and how they may mediate the
association between smoking and clinical risks attributed to
smoking. In the present research, we bring evidence for ascertain-
ing the clinical relevance of these findings in the emerging field of
epigenomics. Epigenomics helps to understand why the risk for
diseases, in our case chronic cardio-metabolic diseases, may
exist even in the absence of a direct exposure. We uniquely iden-
tified lower DNA methylation at cg14179389, a strong maternal
smoking locus as a risk factor for adult adiposity, higher triglycer-
ides levels, and blood pressure. The study delivers strong evi-
dence to support the concept for the early life epigenetic
influence on adult health.

Implications of all the available evidence

We report novel findings on the maternal smoking-related epige-
netic factors at the GF/7-locus linking it to cardio-metabolic health
in the adult. The findings matched known cardio-metabolic dis-
eases risk attributed to maternal smoking exposure or adult
smoking, supporting an underlying epigenetic component that
can help bio-marking exposure to past risk. These findings provide
a strong foundation for further work to unravel emerging smoking
epigenetic markers with downstream detrimental health out-
comes and further draws attention to increase awareness on
smoking cessation and better prevention strategies.

evaluate the possibility that exposure to maternal smoking in preg-
nancy influences the health of offspring via epigenetic mechanisms.
We hypothesized that DNA methylation changes at GFI1-CpGs, a

potential smoking biomarker, persist throughout the life-course and as-
sociate with cardio-metabolic phenotypes in adults. We tested this hy-
pothesis in a large meta-analysis involving 22 population-based studies.

2. Material and methods
2.1. Participating studies

We included 22 studies consisting of 18,212 participants, including
five pregnancy-birth cohorts, 17 other population-based datasets and
their sub-studies: the Avon Longitudinal Study of Parents and Children
(ALSPAC) (specifically subset with DNA methylation profiles in the Ac-
cessible Resource for Integrated Epigenomic Studies), two studies from
the Bogalusa Heart Study (BHS - the European-American and African-
American cohorts), the BIOS consortium, the Estonian Genome Centre
University of Tartu (EGCUT), the European Prospective Investigation
into Cancer and Nutrition (EPIC), the Italian Cardiovascular section
(EPICOR), two independent subsets of the ESTHER study, the Coopera-
tive Health Research in the Augsburg Region F4 (KORAF4), the Lifelines
Deep (LLD), the London Life Science Population study (LOLIPOP), two
follow-up datasets from the Northern Finland Birth cohort 1966
(NFBC1966 - 31 years and NFBC1966 - 46 years) and Northern Finland
Birth cohort 1986 (NFBC1986), the Western Australian Pregnancy Co-
hort (RAINE) study, two independent studies from the Rotterdam
Study (RS) -RSIII-1 and RSII-3_III-2, the Study of Health In Pomerania
- Trend (SHIP-Trend), and the Young Finns Study 2011 (YFS). The
BIOS consortium represents four studies with coordinated DNA methyl-
ation measurements: the Cohort On Diabetes And Atherosclerosis
Maastricht (CODAM), the Leiden Longevity Study (LLS), the Nether-
lands Twin Register Study (NTR) and the prospective Amyotrophic Lat-
eral Sclerosis (ALS) study, the Netherlands (PAN). Among these, five
studies (ALSPAC, NFBC1966-31 yr, NFBC1966-46 yr, NFBC1986, and
RAINE) participated in the meta-analysis of associations between the
eight GFI1-CpGs and maternal prenatal smoking (n = 4230). Detailed
data collection and ethical approval of each study are described in sup-
plementary methods in the Appendix A. Subjects with missing informa-
tion on DNA methylation and multiple births were excluded.

2.2. Smoking

Maternal prenatal smoking and offspring's own adult smoking were
self-reported. Questions were harmonized to derive a dichotomous var-
iable for maternal smoking as ‘no maternal smoking’ and ‘any maternal
smoking’ during pregnancy. Adult own smoking was categorized as cur-
rent non-smokers and smokers (adult own smoking > one cigarette/
day).

2.3. DNA methylation measurement and quality control

We used eight GFI1-linked-CpGs: cg04535902, cg09662411,
cg09935388, cg10399789, cg12876356, cg18146737, cg14179389,
and cg18316974. Each study conducted DNA methylation measure-
ments and quality control. DNA methylation was measured in
peripheral whole blood by standard procedures for Illumina
HumanMethylation450 or EPIC array. DNA Methylation is described as
-value ranging between 0 (no cytosine methylation) and 1 (complete
cytosine methylation). Each study excluded failed samples based on de-
tection P-values, CpG-specific percentage, low DNA concentration,
bisulphite conversion efficiency, and other study-specific control met-
rics (Appendix A) [17].

24. Covariates

Covariates were age, sex, and technical covariates for CpGs (batch ef-
fects, control probe adjustments, and cell type proportions).
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Adjustments for technical variation and cell type proportion in each
study are described in the Appendix A.

2.5. Cardio-metabolic phenotypes

We used seven cardio-metabolic phenotypes derived from clinical
examinations: body mass index (BMI, weight(kg)/height(m),), waist
circumference (WC), high-density lipoprotein cholesterol (HDL-C), tri-
glycerides (TG), fasting glucose (FG), diastolic blood pressure (DBP),
and systolic blood pressure (SBP). All cardio-metabolic phenotypes
were used as continuous variables and standardized (mean = 0, stan-
dard deviation = 1). Correction constants were applied to HDL-C, TG,
and BP values, if participant reported lipid or blood pressure medication
use (Appendix A). According to availability in the participating studies,
BMI was available in 18,212, WC in 14,665, HDL-C in 18,212, TG in
18,212, FG in 16,529, DBP in 16,529, and SBP in 16,529 individuals of
the total.

2.6. Study-specific statistical analyses

Each study conducted statistical analyses according to the analysis
plan. Frequencies and means were computed for descriptive purposes.
We used multivariate regression to evaluate three sets of associations:
GFI1-CpGs with (i) maternal prenatal smoking (n = 4230), (ii) adult
own smoking (n = 13,551), and (iii) cardio-metabolic phenotypes (n
= 18,212) (Appendix B Fig. S1). Firstly, analyses in five pregnancy-
birth cohort studies were performed using: baseline model, which
used any maternal smoking during pregnancy as an exposure plus tech-
nical covariates regressed on DNA methylation as an outcome (beta-
values), and adjusted model with sex, age (where applicable) and
adult smoking as covariates. To assess the impact of adult own smoking
on DNA methylation level, we included: baseline model, which used
adult own smoking as an exposure plus technical covariates, and DNA
methylation as an outcome, and adjusted model including sex and age
as covariates. These two analyses were assessed in 20 participating
studies. Both maternal and adult smoking showed lower DNA methyla-
tion at GFI1-CpGs, and thus we assessed cardio-metabolic phenotypes
with respect to risk for lower DNA methylation. In the final analyses, co-
variate-adjusted models were performed in all participating studies
with: baseline model, using DNA methylation as an exposure plus tech-
nical covariates, and each cardio-metabolic phenotype as an outcome,
and adjusted model, including sex, age and adult smoking as additional
covariates.

2.7. Meta-analysis

We used METAL software to conduct inverse variance-weighted
fixed effects meta-analysis. We assessed heterogeneity using the I sta-
tistic (low-heterogeneity = I < 50%). Statistical significance was de-
fined by Bonferroni correction for multiple testing as 0-05/4 (P <
0-012), accounting for four clusters of cardio-metabolic phenotypes.

2.8. Supplementary analyses

In the NFBC1966 and 1986, we also examined the correlation be-
tween eight GFI1-CpGs. In a conditional analysis, we assessed associa-
tion between adult own smoking and GFI1-CpGs additionally adjusted
for all other GFI1-CpGs. Furthermore, as the full sample is multi-ethnic,
the sensitivity analysis was performed to investigate the association be-
tween lower DNA methylation at eight GFI1-CpGs and cardio-metabolic
phenotypes in a subset of European ancestry. Additionally, we also
assessed the association of the eight GFI1-CpGs with former and current
adult own smoking in NFBC1966 (Appendix B Tables S2, S5, S7 and S8).

3. Results
3.1. Participant characteristics

Participants were aged 16-81 years at the time of cardio-metabolic
phenotype measurements, with the majority between 40 and 60
years. Among these, 17% were current smokers (Table 1). 18% of the
participants were exposed to maternal prenatal smoking in the five
studies (Appendix B Table S1). All eight GFI1-CpGs had lower mean
DNA methylation levels in the group exposed to maternal prenatal
smoking compared with unexposed group.

3.2. Correlation structure of the GFI1-CpGs

Fig. 1 displays the correlation matrix between the eight studied GFI1-
CpGs in relation to their genomic location. The analysis performed in the
NFBC1986 and NFBC1966 described a strong correlation between seven
CpGs (cg04535902, cg09662411, ¢g09935388, cg10399789,
cg12876356, cg18146737, and cg18316974). In contrast cg14179389
was weakly correlated with cg09935388 (0-35; P<0-0001) only (Fig.
1 and Appendix B Table S2).

3.3. GFI1-CpGs DNA methylation and prenatal maternal smoking and
offspring's own smoking exposures

Following meta-analysis from five studies, the prenatal maternal
smoking exposure status was associated with lower DNA methylation
at cg14179389 (P = 6 x 1073°), cg09935388 (P =9 x 10~ '), and
cg12876356 (P = 0-008) (Fig. 2, Appendix B Table S3). Cg14179389
was found to be the strongest maternal smoking locus and the associa-
tion was not attenuated when adjusted for age, sex, and adult own
smoking (B = —0-03, P=2-0 x 10727, P = 19-3). Similarly, adult
own smoking status was associated with lower DNA methylation at all
the studied CpGs. However, cg09935388 was found to be the strongest
adult smoking locus (B = —0-07, P = 4-4 x 10~%7); the association
being independent of other CpGs in the conditional analysis (Fig. 3, Ap-
pendix B Table S4 and S5). In contrast, Cg14179389, the strongest
above-mentioned prenatal maternal smoking signal did not show asso-
ciation with adult smoking status when conditioned by the DNA meth-
ylation at the other seven GFI1-CpGs. In fact, of the eight CpGs studied,
only three of them remained associated with adult smoking following
conditional analysis including cg09935388, ¢g18316974, and
cg18146737 (P<0-001) (Appendix B Table S5).

Since smoking exposures were consistently negatively associated
with DNA methylation at the GFI1-locus, we assessed the associations
of cardio-metabolic phenotypes against lower DNA methylation, to be
consistent with the environmental risk itself i.e. increase in smoking.

3.4. Meta-analysis: eight GFI1-CpGs with lower DNA methylation and car-
dio-metabolic phenotypes

The associations between GFI1-CpGs and cardio-metabolic pheno-
types from the meta-analysis are presented in Fig. 4 and Appendix B
Table S6. Lower DNA methylation at cg14179389 was associated with
increased WC, TG, and BP after a Bonferroni-correction set at P <
0.012, with associations being enhanced with WC and BP when ad-
justed for sex, age, and adult own smoking (WC 3 = 0-04; BP R =
0-04; 0.0002 <P <0.001). Cg14179389 consistently showed the lowest
heterogeneity of the eight CpGs (I? < 25-4). In contrast, lower DNA
methylation at cg09935388 was associated with decreased BMI, WC,
and BP, although similarly to cg14179389 showed association with in-
creased TG. After adjustments, the associations remained showing mod-
erate attenuation with TG (BMI 3 = —0-06, WC 3 = —0-05; BPp =
—0-03, TG =0-01; 1 x 1077 < P<0.01). Lower DNA methylation at
cg12876356, cg18316974, and cg09662411 was associated with de-
creased BMI, WC, BP and increased TG and after adjustments,
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Table 1
Characteristics of the participants of studies in the meta-analysis.

Study Sample Males, Age, mean  Current BMI, mean WG, mean TG, mean HDL-C, mean FG, mean DBP, mean  SBP, mean (SD),
Acronym? size” N (%) (SD), years  smokersS, N (%) (SD),kg/m? (SD),cm (SD), mmol/l (SD), mmol/l (SD), mmol/l (SD), mmHg mmHg
ALSPAC 1530 554 (36) 49-1(5-8) 172(11) 26-8 (4-8) 89-2(13-2) 1:2(0:7) 1-4(0-4) 5:4(1-1) 74 (10) 123 (14)
BHS_EA 680 308 (45) 43-2(4-5) 168(25) 30-0(6-9) 98-6(16-4) 1-7(1-2) 1-2(0-3) 4-7(1-2) 81(9) 117 (14)
BHS_AA 288 113 (39) 43-2(4:5) 96(33) 32-5(8-6) 100-9(17-7) 1-3(1-0) 1-3(0-4) 5-0(2-0) 89 (14) 131 (22)
CODAM 160 86 (54) 65-5(6-8) 25(16) 28-9(4:3) NA 1-5(0-7) 1-4(0-3) NA NA NA
EGCUT 312 156 (50) 50-2(17) 56 (18) 27-4(5-6) 91-6(14-9) 1-3(0-8) 1-6 (0-5) 5-1(0-7) 80 (10) 128 (18)
EPICOR 584 376 (64) 53 194 (33) 26-6(3-8) 90-6(11-7) 1-5(0-9) 1-7(0-5) 6-1(1-6) 87 (11) 140 (21)
ESTHERa 1000 500 (50) 62-1(6-5) 186(19) 27-8(4:3) NA 1-3(0-9) 1-3(0-4) 5:6(1:2) 87 (12) 146 (22)
ESTHERD 864 390 (45) 62-1(6-5) 174(21) 27-7(4-8) NA 1-5(0-9) 1-3(0-4) 5:7(2-0) 89 (12) 148 (22)
KORAF4 1701 831(49) 60-9(8-9) 243(14) 28-1(4-6) 95-4(13-9) 1:-6(1-1) 1-5(0-4) 5-0(0-9) (11) 130 (21)
LLD 1057 446 (42) 45-2(13-5) 439 (42) 25-3(4-1) 88-2(12:5) 1:4(0-2) 1-6 (0-4) 5-2(0-1) 70 (9) 119 (13)
LLS 631 300 (48) 58-9(6-6) 85(13) 25-4(3-5) NA 1-9(1-2) 1-4(0-4) NA NA NA
LOLIPOP 3842 2386 52(10-3) 304 (8) 27-5(4-4) 96-9(11-2) 1-7(1-1) 1-3(0-3) 5-4(1-1) 81 (11) 131 (19)
(62)
NFBC1966-31 740 325(44) 31 194 (26) 24-5(4-0) 82-7(11-4) 1-1(0:7) 1-6 (0-4) 5-0(0-8) 76 (11) 124 (13)
NFBC1966-46 716 315(44) 46 113 (16) 26-8(4-8) 91-4(13-2) 1-3(0:9) 1-6 (0-4) 6-1(0-7) 86 (11) 129 (17)
NFBC1986 512 232 (45) 16 101 (20) 21-4(3-5) 74-4(9-2) 0-9(0-4) 1-4(0-3) 5.2(0-5) 68 (7) 115 (12)
NTR 729 256 (35) 40-3(15-1) 137(19) 24-6 (4-1) NA 1-3(0-7) 1-5(0-4) NA NA NA
PAN 163 100 (61) 62-6(9-5) 45(28) 26-1(3:7) NA 1-9(1-1) 1-4(0-3) NA NA NA
RAINE 819 418 (51) 17 NA 23-2(4-5) 79-7(11-6) 1:1(0-5) 1:3(0-3) 4.7(0-6) 58 (6) 113 (11)
RSIII-1 731 336 (46) 59-9(8-2) 197(27) 27-5(4-8) 93-5(12-8) 1-5(0-8) 1-4(0-4) 5:6(1-2) 81 (11) 132 (20)
RSII-3_11I-2 719 305(42) 67-6(5-9) 77(11) 27-7 (4-1) 94-4(12:0) 1-5(0-9) 1-5(0-4) 5-7(1:2) 84 (11) 144 (21)
SHIP 248 118 (48) 51-6(13-8) 53(21) 27-3(4-0) 89-0(12-5) 1-5(0-8) 1-4(0-4) 5-4(0-6) 76 (9) 124 (17)
YFS 186 72(39) 44-2 21(11) 26-2(4-7) 88-2(13-7) 1-2(0-8) 1-4(0-3) 5:4(1-1) 73 (9) 119 (13)

Data shown as N (%) or mean (SD). According to availability in the participating studies, BMI was available in 18212, WCin 14665, HDL-Cin 18212, TG in 18212, FG in 16529, DBP in 16529,
SBP in 16529 individuals of the total.

Abbreviations: BMI - Body Mass Index; WC - Waist Circumference; TG - Triglycerides; HDL-C - High Density Lipoprotein Cholesterol; FG - Fasting Glucose; DBP - Diastolic Blood Pressure;
SBP - Systolic Blood Pressure, NA - not available.

2 Study names: The Avon Longitudinal Study of Parents and Children (ALSPAC) (specifically subset with DNA methylation profiles in the Accessible Resource for Integrated Epigenomic
Studies, ARIES), the two studies from Bogalusa Heart Study (BHS - European American (EA) and African American (AA)), the Cohort On Diabetes And Atherosclerosis Maastricht (CODAM),
the Estonian Genome Centre, University of Tartu (EGCUT), the Italian cardiovascular section of EPIC (EPICOR), the Cooperative Gesundheitsforschung in der Region Augsburg (Cooperative
Health Research in the Augsburg Region) F4 (KORAF4), the two independent subsets of the Epidemiologische Studie zu Chancen der Verhiitung, Fritherkennung und optimierten Therapie
chronischer Erkrankungen in der dlteren Bevolkerung (ESTHERa and ESTHERD), the Lifelines Deep (LLD), the Leiden Longevity Study (LLS), the London Life Science Population study
(LOLIPOP), the two follow-up datasets from Northern Finland Birth cohort 1966 (NFBC1966-31 years and NFBC1966-46 years), Northern Finland Birth cohort 1986 (NFBC1986), the
Netherlands Twin Register study (NTR), the Prospective Amyotrophic Lateral Sclerosis study Netherlands (PAN), The Western Australian Pregnancy Cohort study (RAINE), the two inde-
pendent studies from Rotterdam Study (RS) -RSIII-1 and RSII-3_I1I-2, the Study of Health in Pomerania - Trend (SHIP-Trend), and the Young Finns Study 2011 (YFS). The CODAM, LLS, NTR,
and PAN belong to the BIOS consortium with coordinated DNA methylation measurements.

b Sample size of the studies with DNA methylation data.

¢ Current smoking was defined as smoking >1 cigarette per day.

associations with decreased BMI and WC survived Bonferroni-correc- 0.001). Lower DNA methylation at cg10399789 showed no associations
tion (5 x 1078 < P<9 x 10~°). Similarly, lower DNA methylation at following adjustments (P > 0.04). Lower heterogeneity was observed in
cg18146737 was associated with decreased BMI and WC and at only European ancestry individuals, rather than the full sample, for the
cg04535902, with decreased BMI when adjusted (1 x 1077 <P< association between GFI1-CpGs with BMI and WC (0 < <40)
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Fig. 1. Map and correlation clustering of DNA methylation at eight GFI1 CpGs on human chromosome 1 (HapMap build 37).
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Fig. 2. Forest plot showing meta-analysis effect sizes of DNA methylation at eight GFI1-CpGs by maternal prenatal smoking across five studies (n = 4230). Model 1: CpG = maternal
prenatal smoking + technical covariates; Model 2: CpG = maternal prenatal smoking + technical covariates + sex + age + adult own smoking. 95% CI, 95% Confidence Interval.
Bonferroni corrected PIHYPHEN]value threshold of P<0-012. Open and closed symbol indicate p>0-012 and p<0-012, respectively. Maternal prenatal smoking was defined as any
maternal smoking during pregnancy (0 No, 1 Yes). Standardized values with mean = 0 and standard deviation = 1 were used for CpG methylation across all the studies. DNA
methylation beta values can be interpreted as SD change in methylation for maternal prenatal smoking status from 0 to 1.

(Appendix B Table S7). The independent results of all the associations adult own smoking exposure, as well as uniquely identifying lower
from each of the 22 studies are present in the Appendix B Tables S9, DNA methylation at cg14179389, a prenatal maternal smoking-related
S10,S11 and S12. locus, as a risk factor for adult adiposity and blood pressure levels. Im-
portantly, lower DNA methylation at all the CpGs indicates risk for
higher triglyceride levels.
4. Discussion Recently, studies have shown GFI1-CpGs to mediate low birth
weight due to prenatal maternal smoking exposure [16], and to associ-
The present meta-analysis has corroborated the association of lower ate with sudden infant death syndrome (SIDS) [18]. One striking finding
DNA methylation at the eight GFI1-CpGs with maternal prenatal and

Adult own smoking (Yes, No)
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0 P»0-012

cg09935388  —&— ® P<0-012

cgl2876356 f— — m Medel 2
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-0.08 -0.06 -0.04 -0.02 0.00 0.02

DNA methylation beta value (95% Cl)

Fig. 3. Forest plot showing meta-analysis effect sizes of DNA methylation at eight GFI1-CpGs by adult smoking across 20 participating studies (n = 13,551). Model 1: CpG = adult own
smoking + technical covariates; Model 2: CpG = adult own smoking + technical covariates + sex + age. Cl: Confidence Interval. Bonferroni corrected P[HYPHEN]value threshold of
P<0.012. Open and closed symbol indicate p>0-012 and p<0-012, respectively. Adult own smoking was defined as 1 or more cigarette per day (0 No, 1 Yes). Standardized values with
mean = 0 and standard deviation = 1 were used for CpG methylation across all the studies.
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Fig. 4. Forest plot showing meta-analysis effect sizes of cardio-metabolic phenotypes in SD change by one SD lower DNA methylation at eight GFI1-CpGs across all the participating studies
(n = 18,212). Model 1: Cardio-metabolic Phenotype = CpG ~+ technical covariates; Model 2: Cardio-metabolic Phenotype = CpG + technical covariates + sex + adult smoking + age.
Bonferroni corrected P-value threshold of P < 0-012 has been used for this analysis. Open and closed symbol indicate p>0-012 and p<0-012, respectively. Standardized values with mean
= 0 and standard deviation = 1 were used for cardio-metabolic phenotypes and CpG methylation across all the studies. 3 can be interpreted as SD change in cardio-metabolic phenotype
per 1-SD decrease in methylation. According to availability in the participating studies, we had BMI for 18212, WC for 14665, HDL-C for 18212, TG for 18212, FG for 16529, DBP for 16529,
and SBP for 16529 of the total 18212 individuals. Abbreviations: BMI - Body Mass Index, BP - Blood Pressure, CI - Confidence Interval, HDL-C - High Density Lipoprotein Cholesterol.
Measurement units for each cardio-metabolic phenotype are given in Table 1.

from our study was the long lasting association between exposure to
maternal prenatal smoking and lower DNA methylation at
cg14179389 until adulthood. Moreover, lower DNA methylation at
cg14179389 was also associated with increased adult WC, SBP, and
DBP, suggesting a risk for adiposity and hypertension. The meta-analysis
revealed a consistent effect size and direction of association in all stud-
ies, highlighting the reproducibility of findings. Furthermore, the associ-
ations persisted and were reinforced after adjusting for adult own
smoking, supporting robustness and postnatal stability of maternal
smoking-related DNA methylation locus. Previous studies have ob-
served cg14179389 as the most consistent and strongest signal

associated with maternal prenatal smoking among GFI1-CpGs [13,16].
These findings also include an appreciable overlap with previously iden-
tified evidence for influence of maternal smoking on the offspring's risk
for obesity, hypertension, hyperlipidaemia and cardiovascular disease
[19,20]. As hypothesized, similarity in influences of maternal smoking
and cg14179389 on cardio-metabolic health identifies consequences
for childhood development, and suggests there may be an underlying
regulatory role for epigenetic changes in relation to detrimental car-
dio-metabolic health outcomes. We speculate that functionally impor-
tant DNA methylation changes at cg14179389 in adults are present
from birth due to smoking exposure in-utero.
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In contrast, lower DNA methylation of the other six GFI1-CpGs
(cg09935388, cg12876356, cg18316974, cg09662411, cg18146737,
cg04535902) was associated with decreased BMI, WC, and BP. Of
these all BMI and WC and the most of BP associations survived
Bonferroni correction. The associations were of similar magnitude, al-
though directionally opposite to cg14179389. Furthermore, adult own
smoking showed a confounding effect in attenuating the associations.
These findings are in agreement with the observational studies that
show highly complex and non-linear associations between smoking
and cardio-metabolic health [2,5,21]. Sneve et al. observed a U-shaped
relationship between the number of cigarettes/day and BMI, with low-
est BMI in those smoking 6-10 cigarettes/day; smoking cessation was
associated with an initial increase in weight compared to those who
continued smoking [22]. Increased risk of obesity among smokers is ob-
served in a dose dependent manner, where former heavy smokers are
more likely to be obese than former light smokers and have greater
risk for CVD events [5,21]. Higher BMI in heavy smokers likely reflects
clustering of risky behaviours that is conducive to weight gain. Paradox-
ically, whilst smoking acutely increases BP, smokers are observed to
have slightly lower BP levels than non-smokers, especially in young
adulthood, in larger epidemiological studies [23]. The comparable ob-
servations between six GFI1-CpGs and smoking with cardio-metabolic
phenotypes raises the intriguing possibility that cigarette smoking in-
duces epigenetic modifications at these CpGs, which, at least in part,
may reflect the detrimental impact of smoking on cardio-metabolic
health. Significant associations in our study between adult own
smoking and lower DNA methylation at GFI1-CpGs across the participat-
ing studies support this hypothesis (Fig. 3, Appendix B Table S4). The
observed epigenetic alterations may also partly indicate potential path-
ways for complex associations between smoking and BP.

Interestingly, lower DNA methylation at all eight CpGs showed asso-
ciation with higher TG in technically corrected models, but adjustment
for adult smoking attenuated the associations, indicating a strong con-
founding or mediation effect. Consistency in direction of effect across
all CpGs implies a concordant influence of both maternal and adult
smoking induced epigenetic alterations at the GFI1-CpGs on TG. Previ-
ous evidence shows that maternal prenatal smoking exposure is associ-
ated with hyperlipidaemia in offspring [19]. Similarly, adult smokers
have hyperlipidaemia and the influence of smoking cessation on lipid
profiles seems to be quite modest and higher triglyceride levels pose
significant risk to CVDs [24,25].

Lower heterogeneity was observed only in the European ancestry in-
dividuals, rather than the full sample, for the association between GFI1-
CpGs with BMI and WC, indicating population-specific influence
pertaining to adiposity (Appendix B Table S7). The studies excluded
here were of the African American and South Asian ancestry. There is
strong evidence that at any given BMI, the health risks are markedly
higher in some ethnic groups than others. Asians have higher weight-
related disease risks at a lower BMI and South Asians, in particular,
have especially high levels of body fat and are more prone to developing
abdominal obesity than Caucasians [26].

We observed contrasting associations of the different GFI1-CpGs
(cg14179389 vs six other CpGs) with cardio-metabolic phenotypes. In
the NFBC1966 and NFBC1986, we observed that cg14179389 differed
and did not correlate with the other CpGs, while the other seven CpGs
were highly correlated with each other (Fig. 1, Appendix B Table S2).
This is supported by a recent population-level study that identified dif-
ferential DNA methylation quantitative trait loci (meQTL) at these eight
GFI1-CpGs, where all but one of the CpG sites (cg14179389) were highly
correlated with the others, and formed contiguous clusters under the
control of one meQTL [27]. Furthermore, cg14179389 association with
adult smoking disappeared when adjusted for other CpGs whilst
cg09935388, cg18316974, and cg18146737 showed independent asso-
ciations (Appendix B Table S5). This explains the differences in their in-
dependent biological functions. Although some CpGs were associated
with both maternal and adult smoking, perhaps due to the reversible

nature of DNA methylation, their association with cardio-metabolic
phenotypes was similar to functional consequence of own smoking in
later life. Longitudinal analysis has provided evidence of rapid revers-
ibility of DNA methylation in general during early development, partic-
ularly during the immediate postnatal years, with stabilization beyond
age 7, suggesting a ‘catch up’ mechanism in early life [15,28]. In contrast,
the unperturbed effect of cg14179389 due to maternal smoking in our
study indicates persistent disruption of DNA methylation due to in-
utero smoking exposure at this particular site.

Collectively, these observations suggest evidence of two concepts
(Fig. 5). First, maternal prenatal smoking induces a foetal response mod-
ulated through persistent epigenetic disruption. Second, adult own
smoking, that may be potentially influenced by maternal smoking, in-
duces similar epigenetic changes, which may play a role in the underly-
ing pathways towards adverse consequences of smoking on
cardiovascular risk. It is important to consider that many other environ-
mental factors contribute to the cardiovascular risk (e.g. physical activ-
ity, stress, sedentary lifestyle, diet, alcohol consumption), and
associated DNA methylation disruption following exposures to the ma-
ternal prenatal and own smoking could only explain a partial mediating
role.

This study represents a major effort to perform a large-scale meta-
analysis of maternal prenatal smoking, DNA methylation at GFI1-locus
and cardio-metabolic phenotypes. A wide range of phenotypic data
was available, facilitating assessment of the functional consequences
of DNA methylation changes over a varied age range. The study repli-
cates and confirms previously reported associations of lower DNA
methylation at the GFI1-CpGs with exposure to own and maternal pre-
natal smoking.

We acknowledge that large collaborations utilizing summary level
data, although useful in enhancing power to detect associations, may
limit the ability to undertake multiple sensitivity analyses. We were un-
able to fully analyse DNA methylation changes over the life-course and
disentangle the interaction of age with DNA methylation, to support
emerging evidence that shows reversibility of DNA methylation pat-
terns [29]. Another limitation was the use of leucocytes, which were
the source of DNA used. They are composed of several cell types each
with cell-type specific DNA methylation patterns and thus differences
in these cell types could potentially confound the observed associations.
Adjustment for derived cell type proportions was included in the analy-
sis to overcome this eventuality. Our study included eight GFI1-sites as-
sociated with maternal prenatal smoking. We recognize that further
work exploring the associations between DNA methylation of other
adult and maternal prenatal smoking related loci and cardio-metabolic
phenotypes could yield additional insights into the role of epigenetic
markers that may jointly affect cardio-metabolic health. In addition,
lack of gene expression data across studies limited insight into the mo-
lecular mechanisms. Additional evidence is needed to support GFIT as
the causal gene responsible for the observed findings. However, in a re-
cent animal study, GFI1 did affect the systemic inflammation through
the NE-dependent-C/EBPa-GFI1 pathway that predisposes to metabolic
dysfunction and obesity [30]. Translating these findings to human data
would be clinically relevant in light of our findings.

5. Conclusion

Our findings support evidence that epigenetic factors at the GFI1-
locus, that are associated with exposures to smoking in-utero or adult-
hood are also linked to cardio-metabolic risk factors, specifically sug-
gesting a role in hypertriglyceridemia. The findings support an
underlying epigenetic component of the epidemiologically observed
cardio-metabolic risk by maternal prenatal and adult smoking. The
fact that these epigenetic factors associate with cardio-metabolic risk
in later life even among non-smokers exposed to in-utero smoking
may have important clinical implications. Such epigenetic loci might
serve as objective biomarkers of past environmental exposures that
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Fig. 5. Model representing the potential mechanistic pathways in the study.

could be used for preventive health measures. Our findings provide a
strong foundation for further work to unravel emerging epigenetic
markers with downstream detrimental health outcomes, and deliver
strong evidence to support the early origin of adult health. It draws at-
tention to increase awareness on smoking cessation and better preven-
tion strategies.
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