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Computer extracted gland features from H&E predicts prostate
cancer recurrence comparably to a genomic companion
diagnostic test: a large multi-site study
Patrick Leo 1, Andrew Janowczyk1,2, Robin Elliott3, Nafiseh Janaki4, Kaustav Bera 1, Rakesh Shiradkar 1, Xavier Farré 5,
Pingfu Fu 6, Ayah El-Fahmawi7, Mohammed Shahait7, Jessica Kim7, David Lee 7, Kosj Yamoah 8, Timothy R. Rebbeck9,
Francesca Khani 10, Brian D. Robinson 10, Lauri Eklund11, Ivan Jambor11,12, Harri Merisaari11, Otto Ettala13, Pekka Taimen 11,
Hannu J. Aronen11,14, Peter J. Boström15, Ashutosh Tewari 16, Cristina Magi-Galluzzi17, Eric Klein 18, Andrei Purysko19,
Natalie NC Shih20, Michael Feldman20, Sanjay Gupta21,22, Priti Lal20 and Anant Madabhushi 1,22✉

Existing tools for post-radical prostatectomy (RP) prostate cancer biochemical recurrence (BCR) prognosis rely on human
pathologist-derived parameters such as tumor grade, with the resulting inter-reviewer variability. Genomic companion diagnostic
tests such as Decipher tend to be tissue destructive, expensive, and not routinely available in most centers. We present a tissue
non-destructive method for automated BCR prognosis, termed "Histotyping", that employs computational image analysis of
morphologic patterns of prostate tissue from a single, routinely acquired hematoxylin and eosin slide. Patients from two institutions
(n= 214) were used to train Histotyping for identifying high-risk patients based on six features of glandular morphology extracted
from RP specimens. Histotyping was validated for post-RP BCR prognosis on a separate set of n= 675 patients from five institutions
and compared against Decipher on n= 167 patients. Histotyping was prognostic of BCR in the validation set (p < 0.001, univariable
hazard ratio [HR]= 2.83, 95% confidence interval [CI]: 2.03–3.93, concordance index [c-index]= 0.68, median years-to-BCR: 1.7).
Histotyping was also prognostic in clinically stratified subsets, such as patients with Gleason grade group 3 (HR= 4.09) and
negative surgical margins (HR= 3.26). Histotyping was prognostic independent of grade group, margin status, pathological stage,
and preoperative prostate-specific antigen (PSA) (multivariable p < 0.001, HR= 2.09, 95% CI: 1.40–3.10, n= 648). The combination
of Histotyping, grade group, and preoperative PSA outperformed Decipher (c-index= 0.75 vs. 0.70, n= 167). These results suggest
that a prognostic classifier for prostate cancer based on digital images could serve as an alternative or complement to molecular-
based companion diagnostic tests.
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INTRODUCTION
Tumor morphology is associated with cancer aggressiveness in
prostate cancer (PCa). Gleason grading, used by pathologists to
score the loss of glandular structure and organization in tissue1, is
strongly correlated with patient outcome2. While Gleason grading
is done by pathologists and is therefore subjective3, computerized
image analysis of tissue can quantitatively define tumor morphol-
ogy. Quantitative histomorphometric (QH) approaches implicitly
capture attributes of tumor grade through features of glandular
and nuclear shape4, arrangement5, or disorder6, as well as tissue
texture7. Characteristics of aggressive PCa, such as poorly formed
lumens, can be captured by combinations of these features.
Studies have shown an association between QH features and

patient outcome6–10. However multi-site evaluation has been a
challenge for QH approaches, in part due to pre-analytic variation
between sites in specimen preparation, staining, and scanning.
Radical prostatectomy (RP), the surgical removal of the prostate,

remains the most common curative therapy for PCa11. Following
RP, some patients will experience biochemical recurrence (BCR),
defined by consecutive serum prostate-specific antigen (PSA) test
results >0.2 ng/mL. BCR is a surrogate endpoint for prostate cancer
and is associated with a hazard ratio (HR) of 4.3212 for disease-
specific death. In the STAMPEDE trial, adjuvant therapy reduced
metastasis and disease-specific death13, though adjuvant therapy
is not appropriate for all patients due to the low overall mortality
rate of PCa14. Estimates of a patient’s risk of BCR post-surgery
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could help identify those patients who might benefit from
adjuvant therapy while avoiding unnecessary treatment of low-
risk patients. Nomograms, the current gold standard for BCR
prognosis, produce a probability of BCR based on clinical
variables15 but do not provide perfect risk stratification16,
motivating the development of new assays. In addition to
nomograms, prognostic molecular companion diagnostics
exist17–19, but these are tissue destructive, preventing analysis of
the entire tumor or retesting of the same sample, and expensive.
In this study, we present a QH method for BCR prognosis using

automated analysis of an H&E slide from the dominant tumor
nodule. A total of 242 features were extracted from slides of n=
889 patients. From the n= 214 of these patients used for training,
51 features that were stable across staining and scanner variation
were used to construct an elastic-net penalized Cox regression
model. The Cox model selected six features associated with high-
risk disease and used the weighted sum of these features to
estimate the BCR risk for each patient. This model, termed
Histotyping, was then validated on n= 675 patients. Histotyping
was compared to the Decipher genomic classifier in n= 167
patient subset. Decipher consists of 22 RNA-expression-based
genomic markers that are involved in prostate cancer pathogen-
esis and have been validated for prognosis of metastasis18 and
BCR20,21.

RESULTS
Robustness of Histotyping to site-specific effects
The results of UMAP embedding of the validation set are shown in
Fig. 1. While the images from each site tended to segregate in the
image-metric embedding, no site formed a distinct cluster in the
Histotyping feature space. This suggests that the pathology
images varied considerably in brightness, staining, and contrast
across the sites, however, the Histotyping features were not
adversely affected by variations in staining or scanning across the
different laboratories.

Robustness of Histotyping to annotation perturbations
The concordance-index (c-index) of Histotyping remained nearly
constant as boundary layers were removed from the annotations
(Fig. 2), though 6% of patients had a different risk category when
removing a single boundary layer, rising to 11% at three boundary
layers. This suggests that Histotyping’s overall performance was
relatively consistent across changes in the manually selected
region of interest. However, additional study is needed on
automated slide and tumor region selection, as well as approaches
for aggregating Histotyping feature measurements across multiple
cancer foci.

The prognostic power of histotyping
Histotyping was significantly prognostic of BCR in the training (p <
0.001, HR= 2.64, 95% confidence interval [CI]: 1.56–4.44, c-index
= 0.63) and validation (p < 0.001, HR= 2.83, 95% CI: 2.03–3.93, c-
index= 0.68) sets. The features selected by the Cox regression
model on the training set are shown in Table 1 and consist of five
measures of lumen shape and one feature of lumen arrangement.
Histotyping results in each site of the validation cohort are shown
in Fig. 3. While there was a separation between Histotyping low-
risk and high-risk patients in all five sites, this separation was not
significant in the UTurku and MS cohorts, a result potentially
influenced by the small number of patients in these sets, with just
48 and 22 patients, respectively.
As shown in Fig. 4, Histotyping was prognostic in patients with

(a) Gleason grade group 3 (HR= 4.09) and (b) negative surgical
margins (HR= 3.26). In total, 15 clinically stratified groups were
tested (low and high age, preoperative PSA, tumor stage, positive

and negative surgical margins, patient Caucasian-American and
African-American race, and each Gleason grade group). Bonferroni
correction for multiple hypothesis testing yielded a corrected
significance threshold of 0.05/15= 0.0033. The Gleason grade
group 3 and negative surgical margin subcohorts had p-values
below this threshold, as did all other cohorts with the exception of
some Gleason grade groups. Results in every subcohort are
available in the supplementary information. Histotyping was
prognostic independent of common clinical markers both as a
continuous score (p= 0.002, HR= 1.17, 95% CI: 1.06–1.28) and as a
categorical low/high-risk grouping (p < 0.001, HR= 2.09, 95% CI:
1.40–3.10), shown in Table 2.
For the n= 167 patients who had Decipher score information,

to compare Decipher to Histotyping categorically, Decipher low-
risk and intermediate-risk patients were grouped together as
these groups did not have significantly different BCR-free survival
(p= 0.14). Histotyping (p= 0.005, HR= 2.60, 95% CI: 1.41-4.81, c-
index= 0.68, 95% CI: 0.59–0.74) performed slightly worse than
Decipher (p < 0.001, HR=2.73, 95% CI: 1.38-5.41, c-index= 0.70,
95% CI: 0.61–0.78), as shown in Fig. 5. Histotyping+ surpassed
Histotyping alone and Decipher (p < 0.001, HR= 3.77, 95% CI:
2.04–6.96, c-index= 0.75, 95% CI: 0.69–0.81) using five covariates
selected by the model: Histotyping score, pre-operative PSA, and
pathological Gleason grade groups 3, 4, and 5 (relative to 1).
Though the 95% CIs of Histotyping+ and Decipher overlapped,
Histotyping+ had the higher c-index in 81% of bootstrap
iterations and the narrower 95% CI. In addition, Histotyping+
had a significantly higher c-index than Decipher in the bootstrap
iterations (p < 0.001). In the validation set overall, Histotyping+ (c-
index= 0.74) also outperformed a model using only pre-operative
PSA and Gleason grade group (c-index= 0.72), as well as Gleason
grade group (c-index= 0.69) and pre-operative PSA (c-index=
0.69) individually.

Figure 1d shows an overlay of the corresponding Gleason
grade group for each patient in the validation set within the UMAP
embedding of the Histotyping features. As may be observed,
higher Gleason grade group patients were more likely to be
Histotyping high-risk. However, the concordance between Glea-
son grade groups and Histotyping-determined low- and high-risk
patients appears to be weak to moderate at best (Pearson
correlation coefficient= 0.37), in turn suggesting that Histotyping
is capturing morphologic attributes at least partially complemen-
tary to Gleason grade.

DISCUSSION
Accurate post-surgery prostate cancer (PCa) biochemical recur-
rence (BCR) prognosis has substantial implications for patient care
and healthcare utilization. While the STAMPEDE trial13 has
demonstrated that adjuvant therapy can improve patient survival
after radical prostatectomy (RP), not every patient will benefit
from further treatment. It is possible that the use of a companion
diagnostic to direct adjuvant therapy only to high-risk patients
would have resulted in a larger benefit in the STAMPEDE trial22.
However, there is a shortage of accurate prognostic tools for the
post-RP setting. Based on current adjuvant therapy guidelines, the
number needed to treat to prevent one death related to PCa is
1023. Existing BCR prognosis tools, nomograms, are driven by
Gleason grading, which is limited by the power of human
perception and has only moderate inter-reviewer agreement3.
Accordingly, there has been an increasing awareness of the need
for an objective and accurate BCR prognosis tool.
Genomic assays, such as the Decipher genomic test, have been

validated for post-RP metastasis16 and BCR20,21 prognosis, but
consume the tested tissue. While most RP specimens have an
abundance of tissue, this requirement prohibits performing
multiple tests on the same sample. In small tumors, the tumor
tissue could be exhausted by repeated testing. In addition,
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Fig. 1 UMAP embedding of image properties and Histotyping features. Shown are UMAP projections based on (a) image properties and
(b–g) the six features used in Histotyping on the entire validation set. Each dot represents a patient, and dots are colored according to: a, b the
site the patient originated from, c Histotyping risk group, with kernel density, estimates shown for the Histotyping risk groups, d Gleason
grade group, including kernel density estimates from (c), (e) Histotyping+ risk group, and (f) Decipher score, with markers indicating
Histotyping+ risk group. g shows the patients who had BCR in less than one year or were BCR-free for more than 10 years, with outcomes
indicated by marker shape. Regions of interest from select patients are shown from various locations in (g). Patients P1, P2, and P3 were
Histotyping high-risk patients who had early BCR, while P4 and P5 were low-risk patients who were BCR free for more than 10 years.
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molecular testing protocols are expensive and sophisticated,
reducing their availability. These limitations make it infeasible to
perform genomic testing on all the cancerous tissue in an RP
specimen.
Recently, quantitative histomorphometric (QH) approaches

have been proposed as a complement to molecular assays. While
some work has linked QH features to PCa disease-free survival24,
much of the literature has focused on automated Gleason grading
and cancer detection25–30. In this work, we presented a QH-based
assay, termed Histotyping, for post-RP PCa risk assessment.
Histotyping uses an H&E slide and handcrafted features of gland
morphology. Deep learning, in which a model maps images
directly to labels with no other guidance, has been used in a range
of digital pathology applications, including PCa grading28–30,
microsatellite instability prediction31, and mutation prediction32.
While deep learning approaches have produced promising results,
their black-box nature means that model decisions are not always
readily explainable or related to known pathological features.
Histotyping leverages deep learning for lumen segmentation,
from which handcrafted features are extracted. Since each feature
in Histotyping is human interpretable, it is possible to scrutinize
the model’s decisions and verify that Histotyping is properly
quantifying tumor morphology.

Histotyping was prognostic of post-RP BCR-free survival in the
validation cohort independent of common clinical markers, both
as a continuous score and categorical low/high-risk division. This
evaluation mirrors the design used to validate the Decipher
genomic test16. Histotyping’s hazard ratio (HR) of 2.83 was similar
to gold-standard nomograms (HR= 1.09–2.74)33. Histotyping+,
incorporating Histotyping, Gleason grade group, and preoperative
prostate-specific antigen level, had a higher concordance index
than Histotyping alone and Decipher. The difference in perfor-
mance between Histotyping+ and Decipher was significant,
though the overlapping 95% confidence intervals of these models
suggest that further study with a larger cohort may be necessary
to increase confidence with regard to the degree of prognostic
performance improvement. Histotyping added value in two
cohorts which would be low-risk or intermediate-risk by current
methods: patients with Gleason grade group 3 and those with
negative surgical margins. This suggests Histotyping is able to
identify patients at risk of BCR who would not be likely to be
recommended for additional therapy under current schemes.
Histotyping may be especially suitable for identifying high-risk
patients with lower-risk clinical markers due to the lower hazard
associated with additional adjuvant therapy versus de-intensifying
therapy for clinically high-risk patients.
Of the six features selected for Histotyping, all but one were

gland lumen shape descriptors. These findings suggest that, in
addition to the overall appearance of the glands, the variation in
lumen shape and architecture across a tumor is related to PCa
aggressiveness. Specifically, a greater proportion of disk-shaped
lumen within a tumor was associated with elevated BCR risk, and
that the mixing of these disk-shaped lumens with elongated
elliptical or crescent-shaped lumens further increased risk. The
other features indicate that higher variation in gland density
across the tumor carried a higher risk of BCR. The biological
rationale for these features is further described in the supple-
mentary material. These features were found to be stable across
sites, despite the images being clearly affected by site-specific
factors and batch effects.
These findings are consistent with other studies which have

found that lumen shape, disorder, and texture features are useful
for cancer detection25,34, grading25–27, and BCR prognosis6,24.
However, previous work in this area has used a lower proportion
of shape features, potentially because these studies did not
consider inter-site feature instability. It is possible that studies
using unstable features would have worse results on independent
validation sets, as was found in Leo et al.27.

Fig. 2 Visualization of the sensitivity analysis experiment. a The first five boundary layers of a sample region of interest. In this panel, tissue
outside of the original annotation was replaced with white background for clarity. b Results of removing an increasing number of boundary
layers from the annotations of the validation set patients. The bars depict the fraction of patients who were originally Histotyping low/high-
risk who changed to high-/low-risk after removing a given number of boundary layers. The dots show the c-index and 95% CI of Histotyping
based on scores calculated after removing boundary layers. These results suggest that Histotyping is robust to variation in pathologist
judgment on tumor boundary.

Table 1. The set of 6 gland lumen features selected by the elastic-net
Cox regression model as being most prognostic of BCR on the n= 214
patient training set.

Feature name Hazard ratio

Shape: Mean Fourier descriptor 3 1.002

Shape: Standard deviation of the first invariant moment 0.932

Shape: Median mean/max imum ratio of radius 1.100

Shape: 5%/95% Fourier descriptor 6 0.968

Shape: 5%/95% Fourier descriptor 9 0.929

Sub-Graph: Kurtosis of edge length 0.977

The hazard ratio of feature x is eβx where β is the vector of weights from the
fitted Cox regression model. The hazard ratios are shown here reflect the
risk of an increase of one standard deviation in feature value on the
training set. A hazard ratio less than 1 implies that an increase in that
feature’s value is associated with a reduced risk of BCR, while a hazard ratio
greater than 1 implies the opposite

P Leo et al.

4

npj Precision Oncology (2021)    35 Published in partnership with The Hormel Institute, University of Minnesota



The performance of Histotyping suggests that morphology
alone, from a single lesion on a single slide, has prognostic power
comparable to gold-standard methods. The finding that gland
lumen shape and architecture is correlated with BCR risk is not
surprising, as the Gleason scoring method is based on similar
features analyzed by a human pathologist2. In contrast to existing
companion diagnostics, Histotyping requires only a routinely
acquired diagnostic H&E slide, a whole-slide scanner, and a typical
desktop computer.
A limitation to this study was that metastasis outcome was not

available for these patients. While Decipher has been validated for
BCR prognosis20,21, it was calibrated for metastasis18. A further
limitation of Histotyping, shared by all existing PCa companion
diagnostics, is that it has not been validated for treatment
response prediction. Future work may include comparing
Decipher and Histotyping in metastasis prognosis and in biopsy
specimens where tissue for pathological and molecular analysis is
more limited.
In addition, Histotyping relies on a pathologist for the selection

of a slide and tumor region containing the most aggressive
cancer, though this could be automated in future work and the
results of the annotation modification experiment suggest that
Histotyping is relatively robust to inter-reader disagreement in
tumor boundary delineation. Directly testing the effect of inter-

reviewer variation in slide and lesion selection and attempting to
automate this process could be an avenue for future work. A
single diagnostic slide was used here due to the prohibitive
expense of locating and scanning all patient slides. While
Histotyping examines only a sample of the overall tumor, far
more tissue is interrogated than in molecular tests performed on
tissue cores, which also rely on manual identification.
Though the multi-site validation included a variety of scanners,

the effect of different scanners was not explicitly examined
beyond the feature stability filtering used to mitigate such effects,
a method shown to be effective in previous work27,35,36. In a
related point, one-third of the training set (70 of 214 patients) was
composed of patients from the University of Pennsylvania
(UPenn). While these patients were collected separately and
scanned on a different scanner compared to the UPenn patients in
the validation set, there was some institutional overlap between
the training and validation sets, and the Decipher validation set
was made up almost entirely of UPenn patients. While it was
possible for this to result in an over-optimistic estimate of model
performance, this concern is somewhat mitigated by Histotyping
performing better on the NewYork Presbyterian Hospital/Weill
Cornell Medical Center (HR= 4.22) and The Cancer Genome Atlas
(HR= 10.50) cohorts than on the UPenn cohort (HR= 2.34).
Finally, Histotyping was not significantly prognostic in some

Fig. 3 Kaplan-Meier BCR-free survival plots of patients from each site. Patients from a UPenn, b WCM, c TCGA, d UTurku, and (e) MS are
categorized as (blue) low-risk and (red) high-risk.
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subsets, such as the University of Turku cohort and in Gleason
grade groups other than 3, though it achieved a hazard ratio >1
and p < 0.10 in grade groups 1, 2, and 4.
In this work, we have demonstrated an automated method that

can stratify patients by BCR risk using a single H&E slide with
performance similar to that of the Decipher molecular companion
diagnostic.

METHODS
Dataset description
This study used n= 889 patients (Table 3) from six sources: University of
Pennsylvania (UPenn), University Hospitals Cleveland Medical Center (UH),
NewYork-Presbyterian Hospital/Weill Cornell Medical Center (WCM),
University of Turku (UTurku), The Cancer Genome Atlas (TCGA)37, and
the Icahn School of Medicine at Mount Sinai (MS). Patients were digitized
on a variety of whole-slide scanners (Supplementary Table 1). TCGA

patients with discrepancies in outcome information were excluded37. A
training set was selected to include patients from multiple institutions
totaling approximately a quarter of the dataset and contained n= 70
UPenn patients and n= 144 UH patients. The validation set consisted of
the remaining n= 675 patients from five sites (UPenn, WCM, UTurku,
TCGA, MS), with no training set patients included in the validation set.
UPenn patients were split between training and validation sets based on
the scanner used. This division is shown visually in Fig. 6. Data collection
was approved by institutional review boards at each institution and
conducted in accordance with U.S. Common Rule guidelines. Specimen
Gleason grades were assigned by a genitourinary specialist pathologist for
all patients, with the potential exception of TCGA patients, where
particulars of the grading pathologist were not available. The requirement
for written consent from patients was waived due to the retrospective
nature of the study.
Inclusion criteria were a successfully digitized diagnostic slide, post-RP

PSA test results for at least 30 days post-surgery, and no neo-adjuvant or
adjuvant therapy. Patients were labeled BCR at the date of second PSA

Table 2. Cox proportional hazard univariable (UVA) and multivariable (MVA) analysis of BCR including the Histotyping risk score with Gleason grade
group, margin status, preoperative PSA, and pathological tumor stage in n= 648 patients of the validation set with available clinical information.

UVA MVA (Histotyping continuous) MVA (Histotyping categorical)

Variable Hazard ratio (95% CI) p Hazard ratio (95% CI) p Hazard ratio (95% CI) p

Histotyping (increase of 0.1) 1.23 (1.13–1.34) <0.001 1.17 (1.06–1.28) 0.002 –

Histotyping low-risk ref – ref

Histotyping high-risk 2.40 (1.64–3.52) <0.001 – 2.09 (1.40–3.10) <0.001

Gleason grade group 1 ref ref ref

Gleason grade group 2 1.41 (0.79–2.50) 0.246 0.97 (0.54–1.77) 0.931 0.97 (0.53–1.76) 0.916

Gleason grade group 3 3.07 (1.65–5.71) <0.001 1.48 (0.76–2.88) 0.254 1.50 (0.77–2.90) 0.234

Gleason grade group 4 5.29 (2.58–10.85) <0.001 3.33 (1.55–7.14) 0.002 3.44 (1.61–7.34) 0.001

Gleason grade group 5 6.68 (3.27–13.63) <0.001 2.69 (1.28–5.64) 0.009 2.83 (1.35–5.89) 0.006

Positive surgical margins 2.34 (1.55–3.54) <0.001 1.29 (0.82–2.02) 0.271 1.26 (0.80–1.99) 0.312

Log2 preoperative PSA, ng/mL 1.77 (1.48–2.12) <0.001 1.41 (1.15–1.73) <0.001 1.33 (1.09–1.63) 0.005

Stage < T2b ref ref ref

Stage ≥T2b 3.87 (2.53–5.93) <0.001 1.63 (0.64–4.14) 0.304 1.70 (0.67–4.34) 0.264

Fig. 4 Kaplan-Meier BCR-free survival plots of patients in the training and validation sets. Patients are categorized as (blue) Histotyping
low-risk and (red) Histotyping high-risk. Shown are (a) the n= 214 patient training set, b the n= 675 patient validation set, (c) the n= 138
patients of the validation set with Gleason grade group of 3, and (d) the n= 404 patients of the validation set with negative surgical margins.
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serum tests >0.2 ng/mL or censored at the date of the last available
PSA test.
A subset of the validation set consisting of 145 UPenn and 22 MS

patients had Decipher genomic classifier18 results available and were used
to compare Histotyping to Decipher. These UPenn patients constituted a
consecutive cohort operated on by a single surgeon.
The highest grade (for UTurku patients) or diagnostic (for all other

sources) slide of each patient was digitized in a whole-slide scanner. Slide
and tumor nodule used were determined by a genitourinary pathologist. A
single representative cancerous region with at least 10 glands, selected to
include the highest grade cancer on the slide, was annotated on each
digital image. This mirrors the manual selection of a representative tissue
block for molecular companion diagnostic tests38. One pathologist (X.F.)
annotated the images from UTurku, a second pathologist (R.E.) annotated
all other images. Training set images also had a representative non-
cancerous region annotated for the feature stability filtering step of model
training.

Histotyping construction
The Histotyping design workflow is shown in Fig. 7. Lumen were first
segmented to enable feature extraction. This segmentation was performed
by a UNet-inspired39 deep learning model. Images were resized to 1
micron-per-pixel (×10 magnification) resolution for this step. The model
was trained on 41 1000 × 1000 pixel regions cropped from 37 training
slides annotated for a total of 4927 gland lumens. On the four regions held
out for testing, the model yielded a per-pixel true positive rate of 0.94, a
true negative rate of 0.97, and an F1 score of 0.90. Segmentation was
performed on all 889 images, and results were visually examined, with
segmentations found to be sufficiently accurate for feature extraction.
A total of 242 features were extracted from the annotated tumor region

on each slide, of which a subset of six was used in Histotyping. 216 features
were descriptors of morphology and architecture extracted from lumen
segmentation. 26 Haralick texture features were extracted from the tumor
region, disregarding the segmentations. These features were selected
based on their performance in PCa grading27 and BCR prognosis6.
All 242 features were subjected to filtering for stability across sites using

the method of Leo et al.34 on the training set. Features that passed stability
filtering were used to train a Cox regression model via 10-fold elastic-net
regularization (α= 0.5)40. In this process, the set of features and their
weights in the model were optimized by minimizing a penalty term
consisting of both the model error in the training set and the sum of
feature weights. This approach performs feature selection, by forcing the

weights of some features to zero, and model fitting, by selecting the
weights associated with the lowest error on the training set. Features were
normalized using the training set to have a mean of 0 and standard
deviation of 1 so that HRs would be comparable across features. The final
model, containing six features, was then applied to all slides to obtain a
risk score for each patient. A threshold was learned on the training set to
stratify patients as low-risk or high-risk. The supplemental material includes
details of the segmentation procedure, model framework, and extracted
features.

Evaluating reproducibility of Histotyping
UMAP embedding41 was performed on the validation set to assess the
inter-site variation between images prior to Histotyping analysis and to
verify that Histotyping features were resilient to batch effects across
multiple sites. Such sources of pre-analytic variation can arise from
differences in specimen preparation and scanning between laboratories,
are correlated with the site, and have been shown to degrade the
performance of digital pathology analysis algorithms34,42,43. UMAP was
used to reduce the feature space to two dimensions for evaluating the
clustering between slides from different laboratories. If distinct clusters
emerged in the UMAP space and those clusters corresponded to slides
from a specific site, that would reflect the presence of site-specific
attributes or batch effects. On the other hand, if the images from all sites
were more homogeneously distributed in the UMAP space, it would
suggest that the original set of features was resilient to the batch effects.
The UMAP embedding was performed on both the (1) original set of

images and then (2) the set of Histotyping features from the same set of
images. This was done to test the hypothesis that, though the input
images exhibited site-specific effects and would cluster in the UMAP space,
the features extracted for Histotyping were stable across sites. A digital
pathology analysis tool, HistoQC42, was used to extract 29 quantitative
metrics describing the brightness, contrast, color distribution, and stain
intensities from the validation set images. A full list of metrics is available in
the supplemental material. The embedding was repeated on the same set
of images, but this time on the six features comprising Histotyping.

Simulating the effect of inter-reviewer variability in tumor
annotation on Histotyping
To test the robustness of Histotyping to simulated inter-reviewer variation
in tumor annotation, Histotyping analysis was rerun on each validation set
image by iteratively perturbing and eroding the original tumor annotation.
Since reader disagreement on the cancerous region was most likely to

Fig. 5 Kaplan-Meier BCR-free survival plots of the 167 patients of the validation set who had Decipher score information. Patients are
stratified by (a) Histotyping, (b) Decipher risk groups, c Histotyping+, which incorporates Histotyping, pre-operative PSA, and Gleason grade
group, and (d) Decipher risk groups with low and intermediate-risk as a single category.
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Table 3. Clinical data for the 889 patients used in this study.

Training set Validation set

Variable UPenn UH UPenn TCGA WCM UTurku MS

Patients 70 144 351 175 79 48 22

Race, No. (%)

Caucasian-American 63 (90.0) 91 (63.2) 232 (66.1) 70 (40.0) 0 (0.0) 0 (0.0) 17 (77.3)

African-American 7 (10.0) 35 (24.3) 111 (31.6) 3 (1.7) 79 (100.0) 0 (0.0) 2 (9.1)

Other 0 (0.0) 5 (3.5) 8 (2.3) 1 (0.6) 0 (0.0) 48 (100.0) 1 (4.5)

Unknown 0 (0.0) 13 (9.0) 0 (0.0) 101 (57.7) 0 (0.0) 0 (0.0) 2 (9.1)

Patient age, years (median [Q1, Q3]) 59 (55, 65) 61 (57, 64) 61 (56, 66) 60 (55, 65) 61 (56, 66) 65 (61, 68) 62 (59, 67)

Unknown 0 129 0 0 0 24 0

pT stage, No. (%)

2 36 (51.4) 9 (6.3) 163 (46.4) 90 (51.4) 63 (79.7) 28 (58.3) 14 (63.6)

3 (substaging unavailable) 0 (0.0) 2 (1.4) 1 (0.3) 0 (0.0) 0 (0.0) 3 (6.3) 0 (0.0)

3a 23 (32.9) 5 (3.5) 139 (39.6) 53 (30.3) 11 (13.9) 12 (25.0) 4 (18.2)

3b 11 (15.7) 2 (1.4) 48 (13.7) 27 (15.4) 5 (6.3) 3 (6.3) 4 (18.2)

4 0 (0.0) 0 (0.0) 0 (0.0) 2 (1.1) 0 (0.0) 0 (0.0) 0 (0.0)

Unknown 0 (0.0) 126 (87.5) 0 (0.0) 3 (1.7) 0 (0.0) 1 (2.1) 0 (0.0)

N stage, No. (%)

0 70 (100.0) 11 (7.6) 345 (98.3) 126 (72.0) 78 (98.7) 35 (72.9) 21 (95.5)

1 0 (0.0) 0 (0.0) 3 (0.9) 24 (13.7) 1 (1.3) 1 (2.1) 1 (4.5)

Unknown 0 (0.0) 133 (92.4) 3 (0.9) 25 (14.3) 0 (0.0) 12 (25.0) 0 (0.0)

Pre-operative PSA, ng/mL (median [Q1, Q3]) 8 (5, 11) 6 (5, 8) 6 (5, 9) 6 (5, 9) 6 (4, 8) 8 (6, 10) 8 (5, 13)

Unknown 0 66 4 5 3 1 0

RP Grade Group, No. (%)

1 8 (11.4) 33 (22.9) 74 (21.1) 20 (11.4) 17 (21.5) 9 (18.8) 1 (4.5)

2 38 (54.3) 80 (55.6) 163 (46.4) 73 (41.7) 40 (50.6) 17 (35.4) 13 (59.1)

3 16 (22.9) 11 (7.6) 68 (19.4) 43 (24.6) 15 (19.0) 8 (16.7) 4 (18.2)

4 4 (5.7) 2 (1.4) 22 (6.3) 23 (13.1) 1 (1.3) 4 (8.3) 0 (0.0)

5 4 (5.7) 4 (2.8) 22 (6.3) 16 (9.1) 6 (7.6) 9 (18.8) 4 (18.2)

Unknown 0 (0.0) 14 (9.7) 2 (0.6) 0 (0.0) 0 (0.0) 1 (2.1) 0 (0.0)

Positive surgical margins, No. (%) 30 (42.9) 9 (6.3) 208 (59.3) 29 (16.6) 8 (10.1) 7 (14.6) 1 (4.5)

Unknown 0 (0.0) 129 (89.6) 1 (0.3) 16 (9.1) 0 (0.0) 1 (2.1) 0 (0.0)

Follow-up of censored patients, years (median [Q1, Q3]) 2 (1, 4) 7 (5, 9) 2 (2, 5) 1 (1, 3) 2 (0, 4) 2 (2, 4) 0 (0, 1)

Patients with BCR, No. (%) 35 (50.0) 45 (31.3) 115 (32.8) 7 (4.0) 10 (12.7) 11 (22.9) 5 (22.7)

Unknown 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Fig. 6 CONSORT diagram of the allocation of patients in this study.
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occur at the edges of the tumor, where cancerous glands begin to mix
with non-cancerous ones, the outer layer of glands was removed from
each annotation and the resulting Histotyping score was recalculated. This
process was repeated 10 times on every validation set annotation, at which
point a layer 10 glands thick had been removed from the original
annotation (see Fig. 2). This simulated the effect of variation in pathologist

annotation of tumor extent. The c-index of Histotyping and fraction of
patients whose Histotyping risk category changed at each boundary layer
removal was measured. If Histotyping was highly sensitive to the
precise extent and annotation of the cancerous region, a large number
of patients changing risk categories and steep drop-off in c-index would be
observed.

Fig. 7 Diagram of the Histotyping development process. a Pathologist annotation of a representative tumor region on a whole-slide image.
b Result of automated lumen segmentation and feature visualizations from a region of interest in the pathologist-annotated tumor region.
Shown is a Voronoi diagram, constructed by edges that are equidistant from adjacent glands, the first invariant moment, which is equivalent
to moment of inertia, and the distance ratio, which is the ratio of a gland’s average radius to its maximum radius. In the invariant moment 1
and distance ratio figures, glands are shaded from yellow to red according to their feature values. c Steps of model training, where features are
filtered for stability using the three cohorts of the training set. A Cox regression model was then fitted using 10-fold elastic-net regularization.
d Results of model training. Each patient of the n= 214 training set is represented as a dot in the scatter plot, with patients who had BCR as
red dots and censored patients as blue dots. Dots are located on the x-axis at their time of BCR or time of last PSA test and on the y-axis at
their Histotyping risk score from the Cox regression model. The stratification threshold identified on the training set is shown as a horizontal
black line and was then used to classify patients as low-risk or high-risk. Regions of interest from patients at various risk scores are shown
in boxes.
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Histotyping performance evaluation
The performance of Histotyping was evaluated in the validation set using
the separation in BCR-free survival time between the low-risk and high-risk
groups by logrank p-value, hazard ratio, and Harrell’s c-index. Model
independence was evaluated in a Cox proportional hazards model with
Histotyping risk score, Gleason grade group, margin positivity, pathological
tumor stage, and preoperative PSA. Clinically stratified cohorts were
analyzed separately to determine if Histotyping added value. Two such
cohorts (Gleason grade group 3, margin negative) are discussed here, with
further results in the supplemental material.

Comparison of Histotyping and decipher
Histotyping was compared to Decipher for BCR prognosis in the 167
patients of the validation set who had Decipher score information.
Decipher scores were calculated based on the predefined 22-marker
Decipher classifier18. The Decipher score is a score between 0 and 1, with
lower scores indicating a lower risk of metastasis. Decipher categorizes
patients as high-risk (Decipher score >0.60), intermediate-risk (0.45–0.60),
or low-risk (<0.45).
In addition, a second elastic-net Cox model was constructed on the

training set using the continuous Histotyping score, preoperative PSA level,
and Gleason grade group to create the Histotyping+ model. These
covariates were chosen as they were available in n= 148 training set
patients, more than for any other set of covariates. Histotyping+ was
compared to Decipher by c-index in the n= 167 patients of the Decipher
validation set in absolute terms and in 1000 iterations of bootstrapping.
The 95% CI of c-index was computed from these bootstrap iterations and a
two-tailed t-test was used to test for a significant difference in the
distributions. For low/high-risk stratification, a new decision threshold was
chosen using the training set in the same process as for Histotyping.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1422627844. The following files are
openly available as part of this data record: the Histotyping scores of each patient in
the training set (n= 214) in the file “training_set_HT_scores.xlsx”; the Histotyping
scores of each validation set patients during successive boundary layer removals in
the file “boundary_layer_data.xlsx’; image metrics, Histotyping scores, Histotyping+
scores, and UMAP components for each patient in the validation set in the file
“HT_UMAP_supporting_data.xlsx”; ground truth masks and segmentation results on
lumen segmentation model validation set images in the folder “gland_segmenta-
tions.zip”. The patient clinical data are contained in the Excel spreadsheet
“patient_clinical_info.xlsx”. These data are not publicly available for the following
reason: material transfer agreements from source hospitals do not allow public
sharing of patient information. However, the data can be made available upon
reasonable request to the corresponding author.
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