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Abstract
Introduction Fatty acid desaturase 1 (FADS1) gene encodes for delta-5 desaturase enzyme which is needed in conversion 
of linoleic acid (LA) to arachidonic acid (AA). Recent studies have shown that response to dietary PUFAs differs between 
the genotypes in circulating fatty acids. However, interactions between the FADS1 genotype and dietary LA on overall 
metabolism have not been studied.
Objectives We aimed to examine the interactions of FADS1 rs174550 genotypes (TT and CC) and high-LA diet to identify 
plasma metabolites that respond differentially to dietary LA according to the FADS1 genotype.
Methods A total of 59 men (TT n = 26, CC n = 33) consumed a sunflower oil supplemented diet for 4 weeks. Daily dose 
of 30, 40, or 50 ml was calculated based on body mass index. It resulted in 17–28 g of LA on top of the usual daily intake. 
Fasting plasma samples at the beginning and at the end of the intervention were analyzed with LC–MS/MS non-targeted 
metabolomics method.
Results At the baseline, the carriers of FADS1 rs174550-TT genotype had higher abundance of long-chain PUFA phos-
pholipids compared to the FADS1 rs174550-CC one. In response to the high-LA diet, LA phospholipids and long-chain 
acylcarnitines increased and lysophospholipids decreased in fasting plasma similarly in both genotypes. LysoPE (20:4), 
LysoPC (20:4), and PC (16:0_20:4) decreased and cortisol increased in the carriers of rs174550-CC genotype; however, 
these genotype–diet interactions were not significant after correction for multiple testing.
Conclusion Our findings show that both FADS1 rs174550 genotype and high-LA diet modify plasma phospholipid 
composition.
Trial registration The study was registered to ClinicalTrials: NCT02543216, September 7, 2015 (retrospectively registered).
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LysoPE  Lysophosphatidylethanolamine
MUFA  Monounsaturated fatty acid
PC  Phosphatidylcholine
PLS-DA  Partial least-squares discriminant analysis
PUFA  Polyunsaturated fatty acid
QC  Quality control
SA  Stearidonic acid
VIP  Variable importance in projection

Introduction

Composition of human metabolome is dependent on the 
genes encoding enzymes for metabolic pathways, and availa-
bility of specific substrates. Some of metabolites, precursors, 
or intermediates of the metabolism are derived directly from 
diet. These metabolites are metabolized to produce wide 
range of molecules which act as cellular signaling factors 
and structural components. Thus, the human metabolome is 
dependent on both diet and variants in the genes encoding 
enzymes for metabolism. In the current study, we aimed to 
investigate how genetic variation in a polyunsaturated fatty 
acid (PUFA) metabolism-related fatty acid desaturase 1 gene 
(FADS1) affects subjects’ metabolic profiles and responses 
to a high linoleic acid (LA, 18:2n6) diet.

Decreased incidence of type 2 diabetes and cardiovascu-
lar diseases are associated with higher levels of n-6 LA and 
long-chain n-3 PUFAs in circulation but not with long-chain 
n-6 arachidonic acid (AA, 20:4n6) [1–3]. However, levels 
of PUFAs in circulation are not solely determined by their 
dietary intakes. Dietary fatty acids and variation in the genes 
involved in fatty acid metabolism explain some of the vari-
ation in fatty acid composition of plasma lipids [4]. Dietary 
sources for essential fatty acids, LA and alpha-linolenic 
acid (ALA, 18:3n3), include plants and plant-derived oils 
[5]. FADS1 encodes for fatty acid delta-5 desaturase (D5D) 
enzyme. Enzymatic route involving D5D is responsible for 
the conversion of LA and ALA to AA and eicosapentaenoic 
acid (EPA, 20:5n3), respectively. First, fatty acid delta-6 
desaturase (D6D) converts LA and ALA, both from dietary 
sources, to gamma-linolenic acid (GLA, 18:3n6) and steari-
donic acid (SA, 18:4n3), respectively. Fatty acid elongase 
5 enzyme elongates GLA and SA to dihomo-gamma-lino-
lenic acid (DGLA, 20:3n6) and eicosatetraenoic acid (ETA, 
20:4n3), which are further desaturated by D5D to AA and 
EPA [6]. Estimated enzyme activity of D5D is modified by 
genetic variants in FADS1, and the conversion rate of LA to 
AA differs between the carriers of different genotypes [7, 8].

Allelic frequencies of FADS variants differ across popu-
lations [9]. FADS haplotype, which is associated with lower 
plasma proportions of AA and DHA, occurs at a frequency 
of 1% in African population, 97% in native Americans, and 
25–50% in Europeans and Asians. This FADS1 haplotype 

associates with 43% and 24% lower plasma levels of AA and 
DHA, respectively, compared to the homozygous haplotype 
with more efficient conversion [10]. In addition to human 
genetic ability to metabolize dietary PUFAs, the intake of 
PUFAs varies from country to country. The consumption of 
n-6 LA has been increasing during the last 100 years in the 
US, and currently, n-6/n-3 ratio ranges from ~ 10:1 in the US 
(1999) [11] to ~ 3:1 in Finland (The National FINDIET 2017 
Survey). The gene expression of FADS1 is affected by several 
intronic variants in the FADS gene cluster [12–15]. Carriers of 
alleles associated with higher FADS1 expression have higher 
estimated activity of D5D [7, 8, 16] and thus higher rates of 
conversion of LA to AA, which causes differences in the fatty 
acid composition of plasma lipids. Cross-sectional studies 
indicate that genetic variants of FADS1 have an impact on sev-
eral cardiometabolic risk factors. Lower plasma concentrations 
of triglycerides and higher high-density lipoprotein (HDL) 
particles [15], especially large and very large HDL particles 
[17], and glucose [18], are related to the variant with higher 
D5D activity. These subjects are at higher risk for develop-
ing type 2 diabetes [18]. Considering the differences in the 
dietary intake of PUFAs across the populations and the impact 
of FADS1 variants on fatty acid metabolism and metabolic 
traits, the interactions of this gene and diet should be studied 
to further reveal its effects on human health.

We have recently shown that the impact of dietary LA on 
high-sensitivity C-reactive protein (hs-CRP) concentration 
depends on the rs174550 variant of FADS1 [16]. Mechanisms 
how dietary LA and genetic variants of FADS1 are associ-
ated with the inflammatory responses are poorly understood. 
We applied non-targeted LC–MS metabolomics in a study, 
in which subjects with different FADS1 rs174550 genotypes 
received a diet rich in LA for 4 weeks. We aimed to find 
metabolites that could explain differences seen on hs-CRP. 
Furthermore, we investigated the interactions between FADS1 
rs174550 genotypes and a diet rich in LA. The difference in 
metabolic profiles at the baseline and the rate of conversion 
of LA to AA potentially modulates the response to dietary 
PUFAs. Utilization of non-targeted metabolomics approach for 
fasting plasma samples allowed us to estimate the differences 
between endogenous metabolism of fatty acids and overall 
metabolome between FADS1 rs174550-TT and -CC genotypes 
and the effects of the high-LA diet.

Materials, subjects, and methods

FADSDIET1 intervention

The full description of the FADSDIET1 intervention 
has been previously reported [16]. In brief, carriers of 
the FADS1 rs174550 TT and CC genotypes were invited 
from the Metabolic Syndrome In Men (METSIM) cohort. 
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Altogether, 59 healthy non-diabetic men with FADS1 
rs174550 TT genotype (n = 26) and CC genotype (n = 33) 
completed the intervention (Online Resource 1). The car-
riers of the CC genotype were significantly older compared 
to the carriers of the TT genotype, but there were no other 
significant differences in the clinical markers (Table 1). 
Carriers of the FADS1 rs174550 TT genotype had signifi-
cantly higher estimated D5D activity in plasma cholesteryl 
esters before the intervention [16]. Participants consumed 
their habitual diets throughout the intervention with the 
30, 40, or 50 ml/day sunflower oil supplementation. Sun-
flower oil dosing was dependent on BMI. The dosing of 
sunflower oil supplementation was estimated as a per-
centage of total energy intake to ensure similar relative 
supplementation to all subjects despite of their BMI. The 
supplementation provided approximately 17–28 g LA on 
top of normal daily intake. Fasting plasma samples were 
collected before and after the 4-week intervention. A 4-day 
food record was collected before the intervention and a 
7-day food record during the intervention. Portion sizes 
were weighted or estimated using household measures and 
pictures of portion sizes. Food records were checked by a 
clinical nutritionist at return. Food records were analyzed 
by the AivoDiet nutrient calculation software (version 
2.0.2.1; Aivo Finland). The study plan was approved by 
the Ethical Committee of the Hospital District of North-
ern Savo and all the treatments were carried out accord-
ing to the Declaration of Helsinki. There were no avail-
able data on the differences in the response to dietary LA 
between the carriers of different FADS1 genotypes at the 
time of designing the study, so the power calculation was 
based on the effect of FADS1 rs174550 genotype on the 
plasma fatty acids. Based on the cross-sectional data in the 

METSIM study, there is 95% power to observe significant 
differences (30%) between the carriers of the TT and CC 
genotype, α = 0.05, in the proportion of plasma AA with 
ten participants/group [16]. It is likely that a larger, > 10, 
sample size is needed to observe significant differences on 
the plasma metabolites with non-targeted metabolomics. 
Based on these assumptions, the sample size was estimated 
to 30/group.

Metabolomics analysis

Non-targeted liquid chromatography–mass spectrom-
etry-based metabolic profiling analysis was performed 
at Afekta Technologies Ltd. (www. afekta. com) using 
reversed-phase (RP) and hydrophilic interaction chroma-
tographies (HILIC) in positive and negative electrospray 
ionization (ESI). An aliquot of the plasma sample, 100 
µL, was mixed with 400 µL of acetonitrile and mixed 
by pipetting. Samples were centrifuged at 18,000× g for 
10 min at 4 °C to filter through 0.2 µm polytetrafluoroeth-
ylene filters in a 96-well plate. Small aliquots (2–5 μL) 
were taken from the plasma samples, mixed together in 
one tube, and used as the quality control sample (QC) in 
the analysis. The samples were analyzed by liquid chro-
matography–mass spectrometry (LC–MS), consisting of 
a 1290 Infinity Binary UPLC coupled with a 6540 UHD 
Accurate-Mass Q-TOF (Agilent Technologies). Zorbax 
Eclipse XDB-C18 column (2.1 × 100 mm, 1.8 μm; Agi-
lent Technologies) was used for the RP separation and an 
Acquity UPLC BEH amide column (Waters) for the HILIC 
separation. After each chromatographic run, the ioniza-
tion was carried out using jet stream ESI in the positive 
and negative mode. The collision energies for the MS/MS 

Table 1  Clinical characteristics 
of participants at baseline 
according to FADS1 rs174550 
genotype

Data are presented as median and interquartile range (IQR)
p1; Mann–Whitney’s U test for baseline differences between the FADS1 rs174550 TT and CC genotypes

TT (n = 26) CC (n = 33) p1

Median (IQR) Median (IQR)

Age, years 55.0 (53.0; 56.8) 59.0 (57.0; 61.0) 8.30E-05
Body weight, kg 81.4 (73.5; 88.3) 79.7 (73.7; 83) 0.536
BMI, kg/m2 25.7 (23.6; 27.6) 24.9 (22.5; 26.6) 0.151
Waist circumference, cm 95.0 (89.3; 100.0) 95.4 (90.0; 98.5) 0.748
Serum fasting total cholesterol, mmol/L 5.3 (4.8; 5.6) 5.5 (4.5; 6.3) 0.292
Serum fasting HDL cholesterol, mmol/L 1.4 (1.2; 1.6) 1.4 (1.1; 1.5) 0.988
Serum fasting LDL cholesterol, mmol/L 3.4 (2.8; 3.6) 3.3 (2.7; 4) 0.861
Serum fasting triglycerides, mmol/L 1.0 (0.8; 1.3) 1.2 (1.0; 1.6) 0.055
Plasma fasting glucose, mmol/L 5.6 (5.3; 5.9) 5.7 (5.5; 6) 0.232
Plasma fasting insulin, mU/L 6.7 (5.1; 10.0) 7.9 (5.4; 9.7) 0.703
Systolic blood pressure, mmHg 129.0 (118.8; 133.8) 125.0 (118.0; 134.0) 0.652
Diastolic blood pressure, mmHg 82.5 (77.5; 86.8) 81.0 (77.0; 89.0) 0.994
Use of statins, n (%) 2 (8) 2 (6)

http://www.afekta.com
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analysis were selected as 10, 20, and 40 V, for compat-
ibility with spectral databases.

Data were collected by “Find by Molecular Feature” 
algorithm in MassHunter Qualitative Analysis B.07.00 
software (Agilent Technologies, USA). The allowed ion 
species in ESI( +): [M + H] +, [M + Na] + , [M + K] + , 
[M + NH4] + , and [2M + H] + , and in ESI( −): [M − H] − , 
[M + Cl] − , [M + HCOO] − , [M + CH3COO] − , and 
[2M − H] − . Signals with height ≥ 3000 counts and ≥ 2 
ions were included in the compound list. Peak spacing 
tolerance for isotope grouping was 0.0025 m/z plus 7 ppm, 
with isotope model for common organic molecules. We 
used Mass Profiler Professional (Agilent Technologies) 
for peak alignment. The data were combined in one.cef file 
after the first initial alignment, against which the original 
raw data were reanalyzed with compound mass tolerance 
was ± 15 ppm, retention time ± 0.150 min, and symmet-
ric expansion value for chromatograms ± 35.0 ppm. Peak 
alignment and data cleanup were performed with Mass 
Profiler Professional software.

Data preprocessing

The signal intensities of the molecular features were cor-
rected for the drift pattern caused by the long LC–MS run. 
Regularized cubic spline regression was fit separately for 
each signal on the QC samples and the feature abundances 
of all samples were normalized using the acquired drift 
function [19]. Prior to data filtering, the data matrix was 
divided into four different matrixes, genotypes, and visits 
separately. These matrixes were filtered with 50% rule; if 
metabolite is present in over 50% of any taken group, it 
will be selected for further analyses. Filtering reduced the 
percentage of missing values from 38 to 20%. Number of 
features decreased from 12,619 to 10,427. After filtering, 
the data were log10 transformed and missing values were 
imputed by random forest with ‘’missForest’’ R package 
[20]. Maximum number of iterations were set to 10. Fea-
tures with mass over 1000 Da and average intensity less 
than 50 000 were removed. Number of features decreased 
from 10,427 to 3452 after filtering steps. These 3452 fea-
tures were used in statistical analyses. Before multivariate 
statistical analyses, the data were normalized to quantiles 
and autoscaled.

Statistical analyses

Metabolite profiles at the baseline were compared with the 
unpaired Mann–Whitney’s U test and paired version was 
applied to compare differences between baseline and week 
4 timepoints. To analyze differences on the responses to the 
high-LA diet between genotypes, later referred as genotype 

× diet interactions, metabolite measurements were rank 
normalized and analyzed using linear mixed effect model 
using R statistical software and nlme package (version 3.1). 
Metabolite measurement was used as a dependent variable, 
genotype x visit interaction, genotype, and visit were set 
as fixed effect, and subject identifier as a random effect. 
For metabolomic data, Benjamini–Hochberg FDR correc-
tion for multiple comparisons was used for p values and 
applied for all 3452 features. FDR p < 0.05 was considered 
as statistically significant and unadjusted p values < 0.05 as 
nominally significant. The nutrient intake data were ana-
lyzed with the same univariate methods than metabolomic 
data and p < 0.05 was considered as statistically significant. 
Partial least-squares discriminant analyses (PLS-DA) were 
performed with the R package “mixOmics” [21]. Pre-inter-
vention differences in metabolic profiles between the car-
riers of the FADS1 rs174550-TT and -CC genotypes were 
analyzed with PLS-DA. Changes within both genotypes 
were also analyzed with the multilevel PLS-DA, which is 
a paired extension of traditional PLS-DA and can be con-
sidered as a multivariate version of a traditional univariate t 
test. The performance of PLS-DA models was assessed with 
receiver-operating characteristics curves and area under the 
curve (AUC). A number of components in final models were 
evaluated with the function “perf”; 2, 3 and 2 components 
for baseline, the TT and CC genotype models. Classification 
error rates indicate robust models. AUC and p values for 
PLS-DA models: baseline (comp1 0.9615 1.485e-09, comp2 
1 5.761e-11), TT genotype (comp1 0.8595 8.7e-06, comp2 
0.9808 2.716e-09 and comp3 0.9956 8.738e-10), and CC 
genotype (comp1 0.8861 6.941e-08, comp2 0.9578 1.627e-
10). Sizes of changes within groups during the intervention 
were estimated by Cohen’s d with the corrections for small 
sample sizes [22]. R packages ComplexHeatmap v. 2.2.0 
[23] and ggpubr v. 0.4.0 were used for data visualization.

Identification of metabolites

Features with average variable importance in projection 
value (VIP) > 1.5 on the model for baseline differences 
and both multilevel models for genotypes were selected 
for identification. Features with unadjusted p value < 0.05 
were selected for identification. Metabolites of interest were 
identified with three different levels. Level 1 identifications 
were matched against their mass, retention time, and MS/MS 
spectra ions from in-house library (commercial standards). 
Level 2 identification was matched against databases (MS-
DIAL library version 3.96 [24], HMDB [25], Metlin [26]) 
and in-house library including putatively identified com-
pounds by their mass and MS/MS fragmented ions. Level III 
were predicted based on the fragmentation spectra, including 
in silico fragmentation.
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Non-targeted metabolite profiling analysis revealed 
metabolites affected by the diet and the genotype. When 
focusing on the differential features between the genotypes, 
there were at the baseline 369 features with VIP > 1.5 and 54 
features with FDR p value < 0.05. For the changes observed 
during the intervention within the TT genotype group, the 
corresponding numbers were 314 and 37 and for the CC 
genotype 468 and 303. Total of 149 features showed nomi-
nally significant genotype × diet interaction, referring to 
differential response to high-LA diet between the carriers 
of the FADS1 rs174550 genotypes, out of which none were 
statistically significant after FDR correction. Total of 58 
metabolites were identified: 19, 25, and 14 for level 1, 2, and 
3 identifications, respectively. List of all identified metabo-
lites with analytical data are listed in Online Resources 2–4.

Results

Dietary intakes before and during the FADSDIET 
intervention

There were no differences in dietary intakes between the 
carriers of the TT and CC genotypes at the baseline or dur-
ing the intervention (Table 2). Total energy (kcal), total fat 
(E%), MUFA (E%) and PUFA (E%), and LA (g) and vitamin 
E (mg) intakes increased during the intervention in response 
to the high-LA diet. However, positive energy balance led to 
no significant weight gain [16]. Absolute dietary intakes of 
other PUFAs (ALA, EPA, and DHA) remained unchanged.

Table 2  Dietary intake of nutrients before (4-day food records) and during (7-day food records) the intervention in the carriers of the FADS1 
rs174550 TT and CC genotypes

Data are presented as median and interquartile range (IQR)
p1; Mann–Whitney’s U test for baseline differences between the TT and CC genotypes, p2; paired Wilcoxon test for the changes within geno-
types, p3; linear mixed effect model for significance of the responses between TT and CC genotype to high-LA diet
SFA saturated fatty acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid, LA linoleic acid, ALA alpha-linolenic acid, EPA 
eicosapentaenoic acid, DHA docosahexaenoic acid

Baseline Intervention p1 p2 TT p2 CC p3

TT (n = 26) CC (n = 33) TT (n = 26) CC (n = 33)

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Energy, kcal 2226 (2013; 2596) 2286 (2011; 2532) 2519 (2220; 2816) 2639 (2319; 2840) 0.601 0.003 1.79E-05 0.976
Carbohydrates, g 220.4 (183.9; 252.7) 228.1 (211.3; 279.1) 228.8 (201.0; 269.0) 246.9 (208.9; 278.5) 0.417 0.920 1.000 0.905
Carbohydrates, 

E%
42.1 (37.6; 46.1) 39.6 (38.3; 46) 37.0 (31.6; 41.8) 37.2 (33.6; 41.0) 0.826 0.001 4.61E-05 0.710

Protein, g 95.9 (88.4; 108.5) 102.7 (87.0; 120.2) 92.0 (79.6; 106.3) 99.2 (82.1; 108.1) 0.644 0.036 0.235 0.345
Protein, E% 17.4 (16.1; 20.4) 17.7 (15.9; 18.8) 14.5 (13.1; 16.2) 14.5 (13.6; 16.5) 0.710 8.94E-08 5.53E-07 0.175
Fat, g 86.3 (71.4; 98.8) 87.9 (71.4; 104.1) 121.7 (102.7; 135.8) 121.3 (106.9; 133.2) 0.826 7.45E-07 3.26E-09 0.720
Fat, E% 34.7 (30.1; 38.8) 35.0 (29.9; 37.8) 44 (40.4; 45.7) 42.2 (39.8; 45.0) 0.958 1.28E-06 1.25E-07 0.907
SFA, g 29.6 (24.8; 34.9) 29.1 (25.2; 37.7) 34.2 (26.9; 40.1) 33.9 (28.6; 40.7) 0.922 0.031 0.140 0.655
SFA, E% 11.9 (9.5; 14.5) 12.0 (10.4; 13.3) 12.3 (11; 13.8) 12.1 (10.0; 13.1) 0.910 1.000 0.458 0.259
MUFA, g 28.2 (23.4; 34.7) 31.5 (25.1; 38.8) 37.9 (30.9; 41.6) 37.3 (33.9; 42.5) 0.500 1.66E-04 3.40E-05 0.728
MUFA, E% 11.6 (11; 12.7) 12.5 (10.6; 13.8) 13.4 (12.5; 14.3) 13.6 (11.8; 14.2) 0.601 0.003 0.006 0.620
PUFA, g 13.8 (11.6; 19.6) 16.1 (11.6; 19.8) 36.4 (32.1; 42.3) 37.0 (34.5; 40.7) 0.631 1.49E-07 2.33E-10 0.804
PUFA, E% 5.9 (5.1; 6.6) 5.8 (5.0; 7.1) 13.2 (12.5; 14.7) 12.7 (11.6; 14.3) 0.946 5.96E-08 2.33E-10 0.818
LA, g 8.7 (7.4; 12.3) 8.8 (6.9; 11.8) 30.9 (26.9; 36.9) 30.1 (28.1; 34.6) 0.898 5.96E-08 2.33E-10 0.605
LA, E% 3.6 (3; 4.4) 3.4 (2.9; 4.4) 11.1 (10.7; 12.7) 10.5 (9.4; 12.2) 0.874 5.96E-08 2.33E-10 0.446
ALA, g 2.3 (1.8; 3.4) 2.2 (1.5; 3.1) 2.7 (1.9; 3.0) 2.3 (2.0; 3.1) 0.699 0.901 0.537 0.872
EPA, mg 75.6 (22.7; 153.2) 114.6 (24.3; 258.6) 58.2 (36.4; 167.3) 139.3 (81.4; 269.7) 0.417 0.548 0.491 0.387
DHA, mg 216.6 (69.1; 412.4) 326.1 (83.8; 735.8) 193.4 (90.6; 427.4) 358.2 (219.3; 670.9) 0.305 0.353 0.548 0.575
n-6 / n-3 3.0 (2.5; 3.5) 2.8 (2.2; 3.2) 8.6 (8; 10.1) 7.3 (6.2; 9.6) 0.183 2.98E-08 2.33E-10 0.955
LA / ALA 3.9 (3.6; 4.6) 4.1 (3.5; 4.6) 12.6 (11; 16) 13 (10.7; 14.6) 0.779 2.98E-08 2.33E-10 0.727
Vitamin E, mg 10.6 (9.7; 15.1) 11.7 (8.8; 14.7) 32.8 (28.9; 39.9) 33.8 (29.8; 37.2) 0.722 5.96E-08 2.33E-10 0.512
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Differences in the metabolic profiles at baseline 
between the carriers of FADS1 rs174550 genotypes

The carriers of the FADS1 rs174550-TT genotype had 
higher abundances of long-chain PUFA phospholip-
ids at the baseline. Abundances of phosphatidylcholines 
(PCs) PC(16:0_20:4), PC(18:0_20:4), PC(16:1_20:4), 
PC(18:2_20:4), and lysophosphatidylcholine (LysoPC) 
LysoPC(20:4) were significantly (FDR p < 0.05) higher in 
the carriers of the FADS1 rs174550-TT genotype (Fig. 1). 
The carriers of the rs174550-CC genotype had significantly 
higher abundances of PC(16:0_18:2) and lysophosphati-
dylethanolamine (LysoPE) LysoPE(18:2). In addition to 
univariate statistics, differences between genotypes on 
plasma metabolite composition were analyzed with multi-
variate PLS-DA model. The carriers of the TT genotype, 
due to higher D5D activity, had higher (VIP > 1.5 and 
punadjusted < 0.05) abundances of phospholipids with LC-
PUFA including LysoPC (20:5) and LysoPC (22:5). The 
carriers of the CC genotype, with lower D5D activity, had 
also higher abundances of phospholipids with LA includ-
ing PC(14:0_18:2), PC(16:1_18:2), and PC(18:2_18:2) 
(VIP > 1.5 and punadjusted < 0.05). Apart from fatty acids, the 
carriers of the TT genotype had higher abundances of amides 
(oleamide, myristamide) (VIP > 1.5) and steroid hormones 
cortisol and cortisone (VIP > 1.5 and punadjusted < 0.05). Iden-
tified metabolites which differed between the metabolic 

profiles of FADS1 rs174550 TT and CC genotypes at base-
line are shown in Fig. 1 and listed in Online Resources 3 
and 4.

Metabolic responses in plasma lipids induced 
by the high‑LA diet

The 4-week high-LA diet induced changes in fatty acid 
metabolites in both genotypes (Fig. 2A). Abundance of 
LysoPE(18:2) increased significantly in both genotypes in 
response to the high-LA diet. Fasting plasma abundances of 
long-chain acylcarnitines (LCACs) C18:2, C14:2, and C10:1 
increased significantly in both genotypes (Fig. 2B). There 
was a tendency toward increased plasma abundance of other 
LA phospholipids and linoleamide and alpha-tocopherol 
in both genotypes. Plasma abundances of PC(16:1_20:4), 
LysoPC(20:5), LysoPC(22:6), and LysoPE(20:5) decreased 
significantly in both genotypes. LysoPC(18:0) increased, but 
significantly only in the carriers of the CC genotype.

After FDR correction, there were no statistically sig-
nificant genotype x diet interactions. In spite of similar 
responses seen in LA phospholipids in both genotypes, 
there were genotype x diet interactions (punadjusted < 0.05) 
in AA phospholipids (Fig. 2A). This finding suggests 
that response to high-LA diet differs between the car-
riers of the FADS1 rs174550 TT and CC genotypes. 
Decrease in the plasma abundances of PC(16:0/20:4), 

Fig. 1  Scaled abundances of 
identified metabolites (p < 0.05 
or VIP > 1.5) at the baseline 
according to FADS1 rs174550 
genotypes (TT = yellow, 
CC = blue). Size of the circle 
indicates − log10 transformed 
p value of the Mann–Whitney 
U test; color of the circles indi-
cates the value of VIP from the 
PLS-DA model. Black asterisks 
(**) indicate significant (FDR 
p < 0.05) and (*) nominally 
significant (p < 0.05) differ-
ence at the baseline metabolite 
abundance between FADS1 
genotypes
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LysoPC(20:4), and LysoPE(20:4) were strong for the 
CC genotype, whereas PC(16:0/20:4) and LysoPE(20:4) 
remained unchanged and LysoPC(20:4) decreased only 
slightly for the TT genotype. From these, PC(16:0/20:4) 
and LysoPC(20:4) were higher in the TT genotype carri-
ers at baseline.

We found a strong impact of FADS1 rs174550 genotype 
on the plasma abundances of AA and LA phospholipids. 
Overall patterns of changes in LA and AA phospholipids 
are illustrated in Fig. 2. During the high-LA diet, AA PCs 
consistently decreased or remained unchanged and LA 
PCs increased in both genotypes (Fig. 2). The difference 
on plasma abundances of these phospholipids, observed 
at baseline, was remained even at the end of the 4-week 
high-LA diet. Plasma abundances of LA phospholipids 
at week 4 in the TT genotype carriers were mainly lower 
than in the CC genotype carriers at baseline (Fig. 3).

Other metabolites associated with FADS1 rs174550 
genotype and the high‑LA diet

Cortisol and cortisone were nominally lower in the car-
riers of FADS1 rs174550-CC genotype compared to TT 
genotype carriers at baseline. There was a genotype x 
diet interaction (punadjusted = 0.004) for cortisol between 
the FADS1 rs174550 genotype carriers and a nomi-
nal increase in the CC genotype carriers in response to 
the high-LA diet (Fig. 2B). Plasma cortisol abundance 
remained unchanged in the TT genotype carriers during 
the study. There were also other significant changes during 
the study which occurred only in the carriers of the CC 
genotype. Hippuric acid significantly decreased in the car-
riers of the CC genotype, but remained unchanged in the 
carriers of the TT genotype (genotype × diet interaction 
punadjusted = 0.048). Plasma abundances of guanosine and 
inosine nominally decreased and amino acids citrulline, 
l-Histidine, l-Methionine, and l-Phenylalanine nominally 

Fig. 2  Heatmaps showing changes induced by the dietary interven-
tion in metabolic profiles of the FADS1 rs174550 CC and TT geno-
types on A phospholipids and B other identified metabolites. Color 
of the cell indicates changes between baseline and week 4; red color 
for positive Cohen’s d value (increased metabolite) and blue for nega-
tive Cohen’s d (decreased metabolite). VIP values of multilevel PLS-

DA models are shown with color scales and p value of Wilcoxon 
test with asterisks, ** = FDR  p < 0.05 and * = p < 0.05. Red aster-
isk after metabolite name refers to genotype x diet interaction term 
p value < 0.05; after FDR correction, none of these were statistically 
significant
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increased in the CC genotype carriers (Fig. 2B), but there 
were no genotype × diet interactions.

Discussion

Our study shows that metabolite profiles in healthy mid-
dle-aged Finnish men differ between the carriers of FADS1 
rs174550-TT and -CC genotypes. Based on the 4-day food 
records at baseline, no differences existed in the dietary 
intakes of fatty acids. Despite of this, higher abundances 
of PC, LysoPC, and LysoPE species with an LC-PUFA, 
mainly AA, were found in the carriers of the rs174550-
TT genotype. This finding agrees with higher activity of 
D5D and more efficient conversion of LA to AA in carriers 
of the rs174550-TT genotype. In contrast, carriers of the 
rs174550-CC genotype had higher abundances of LA-rich 
phospholipids, probably due to lower D5D enzyme activity. 
The differences in the absolute abundances of LA and AA 
phospholipids in plasma observed at baseline between the 
carriers of the rs174550 genotypes remained throughout the 
4-week high-LA diet.

During the 4-week intervention, subjects consumed their 
habitual diets with sunflower oil supplementation to gain a 
high dose of LA. Daily supplementation increased median 
dietary intake of LA from ~ 9 g to ~ 30 g (~ 3.5 E% to ~ 11 E 
%) in both groups. The relative energy intake from PUFA 
increased from ~ 6 to ~ 13 E% and that of monounsaturated 
fatty acids (MUFA) from ~ 12 to ~ 13 E%. Although the diet 
was planned to be isocaloric, energy intake increased ~ 10% 
in both genotypes during the study. A careful documentation 
of the ingested sunflower oil may explain higher reported 
energy intake during the intervention, because no change 
in body weight was observed [16]. In response to the high-
LA diet, in both genotype carriers, LA-rich phospholip-
ids and LCACs (C10:1, C14:2, C18:2) increased. Fasting 
plasma LCAC profiles resemble the fatty acid composition 
of the diet [27] and in response to dietary LA LCAC(18:2) 
increased. The increased plasma LCAC may be a marker 
of disrupted lipid flux through cell and mitochondria mem-
branes and of incomplete β-oxidation of PUFAs due to 
excess fatty acid input into mitochondria as it was found in 
women with type 2 diabetes [28]. Both LCAC C14:2 and 

C10:1 are chain-shortened derivates of the β-oxidation of 
C18:2. Higher C(10:1) may indicate reduced β-oxidation 
[29]. These changes in LCAC indicate changes in the energy 
metabolism in response to a high-LA diet in the carriers of 
FADS1 rs174550-TT and -CC genotypes.

Plasma abundances of identified AA phospholipids did 
not significantly increase due to the 4-week high-LA diet. 
One possible explanation for this is that the enzymes needed 
for the metabolism of LA were already saturated with the 
substrate LA. Thus, the high-LA diet caused no significant 
increase in AA in plasma phospholipids in subjects consum-
ing diets with relatively high baseline LA intakes, regardless 
of their FADS1 rs174550 genotype. It has been shown that 
abundance of LA inhibits D6D activity in fetal human liver 
[30]. This finding is in agreement with a previous study (all 
male participants), where there were no differences in the 
plasma concentrations or proportions of AA between high 
or low LA intakes with ratios of ALA to LA 1:4 and 1:10, 
respectively [31]. However, a recent study [32] showed that 
proportions of serum AA increase modestly, regardless of 
the FADS1 rs174537 genotype, in response to botanical oil 
rich in GLA, an n-6 PUFA, but not in response to an oil rich 
in LA. With a GLA enriched diet, the initial step of PUFA 
metabolism, conversion of LA to GLA by D6D, is bypassed.

In addition to the differences in lipid metabolites, several 
other classes of metabolites were affected by the genotype 
and dietary intervention. For example, before the interven-
tion, carriers of the CC genotype had a nominally lower 
plasma abundance of cortisol and cortisone. During the 
intervention, cortisol nominally increased in the carriers of 
the CC genotype, but remained unchanged in the carriers 
of the TT genotype. This result supports the previous find-
ings that the FADS1 rs174550 genotype modifies inflam-
matory response, measured as hs-CRP, to dietary LA [16]. 
The hs-CRP concentration decreased and increased in the 
carriers of the TT and CC genotype, respectively. Both 
increasing plasma LA and n-6:n-3 ratio in response to diet 
are shown to increase salivary cortisol excretion in vivo [33]. 
The mechanism how dietary LA and the FADS1 genotypes 
jointly modulate inflammatory responses remains unknown. 
In addition, the genotype-specific impact of the intervention 
on hippuric acid was an interesting observation warranting 
further focus on the role of genotype x diet interaction in gut 
microbiota function.

A recent study [12] showed that the FADS1 rs174548, 
which is in strong linkage disequilibrium with rs174550 
in the Finnish population [34], affects FADS1 and FADS2 
gene expression in opposite directions in adipose tissue and 
skeletal muscle but not in liver. However, gene expression 
of FADS1 is higher in liver compared to adipose tissue [35]. 
Various tissues metabolize fatty acids [36], and plasma 
represents the mixture of all body metabolism. These facts 
about whole-body fatty acid metabolism and the effects 

Fig. 3  Boxplots of identified LA and AA phospholipids before and 
at the end of the 4-week high-LA diet according to FADS1 rs174550 
genotypes. P value in headline shows the genotype × diet interaction 
p value; after FDR correction, none of these were statistically signifi-
cant. P value indicating within the genotype difference (0  week vs. 
4 week) is FDR-corrected Wilcoxon test p value. A PC(14:0_18:2), 
B PC(15:0_18:2), C PC(16:0_18:2), D PC(18:0_18:2), E 
PC(16:1_18:2), F PC(18:2_18:2), G PC(16:0_20:4), H 
PC(18:0_20:4), I PC(16:1_20:4), J PC(18:2_20:4), K LysoPC(18:2), 
L LysoPC(20:4), M LysoPE (18:2), and N LysoPE(20:4)

◂
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of the FADS1 genotype on different tissues could in part 
explain our current results. The 4-week time might be too 
short for incorporation and achieving metabolic balance of 
fatty acids in adipose tissue and other metabolically active 
tissues [37]. Tissue specific effects of the FADS1 variants 
together with dietary modification need to be studied to bet-
ter understand mechanism behind observed changes and dif-
ferences between the FADS1 genotypes.

We observed only large differences between the carri-
ers of the FADS1 genotypes due to a relatively small sam-
ple size. A larger sample size would be needed to reliably 
observe also smaller changes in the metabolite profiles 
related to the FADS1 genotype. However, we observed the 
genotype-specific metabolic patterns at the baseline and 
responses to a high-LA diet in these metabolites. Some of 
the changes which were seen in the CC genotype carriers 
(n = 33), but not significantly in the TT genotype carriers 
(n = 26), might arise from the lack of statistical power. The 
genotype-based recruitment of male participants allowed to 
analyze the effects of the genetic variant with high effect size 
on fatty acids [16]. Collected food records allowed moni-
toring of the diet before and during the intervention. Com-
pliance to daily sunflower oil supplementation was good, 
which together with non-targeted metabolomics approach 
allowed comprehensive analyses of the metabolic responses 
to a high-LA diet on human subjects.

In conclusion, we found that the carriers of the FADS1 
rs174550-TT genotype having higher D5D activity had 
higher abundances of AA phospholipids. Similarly, the 
lower D5D activity was observed as higher abundances of 
LA phospholipids in the carriers of the CC genotype. The 
high-LA diet increased abundances of LA phospholipids. 
Even though an increase in LA-rich phospholipids was simi-
lar in both genotypes during the intervention, our results 
show that the difference in the abundances of LA- and AA-
rich phospholipids between the FADS1 rs174550 genotypes 
found at baseline remained at the end of the 4-week high-LA 
diet, and no gene–diet interaction was found.
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