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Abstract—Falls can cause serious traumas such as brain
injuries and bone fractures, especially among elderly people. Fear
of falling might reduce physical activities resulting in declining
social interactions and eventually causing depression. To lessen
the effects of a fall, timely delivery of medical treatment can
play a vital role. In a similar scenario, an IoT-based wearable
system can pave the most promising way to mitigate serious
consequences of a fall while providing the convenience of usage.
However, to deliver sufficient degree of monitoring and reliability,
wearable devices working at the core of fall detection systems are
required to work for a prolonged period of time. In this work,
we focus on energy efficiency of a wearable sensor node in an
Internet-of-Things (IoT) based fall detection system. We propose
the design of a tiny, lightweight, flexible and energy efficient
wearable device. We investigate different parameters (e.g. sam-
pling rate, communication bus interface, transmission protocol,
and transmission rate) impacting on energy consumption of
the wearable device. In addition, we provide a comprehensive
analysis of energy consumption of the wearable in different con-
figurations and operating conditions. Furthermore, we provide
hints (hardware and software) for system designers implementing
the optimal wearable device for IoT-based fall detection systems
in terms of energy efficiency and high quality of service. The
results clearly indicate that the proposed sensor node is novel
and energy efficient. In a critical condition, the wearable device
can be used continuously for 76 hours with a 1000 mAh li-ion
battery.

Index Terms—Internet-of-Things, IoT, Fall Detection, Energy
Efficiency, Wearable Devices, accelerometer, gyroscope, magne-
tometer, nRF

I. INTRODUCTION

Fall is one of the most trivial reasons causing traumas and
serious injuries (e.g. bone fractures or traumatic brain damages
caused by head traumas) [1], [2]. Elderly people are likely
to fall and they often have more serious consequences after
falling than people of other ages. According to statistics, 30%
of those over 65 and 50% of those over 80 years old fall every
year with hazardous results [1]. Because of high morbidity
(almost 20% of fall lead to serious traumas), about 40% of all
nursing home admissions are related to fall [3].

Treatment of injuries from a fall often lasts over a long
period of time and is very costly (e.g. 30000 US dollars
for a serious case in hospital) [4], [5]. The proportion is as
follows: 63% of fall-related costs accounts for hospitalizations,
21% is for emergency department visits and 16% is for

outpatient visits. However, despite the high significance of the
problem, timely aid is only delivered in half of the cases.
Unreported cases lead to the deterioration of injury which
might complicate treatments later.

Fear of falling amplifies the negative post-fall consequences
and might decrease patient’s confidence [6]. As a result, it
limits the patient’s activities, reduces social interactions and
eventually causes depression [7], [8]. Thus, there is an urgent
need of fall detection systems. A quick response to the incident
might decrease the risk of serious consequences after a fall.
Correspondingly, it helps to reduce treatment costs and to
increase chance of recovery. In [9], authors have separated
fall detection systems into three groups based on wearable
devices, ambiance sensors, and cameras. Systems based on
wearable devices seem to be more popular because they can
detect a fall more accurately regardless of the patient’s location
(i.e. indoor and outdoor) and do not interfere the patient’s
privacy and daily activities. Wearable devices often acquire
parameters related to motion such as acceleration, rotation and
the direction of motion [10].

It is a challenge for wearable sensor nodes to differentiate
between fall events and casual daily activities, or to notify
doctors in real-time. Due to their resource constraints (e.g.
limited power and storage capacity), it is required to have
an advanced system which helps to reduce computationally
heavy loads on wearable sensor nodes, while maintaining
or improving quality of service. Internet-of-Things (IoT) is
one of the most suitable candidates for such systems as it
consists of a wide range of advanced technologies such as
sensing, wireless sensor network and cloud computing for
interconnecting virtual objects with physical objects. IoT-based
systems can help to reduce wearable devices’ burdens by
shifting high-computational tasks from wearable devices to
their smart gateways. For example, the gateways can perform
complex fall detection algorithms (i.e. algorithms based on
discrete wavelet transform or data mining). In addition, smart
gateways help to improve quality of service by providing
advanced services i.e. local storage for storing temporary data
or push notification for informing abnormality in real-time.

It is inevitable that IoT can comprehensively help to reduce
power consumption of wearable devices by sharing the work
load. However, IoT cannot always guarantee a high level of
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energy efficiency in wearable devices. Other primary issues
(i.e. data acquisition and data transmission) causing high en-
ergy consumption in wearable sensor nodes must be attentively
considered. When a wearable sensor node is energy inefficient,
it possibly causes unreliability and reduces quality of service.

In the previous work [11], we have proposed an IoT-based
fall detection system. The system comprises of energy efficient
sensor nodes, a smart gateway, and a back-end system. The
gateway with a Fog layer [12], [13] helps to achieve energy
efficiency at sensor nodes. In that paper, a sensor node attached
to human chest acquires data from a three-dimensional (3-d)
accelerometer and transmits the data to the smart gateway via
BLE (Bluetooth Low Energy). The main computation (i.e. a
customized fall detection algorithm) is performed at the smart
gateway since the gateways are powerful in terms of hard-
ware specification and it is supplied by a wall power outlet.
The work shows several analysis of primary communication
interface buses’ power consumption. The results show that
SPI (Serial Peripheral interface) consumes less power than I2C
(Inter-Integrated Circuit) and UART (universal asynchronous
receiver/transmitter) while SPI’s data rates are higher than
others (e.g., SPI can support a high data rate of 4 Mbps and
more).

The work presented in this paper is a major extension of our
recent work published in [11]. In the paper, we aim to study
and minimize energy consumption of the wearable sensor node
in an IoT-based fall detection system. Furthermore, we analyze
undisclosed issues in the previous work. For example, the
analysis of advantages and disadvantages of software-based
SPI and its impact on energy consumption of a sensor node
are presented. Moreover, we analyze energy consumption of
the sensor node in various transmission distances and different
transmission conditions (e.g. line-of-sight transmission, and
transmission via objects). We also investigate and discuss
impacts of different sensors (e.g. accelerometer, gyroscope
and magnetometer) on both total energy consumption of the
sensor node and an accuracy of the fall detection mechanism.
We analyze the accuracy of the fall detection system in
exceptional cases such as users having abnormal postures.
In addition, we discuss and provide comprehensive methods
for overcoming limitations (e.g. P2P communication) in the
previous work. In this paper, we present the design and
implementation of an energy efficient wearable sensor node
based on a customized nRF module. The design helps to
solve the limitation of P2P communication by offering many-
to-many communication between sensor nodes and gateways.
Unlike BLE used in the previous work [11] which is connected
to the micro-controller via UART, the nRF module in the
proposed design uses SPI as its communication bus. Therefore,
it incurs a new issue of using several SPI buses simultaneously
by a single micro-controller (i.e., SPI communication buses for
collecting data from sensors and for transmitting the data via
nRF). Therefore, these issues are discussed to find out the most
appropriate solution in terms of energy efficiency, feasibility,
and complexity. The proposed wearable sensor node is low-
cost, lightweight, tiny, energy efficient and flexible. It can be
configured to suit to different fall detection algorithms based
on motion (e.g. acceleration or angle). The wearable sensor

node can provide a viable solution for everyday use without
interfering user’s daily life. Furthermore, we customize the
fall detection algorithm presented in our previous paper for
suiting to the proposed sensor node and improving QoS (e.g.
the accuracy of the fall detection system).

The rest of the paper is organized as follows: Section II
includes related work and motivation for this work. Section III
provides an overview of the IoT-based fall detection system’s
architecture. Section IV emphasizes on design principles and
reasons behind component and technology selection. Section
V illustrates the implementation details of the proposed sensor
node. Section VI provides insights about experimental setup
and results. Section VII discusses various issues and find-
ings, and proposes possible solutions. Finally, Section VIII
concludes the work.

II. RELATED WORK AND MOTIVATION

Several efforts have been devoted in proposing wearable
sensor nodes for fall detection systems. For instance, Casilari
et al. use an accelerometer in a smart watch to detect a fall.
Accelerometer data is transmitted via BLE from the smart
watch to a smart phone which processes data and detects a
fall. Then, the smart phone, which acts as a gateway, sends a
notification to Cloud via 3G/4G. [14]. In another work [15],
authors use a depth camera (Kinect) with an accelerometer-
based wearable to improve the accuracy of fall detection.
Collected data is processed at PandaBoard for detecting a fall
in real-time.

Pivato et al. [16] present a wearable wireless sensor node
for fall detection. The wearable node whose size is about
three times larger than a 2 Euro coin, requires low average
current about 15 mA and 25 mA at 50% and 100% duty cycle,
respectively. The node is equipped with a 3-d accelerometer
ADXL345 and a wireless chip (i.e. CC2420) for gathering and
sending acceleration data to a gateway, respectively.

Chen et al. [17] present wearable sensors for a reliable fall
detection system. The sensors collect data from low-cost and
low-power MEMS accelerometers and send the data via RF.
By deploying the sensors at home, the position of the fallen
person can be detected.

Biros et al. [18] propose a wearable sensor for a smart
household environment. The wearable sensor collects 3-d ac-
celeration and angles from an accelerometer and a gyroscope,
respectively. The sensor sends the collected data via ZigBee to
Arduino Uno connected to a computer for further processing
and detecting a fall.

Erdogan et al. [19] discuss a data mining approach by using
k-nearest neighbors for a fall detection system. A wearable
device in the system is based on a general purpose board
equipped with motion sensors.

In another work [20], the authors present a sensor node
based on GSM communication and 3-d accelerometer for a
fall detection system. A fall location can be easily detected by
the system.

In other works [21], [22], authors utilize general purpose
boards (e.g. Arduino Uno, Arduino Fio) as the core of fall
detection sensor nodes. Although the sensor nodes are low-
cost and provide some useful services, they still have several
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Fig. 1: The three layers of system architecture: edge, fog and cloud. Measurements collected by wearable devices in the edge
layer are processed in the fog layer while cloud layer provide information to caregivers.

drawbacks such as high power consumption and large phys-
ical size. It is known that general purpose boards are often
equipped with extra components such as a voltage regulator
and a FTDI USB to UART chip ultimately resulting in energy
inefficiency.

In several works [14], [16]–[20], fall detection sensor nodes
based on motion data often utilizes one or several types of sen-
sors such as accelerometer, gyroscope or magnetometer. The
selection of a sensor type or a combination of several sensor
types in a single sensor node is mainly focused on functions
and features of the sensor(s) while energy consumption of
the sensor(s) is not attentively considered. For example, the
accelerometer and the gyroscope are often used together in
the fall detection applications so as to improve the accuracy
of fall detection.

It is known that energy consumption of a sensor node dra-
matically impacts quality of service. When energy consump-
tion is high, it may cause or lead to negative consequences
such as a short operating duration, discontinuation of services
or unreliability. However, to the best of our knowledge, the
actual issues limiting energy efficiency of a sensor node in
an IoT-based fall detection system have not been elaborately
investigated. For example, energy consumption of communica-
tion buses between a micro-controller and its slave devices (i.e.
sensors or a wireless communication module) is not considered
in many sensor node designs. Therefore, we investigate energy
consumption of communication bus interfaces such as SPI,
I2C, and UART. The results showing the impact of primary
communication buses on energy consumption of a sensor node
can be used as a premise to design the high energy efficient
sensor node suiting for different fall detection applications.

The relationship between an IoT-based fall detection sensor
node’s sampling rate and energy consumption has not been ex-
amined in other works. Therefore, in this paper, we analyze the
relationship with different configurations and discuss optimal
solutions for achieving both high levels of energy efficiency
and fall detection accuracy.

A low-power sensor node in fall detection applications often
uses BLE as a primary wireless communication protocol [11],
[23]–[25]. Although BLE provides many advantages (e.g. low
power, fast cyclic redundancy check, and connection improve-
ments), it still has several limitations (e.g. p2p communication,
a complex stack with several profiles) which may increase
service costs and may not guarantee the highest level of energy
efficiency. Therefore, we analyze another low power wireless

communication protocol which helps to avoid the limitations
of BLE while maintaining high quality of service.

In the paper, we also investigate factors impacting on energy
consumption of a wearable sensor device. These factors are
such as a micro-controller, motion sensors (accelerometer,
gyroscope, and magnetometer), sampling rate, wireless trans-
mission data rate, transmission distance, and software. By
applying an optimal combination of hardware design and
software techniques, it is possible to provide a novel tiny, and
light-weight wearable sensor node with a high level of energy
efficiency.

III. OVERVIEW OF AN IOT-BASED FALL DETECTION
SYSTEM’S ARCHITECTURE

An overview of an IoT-based fall detection system is
presented with the purpose of showing the role and the
hierarchical position of wearable devices in the system. The
system architecture shown in Fig. 1 consists of three main
parts including wearable sensor nodes, a gateway and a back-
end system.

A sensor node of an IoT-based fall detection system is
responsible for acquiring motion data (i.e. acceleration or
rotation angle) and transmitting the data via a wireless commu-
nication protocol to a smart gateway. Depending on particular
fall detection systems, the collected data can be pre-processed
or kept intact before being transmitted. In most of the cases,
collected data (raw data) is transmitted without pre-processing
by complex algorithms or methods (i.e. wavelet transformation
or neural filtering) [26] because pre-processing with complex
mechanisms like fall detection based on k-nearest neighbor
algorithm requires significant computational power. Corre-
spondingly, energy efficiency must be sacrificed and latency
dramatically increases for running such complex algorithms
at a sensor node. In order to avoid these issues, complex
algorithms are implemented and run at smart gateways [27],
[28].

In addition to primary tasks of receiving data from sensors
and transmitting the data to Cloud servers, a smart gateway
with a fog layer provides advanced services such as push
notifications, local storage, web-host, and fall detection. Com-
plex algorithms can be run effectively with low latency at
the fog layer of a smart gateway due to their advantages of
the constant power supply, embedded operating system, and
powerful hardware (e.g. a gateway is often about 50-100 times
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more powerful than a sensor node). Correspondingly, fall can
be detected and notified to doctors or caregivers in real-time.

A back-end system consists of Cloud servers and terminals
(i.e. end-user’s Internet browsers or mobile phone applica-
tions). Via the back-end system, doctors, and caregivers can
monitor a patient in real-time or history of patient records
remotely. In addition, the back-end system may help doctors
in disease treatment by providing analyzed data and history of
records.

IV. SENSOR NODE DESIGN

A sensor node for an IoT-based fall detection system primar-
ily comprises of a micro-controller, a motion sensor or sensors,
and an nRF block whose connections are shown in Fig. 2. The
micro-controller performs main tasks of gathering data from
sensors, formatting and transmitting the collected data to the
nRF block, and controlling sensors and I/O interfaces (i.e. SPI,
I2C or UART). It consumes a large portion of total power
consumption of the sensor node. Therefore, it is important to
apply an optimal micro-controller for performing mentioned
tasks efficiently in terms of latency and energy consumption.

In our application, a 8-bit micro-controller is more suitable
than a 32-bit micro-controller. Based on experiments run by
Atmel [29], an Atmel 8-bit AVR device is more efficient than
an Atmel ARM CortexM0+based 32-bit MCU in terms of
hardware near-functions. For example, an Atmel 8-bit AVR
device requires 12 cycles to receive one byte from SPI using
interrupt while an Atmel ARM CortexM0+ based 32-bit MCU
requires 33 cycles for performing the same task. When running
a recursive 15-stage Fibonacci algorithm, a 8-bit AVR micro-
controller needs 70 bytes of stack while the 32-bit ARM-
based device needs 192 bytes [29]. In simple applications
such as receiving data from SPI using interrupt, assuming
a SPI data bandwidth of 80 kbps, the 8-bit AVR micro-
controller consumes 36.1 uA while the 32-bit ARM-based
micro-controller consumes 48.1 uA. During sleep mode, a 8-
bit AVR micro-controller consumes 100 nA while a 32-bit
ARM-based micro-controller consumes 200 nA [29].

In [11], we have shown that a 8-bit AVR ATMega micro-
controller is capable of successfully performing several tasks
(e.g. data gathering and data transceiving) without infringing
latency requirements of real-time monitoring systems. The 8-
bit AVR micro-controller supports several clock frequencies
such as 4, 8, 16 and 20 MHz which completely fits to our
fall detection application using a few hundred samples per
second. In addition, it consumes low power in an active
mode, and supports several sleep modes and advanced features
for saving power consumption. The micro-controller supports
all popular communication bus interfaces (e.g. UART, SPI,
and I2C). Furthermore, it is small and low-cost (around 1-
2 dollars). Therefore, it is completely suitable for our fall
detection application.

Depending on particular fall detection algorithms running
on smart gateways, one or several types of motion sensors
(such as accelerometer and gyroscope) can be integrated in a
sensor node [30]. A combination of several types of motion
sensors (e.g. accelerometer, gyroscope, and magnetometer)

Fig. 2: Connection of sensor node’s primary components

altogether may help to improve the accuracy of a fall detection
system but it causes higher energy consumption. Fortunately,
these sensors can be controlled by software (e.g. entering
sleep mode) for saving energy. For example, replacing a 3-d
accelerometer (e.g. ADXL345 accelerometer) in a sensor node
by a combination of a 3-d accelerometer, a 3-d gyroscope
and a temperature sensor (e.g. ADXL345, Kionix KXG07,
and STML20), energy consumption during the idle mode in
a second only increases about a few µW (e.g. less than 10
µW). In this paper, in order to provide a flexible and low-
energy wearable sensor node suiting to different IoT-based
fall detection systems, three motion sensors including 3-d
accelerometer, 3-d gyroscope, and 3-d magnetometer are inte-
grated in our sensor node. When sensors are not in use, they
are forced to sleep. In addition, in order to provide the optimal
sensor node in terms of both energy efficiency and the fall
detection accuracy, a comprehensive analysis and a discussion
of sensor node in different configurations are presented in
section VI and section VII. It is known that sampling rates and
communication protocols (UART, I2C and SPI) dramatically
impact on energy consumption of sensors [11]. Often, these
sensors support several sampling rates of which low sampling
rates (50-100 Hz) can be run in a low-power mode and high
sampling rates are run in a normal mode. However, when the
sampling is too low, it negatively impacts on the accuracy
of fall detection. A relationship between sensors sampling
rate and energy consumption is investigated in section VI for
finding an appropriate sampling rate which provides a high
level of fall detection accuracy while consuming low energy.

An nRF module consisting of an nRF integrated circuit
(IC) and an on-PCB printed antenna is chosen for the design
because it consumes less energy while supporting high data
rates. Also, comparing to Wi-Fi, XBee and Bluetooth, nRF
is more suitable for the sensor node because it consumes the
least power (i.e. about 5-10%, 5-10%, and 80% less power
than BLE, XBee, and Wi-Fi [31]) and it supports software
customization enhancing a sensor node’s flexibility. Depending
on particular application requirements, a transmission data rate
can be customized. In some cases, it can transmit data with a
data rate of 2 Mbps.

According to our previous work [11], SPI consumes less
power than I2C and UART communication interfaces at the
same data rate. Therefore, SPI is utilized for connecting the
micro-controller with motion sensors as well as the nRF
module. However, applying multiple SPI communication bus
causes some difficulties in data management and data verifi-
cation.
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V. SYSTEM IMPLEMENTATION

A. Sensor node implementation

A sensor node must be able to operate reliably for a
long period of time. To achieve this, each component of the
sensor node must be energy-efficient in both hardware and
software. Based on our previous work’s investigation [11] and
the specification of an AVR ATMega328P micro-controller,
a 8-bit AVR ATMega328P micro-controller is suitable for
the sensor node. In the implementation, all unneeded inter-
faces (e.g. UART, I2C) and internal modules (blocks) of the
micro-controller are intentionally disabled for reducing energy.
For example, unneeded internal modules (i.e. Serial, ADC,
or brownout detection) are turned off. Similarly, necessary
interfaces and modules are forced to be disabled in most
of the time. They are merely enabled or waken up only for
performing their tasks. Energy consumption of the sensor node
with and without disabling unneeded modules is shown in
Table III.

The micro-controller supports up to 20 MHz. However, the
higher clock frequency is applied, the higher power the sensor
node has to be provided because the micro-controller requires
higher voltage supply and draws more current when running
at high frequencies. For instance, at 16 MHz an ATMega328P
micro-controller needs 5 V and consumes about 57.6 mJ for
running a test function while at 8 MHz an ATMega328P
micro-controller only needs 3 V and consumes approximately
46.8 mJ for running the same test function. In both cases,
an array of 100 values is retrieved and a sum of two adjacent
values is written back to the array. When supplying the micro-
controller 2.2 to 2.5 V for running at 4 MHz, the micro-
controller consumes less power than at 8 MHz. However, if
applying 2.2 V power supply, it would be incompatible for
other primary components of the sensor node. For example,
sensors (e.g. MPU-9250) and nRF require 3 V power supply
for a stable operation. In order to solve the incompatibility
issue, the micro-controller must be supplied with 3 V or
the sensor node must be equipped with a voltage regulator
converting a higher voltage down to 3 V. Correspondingly, in
both cases, it may waste 15-30% of total power consumption
while it may not operate stably. Therefore, running the micro-
controller at 8 MHz is suitable for our sensor node because
extra components like voltage regulator(s) can be removed
while a high clock frequency can be utilized. Another reason
of choosing 8 MHz and 3 V power supply is that when a 3 V
battery drains, the voltage supply from the battery may drop
until around 2.7 V which is still suitable for the sensor node. In
addition, the choice of 8 MHz and 3 V is suitable for extending
the sensor node for the future use such as collecting e-health
data (e.g. ECG, EMG and EEG). Analog front-end ICs for
these signals often require 3 or 3.3 V power supply.

MPU-9250, which is 9-axis MotionTracking sensor combin-
ing a 3-d accelerometer, a 3-d MEMS gyroscope, a 3-d MEMS
magnetometer and a Digital Motion Processor hardware accel-
erator engine, is used in the implementation for sensing motion
data. The MPU-9250 sensor is fully programmable and able to
support low-power and sleep modes. For example, the gyro-
scope sensor consumes 8 µA in sleep mode. One of advantages

Fig. 3: Minimal setup of a sensor node using both hardware
and software based SPI

is that each internal module such as accelerometer, gyroscope,
and magnetometer can be controlled separately. Correspond-
ingly, the sensor node can be customized for particular fall
detection applications without sacrificing energy efficiency of
the sensor node intensively. Depending on the applications
or scenarios, some internal modules can be activated while
others can be in sleep modes. In the implementation, several
scenarios described in Section VI are applied for investigating
energy consumption of our sensor nodes and the accuracy of
fall detection. The sensor requires a supply voltage from 2.4
V to 3.6 V. The MPU-9250 sensor supports both SPI and I2C.

An nRFL2401 module, which is a low-power transceiver
operating in ISM frequency band from 2.4 GHz to 2.4835
GHz, is used. The module integrated with an embedded
base-band protocol engine supports several operating modes.
For example, the module can operate at 250 kbps, 1 Mbps,
and 2 Mbps. In the implementation, 250 kbps is preferred
because it fulfills the data rate requirement of the system and
consumes the lowest energy than other data rates. The module
is connected to the micro-controller via SPI.

In addition, for evaluating energy consumption of the sensor
node when using SPI and software SPI, two different sensor
nodes based on SPI and software SPI are implemented. The
first node uses a combination of SPI and software SPI while
the second node merely uses SPI. Minimal setup of these
nodes is shown in Fig. 3 and Fig. 4.

Finally, the proposed wearable sensor node is built, as
shown in Fig. 5. The wearable sensor is tiny, light-weight
and low-cost. The total cost of the wearable sensor node
is less than 11 Euros in which a motion sensor MPU9250
and an nRF24L01 module cost about 5 Euros and 2 Euros,
respectively.

B. Gateway and back end implementation

A gateway is implemented by a combination of an nRF
transceiver and Raspberry Pi [32]. An nRFL2401 module
described above is used as an nRF transceiver of the gateway.
The module is connected to the Raspberry Pi via SPI.

Several algorithms, presented in [11], [33], are applied in a
smart gateway for testing functionality of sensor nodes. These
algorithms are chosen because they can be replicated easily
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Fig. 4: Minimal setup of a sensor node using hardware SPI
only

Fig. 5: Prototype of proposed sensor node beside a 2 Euro
coin for size comparison.

in the gateway for the verification purposes and they provide
a high level of accuracy in detecting fall. These algorithms
operate based on acceleration and angular motion which vary
in time during a fall, as shown in Fig 7. In these algorithms,
different types of filters are used for removing noise from the
collected data. Then, the fall-related parameters such as Sum
Vector Magnitude (SVM) and differential SVM (DSVM) are
calculated by the formula shown in Equation (1, 2 and 3). It
is noted that the equation (2) is not applied for gyroscope.

SVMi =
√
xi2 + yi2 + zi2 (1)

Φ = arctan

(√
y2i + z2i
xi

)
∗ 180

Π
(2)

DSVMi =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

(3)
SVM: Sum vector magnitude
i: sample number
x,y,z : accelerometer value or gyroscope value of x, y, z axis
Φ : the angle between y-axis and vertical direction
DSVM: Differential sum vector magnitude

These fall-related parameters will be further processed or
compared with several pre-defined thresholds. If the processed
data or fall-related parameters are larger than the predefined
thresholds, a fall is detected. In details, each sensor has a
specific threshold. For example, SVM of 3-d acceleration is
around 1 g in most of the cases (e.g. standing, sitting or walk-
ing). When a patient falls, the SVM value increases instantly
more than 1.9 g at the fall moment. Therefore, the threshold
value can be defined as 1.6 or 1.7 g. Similarly, the threshold

Fig. 6: Fall detection algorithm flow

values of 3-d gyroscope and 3-d magnetometer can be defined.
In this paper, we do not focus on fall detection algorithms
in a smart gateway. Therefore, we customize the threshold-
based fall detection algorithm presented in our previous paper
[11]. The customized algorithm includes several stages such
as filtering, calculating fall feature parameters, combining fall
feature parameters from several sensors, and comparing with
two-level thresholds. The detailed flow of the customized
fall detection algorithm is shown in Fig .6. Based on our
experiments and results shown in section VI, relying on data
collected from a single sensor type does not provide a high
level of accuracy in some cases. Therefore, in the paper, we
add two extra stages to the fall detection algorithm. The first
stage combines and analyzes several fall feature parameters
from several sensors such as 3-d accelerometer, 3-d gyroscope,
and 3-d magnetometer. In case that only two sensor types
are used (e.g. accelerometer and gyroscope), the parameters
from the absent sensor will be ignored. After the first stage,
there will be two cases: (i) if all fall feature parameter values
from collected sensors are larger than their own thresholds,
they are compared with their second thresholds. If one of the
comparison results shows that the fall feature parameter value
is larger than the second threshold, it triggers notification for
informing a fall; (ii) if one of the fall feature parameter values
is less than the first threshold while other parameters are larger,
they are compared with their own values in the past 1 and 2
seconds for finding dysfunctional or unstable sensor(s).

In our implementation, 1.6 and 1.9 g are used as the first and
the second threshold for SVM of 3-d acceleration while 130
and 160 deg/s are used as the first and the second threshold for
SVM of 3-d gyroscope. Depending on particular requirements
of a fall detection system, it is possible to run one of complex
threshold-based algorithms presented in [34]–[37] or complex
machine-learning based algorithms presented in [38]–[40] at
our smart gateway. In such cases, our sensor nodes are still
compatible and able to operate efficiently.

The push notification is implemented at Cloud and an
Android application via Google’s Push API. When the gateway
detects a fall, it sends a message (a patient id and time when
the patient falls) to the Push service at Cloud servers which
then remotely notifies responsible doctors and caregivers in
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Fig. 7: Acceleration changes in time during a fall.

real-time. In addition to mentioned services, smart gateways
are implemented with a Fog layer for providing advanced
services such as local storage, local host with user interface,
data processing, data compression, security, channel managing,
categorization. However, in this paper, these Fog services pro-
vided at smart gateways are not our main focuses. Therefore,
only an overview of Fog and Fog services are presented
in the paper while details of the Fog layer and services
including description, structure, design and implementation are
presented in our other papers and book [26]–[28], [41]–[44].

In our system, all collected data from sensor nodes are
temporarily stored in local database of smart gateways. The
local database helps to avoid losing data when the connection
between smart gateways and Cloud servers is interrupted.
When the connection is re-established, gateways send all
recorded data in the database to Cloud. The database is
implemented with MongoDB. Categorization service is used to
distinguish Intranet users and Internet users with the purpose
of reducing latency of services. For example, when the system
detects a fall, it checks the status of a doctor or a caregiver
responsible for the person falling. If he or she is currently
connected to the local network, the system sends the push
notification message directly from smart gateways to him
or her. This helps to avoid a long latency of transmission
via Cloud. The service is implemented by a combination of
scanning service and database. The ”iw” package helps to
check the status of connected users in the local network.
Then, the results are stored in the database. The categorization
service and local host with user interface allow doctors or
caregivers access real-time data directly at the gateways. In
order to implement the local host, HTML5, CSS, JavaScript,
JSON, Python, and XML are used. Channel management helps
to avoid channel conflict by assigning free channels for newly
connected sensor nodes. The channel management service
triggers the push notification service for informing to system
administrators in case of channel conflict.

VI. EXPERIMENTAL SETUP AND RESULTS

Energy consumption of a sensor node for a fall detection
IoT system is calculated with equation 4 [45]. Total energy

TABLE I: Scenarios setup

Accelerometer Gyroscope Magnetometer
Configuration 1(Conf 1) X
Configuration 2(Conf 2) X
Configuration 3(Conf 3) X
Configuration 4(Conf 4) X X
Configuration 5(Conf 5) X X
Configuration 6(Conf 6) X X
Configuration 7(Conf 7) X X X

TABLE II: Devices specifications

Device Micro-controller
(MHz)

Flash
(KB)

SRAM
(KB)

Voltage
(V)

Arduino Uno ATmega328P-PU (16) 32 2 5
Arduino Mega ATMega1280 (16) 128 8 5

Our sensor node ATmega328P-PU (8) 32 2 3
Arduino Micro ATmega32U4 (16) 32 2.5 5

Sensor node in [18] ATMega32L (8) 256 8 5
Sensor node in [19] ATMega128L (8) 128 4 3
Sensor node in [16] MSP430F2617 (8) 92 8 3.7
Sensor node in [21] MSP430 (8) 48 10 3
Sensor node in [20] MSP430F1611 (8) 48 10 3.7

Z1 MSP430 (8) 92 8 3

consumption of the node is equal to a sum of energy consumed
during operating and waiting.

E = V × I(w)× t(w) + V × I(o)× t(o) (4)

E : Total energy consumption (mJ)
V : Voltage supply
I(w) : Average current draw during waiting time (mA)
I(o) : Average current draw during operating (mA)
t(w) : Waiting time (s)
t(o) : Operating time (s)

In order to provide an overview of sensor nodes used in
measurements and comparisons, their hardware specifications
are shown in Table II. In the experiments, each measurement
is carried out during 5-10 minutes and a professional power
monitoring tool from Monsoon Solution is used [46]. This
tool is able to accurately monitor minimum, maximum and
average voltage, current draw, power consumption of a sensor
node. In addition, Monsoon provides an advanced utility for
plotting monitored values in time series, which helps us to
detect abnormality during measurements. Although average
power consumption in one second and energy consumption
per second is identical, to maintain consistency throughout
the paper, energy consumption per second is reported instead
of power consumption retrieved from the monitor.

In order to determine the suitable method for waking up
the micro-controller from deep sleep or normal sleep modes,
several general-purpose timers and a watchdog timer are used.
In the experiment, the nRF module is not active and the sensor
node acquires data from different sensors (i.e. accelerometer,
gyroscope, and magnetometer) via 1 Mbps SPI with a data
rate of 50 samples/s. Energy consumption of the sensor node
in one second is captured and shown in Fig. 8. Results from
the Fig. 8 show that energy consumption of the sensor node
significantly decreases when using a watchdog timer instead
of general-purpose timers. The main reason is that a watchdog
timer can wake up the micro-controller from the deepest sleep
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mode(s) whilst other timers cannot. Results show that an 8-
bit timer is more energy efficient than a 16-bit timer. Since
the maximum data rate supported by the watchdog timer of
ATMega328P is 62 samples/s, a data rate of 50 samples/s is
most suitable for the wearable sensor node.

Fig. 8: Energy consumed per second when collecting data from
several sensors at 50 samples/s via different techniques

For evaluating energy consumption of the wearable sensor
node when using different protocols, 50 samples/s data is ac-
quired from several sensors such as accelerometer, gyroscope
and magnetometer via SPI and I2C. In the experiment, the nRF
module is not active and energy consumption of the sensor
node shown in Fig 9 is measured for one second. It can be
seen that SPI consumes less energy than I2C in most of the
cases.

Fig. 9: Energy consumed per second of the sensor node when
collecting data from multiple sensors at 50 samples/s using
SPI and I2C

We compare energy consumption of several sensor nodes
based on general purpose platforms and our sensor node.
Energy consumption is measured when collecting data from a
3-d accelerometer for one second with a data rate of 50, 100,
200 and 500 samples/s via SPI. In the experiment, software-
based techniques for energy efficiency are not applied and
all modules for wireless communication (e.g. nRF and BLE)
are neither active nor used. Results shown in Fig 10 indicate
that the proposed sensor node consumes the least energy for
collecting 3-d acceleration via SPI in all applied data rates.
One of the reasons for a high level of energy efficiency in
the proposed sensor node is that the sensor node is designed

with a minimum number of required components (unnecessary
components e.g. FTDI or voltage regulators are removed from
the design).

Fig. 10: Energy consumption per second of different devices
when collecting 3-d accelerometer data at different sampling
rates via SPI

In order to analyze energy consumption of the sensor
node, several configurations shown in Table I are used. An
accelerometer module MPU9250 [47] can support a data
rate up to 4000 Hz. However, the low-power mode of the
accelerometer cannot be applied at this high data rate. Ob-
viously, the normal operating mode requires more energy
than the low-power mode. Therefore, the low-power mode
of the accelerometer, which supports a maximum data rate
of 500 Hz is applied. For investigating energy consumption
of the accelerometer module, several data rates lower than
500 Hz are used in the experiments. Similarly, the low data
rate and the low-power mode are applied for gyroscope and
magnetometer. In the experiment, several data rates (i.e. 50,
100, 200, and 500 samples/s) are applied to collect data via
1 Mbps SPI in different configurations and the nRF module
is not active. Results shown in Fig 11 indicate that for data
rates in a low-power mode, a 3-d accelerometer consumes
the least amount of energy among three sensors while a 3-
d magnetometer consumes the most energy. In addition, the
results reveal that utilizing both accelerometer and gyroscope
modules at the same time causes a slight increase in energy
consumption when compared with applying a single sensor
(i.e. 3-d accelerometer or 3-d gyroscope).

Fig. 11: Energy consumed per second when collecting multiple
sensor data at different sampling rates via SPI
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TABLE III: Energy consumption of the sensor node when
collecting 50 samples/s acceleration data via SPI in Mode 1
and Mode 2 during a second

Mode 1(mJ) Mode 2(mJ)
Energy consumption of a sensor node 30.47 27.98

Mode 1: when unneeded modules are turned on or enabled
Mode 2: when unneeded modules are turned off or disabled

In order to investigate the impact of software-based tech-
niques on energy consumption of the sensor node, we measure
energy consumption of the sensor node for one second with
two cases: (i) when unneeded modules (e.g. UART, ADC,
I2C, and brownout detection) of a micro-controller are turned
on or enabled; (ii) when unneeded modules are turned off
or disabled. In the experiment, the sensor node collects 3-d
acceleration data at a rate of 50 samples/s in a second via
1 Mbps SPI and the nRF module is not active. Results from
Table III show that energy required by the sensor node can be
reduced by about 8-10% when unneeded internal modules of
a micro-controller are disabled.

The nRF module can be configured for two modes of
communication- one-way and two-way. In one way commu-
nication, a sensor node only sends data to a receiver (i.e. a
gateway) regardless of the success of a transmitted package.
On the other hand, in two-way communication, a sensor node
sends data to a gateway and waits for an acknowledgement
message from the gateway. If it receives an acknowledgement
message from the gateway, it continuously sends new data
to the gateway. In contrast, when it does not receive any
acknowledgement message from the gateway, it automatically
increases transmission power and re-sends the package which
was not successfully received by the gateway in the previ-
ous attempt. There is a trade-off between QoS and energy
consumption when applying these communication types. Two-
way communication guarantees that a data package is received
at a gateway after being sent by a sensor node. However, it
causes higher energy consumption because a sensor node’s
down-link must be active to wait for the response package.
In contrast, one-way communication consumes less energy
because its down-link is disabled, however, the best possible
QoS cannot be guaranteed. Correspondingly, these commu-
nication types must be attentively investigated for exposing
the optimal configuration providing a high level of QoS and
energy efficiency.

At first, energy consumption of a sensor node in a two-way
communication is measured. Several sensor nodes are used
during the experiments in which each sensor node is attached
to a patient’s clothing at the middle of the chest area. Sensor
nodes collected 3-d accelerometer data with a data rate of 50
samples/s via 1 Mbps SPI and transmit the data via nRF to a
gateway which is fixed in a single room. Several distances
between sensor nodes and a smart gateway such as 5, 10
and 20 meters are applied for evaluating variations of sensor
nodes’ energy consumption. In each measurement, both cases
of the line of sight transmission and transmission via blocked
objects (i.e. door and wall) are applied. Results of two-way
communication are shown in Table IV. Energy consumption of
a sensor node in this case includes both energy consumption

TABLE IV: Energy consumption of the sensor node when
collecting 50 samples/s acceleration via SPI and transmitting
the data via nRF in two-way communication to a gateway
during a second

Distance 5m(mJ) 10m(mJ) 20m(mJ)
Line-of-sight transmission 41.96 42.28 43.99

Transmission through blocked objects 43.21 43.94 45.80

TABLE V: Energy consumption of the sensor node when
collecting 50 samples/s acceleration via SPI and transmitting
the data via nRF to a gateway (one-way communication)
during a second

Distance 5m(mJ) 10m(mJ) 20m(mJ)
Line-of-sight transmission 28.71 29.01 30.72

Transmission through blocked objects 29.81 30.48 32.61

of transmitting and receiving. The results indicate that energy
consumption of the sensor node increases when the distance
between the sensor node and the gateway increases.

Obviously, two-way communication often provides a high
level of QoS because a loss package is always re-transmitted.
In case of higher distances or transmission way blocked,
transmission power in two-way communication is increased
for ensuring a successful data transfer. In the experiments, the
transmission power is retrieved effortlessly via the monitor
utility. For achieving such a high level of QoS, the trans-
mission power used in two-way communication can be re-
applied into a case of one-way communication. Similarly, the
same test-bed with similar distances (5, 10, and 20 meters) is
applied for one-way communication. Results shown in Table
V indicate that energy consumption of a sensor node in case
of one way communication is much less than in case of
two-way communication in both situations (e.g. line-of-sight
transmission and transmission through blocked objects) even
though transmission power of a sensor node in case of one-
way communication is forced to be increased for assuring a
high level of QoS.

Although many slave devices (i.e. sensors) can be connected
to a master (i.e. micro-controller) via a single SPI interface,
it is challenging to perform such a connection in some cases.
For example, hangout wires may occur in the layout design
when connecting several devices to a single SPI port or SPI
libraries of slave devices may conflict. In order to avoid these
issues, software SPI which written in C utilizes Pulse Width
Modulation (PWM) pins for replicating an SPI transmission,
can be used. In the experiments, energy consumption of two
different sensor nodes is measured in which the first node uses
only SPI and the second node uses a combination of SPI and
software SPI. Both nodes use their watchdog timer for waking
up the micro-controller from the deep sleep mode(s). Several
distances (5, 10, 20 m) are applied and the data is transmitted
via nRF with a line of sight transmission during these exper-
iments. Results shown in Table VI show that hardware SPI is
more energy efficient than software SPI in all experimental
cases. For avoiding missing package when applying one-
way communication, we apply the same method of reusing
transmission power in case of two-way communication into
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TABLE VI: Energy consumption of the sensor node when
collecting 50 samples/s acceleration and transmitting the data
to an nRF block via software and hardware SPI during a
second
`````````Method

Distance 5m (mJ) 10m (mJ) 20m (mJ)

Software SPI 30.98 31.93 33.7
Hardware SPI 28.68 29.01 30.72

TABLE VII: Energy consumption of the sensor node when
collecting 50 samples/s motion data via SPI and transmitting
the data via nRF with a distance of 20 meters in different
configurations

PPPPPP
Distance 20 meters (mJ)

Conf 1 30.72
Conf 2 30.95
Conf 3 32.1
Conf 4 34.53
Conf 5 35.56
Conf 6 35.35
Conf 7 36.68

one-way communication for both sensor nodes (nodes using
hardware SPI and nodes using both hardware and software
SPI) in each measurement. Depending on particular distances,
the transmission power is different.

With the purpose of providing a complete view of energy
consumption of the sensor node, we investigate energy con-
sumption of the sensor node in different configurations shown
in Table I. In the experiments, the sensor node acquires differ-
ent data from one or several sensor types with a sampling rate
of 50 samples/s and transmits the data via nRF with a line-of-
sight transmission condition. Energy consumption is measured
for one second. Results of the experiments shown in Table VII
show that 3-d accelerometer consumes the least energy while
3-d gyroscope and 3-d magnetometer consume higher and the
most energy, respectively. In addition, the results reveal that
applying two types of sensors in the sensor node consumes
about 12-16% more energy and energy consumption of the
sensor node equipped with two or three types of sensors is
slightly different, approximately 3-5%.

When supplying with a 1000 mAh 3 V lithium battery
having a size of 32 mm * 43 mm * 5 mm and a weight
of 30 grams, the wearable sensor node can operate for about
76-90 hours depending on particular conditions. In the pa-
per, we simply categorize into three conditions including the
worst, normal and the best condition. In the worst condition,
transmission path between a sensor node and a gateway is
blocked with different indoor objects and doors. For example,
the sensor node is placed is a room while a gateway is located
in another room and these rooms are separated by walls
and doors. In normal situation, there are very few objects in
transmission path. In the experiment, some high wardrobes
are placed in a room. In the best situation, the transmission
path is clear (i.e. line-of-sight) and the experimentation room
is almost empty (e.g. only short tables and chairs). In these
experiments, the sensor node is placed on the top the battery
for forming a compact device and it takes about 2-5 hours

TABLE VIII: Devices specifications

Device
Energy

consump-
tion

Size Weight Flexibility

Arduino Uno High Large Medium Partly
Arduino Mega High Large Medium Partly
Arduino Micro Medium Small Light Partly

Sensor node in [18] Low Medium Medium Partly
Sensor node in [19] Medium Medium Medium Partly
Sensor node in [16] Low Medium Light Partly
Sensor node in [21] Low Medium Medium Partly
Sensor node in [20] High Large Medium Partly

Z1 Low Medium Medium Partly
Our sensor node Low Small Light Completely

to charge the battery depending on the current supplied.
The sensor node collects data from 3-d accelerometer, 3-
d gyroscope, and 3-d magnetometer with a data rate of 50
samples/s via 1 Mbps SPI and transmits the data via nRF.
When the sensor node is not active (e.g. all modules such as
nRF and sensors are disabled), it consumes about 3.6 mW.
Results of these experiments are shown in Fig. 14. It can
be seen that the sensor node can operate up to 76 hours in
the worst condition while its operating time can reach up to
90 hours in the best condition. It is recommended that, the
transmission power of the sensor node should be configured
for suiting the worst condition because it can provide a high
level of QoS for all cases. In the worst condition, some levels
of energy efficiency (about 5-8%) must be sacrificed.

For providing a comprehensive view of the wearable sensor
node, the sensor node is compared with other nodes proposed
by other research in terms of energy consumption, size, weight
and flexibility. In our context, high flexibility indicates that a
sensor node can be customized easily and flexibly for suiting
to different fall detection IoT-based systems and vice versa.
Results shown in Table VIII summarize that our wearable
sensor node is tiny, light-weight and energy efficient. In
addition, the sensor node, which is highly flexible, suits to
different IoT-based fall detection systems using motion data
whilst other nodes are not completely suitable for other fall
detection systems. Correspondingly, a user can wear the sensor
node 24/7 without interfering daily activities.

In addition to the previous experiments, to evaluate quality
of acquired signals at the gateway, 6 more measurements
have been carried out. In details, each measurement uses 5
separate sensor nodes placed on the body of five volunteers
for acquiring both 3-d accelerometer data and 3-d gyroscope
data. Then the data is transmitted via nRF to the gateway with
a line-of-sight transmission path condition. Each measurement
is carried out for 30 minutes. Data received at the gateway is
applied for the fall detection algorithms mentioned in Section
V-B. Results from the experiments shown in Fig. 12 reveal
that the sensor node operates reliably in different scenarios
(i.e. different daily activities) in most of the cases. In order to
provide an incisive view of the data received at the gateway,
the data is graphed in MatLab. In addition, the exceptional
case is shown in Fig. 13.

Fig. 12 shows 3-d accelerometer data and 3-d gyroscope
data whose sampling rate is 50 samples/s during a user’s
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Fig. 12: Accelerometer’s and Gyroscope’s data at the gateway’s nRF receiver during daily activities
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Fig. 13: Accelerometer’s and Gyroscope’s data at the gateway’s nRF receiver during daily activities and fall

Fig. 14: Operating duration of the wearable sensor node
supplied with a 1000 mAh battery when collecting data from
accelerometer, gyroscope and magnetometer with a data rate
of 50 samples/s via SPI and sending the data via nRF during
a second under different conditions

daily activities such as standing, sitting and walking. As seen
in Fig. 12, quality of data collected from 3-d accelerometer
and 3-d gyroscope is high in different cases such as ”stand
still”, ”sit still”, ”stand with body movements”, ”sit with
body movements” and ”walking”. Due to some movements
of the upper part of the body when walking, SVM of 3-
d accelerometer values and 3-d gyroscope values fluctuate.
However, the fluctuation of SVM of 3-d accelerometer values
and 3-d gyroscope values is not large enough to dramatically
impact on the result of fall detection since a variation of the
fluctuation is much smaller than the peak magnitude of SVM
of 3-d accelerometer values and 3-d gyroscope values when
a user falls shown in Fig. 13. In other cases, the fluctuation

of SVM from 3-d accelerometer and 3-d gyroscope is small,
around 1 g and 0os, respectively, which are similar to expected
values discussed in section V.

Fig 13 shows SVM of 3-d accelerometer values and 3-d
gyroscope values with a sampling rate is 50 samples/s when a
volunteer falls. It can be seen that magnitude of SVM increases
dramatically in all cases. In case of 3-d accelerometer, the
peak of SVM goes over 1.6 g for all of considered cases. In
some of cases, the peak even reaches up to 2.5 g or 3 g. In
case of ”walk and fall”, when a person falls, SVM of 3-d
accelerometer reaches up to 3.5 g. However, when a person
stands still after falling, the SVM value does not go back to
1 g (the expected value) but it remains at 2 g. However, in
reality, the 2 g value is not the correct value. The reason might
be incorrect calibration in the 3-d accelerometer or the large
movement of the body when standing up. In this case, if the
fall detection algorithm sets the threshold for detecting a fall
at 1.8 g, the fall detection results are completely incorrect. In
contrast, SVM from 3-d gyroscope, which is around 0os, is
correct as expected.

It is known that all artifacts with large angles negatively
impact on the fall detection decision of the gyroscope-based
system because the noise amplitude caused by movement
artifacts are sometime larger that pre-defined thresholds used
for determining a fall case. Therefore, to validate the system
in such a case, the system is applied to a person who has
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Fig. 15: Accelerometer and Gyroscope data at the gateway’s nRF receiver during daily activities and fall

Fig. 16: Accelerometer and Gyroscope data at the gateway’s nRF receiver during daily activities and fall

an unbalance stance (e.g. moving his shoulder, hands and
an upper part of his body with large angles) while walking.
The results of the experiment are shown in Fig. 15 and Fig.
16. It can be seen that, SVM values in all experiment cases
except the case ”walking”, which are around 1 g from SVM
of 3-d accelerometer values and 0 deg/s from SVM of 3-d
gyroscope values, are as expected. In case of walking, SVM
of 3-d accelerometer values is 1 g as expected while SVM of
3-d gyroscope values varies dramatically. At some instances,
the SVM values are even larger than 100 deg/s. In those
cases, it is obvious that if the system applies a low threshold
value close to 100 deg/s, an incorrect alarm will be triggered.
Defining threshold values for a fall detection system based
on accelerometer and gyroscope is not an easy task. Low
threshold values help to reduce missing cases when SVM of 3-
d accelerometer values or 3-d gyroscope values are not large.
However, they may cause incorrect alarms or notifications.
In contrast, high threshold values may cause missing fall
detection cases, but they help to reduce incorrect alarms of
falling cases. In addition, the results in a walking case in Fig.
15 unveil that replying on merely 3-d gyroscope may lead to
incorrect alarms of falling cases. Comparing between results

from ”walking” in Fig. 15 and ”walk and fall forward” in
Fig. 16, it can be seen that SVM of 3-d gyroscope values
are slightly different (i.e. around 105 versus 130 deg/s) while
SVM of 3-d accelerometer values are largely different. In this
case, values from a 3-d accelerometer are better in terms of
the fall detection accuracy. To sum up, in order to avoid an
incorrect fall detection alarm, many types of sensors (i.e. 3-
d accelerometer, 3-d gyroscope and 3-d magnetometer) and
two-level thresholds should be considered to be applied in a
sensor node.

VII. DISCUSSIONS

Designing an energy efficient sensor node for fall detection
and other health-care systems is not a simple task because
the sensor node must fulfill strict requirements of healthcare
IoT systems (e.g. latency and high quality of signal) while
consuming low energy.

In order to achieve a high level of energy efficiency, wireless
communication protocols are often attentively considered first.
Before applying nRF for our sensor nodes, some of ESP8266
chips are integrated in sensor nodes for the experiments.
Sensor nodes communicate via Wi-Fi with a gateway fixed at



13

the the roof of the room and the transmission is line-of-sight
with a distance of 7 meters. When applying those ESP8266
chips, energy consumption during a second of a sensor node
equipped with ESP8266 is about 270.6 mJ and the sensor node
requires 460-480 mW for sending a packet. In the experiments,
the sensor nodes collect data from a 3-d accelerometer, a 3-
d gyroscope with a data rate of 50 samples/s. They accu-
mulate the collected data and send one packet per second
assuming that the maximum latency is 1 second. In case of
other sampling rates (i.e. 50, 100 and 200 samples/s) of 3-
d accelerometer and 3-d gyroscope, the maximum volume of
data which the sensor node can accumulate for a single packet
is 1800 Bytes, 3600 Bytes, or 7200 Bytes, respectively. The
sensor node cannot accumulate more data for a single packet
because the maximum latency (i.e. 1 second) requirement will
be infringed. In case of the sensor node equipped with nRF,
it is required 75, 150 and 300 packets to transmit the same
amount of data in one second because the sensor node with
nRF can send the maximum of 24 Bytes per packet. Energy
consumption of the sensor node for transmitting 75, 150 and
300 packets in a second with nRF is around 31-50 mJ. Hence,
in an IoT-based fall detection application, nRF is more suitable
than Wi-Fi. In other applications (e.g. Electroencephalography
(EEG) real-time monitoring), Wi-Fi might be more suitable
due to a large amount of data (e.g. 10000 Bytes/s per channel)
is collected in a short period of time.

In terms of energy efficiency between low-power wireless
communication protocols (i.e. BLE, ANT, 6LoWPAN and
nRF) nRF and BLE are more energy efficient [48], [49].
Precisely, nRF is more energy efficient than BLE [50], [51].
For example, power consumption of a BLE chip and an nRF
chip is around 46.2 mW and 37.29 mW at 0 dBm output
power, respectively [50], [51]. One of the main reasons of
low energy in nRF is that nRF does not use any software
stack. In our experiments, by replacing BLE in the sensor node
presented in our previous work [11] by nRF, approximately
10% energy can be saved. In terms of connectivity, nRF
is more suitable for IoT-based fall detection systems than
BLE because BLE supports peer-to-peer communication while
nRF supports many-to-many communication. Although nRF
is energy efficient, it has several limitations (e.g. difficulty
for a gateway to handle data sent simultaneously by many
sensor nodes). When applying nRF, a transmission payload
must be attentively considered for achieving energy efficiency
and accuracy. In default, nRF uses a maximum payload of 32
Bytes as a static payload in each packet. When data is less
than 32 Bytes (e.g. 4 Bytes), the nRF protocol automatically
adds extra Bytes for filling up 32 Bytes payload (e.g. adding
28 Bytes). However, sending data with a size of 32 Bytes is
not an optimal choice because some bytes of data may be
collapsed at the receiver(s). Therefore, it is recommended to
send the data with a size of 20-24 Bytes per packet.

VIII. CONCLUSIONS

We presented the design and implementation of an energy
efficient wearable device for IoT-based fall detection systems.
The device is tiny, light-weight and flexible hence suits to

different IoT-based fall detection systems and can be used
regularly without interfering user’s daily activities. In this
paper, we evaluated energy consumption of wearable sensor
nodes in different configurations and scenarios to find optimal
solutions for improving energy efficiency. We investigated con-
figuration parameters (i.e. communication bus interface, and
sampling rate) affecting energy consumption of the wearable
device. In addition, important hardware and software factors
or techniques impacting on the life-time of the sensor node
are investigated. Besides, we evaluated energy consumption of
the device in different transmission conditions for providing
hints to system administrators for avoiding missed data while
maintaining a high level of energy efficiency in the wearable
device. Furthermore, we compared the wearable device with
different devices proposed by others. The result shows that our
wearable sensor node is the best among compared nodes. The
results from conducted experiments conclude that our sensor
node can operate around 76 hours with a 1000 mAh battery in
a tough transmission condition. Moreover, we implemented a
complete IoT-based fall detection system consisting of smart
gateways with Fog computing and a back-end system. When
a fall occurs, the system can detect and remotely inform
responsible personnel such as a doctor or caregiver in real-
time. It can be concluded that the proposed wearable device
is a solution to drawbacks of typical sensor nodes in IoT-based
fall detection systems.
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