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Abstract

We present Hα spectroscopic observations and detailed modeling of the Balmer filaments in the supernova
remnant (SNR) Tycho (SN 1572). We used GHαFaS (Galaxy Hα Fabry–Pérot Spectrometer) on the William
Herschel Telescope with a 3 4×3 4 field of view, 0 2 pixel scale, and s = 8.1instr km s−1 resolution at 1″ seeing
for ∼10hr, resulting in 82 spatial−spectral bins that resolve the narrow Hα line in the entire SN 1572 northeastern
rim. For the first time, we can therefore mitigate artificial line broadening from unresolved differential motion and
probe Hα emission parameters in varying shock and ambient medium conditions. Broad Hα line remains
unresolved within spectral coverage of 392 km s−1. We employed Bayesian inference to obtain reliable parameter
confidence intervals and to quantify the evidence for models with multiple line components. The median Hα
narrow-line (NL) FWHM of all bins and models is = ( )W 54.8 1.8NL km s−1 at the 95% confidence level,
varying within [35, 72] km s−1 between bins and clearly broadened compared to the intrinsic (thermal)
≈20 km s−1. Possible line splits are accounted for, significant in »18% of the filament, and presumably due to
remaining projection effects. We also find widespread evidence for intermediate-line emission of a broad-neutral
precursor, with a median = ( )W 180 14IL km s−1 (95% confidence). Finally, we present a measurement of the
remnant’s systemic velocity, = -V 34LSR km s−1, and map differential line-of-sight motions. Our results confirm
the existence and interplay of shock precursors in Tycho’s remnant. In particular, we show that suprathermal NL
emission is near-universal in SN 1572, and that, in the absence of an alternative explanation, collisionless SNR
shocks constitute a viable acceleration source for Galactic TeV cosmic-ray protons.
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1. Introduction

Supernova remnant (SNR) shocks are suspected to be the long-
sought Galactic cosmic-ray (CR) sources. Observational evidence
for particle acceleration at work in SNRs has been seen in
synchrotron emission from electrons, gamma radiation, signa-
tures of amplified magnetic fields, higher compression ratios than
predicted by jump conditions, and optical line profiles from
shocks propagating in a partially ionized plasma (for a review,
see Helder et al. 2012). Since most of the CRs that we detect on
Earth consist of protons, finding evidence for accelerated CR
protons in SNRs with energies up to the “knee” (~1 PeV) is thus
of particular importance. Insight into CR protons is possible
through either the gamma-ray spectrum as a result of neutral pion
decay (Ackermann et al. 2013) or the optical wavelength window
by carefully analyzing Hα-line profiles (Helder et al. 2009, 2010;
Nikolić et al. 2013). The latter shock emission, usually also
referred to as optical emission from Balmer-dominated shocks
(BDSs), is the subject of the study of this paper.

The spectra of BDSs, typically observed around SNRs that
originate from SN Ia explosions, show the presence of strong

two-component hydrogen lines (Heng 2010). When a shock
wave encounters partly ionized interstellar medium (ISM), the
cold pre-shock hydrogen atoms overrun by the shock can either
be excited by hot post-shock gas, resulting in the narrow
Hα-component emission, or enter a charge exchange (CE)
process with the hot post-shock plasma, producing hot neutrals
whose collisional excitation then gives rise to the broad Hα
component. The two-component Hα-line parameters provide
valuable information on the existence of CR precursors in the
shocks. A narrow line broadened beyond 10–20 km s−1 gives
direct evidence of the presence of non-thermal particles in the
shock precursor (Morlino et al. 2013). This is due to the fact
that hydrogen atoms are ionized at temperatures larger than
≈10,000 K, but also because the lifetime of the neutral
hydrogen in the post-shock region is too short for the
collisional interaction to broaden the line profiles (Smith
et al. 1994). The CRs will heat the cold neutrals in the ISM,
resulting in the broadening of the narrow Hα line, but the CRs
will also reduce the broad Hα-line width by removing energy
from the protons in the post-shock region.
Several authors proposed that narrow-line broadening can

also arise from a broad-neutral (BN) precursor: hot neutrals
created in CE processes between hot protons and slow neutrals
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streaming to the pre-shock region (Hester et al. 1994; Smith
et al. 1994). Recent theoretical studies (Blasi et al. 2012;
Morlino et al. 2012) show that a BN precursor does not
broaden the narrow component, but rather introduces a third
intermediate component with the FWHM of around
∼ 150 km s−1 and depends on the shock speed. The reason is
that only a small number of incoming neutrals interacts with
ions in the BN precursor because its extent, which corresponds
to the interaction length of the returning neutrals, is much
smaller than the CE interaction length of the incoming neutrals.
Therefore, Balmer lines can be used to study the microphysics
of collisionless shocks and are currently the only means that
give insight into the collisionless shocks.

We observed Tycho’s SNR, which has already been well
studied across all wavelength ranges (Reynolds & Ellison 1992;
Bamba et al. 2005; Lee et al. 2004; Stroman & Pohl 2009;
Katsuda et al. 2010; Acciari et al. 2011; Tian & Leahy 2011;
Giordano et al. 2012), and evidence for particle acceleration in
the shocks of Tycho’s SNR, including acceleration up to the
knee in the CR spectrum, was found (Warren et al. 2005;
Cassam-Chenaï et al. 2008; Eriksen et al. 2011; Slane et al.
2014). In 1572, the star exploded as an SN Ia, leaving a
remnant at an estimated heliocentric distance of 2.3±0.5 kpc
(Chevalier et al. 1980).11 At that distance, the remnant’s
diameter of 8′ corresponds to ≈5 pc. Density gradients in the
medium around the remnant (Williams et al. 2013) modified
the evolution of the shock, which in turn resulted in the
asymmetric remnant. The lower shock velocity inferred in the
northeastern (NE) part suggests that the shock interacted with a
dense ambient medium, namely a diffuse cloud (Reynolds &
Keohane 1999; Lee et al. 2004).

Previous optical studies of Tycho’s SNR have shown
indications for CRs (e.g., Ghavamian et al. 2000; Lee et al.
2007, 2010). However, these studies focused on the Hα-bright,
but very complex, “knot g,” where multiple or distorted shock
fronts can contribute to the measured narrow-line (NL)
broadening and thus partially mimic the effect that CR
acceleration would have. Using the Fabry–Pérot instrument
GHαFaS (Galaxy Hα Fabry–Pérot System) on the William
Herschel Telescope (WHT), we observed a great portion of the
shock front in the NE region of the remnant. The high spatial
and spectral resolution, together with the large field of view
(FOV) of the instrument, allow us to measure the narrow
Hα-line width across individual parts of the shocks simulta-
neously, and thereby study the indicators of CR presence in a
large variety of shock front conditions. In particular, the spatial
resolution allows us to distinguish intrinsic line broadening
from line broadening originating in geometric distortions and
differential kinematics. Moreover, our observational setup
provides us with unique insight into the existence of an
intermediate component along the entire filament previously
only reported for the bright “knot g” (Ghavamian et al. 2000;
Lee et al. 2007). Apart from vastly enhancing the amount and
quality of the spectroscopic data available for the NE filament,
our study also improves the analysis: instead of fitting line
models, we employ Bayesian inference to obtain full informa-
tion and realistic uncertainties on the line parameters, as well as
quantitative, reliable evidence for the presence of an inter-
mediate line (IL) originating in a BN precursor and multiple

shock fronts. The interpretation of the results is based on
predictions of the state-of-the-art shock models that include the
effects of BN and CR precursors on the observed Hα profiles
(Morlino et al. 2012, 2013). With the GHαFaS spectral
coverage of approximately 400 km s−1, we are not able to
resolve the broad Hα component that was found to be about
≈2000 km s−1 in previous studies (Chevalier et al. 1980;
Ghavamian et al. 2001).

2. Observations and Data Reduction

In order to resolve the narrow Hα lines along the rim of
Tycho’s SNR, we used the instrument GHαFaS mounted on
the Nasmyth focus of the 4.2 m WHT (Hernandez et al. 2008),
which operates at the Observatory del Roque de Los
Muchachos in La Palma, Canary Islands. GHαFaS is a
Fabry–Pérot interferometer–spectrometer with an FOV of
3 4×3 4. Its detector is an Image Photon Counting System
(IPCS) for which the absence of readout noise is an advantage
for observations of diffuse emission from extended objects.
IPCS cameras are almost insensitive to CRs and thus do not
require CR rejection. We used a high-resolution mode,
acquiring data on 1024×1024 pixels2 with R∼21,000
resolving power and a pixel scale of nearly 0 2 pixel−1. The
free spectral range (FSR) of the etalon was 8.56Å or
392 km s−1 centered at 6561Å and split into 48 channels that
differ in their central wavelength, leading to a sampling
velocity resolution of 8.16 km s−1. The instrument response
function is well approximated by a Gaussian with FWHM of
19 km s−1 (Blasco-Herrera et al. 2010).
The observations were conducted on 2012 November 15–19

under FWHM;1″ seeing conditions. Successive exposures
differ by one channel, and thus 48 successive exposures
complete one cycle that covers the full spectral range. The total
integration time was ≈9.6 hr, comprising 72 cycles and 3456
10 s exposures. Observations conducted over several cycles
provide homogeneous airmass and atmospheric conditions for
all channels. We reduced the data (see Figure 1) by first
applying the phase correction to all exposures individually,
where we follow the standard procedure for GHαFaS data
described in Hernandez et al. (2008). The phase correction is a
process of designating the photons’ positions for the inter-
ference rings and assigning the corresponding wavelength to
each position (x,y) on the image, l l= ( )x y,i i . As a result,
from each exposure ( )D x y,i , we build a data-subcube

l( )D x y, ,i with 48 monochromatic images. In order to use
the largest possible GHαFaS FOV, we did not use the optical
derotator. Therefore, we have to align and derotate the
observed data subcubes before co-adding them. To determine
the exposures’ relative pointing and orientation, we measure
the centroid positions of bright point sources (stars) on a stack
that combines each exposure with the 2×4 exposures that
precede and succeed it. Thus, we are assured that at least three
bright point sources are detected with enough flux for a <1
pixel centroid precision. This requirement means that we have
to discard the first four and the last four Di of each “run” of
consecutive observations, but this concerns only 57 exposures
(2%). Along with removing 13 cycles that suffer from reflected
light or other defects that we noticed in visual inspection of the
data, and also excluding seven cycles that lack reference
sources for derotation, we retain 2439 exposures in 52 cycles.
The final data cube l( )D x y, , results from summing all data

11 Several optical studies based on modeling the observed Hα-line spectra give
a distance of 2–3 kpc. Radio, X-ray, and gamma-ray observations prefer larger
distances of 3–5 kpc (for a review, see Hayato et al. 2010).
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subcubes and consists of 48 calibrated constant-wavelength
slices.

Besides the data cube, that is, the stack of all aligned data
subcubes, we produce a background cube and a flatfield cube.
To this end, we model the background flux in individual
exposures as well as the flatfield image (the position-dependent
throughput of the optical system), and subsequently process the
individual background and flatfield frames in exactly the same
manner as the corresponding data frames. By constructing the
co-added background and flatfield cubes and including them in
our parametric models of the observed shock emission, as
opposed to subtracting the background from the individual
exposures and dividing them by the flatfield image before
calibration and co-addition, we preserve the photon (Poisson)
statistics in the data cube and simultaneously account for the
variable effective exposure time in the stack of aligned
subcubes. Details on the modeling of the flatfield and
background frames are given in Appendix A.

3. Analysis

Our analysis is guided by the following goals and principles:

1. To determine the Hα NL width across a maximal area of
the observed shock.

2. To achieve maximum spatial resolution, implying mini-
mal binning (bin size) and signal per bin.

3. To still extract line parameters reliably and, in particular,
characterize their uncertainties accurately.

4. To do so even when including up to two additional lines
(10 model parameters).

5. To compare single-NL and multi-line models and to
quantify their relative evidence.

In order to achieve these aims, we decide to perform
parameter estimation and model comparison using Bayesian
inference instead of traditional (maximum-likelihood, mini-
mum-c2) fitting routines. We also account for the Poisson
statistics of the data, as opposed to the often tacitly applied

Gaussian approximation. The details of our method can be
found in Section 3.4, and Appendices E and F.

3.1. Motivation for a Multi-line Analysis

Narrow Hα lines in non-radiative shocks around SNRs are
conventionally modeled by a single Gaussian, which theore-
tically has a width (FWHM) of ~W 15NL km s−1 in accordance
with the pre-shock temperature of ∼ 104 K expected for the
warm ISM. However, visual inspection of our data indicates
that this basic model may not be descriptive; theoretical
considerations also justify investigation of more complex
models for the shock emission spectrum. Since the spatial
elements (bins) cover a small but finite part of the shock, and
moreover the observed filament is the projection of an extended
shock section along the line of sight (LOS), a single-NL model
is only suitable if one assumes that within each projected
resolution element (bin) the following conditions are realized:

1. the pre-shock ambient medium is homogeneous with
constant temperature,

2. the velocity distribution is uniform, without differential
bulk velocity components along the LOS, and

3. there are no precursors (classical BDS).

If the three conditions above are all satisfied, the projection
effects cannot modify the NL width, because both the width
and the centroid are the same everywhere, corresponding to the
upstream plasma temperature and bulk speed, respectively.
Unresolved or projected inhomogeneous pre-shock temperature
causes the superposition of Gaussians of different width. The
presence of a CR precursor can alter the NL in two different
ways: the cold neutrals in the ISM will be heated, resulting in
the NL being broadened beyond the normal 10–20 km s−1 gas
dispersion (Morlino et al. 2013), and they acquire a bulk speed
up to a few percent of the shock speed. Therefore,
inhomogeneous CR emission can be one reason for a non-
Gaussian NL. CRs also transfer momentum to the pre-shock
neutrals and potentially introduce a Doppler shift between the

Figure 1. Left panel shows a composite image of the remnant (∼8′ in diameter) of Tycho Brahe’s 1572 supernova, combining data from the Chandra X-ray
Observatory (yellow, green, blue; NASA/CXC/SAO), Spitzer Space Telescope (red; NASA/JPL-Caltech), and the Calar Alto Observatory (white stars; Krause
et al.). The transparent magenta box indicates the pointing of the ACAM (Auxiliary-port CAMera) on the Cassegrain focus of the WHT with an FOV of 4′×4′. The
center panel shows a zoom-in on the ACAM FOV. Using the same pointing as ACAM, we covered the same region with the GHαFaS Fabry–Pérot interferometer with
an FOV of 3 4×3 4. The green box marks the region that is zoomed-in in the right panel to show our reduced and integrated GHαFaS Hα image.
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gas in the precursor and the pre-shock gas not affected by the
precursor if the shock is not moving strictly perpendicular to
the LOS (Lee et al. 2007), in addition to shifts from any pre-
existing differential bulk motion in the ambient medium. These
projected or spatially unresolved shifts will also alter the line
shape, and if the effect is pronounced enough, even lead to a
split in the NL. One way to account for those distortions of the
Gaussian line shape is by allowing generalized Gaussians with
non-zero third- and fourth-order moments, for example using a
Gauss−Hermite polynomial. However, we visually identify
splits in the narrow line and choose to represent a non-Gaussian
NL by a sum of two Gaussian components.

Apart from CRs there is another possible precursor—a BN
precursor, which introduces a new line component: the so-
called IL that can be described by a Gaussian12 with FWHM in
the range 100–350 km s−1 for a typical shock velocity in the
range of [1500, 3500] km s−1(Morlino et al. 2012). We
therefore also investigate models that include this IL.

Previous observations focused on the brightest Hα knot,
where the spectrum was measured by combining all pixels
across the so-called “knotg” (Ghavamian et al. 2000; Lee et al.
2007) which, as HST imaging shows, has a complex structure
(Lee et al. 2010). It was then used to estimate the NL and IL
line widths of “knot g,” with best fits of 44±4 km s−1 and
150 km s−1 (Ghavamian et al. 2000), or 45.3±9.0 km s−1

and 108±4 km s−1 (Lee et al. 2007).
We set out to check if these results hold when “knotg” is

spatially resolved and its parts analyzed individually, or if
spatially averaging the spectrum introduced an artificially large
WNL and an IL that may have mimicked the effects of a CR or
BN precursor. We also vastly extend the areal coverage of
those earlier studies to include the lower-surface-brightness
parts of the filament, and there, too, exploit the high spatial
resolution provided by the GHαFaS instrument. In this way, we
can investigate whether the signature of the existence of CR
and BN precursors is also present in regions less complex than
that of “knot g” and looking for possible differences in the
physical properties of the shock.

We find that the contribution of the emission arising in the
photoionization precursor (PIP), previously suggested and
measured by Ghavamian et al. (2000) and Lee et al. (2007),
is negligible (see Appendix B), so that we do not need to
account for it in our filament flux models.

3.2. Definition of Models

For each location (bin), we consider several parametrized
models (S) to characterize the shock Hα emission. Regardless
of the parametrization (type of model) or specific parameter
values (θ), we factor in the local flatfield spectrum (F) and add
to it the observed background spectrum (B) before comparing
the model with the data. This has the advantage of preserving
the correct photon statistics, and contrasts with the common
approach of subtracting the background from the data and
dividing by the flatfield before modeling. Hence, for a given
location (bin), the full model is represented by q =( )M
q ´ +( )S F B, while by model we mostly refer just to S,

the intrinsic or “source” component. Note that in this
expression, F and B are the result of binning the flatfield cube

and the background cube in the same way as the data, and
therefore they only depend on wavelength (λ) for the bin thatM
describes. F and B are constructed separately from the data and
inserted into the model without free parameters. More
information on how we established F and B can be found in
Section 2 and Appendix A.
Every S consists of an NL with a Gaussian profile as well as

a constant component (c) that accounts for the sum of the
continuum level and the broad Hα line (BL), which is several
times wider than our spectral range. Depending on its type, S
may further include one or two Gaussian components that
represent an IL or an additional NL. Overall, in each bin we
therefore have four different models S to compare with the data
spectrum:

1. NL—constant plus single narrow line.
2. NLNL—constant plus two narrow lines.
3. NLIL—constant plus one narrow and one IL.
4. NLNLIL—constant plus two narrow lines and one IL.

In connection with calculating the models’ relative evidence,
we also consider a “no-line model” (0L; i.e., with the constant
spectrum as the only component), which gives an auxiliary
baseline for the relevance of at least the NL being present in the
data. A possible choice of model parameters is the component
fluxes ( =f fc constant and = { }f fi NL, NL1, NL2, IL ), line centroids
(mi), and the lines’ FWHM (Wi). The general form of this model
is

ål p l m s s= + - --( ) ( ) ( ( ) ( )) ( )S f f2 exp 2 , 1c
i

i i i i
1 2 2 2

where s = +W W 4 ln 4i i
2

instr
2 is the observed (instrumen-

tally broadened) Gaussian dispersion and Winstr the FWHM of
the instrumental response.
In practice, our models employ a transformed version of

those parameters, which has the advantage of more direct
interpretation, and a simpler functional form of the desired
parameter priors (see the next paragraph). For example, instead
of the two NL centroids, mNL1 and mNL2, the NLNL and
NLNLIL models use the NL centroid mean ( má ñNL ) and the
separation between the NLs ( mD NL). Similarly, the IL centroid
is specified by its offset from the NL centroid or NLNL
centroid mean, m m mD = -IL IL NL. We replace the component
fluxes by the total flux and the components’ flux fractions, and
use the logarithm of the total flux and line widths as they are
strictly positive quantities. A more detailed account of the
definition of model parameters can be found in Appendix D.
The parameter priors, q( )P , are an integral part of the model

definition: they encapsulate what we know (or assume) about
the relative probabilities of the parameter values a priori, before
considering the data. In particular, they can impose parameter
boundaries by way of being zero outside of those boundaries.
The line centroid parameters are effectively restricted to our
spectral window. In our models, the FWHM parameters WNL

and WIL are limited to [15, 100] km s−1 and [100, 350] km s−1,
respectively. The lower boundary of WNL reflects the lower
limit of the pre-shock temperature (≈5000 K), while the upper
boundary is based on theoretical models that include the effects
of the CR precursor (Morlino et al. 2013). The WIL range is the
theoretical expectation for shock velocities around 2000 km s−1

and a range of shock parameters (see Figure10 in Morlino
et al. 2012).

12 Strictly speaking, the IL is not a perfect Gaussian, because it results from the
population of neutrals undergoing CE in the BN precursor and they do not have
enough time to thermalize to a single temperature (Morlino et al. 2012).
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Inside of the parameter boundaries, we desire to not strongly
favor any particular parameter values a priori. However, on
physical grounds, we prefer a smooth transition of the prior to
zero for parameter values approaching the boundaries (see
Figure 2). We therefore employ shifted and scaled Beta
distributions with a b= = 1.5 for the centroid parameters and
logarithmic line widths, and a Dirichlet distribution with
a = 1.5 for the component flux fractions, which have the
constraint of being summed up to unity. For comparison, the
special case of “flat” Beta and Dirichlet distributions would be
realized by setting a b= =( ) 1.0. Thus, our choice slightly
favors the center of the allowed parameter range. The logarithm
of the total flux has a flat unbounded prior. The model
parameters and their priors are summarized in the Table 1, and
detailed definitions are presented in Appendix D.

3.3. Binning

We analyze two shock filaments, one in the more eastern part
of the NE rim which contains “knotg,” and the other in the
more northern part (Figure 3). We use the Weighted Voronoi
Tessellation (Diehl & Statler 2006) with the adaptive bin size to
spatially bin the pixels and obtain a signal-to-noise ratio (S/N)
of 10 (Appendix C) in the wavelength-integrated signal that
remains after subtraction of the background. This implies an
average minimum S/N of 1.4 per spectral element. Due to the
seeing of 1″, we require at least 5 pixels across, so that for a
round bin this implies a minimum of 19 pixels. We exclude
bins that would require>400 pixels for our target S/N, so that
unaccounted-for residual background variations, which we
estimate to be at most ~2% of the background level, do not
significantly effect our measurements. Following these criteria,

Figure 2. Parameter estimation via Bayesian inference for a bin in the NE filament of Tycho’s SNR. The top-right blue panel shows the observed spectrum (solid
black line), the background model (dashed black line), and the components of the intrinsic median NLIL model (dashed red lines). The median model is overplotted
with the solid red line. The remaining eight panels are the 1D-marginalized posteriors over model parameters (solid black lines): total flux (Ftot in counts), flux
fractions in the continuum ( fc) and lines ( fNL and fIL), NL centroid (mNL), IL offset from the NL centroid ( mD IL), and intrinsic line widths (WNL and WIL), with the
latter three quantities given in km s−1. The dashed black lines are the prior distributions, and the vertical red lines are the estimated parameters of the median model,
i.e., the median values (solid red) and the boundaries enclosing the highest density 95% confidence intervals (dashed red).
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we study 73 Voronoi bins in the eastern and 9 Voronoi bins in
the northern filament.

3.4. Parameter Estimation and Model Comparison

For each Voronoi bin, we want to find which of the four
models, M (see Section 3.2), and which vector of model
parameters, θ, best explain its data (spectrum). Since the data
are noisy, model comparison and parameter estimation are
inherently probabilistic. For both tasks and the reasons
discussed below, we use Bayesian inference.

The “standard” approach to estimate parameters is the
maximum-likelihood (or minimum-c2) method. It relies on a
well-defined likelihood maximum (mode) and the convergence
of the optimizer deteriorates when high noise or multiple
modes are present. Both conditions are met in our study: we
desire high spatial resolution and therefore small bin size,
implying low S/N. Our models are nonlinear and comprise up
to 10 parameters, implying generally multiple modes. We wish
to characterize all those modes, not just the “main” (global)
maximum, toward reliable, high-confidence level parameter
uncertainties (“errors”), instead of the minimal but common
68% confidence (“ s-1 ”) error. Often, and in our models with
their non-trivial likelihood function, error propagation over a
large parameter range is cumbersome or impossible. Finally,
the maximum of the likelihood does not provide a quantitative,
well-defined measure for the relative probability of the different
models with different parametrizations (model comparison).
These circumstances make maximum-likelihood or other fitting
methods insufficient for our purposes.

Bayesian inference, by contrast, provides the full, multi-
variate parameter probability distribution function (PDF), the
so-called posterior q( ∣ )P D M, , as well as its integral (margin-
alization) over all parameters, ( ∣ )P D M —the evidence. Evi-
dences of models are the relative model probabilities, without
reference to any specific (e.g., best-fit) parameter value. Bayes’
theorem states that the posterior as a function of q is

q
q q

=( ∣ ) ( ∣ ) ( ∣ )
( ∣ )

( )P D M
P D M P M

P D M
,

,
. 2

It is proportional to the product of the likelihood,
q= ( ∣ )L P D M, , and prior, q( ∣ )P M . L reflects the model and

is the probability of the data for given model parameters and

measurement errors. Our IPCS instrument counts photons,
which are described by a Poisson distribution that therefore
represents the measurement error, with expectation value and
variance equal to the flux predicted by the spectral model. The
prior is the parameter PDF that we know or assume before
taking into account the data at hand. Apart from making these
assumptions or knowledge explicit (fitting methods implicitly
assume a flat prior in the chosen parameters), it has the
advantage of naturally facilitating self-consistent parameter
changes.
We represent the N-dimensional posterior PDF of the N

model parameters as a sample, which we obtain using the
Markov Chain Monte Carlo (MCMC) method. For details on
the sampling algorithm, see Appendix E. The posterior can be
summarized in many ways. One is the posterior maximum; we
do not emphasize this as it is a relatively noisy estimator and its
computation is not unique. Instead, we provide the median and
the highest density (shortest) 95% confidence intervals of the
one-dimensional marginalized distributions that result from
integrating q( ∣ )P D over all but one parameter. We deem 95%
to be the minimal confidence level worth quoting, and more
reliable than the frequently employed 68% (“ s-1 ”) level,
which carries a high probability (32%) of not including the
optimal parameter values.
For the parameter estimation, we are interested only in the

posterior’s shape (relative parameter probabilities), which does
not necessitate normalization by the evidence. However, the
Bayes factor, i.e., the evidence ratio of two models, is a
probabilistically well-defined, quantitative measure for com-
paring models. For a given M, the evidence is defined as

ò q q q=
q

( ∣ ) ( ∣ ) ( ∣ )P D M P D M P M d, . It is the probability of
observing the data when assuming that the model is “true” but
the parameters are not specified. In practice, the evidence
integral is often high dimensional and therefore computation-
ally intensive. In order to approximate it numerically, we use
the cross-validation (CV) likelihood (Bailer-Jones 2012),
particularly the leave-one-out (LOO) CV likelihood: =( ∣ )P D M

( ∣ )‐L D MLOO CV ; see also Appendix F. To compute it, samples are
drawn from the data partition posteriors instead of the prior as in
“standard” evidence integrals, and it has the advantage that it
depends on the prior only to second order. Each bin spectrum has
48 elements and the LOO-CV is applied to these elements by

Table 1
Model Parameters and Their Prior PDFs

Parameters Meaning Prior

ln ( )Ftot Natural log-based total flux flat prior
= [ ]f i, c, NL, NL1, NL2, ILi Flux fractions Dirichlet prior:  a-fi i

1, a = 1.5; å = Î ( )f f1, 0, 1i i i

m m¢ á ¢ ñ,NL NL NL centroid, NL centroid mean Beta prior: -a b- -( )x x11 1, a b= = 1.5; x ä (0, 1)

mD ¢
NL Separation between the two NLs

mD ¢
IL IL centroid offset from NL centroid (mean)

¢ ( )wNL IL NL (IL) natural log-width

Model Model Parameters

NL ln m¢ ¢( )F f f w, , , , NLtot NL c NL

NLNL ln m má ¢ ñ D ¢ ¢ ¢( )F f f f w w, , , , , , ,NLtot NL1 NL2 c NL NL1 NL2

NLIL ln m m¢ D ¢ ¢ ¢( )F f f f w w, , , , , , ,tot NL IL c NL IL NL IL

NLNLIL ln m m má ¢ ñ D ¢ D ¢ ¢ ¢ ¢( )F f f f f w w w, , , , , , , , , ,NLtot NL1 NL2 IL c NL IL NL1 NL2 IL

Note. All parameters apart from ln ( )Ftot are defined in the (0,1) range (see Appendix D for notation).
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predicting each of them from the remaining 47 elements under
the model M (marginalized over the parameters).

Since ( ∣ )P D M can be a very large (or small) number, its
absolute value is meaningless, and only relative values are needed
for different models, we express it as the base-10 logarithm of the
ratio with some reference model (Figure 4, Tables 2 and 3). As a
matter of choice, we consider 0.5 dex log evidence differences as
“significant” to clearly prefer one model over another. This choice
is somewhat conservative; testing on simulated data reveals that
we start to distinguish the correct models at 0.2 dex, while our
numerical precision is around 0.05 dex.

With the 0.5 dex criterion per bin, we do not rule out the
other respective models, but rather indicate that significant
evidence exists that either an IL or double-NL (or both) is
present in the data as a “population” in the filament overall, or
conversely, that such an additional line emission is most likely
not present if the evidence for the NL model relative to other
models is larger than 0.5 dex.

The Bayes factors, and in turn the fraction of bins that show
significant evidence for a double-NL (e.g. bin in Figure 5) or an
additional IL (e.g. bin in Figure 2), depend on the line width
used to distinguish an NL from an IL. Our choice of
FWHM=100 km s−1 as the lower IL width limit corresponds
to shock speeds as low as 1500 km s−1 while previous results
show the shock speed of Tycho’s SNR to be at least 2000 km s−1
(Ghavamian et al. 2001). WIL<100 km s−1 requires unrealistic

full electron−proton temperature equilibrium (Caprioli 2015) or
shock speeds lower than 1500 km s−1 and zero equilibration, i.e.,

=T T m me p e p. The latter case was already debated by Morlino
et al. (2012), and furthermore, T T 0.01e p was never measured
in any of the remnants (Ghavamian et al. 2013). On the other
hand, NL widths larger than 60 km s−1 have not been observed
before, and >100 km s−1 would require a CR acceleration
efficiency >40% (Morlino et al. 2013), compared to the more
realistic 10%–20% efficiency in SNR shocks (as was also found in
Tycho’s SNR by Morlino & Caprioli 2012). Therefore, our NL
−IL separating line width limit robustly distinguishes the NL and
IL that arise from different processes (cold neutral excitation and
BN precursor).

4. Results

Following the analysis described above, we calculated
posterior parameter distributions for every model and Voronoi
bin, which we then summarized by the median of the 1D-
marginalized posteriors as a central parameter estimator, and
the boundaries of the shortest (highest-density) 95% confidence
interval. We also compared models using the Bayes factors
(evidence ratios) calculated using the CV likelihood method.
Our focus is on the measured NL width, evidence for and
the magnitude of a split in the NL, evidence for an IL and its

Figure 3. NE filament of Tycho’s SNR. The two boxes on the GHαFaS Hα image show the northern and eastern shock filaments. The four panels in each box
represent the bin contours overplotted on the background-subtracted cube, spatial variation of the median values of evidence-weighted NL width (in km s−1) and IL
flux fraction posteriors, and bins that show the necessity of IL (red), second NL (blue), and both the second NL and IL (green). In this last (rightmost) panel, white
indicates either bins with too little flux, or those where no line is required in addition to the single NL to describe the data.
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strength and width, the variation of LOS velocities across the
filament, and possible correlations among the line parameters.

In Figure 2, we illustrate the application of our analysis to
one of the bins from our data set. The observed spectrum (solid
black line) is shown in the top blue panel, and the median NLIL
model in solid red, while the model components are shown
with dashed lines: the nonparametric background model
(dashed black) and the parametrized “source” (SNR emission)
model components—a constant component, one NL, and one
IL—in dashed red. The background spectrum, which has been
derived and fixed independently (see Appendix A) shows
geocoronal and Galactic Hα emission, including the Galactic
[N II] line at around −130 km s−1 LOS velocity. The
1D-marginalized posterior parameter distributions (solid black)
and prior parameter distributions (dashed black) are shown in
the remaining eight panels. The prior parameter distributions
are overplotted for comparison with the posterior. The priors
are chosen to not strongly prefer any parameter values over the
allowed parameter range, but taper off smoothly toward zero at
the range limits. Most posteriors are significantly different from
the priors, and thus all of the parameters are well-constrained
by the data. The parameters of the median model are denoted
with red solid vertical lines. In this example, the median NL
FWHM width is »W 40NL km s−1. The IL is »W 210IL
km s−1 wide and comprises ≈40% of the total flux. With the
red dashed vertical lines, we marked the boundaries of the 95%
confidence interval. Compared to all other model parameters,
the posterior shape of WIL is more sensitive to the choice of
prior (Appendix F). Still, the median and 95% confidence
intervals of WIL of a flat and Beta prior agree within ≈10%.
This relatively benign difference occurs because by coin-
cidence the peak of the likelihood is close to the center of the
prior range, and because the 95% confidence interval
boundaries are similar to the minimum/maximum limits of
the prior range.

To summarize the parameter estimation of one bin, we
consider the evidence-weighted 1D-posterior (see Figure 6,
middle row), to which any of the four models that feature the
parameter of interest contribute their marginalized posterior in
proportion to their evidence. We then give the median of the
evidence-weighted posterior, as well as the boundaries of its
95% confidence interval.

To summarize the results of all bins, we take three different
routes.

1. We consider the distribution of all 82 evidence-weighted
posteriors’ medians, as well as their 2×82 lower and
upper 95% confidence interval boundaries (Figure 6, top
panels). This yields information on the variability of line
parameters across the filament.

2. Second, we combine (average) the evidence-weighted
posteriors of all bins, providing a representation of the
information that we typically find in one individual bin
(Figure 6, middle row of panels, black curves). We also
combine model-specific posteriors separately to illustrate
the relative contribution of different models and how
parameter estimates depend on the model choice (colored
curves).

3. Finally, we evaluate the parameter constraints as imposed
by all data (bins) combined. For that purpose, we sample
from all bins’ evidence-weighted posteriors, each time
computing the median value over all bins. That is, we
define one new parameter for each model parameter: the

cross-bin median. Its posterior is plotted in the bottom
row of Figure 6, and again summarized by its median and
95% confidence interval boundaries. We emphasize that
this measure is decidedly distinct from modeling the
spectrum of all bins combined, because it is still based on
models constrained by all bins individually and indepen-
dently, and, in particular, allows for local shifts in the line
centroids to avoid artificial line broadening.

Apart from estimating model parameters, we compare the
probabilities of models (different numbers of emission lines)
against each other. In each bin, we define a model as favored if
it has the highest evidence and a >0.5 dex logarithmic
evidence ratio (>3:1 probability) over the NL model (see
Figure 3, right panel). This threshold is a matter of choice; it is
twice the 0.2 dex by which the correct model is typically
favored in our tests on simulated data and reflects our
approximate notion of the minimum for a “significant”
probability. If no model satisfies the 0.5 dex requirement, we
consider the fiducial single-NL model as favored. In this
scheme, the data in one bin may favor an IL (NLIL or NLNLIL
model), a double-NL (NLNL or NLNLIL model), both
(NLNLIL), or none of them (NL). Using this criterion for
each bin separately, we ascertain the fraction of bins in which
the evidence indicates an IL, as well as the fraction of double-
NL occurrence.

4.1. Narrow-line Width

The example in Figure 2 is by no means the only one where
the NL width, WNL, is much larger than the maximally allowed
thermal NL broadening (20 km s−1). On the contrary, our
central estimator, the median of the evidence-weighted WNL

posterior, is never lower than 35 km s−1, in any bin. The spatial
distribution of the estimated WNL is shown in panel2 of
Figure 3. We do not recognize a strong spatial pattern of WNL;
most of the bin-to-bin variations appear to be randomly
distributed. However, in the northern part of the eastern
filament, there appears to be a trend of lower (higher) WNL on
the pre-shock (post-shock) side, and a generally higher WNL in
the southern part. The spatial variation of WNL (Figure 3)
probably indicates variations in the amount of neutrals in the
ambient medium: more neutrals imply a more efficient ion
−neutral damping of magnetic waves excited by CRs, thus
resulting in a pre-shock gas heated to larger temperatures. The
histogram of the median and 95% confidence interval
boundaries can be found in the top-left panel of Figure 6. As
measured by the cross-bin median, the global WNL is

 -( )54.8 1.8 km s 1 with 95% confidence. Suprathermal NL
widths are required even when only models with double-NL or
an additional IL are considered; their averageWNL is only a few
km s−1 lower (see the next two subsections).

4.2. Evidence for a Split in the NL

In 18% of the Voronoi bins (15 of 82), we find significant
evidence for an NLNL(IL) model, i.e., for a split in the NL. For
one of these bins (bin 5 in Table 3), we show posteriors in
Figure 5. In this example, NL centroids and widths are well-
determined, while the flux of the second (right, high-velocity)
NL closely follows the prior distribution. The two NLs are
separated by ≈40 km s−1 and have median widths of ≈52 and
70 km s−1. That is, despite using two Gaussians, both are
much wider than the thermal 20 km s−1, indicating that the
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broadening is mostly not an artifact of unresolved differential
LOS motion. Not only is the log evidence ratio of the NLNL to
NL model larger than 1 dex in favor of the NLNL model, but it
is also more than three times (0.5 dex) more probable than the
NLIL or NLNLIL model. This implies highly significant
evidence for the presence of a second (split) NL, and in this
particular case, also significant evidence against an IL.

The example in Figure 5 is not untypical: even in locations
where double-NL models are favored, the average measured
WNL is 49 km s−1, again much larger than the upper limit of the
intrinsic thermal NL width. The median parameters and 95%
confidence intervals for the favored model of each bin are
listed in Tables 4 and 5. The cross-bin median NL−centroid
separation constrained from all of the bins in the NE rim is
mD = 38.5 5.1NL km s−1 (95% confidence).
In the case of a perfectly spherical shock and homogeneous

ambient ISM, the parts of the filament closest to the upstream
are seen edge-on, and we would expect to see a single NL,

while the parts of the filament closer to the downstream are
inclined to the LOS and should exhibit a split in the NL.
Evidence for a double NL in the eastern filament is found in a
few inner bins (blue bins in Figure 3), and also in some outer
(green) bins. Given the small number of double-NL occurrence
and its scattered locations, any determination of the shell
geometry would be vague. However, the detection of double
NLs with WNL?20 km s−1 clearly points toward heating and
momentum transfer in the CR precursor.

4.3. Intermediate-line Evidence and Parameters

As quantified by the Bayes factors, we find that 34% of the
Voronoi bins (28 bins out of 82) are significantly better
explained when a line is added to the fiducial NL-only model.
In 74% of those, either the NLIL or NLNLIL model is also
preferred over an NLNL model, which means 24% of the bins
overall. This is illustrated in Figure 4, where the logarithmic

Figure 4. Spatial variation and histogram representation of logarithmic (base-10) evidence ratios across the NE rim in Tycho’s remnant. The logarithmic evidence
ratios are shown in the range±1 dex in the spatial maps, while the histograms show the entire range of log evidence ratio values. Bins with log evidence ratio of
around +1 dex ratio appear as dark red, while bins with log evidence ratios of around −1 dex appear as dark blue. For example, the dark red bins in panel (2) of the
eastern filament favor the NLNL model when compared to the NL model, with the log evidence ratio between the two models of>1 dex. Model comparison is also
quantitatively presented in the histogram visualization of the evidence ratios where we also plot the mean values of the distributions (vertical dashed lines).
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(base-10) ratios of all models versus one another are shown in
separate panels, and each panel shows the spatial variation of
the corresponding ratio. These values are visualized by the
histograms and also tabulated in the Tables 2 and 3. Apart from
just a few bins, the NLNLIL model is not clearly favored over
the NLIL model (panel 6). The situation changes when it comes
to the comparison between NLNLIL and NLNL (panel 5),
further confirming the necessity of an IL component. One
example (bin 17 in Table 2) is illustrated in Figure 2, where the
logarithmic evidence ratio of the NLIL model relative to the
NL and NLNL models is larger than 1 dex. This means that an
IL in addition to a single NL explains our data more than 10
times better than a simple NL model or NLNL model,
irrespective of any particular parameter values. Both NLIL
and NLNLIL models are equally likely for this bin, which
implies no need for the second NL component. For this
particular bin, we present posteriors for all other models in
Appendix D.

Prominent ILs are seen across the entire filament (panel 3 in
Figure 3), with an IL flux fraction of up to 42%. If we only
consider bins that favor the NLIL or NLNLIL model, we get an
IL flux fraction of 28% on average, and the intermediate-to-
narrow flux fraction f fIL NL is estimated at 0.61 with a 95%
confidence interval of (0.01–1.87).

In contrast to the IL flux, WIL is not well-constrained in
individual bins, as indicated by the similarity of the prior and
average bin-specific posterior (Figure 6, middle panels).
However, several bins with high S/N and/or strong IL
emission (as the bin in Figure 2) have good constraints on
the IL width. Moreover, the combination of the data in all bins
provides even better information: the cross-bin median is

Î [ ]W 166.77, 194.15IL km s−1 (95% confidence; see the
bottom of Figure 6). The global 95% confidence interval
of f fIL NL is [0.34, 0.47]; however, we caution that it
varies considerably between bins, with median Î( )f flog IL NL
-[ ]0.79, 0.05 .

4.4. Line-of-sight Velocity

We present the observed LOS velocity, i.e., the NL centroid
mNL, in Figure 7. The map of the bin-specific mNL is shown in
the left panels. In the top-right panel, we show the corresp-
onding histogram (green), as well as the distribution of the 95%
confidence interval boundaries. Across the entire NE rim, we
find median LOS velocities in the range - -[ ]67.9, 28.6
km s−1. Notably, the northern filament moves with respect to
the eastern filament, m = -32.9NL km s−1 and −40.5 km s−1

on average. The bin-to-bin variations in mNL are most
noticeable in the eastern filament, indicating inhomogeneities
in the shock and, in turn, in the ISM density. The bulk (median)
LOS velocity of the filament as a whole is m = - 38.3 1.5NL
)km s−1 at the 95% confidence level (see the middle-right
panel). Converting to the local standard of rest (LSR), we
obtain » -V 34LSR km s−1. We also check for the correlation
between the LOS velocities and surface brightness (bottom-
right panel), but find them to be uncorrelated.

4.5. “Knot g”

This location in the eastern filament has been the target of
previous observational Hα studies, but it was not spatially
resolved with spectroscopic data. We spatially resolve this
“knot g,” and the entire NE filament, with our spectroscopic data

for the first time. More precisely, the centroids of six of our bins
drop within the Lee et al. (2007) slit. Averaging over these bins,
we find WNL=49±15 km s−1 (68% confidence), which is in
agreement with Lee et al.ʼs reported values of 44±4 km s−1.
The mean LOS velocity is −39.7 km s−1 enclosed by the
68% confidence interval of [−50.2, −34.7] km s−1. The mean
LSR velocity in “knotg” is found to be »-36 km s−1, in
agreement with the previous estimate by Lee et al., but with
a blueshifted offset of nearly 6 km s−1. Typical measured
parameters and their 68% confidence intervals in “knotg” are
WIL=188 [105, 229] km s−1, fIL/fNL=0.35 [0.05, 0.54], and
mD NL=32.4 [8.1, 46.7] km s−1.

4.6. Correlation in Parameters

We investigate the correlation between various line para-
meters and surface brightness, as well as correlation among
model parameters, using Spearman’s rank correlation coeffi-
cient (ρ). It is sensitive to any monotonic relationship, even if it
is not linear as for Pearson’s correlation coefficient, and does
not require normally distributed data. The result indicates a
strong correlation (or anticorrelation) for values close to± 1.
In the top row in Figure 8, we plotted the median of

evidence-weighted WNL, f fIL NL, WIL, and mD NL posteriors
against the surface brightness (SB; total flux of the intrinsic
model divided by the bin area). We separately test the
correlation for bins for which a single-NL model (NL or
NLIL, marked with squares) has the highest evidence, and
those bins for which a double-NL model (NLNL or NLNLIL,
marked with circles) has the highest evidence of all models. We
do not find any strong correlation: parameters of single-NL
models are uncorrelated with surface brightness, while double-
NL models show weak correlations with SB. The highest
correlation is with mD NL (ρ=0.57), meaning that with
increasing SB, the two NL centroids tend to be more separated.
In the bottom-row panels of the same figure, we estimated

the correlation among the parameters. Although we see a hint
of a positive correlation between the NL width and NL
separation (ρ=0.47 and ρ=0.49; see panel 8), we do not
find a clear correlation between any of the parameters. We get
very similar results when we apply Pearson’s correlation: its
coefficient is either very close to Spearman’s rank coefficient or
closer to zero. In addition, the typical uncertainty of all of these
points (plotted in the top-right corner of each panel and given
as the average shortest 68% confidence interval) propagates
into the correlation rank coefficient uncertainty.

5. Discussion

Previous Hα observations of Tycho’s “knotg” (Lee et al.
2007) were modeled by Wagner et al. (2009) by computing a
series of time-dependent numerical simulations of CR-modified
shocks. Assuming a distance of 2.1 kpc to the remnant, they
found the CR diffusion coefficient of κ=2×1024 cm2 s−1

and the lower limit of the injection parameter x = ´ -4.2 10inj
3

to be in good agreement with the observations, suggesting that
CR acceleration in the shock is efficient. Diffuse emission 1″
(∼1016 cm) ahead of the eastern filament was also detected by
Lee et al. (2010) and interpreted as emission from the CR
precursor with T∼80,000–100,000 K.
In what follows, we will summarize the main results of our

paper and look for theoretical explanations for our findings.
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Table 2
Model Comparison for the 73 Spatial Bins in the Eastern Shock Filament of Tycho’s SNR

Bin x [″] y [″] Pix S/N 0L NL NLNL NLIL NLNLIL
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 22.0 59.2 20 14.40 27.073 0.108 0 0.077 0.234
2 21.4 58.4 26 14.21 31.122 0.307 0.273 0 0.098
3 22.4 58.2 21 14.96 40.522 0.245 0 0.236 0.447
4 22.8 59.7 26 12.52 13.405 0 0.318 0.220 0.476
5 21.6 57.4 22 12.33 27.723 0.435 0.343 0 0.110
6 21.0 60.7 46 13.08 31.293 0.459 0.391 0 0.091
7 19.6 64.2 188 12.04 39.630 0.483 0.325 0.270 0
8 21.1 59.5 26 15.19 30.855 0.176 0.113 0 0.160
9 18.3 61.1 378 12.84 37.771 0.376 0.348 0 0.185
10 20.5 67.3 234 11.43 33.046 0.410 0.146 0.473 0
11 20.4 57.1 51 12.56 25.860 0.236 0 0.370 0.295
12 21.3 56.3 32 11.07 25.137 0 0.217 0.074 0.266
13 22.4 57.2 22 11.97 17.165 0 0.161 0.246 0.356
14 19.7 58.5 104 13.81 42.871 0.594 0.366 0.088 0
15 22.5 55.9 48 10.68 14.121 0 0.182 0 0.141
16 21.3 55.0 40 10.47 19.664 0.188 0.178 0.272 0
17 19.5 55.3 137 13.05 30.044 1.456 1.307 0 0.027
18 22.4 54.5 27 9.69 15.533 0 0.203 0.013 0.121
19 21.4 53.8 37 10.44 12.876 1.387 0 0.475 0.203
20 20.2 53.4 51 11.33 17.289 0.094 0.360 0 0.126
21 23.4 55.0 40 8.49 9.724 0.436 0.084 0 0.092
22 21.3 52.6 31 10.51 20.602 0 0.109 0.050 0.207
23 22.5 53.3 30 10.98 19.092 0.518 0.212 0.232 0
24 18.5 52.7 138 11.15 23.991 0.107 0 0.333 0.303
25 22.3 52.1 27 9.17 4.052 0 0.249 0.132 0.333
26 20.4 51.8 38 11.57 10.662 0 0.267 0.281 0.434
27 21.6 51.4 23 9.86 18.144 0.016 0 0.081 0.119
28 19.4 51.0 48 11.10 21.513 0.018 0 0.456 0.444
29 20.8 50.8 19 10.63 20.281 0.166 0.223 0 0.146
30 23.9 53.6 67 9.73 9.985 0.524 0.488 0 0.024
31 19.3 49.6 36 10.09 23.207 0 0.131 0.041 0.254
32 20.3 50.0 28 11.16 18.678 0.459 0.628 0 0.152
33 20.9 49.0 32 10.58 16.697 0.218 0.105 0.010 0
34 19.9 48.7 26 11.08 21.270 0.081 0.098 0 0.099
35 18.7 48.1 47 12.01 23.668 0 0.085 0.084 0.265
36 20.2 47.5 48 11.38 21.533 0 0.008 0.052 0.165
37 17.5 49.6 165 11.17 19.644 0.316 0.352 0 0.112
38 19.0 46.9 37 11.92 25.193 0.730 0.622 0 0.070
39 18.6 46.0 21 12.10 23.762 0.603 0 0.834 0.452
40 20.3 45.5 115 12.72 21.540 1.005 0 0.258 0.033
41 17.3 44.3 59 11.28 23.175 0.503 0.713 0 0.072
42 18.9 44.9 35 11.55 23.385 0.731 0.432 0 0.084
43 18.5 44.2 16 9.10 11.179 1.116 0.790 0.065 0
44 16.4 46.4 279 12.59 27.058 0.125 0.066 0 0.082
45 18.4 43.4 31 11.30 21.451 0.033 0.072 0 0.173
46 16.8 42.6 98 12.74 22.116 1.082 0.673 0 0.020
47 18.7 42.3 52 11.63 20.054 0 0.303 0.172 0.404
48 16.9 40.6 58 12.11 26.149 0.207 0 0.051 0.041
49 17.9 41.3 29 11.62 18.944 0.195 0.282 0 0.118
50 18.0 39.7 42 12.24 20.337 0.324 0.289 0 0.112
51 15.5 35.6 58 11.36 28.214 0.685 0.432 0.459 0
52 17.4 38.1 21 10.47 17.933 0.324 0 0.113 0.045
53 16.9 39.0 38 12.27 22.999 0.265 0 0.404 0.107
54 18.5 38.0 58 10.56 12.943 0 0.022 0.292 0.268
55 16.9 37.3 29 12.04 18.049 0.466 0.152 0.195 0
56 17.9 36.7 29 11.74 18.795 0.198 0.316 0 0.151
57 16.8 36.2 23 12.53 16.550 0.589 0.619 0 0.083
58 19.5 33.6 344 11.89 16.533 0.187 0.395 0 0.117
59 17.8 35.7 34 12.40 30.850 0.695 0 0.361 0.150
60 16.6 35.2 19 11.81 16.934 0.091 0 0.096 0.119
61 17.2 33.5 25 11.15 17.640 0.033 0.203 0 0.118
62 17.3 34.7 28 10.86 19.534 0 0.038 0.172 0.264
63 16.4 34.2 25 11.63 26.490 0.648 0.649 0 0.110
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Presence of a CR precursor. The NL width is much broader
than 20 km s−1 (≈55 km s−1 on average) in the entire NE rim
regardless of whether the shock emission is described with a
single or double NL. In other words, even when differential
velocities (double NL) are present and accounted for, the NL is
still significantly broadened. This clearly points toward gas
heating in a CR precursor (Morlino et al. 2013). Furthermore,
momentum transfer in a CR precursor might result in a split in
the NL if we have two inclined shocks projected on our LOS.
This is something that we observe—more precisely, we find
significant Bayesian evidence for it in 18% of the data. Apart
from the separation between the two NLs being 38 km s−1 on
average, at the same time we find that their intrinsic widths are
around 49 km s−1. If we assume that we have the contribution
of two shocks inclined with the same angle to the LOS and that
neutrals in the CR precursor acquired 10% of the previously
estimated shock velocity of 2500 km s−1 (Ghavamian et al.
2001), we find that the shock normal inclination of 85°–86°
explains the centroid separation of 38 km s−1. Obviously, for
the same shock speed and smaller acquired bulk velocity, we
would need the shocks slightly more inclined, i.e., with angles
< 85 . However, since only few bins show evidence for a split
in the NL, we do not have enough information to construct the
geometry of the shock.

Presence of a BN precursor. The main signature of the BN
precursor is an IL (Morlino et al. 2012); 24% of the bins
demand an additional line being specifically IL. We find a
median value for the intrinsic IL width of 180 km s−1,
comprising on average a 41% intermediate-to-narrow flux

ratio. Moreover, the observed high pre-shock neutral fraction of
0.9 (Ghavamian et al. 2001) in combination with the shock
velocity of ∼2500 km s−1 supports the BN presence since a
large neutral fraction and the specified shock velocity
contribute to efficient CE and the larger number of created
BNs play an essential role in the formation of and heating in the
BN precursor. BNs are ionized inside the BN precursor almost
immediately when they cross the shock. The newly created
protons move with a bulk speed larger than the Alfvén speed,
hence they can trigger the streaming instability (and possibly
other kind of instabilities), resulting in an increase of the ion
temperature in the BN precursor. In turn, the CE between the
pre-shock neutrals and warm ions creates warm neutrals that
produce the IL.
For illustrative purposes, in Figure 9 we report the

temperature profile of the pre-shock gas for specific values of
shock parameters as calculated in Morlino et al. (2013) where
the CR and BN precursors can be clearly distinguished. The
BN precursor acts on scales of 1016–1017 cm in the immediate
pre-shock region and can heat the gas to a temperature of
∼106 K. The CR precursor length is much larger, depends on
the maximum energy of the accelerated particles, and extends
over several 1017 cm. The expected gas temperature in the CR
precursor is ∼105 K.
Collisionless shock model prediction in partially ionized

medium. Following the results of Morlino et al. (2013) and
their Figure 9, 40–50 km s−1 NL widths require efficient
turbulent heating hTH in the CR precursor, but also accelerated
particles with the maximum momentum of pmax=40 TeV/c

Table 2
(Continued)

Bin x [″] y [″] Pix S/N 0L NL NLNL NLIL NLNLIL
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

64 17.6 32.1 42 12.86 26.277 2.415 1.670 0 0.098
65 16.5 32.8 29 13.09 22.555 0 0.123 0.128 0.278
66 16.5 31.7 34 12.12 27.519 0.086 0.126 0 0.154
67 16.0 30.7 32 12.02 17.226 0 0.131 0.088 0.203
68 14.4 31.7 155 12.61 32.667 0 0.148 0.165 0.393
69 13.2 22.1 59 9.33 18.851 0.095 0.241 0 0.171
70 12.3 18.4 285 10.04 15.999 0.047 0.152 0 0.112
71 13.8 26.8 47 8.78 8.551 0 0.239 0.030 0.194
72 15.3 33.6 61 11.76 19.728 0.090 0.377 0 0.185
73 13.3 20.6 59 9.43 11.914 0 0.208 0.138 0.300

Note. Columns 1–5: number of the (Voronoi) bin, x and y coordinates of the bin centroid, number of combined pixels, and signal-to-noise ratio. Columns 6–10:
relative log CV likelihoods of the favored model (denoted with 0) to other models.

Table 3
Same as Table 2 just for the 9 bins in the Northern Filament

Bin x [″] y [″] Pix S/N 0L NL NLNL NLIL NLNLIL
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 13.0 23.7 351 14.30 33.932 0.846 0 0.667 0.357
2 10.4 20.6 62 15.31 43.600 0.483 0.479 0 0.264
3 8.9 22.1 169 15.36 53.524 1.645 0.423 0 0.009
4 12.3 20.8 169 14.77 41.332 0.003 0 0.068 0.205
5 8.6 19.7 129 15.50 49.913 1.194 0 0.644 0.517
6 11.7 17.3 355 16.72 34.586 0.470 0 0.186 0.077
7 9.0 17.8 75 16.31 42.528 0.959 0 0.741 0.269
8 9.1 15.0 190 14.65 40.034 1.090 0.479 0.329 0
9 7.4 16.5 104 14.73 37.961 0.086 0.246 0.025 0
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or higher. However, this result is dependent on the shock
velocity assumption, which is 4000 km s−1 in the cited paper.
Furthermore, Figure 10 in the same paper shows the IL width
as a function of the CR acceleration efficiency ò for a fixed
shock speed =V 4000sh km s−1, h = 0.5TH , and pmax=
50 TeV/c, and two values of downstream electron-to-proton
temperature ratios bdown being either 0.01 or 1. Interestingly,
our measured IL width of 180 km s−1 on average can be
explained with the mentioned shock parameters and the
acceleration efficiency of 15%–25%, although any further
constraints are difficult since we do not know bdown. The latter
value, as well as the shock velocity, is something that can be
constrained from the observations of the broad Hα component.

In order to obtain the measured »W 40NL km s−1, one
requires a combination of shock parameters (and CR accelera-
tion included): pmax=10 TeV/c, Vsh=2500 km s−1, and
bdown of up to 0.1 (Morlino et al. 2013). At the same time, this
configuration predicts an IL width of around 300 km s−1 and
intermediate-to-narrow flux ratio of 1.6 on average for various
values of hTH and ò. Both of these IL parameters are much
higher than the median values we infer from our data and
analysis. We speculate that somewhat higher bdown than 0.1
(see Figure13 in Morlino et al. 2012) and a shock velocity of
around 3000 km s−1 would possibly be able to explain the
observed »W 180IL km s−1, »f f 0.41IL NL , and »W 55NL

km s−1. Finally, we also notice that keeping hTH constant and

Figure 5. Parameter estimation via Bayesian inference for a bin in the NE filament of Tycho’s SNR that requires a second NL. The top-right blue panel shows the
observed spectrum (solid black line), the background model (dashed black line), and the components of the intrinsic median NLNL model (dashed red lines). The
median model is overplotted with the solid red line. The remaining eight panels are the 1D-marginalized posteriors over model parameters (solid black lines): total flux
(Ftot in counts), flux fractions in the continuum ( fc) and two narrow lines ( fNL1, fNL2), NL centroid mean má ñNL , the separation between the two NLs mD NL, and
intrinsic NL widths (WNL1, WNL2), with the latter four all given in km s−1. The dashed black lines are the prior distributions and the vertical red lines are the estimated
parameters of the median model, i.e., the median values (solid red), and the boundaries enclosing the highest density 95% confidence intervals (dashed red).
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increasing ò, the model of Morlino et al. (2013) predicts a
simultaneous increase in WNL and decrease in WIL and f fIL NL.
We find a hint for such an anticorrelation between WNL and
WIL (panel 7 in our Figure 8).

Average and variation of velocities. Our result for the median
LSR-corrected LOS velocity, = - ( )V 34 2LSR km s−1,

is in agreement with the earlier study by Lee et al. (2007),
who reported an NL Hα LSR velocity −30.3 km s−1 of “knot
g.” Furthermore, Ghavamian et al. (2017) reported a value of
−45.6 km s−1, which falls within our range [−64, −25] km s−1

of observed LSR velocities in the NE rim. In H I 21 cm
observations toward Tycho’s NE rim, Reynoso et al. (1999)

Figure 6. Summary of results for the narrow-line width (WNL, left panels), intermediate-to-narrow-line flux fraction ( fIL/fNL, center-left), IL width (WIL, center-right),
and NL centroid separation ( mD NL, rightmost panels). All figures are based on the marginalized posteriors of all 82 bins and 82×4 models, weighted within
individual bins by relative model evidence. Top row: distribution of median (green) and highest density 95% confidence interval boundaries (blue, red), quantifying
the variation across the filament. For the f fIL NL, we adopted a log-scale in order to make the low-end confidence interval boundary histogram more visible. Middle:
sum of all posteriors (solid black), illustrating the average posterior of an individual bin and the typical relative contributions of single-NL (orange), NLNL (green),
NLIL (blue), and NLNLIL (red) models. Bottom: posterior of the median across all bins (solid), in effect using all data to constrain the respective parameter values.
These are significantly narrower than the individual bin posterior. The prior is shown by the dashed curve in the middle and bottom panels, whereas the prior of the
cross-bin median is given in the bottom panels.
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found VLSR=−51.5 km s−1 and associated the location of
Tycho’s SNR and the H I cloud with the Perseus arm. Similarly,
12CO emission was found at = -V 62.5LSR km s−1 (Lee et al.
2004; see also Zhou et al. 2016) and might be associated with
SN 1572ʼs pre-shock gas. However, as pointed out by Tian &
Leahy (2011), there is no clear evidence that either the H Icloud
or CO cloud is physically associated with Tycho’s NE rim. We
leave further discussion of the VLSR result and its possible
interpretation to future work, where we will also investigate the
shock and CR properties in more detail (see Section 6).

6. Summary and Conclusions

We present Hα spectroscopic observations of Tycho’s NE
Balmer filaments. This study provides spectroscopic data that,
for the first time, are spatially resolved (spectro-imagery), with
large coverage that comprises and resolves the entire NE
filament. Our analysis is based on Bayesian inference, which
enables a quantitative, probabilistic, and well-defined model
comparison, and a comprehensive, complete characterization of
the parameter probabilities.

We find that the broadening of the NL beyond 20 km s−1 that
was noted in previous studies was not an artifact of the spatial
integration, and that it extends across the whole filament, not
only the previously covered “knot g.” The NL width in the NE
rim is typically found around 55 km s−1. Such a large width
cannot be due to the superposition of multiple lines. In fact, our
data analysis allows us to take projection effects into account
when interpreting the data. We are able to distinguish between
single-NL and double-NL models where we find significant
evidence for a split in NL in 18% of the Voronoi bins. The
widths of the two NLs are around 49 km s−1 and their centroid
separations are 38 km s−1 on average.
An NL width of 55 km s−1 implies a temperature of the

upstream gas of ≈68,000 K. If this were the temperature of the
unperturbed ISM where the SNR is expanding, no neutral
hydrogen would exist in the first place, contradicting the
presence of Hα emission. Hence, our finding is the signature of
the existence of a mechanism able to heat the upstream plasma
in a region ahead of the shock much smaller than the collisional
ionization length scale. As shown by the previous study of
Morlino et al. (2013), a CR precursor is the best candidate to
explain the widening of the NL, opening the possibility of
studying particle acceleration in shocks using Hα emission.
The fact that the NL width ranges from 35 to 72 km s−1 across
the NE rim suggests that the amount of neutrals in the ambient
medium varies, which imposes different degrees of damping of
magnetic waves excited by CR streaming.
Likewise, we confirm the suspected presence of an IL and

show it to be widespread (24% of the bins). Typical IL widths
and intermediate-to-narrow flux ratios are 180 km s−1 and 0.41,
respectively.
Our model parameters also comprise the LOS velocity

centroids. After correction to the local standard of rest, their
median is = - ( )V 34 2LSR km s−1, in agreement with the
Lee et al. (2007) investigation of “knot g.”
Overall, our results reveal an interplay between two

precursors in Tycho’s NE rim: broadened NL widths point
toward the evidence for the presence of a CR precursor, while
detected IL reveals the presence of a BN precursor.
From the knowledge of the NL width only it is not possible

to determine the CR acceleration efficiency, because such
width depends on many parameters (shock speed, maximum
energy of accelerated particles, electron−ion equilibration, and
turbulent heating). Nevertheless, we can conclude that,
assuming a shock speed between 2500 and 3000 km s−1, our
result is compatible with having a maximum CR energy
>10 TeV, a turbulent heating >10%, and an acceleration
efficiency > few %. The degeneracy between these parameters
could be broken using other information coming from the
broad-line width and intensity (giving more precise information
on shock speed and electron−ion equilibration) and X-ray/
gamma-ray observations (determining the maximum energy of
accelerated particles). The difficulties in performing such
calculations rely on the fact that the broad line is not known
with the same accuracy as the NL and IL and that the gamma-
ray emission does not have enough spatial and spectral
resolution to fix unambiguously the maximum energy
(Park 2015; Morlino & Blasi 2016). Improvements in this
regards will surely come from the Cherenkov Telescope Array.
Furthermore, parallel to the study of the GHαFaS narrow Hα-
line profiles, we have conducted an investigation on the same
part of the Tycho’s remnant using OSIRIS (Optical System for

Figure 7. NL centroid (line-of-sight velocity) variation in the NE rim (left
panels), distribution of median mNL (green) and highest density 95%
confidence interval boundaries (blue, red) in the top-right panel, and
posterior of the median across all bins (solid) using all data to constrain mNL
(middle-right panel). The prior is overplotted with the dashed line. The
northern (top-left) filament moves systematically with respect to the eastern
filament, and the latter exhibits significant internal differential motion.
The bottom-right panel shows that the NL centroid does not correlate with
the surface brightness. The symbols and notation are the same as for
Figure 8.

15

The Astrophysical Journal, 846:167 (30pp), 2017 September 10 Knežević et al.



Imaging and low-intermediate Resolution Spectroscopy) on the
Gran Telescopio Canarias to observe the broad Hα-line
profiles. In a forthcoming paper, we will present results of
broad Hα components of the same spatial locations (bins)
along the filaments as presented in this paper, which, combined
with narrow Hα components and applied shock models, will
give a better handle on the overall conditions in the shock and
will enable us to quantify CR properties.

We thank the anonymous referee for the constructive report
and a valuable contribution toward the completeness of this
paper. We also thank René Andrae (MPIA, Heidelberg) and
Joonas Nättilä (Tuorla Observatory, University of Turku) for
fruitful discussions and helpful suggestions on Bayesian
inference. We thank Alex Borlaff (IAC, ULL) for his help
with the observations.

Appendix A
Data, Flatfield and Background

In order to compare our models of Tycho’s SNR spectra to
the data, we need to account for the variable sensitivity
(“flatfield”) and the background flux. We eschew the standard
method of applying background subtraction and flatfield

Figure 8. Parameter correlation: top row shows the median of evidence-weighted WNL, f fIL NL, WIL, and mD NL posteriors and their dependence on the surface
brightness, i.e., total model S flux over bin area (panels 1–4). In the bottom row, panels 5–8, the correlation among model parameters is tested. Squares (circles) refer
to single (double) NL models in the eastern filament (black/magenta points) and northern filament (gray/pink points) based on the highest CV. Wherever we have the
NLNL(IL) model as the one with the highest CV, WNL is set to the average of the two NL widths. In panel 8 for bins favoring single-NL models, we use the posterior
results for their NLNL(IL) models. Labeled are the Spearman’s rank correlation coefficients ρ that correspond to the color-relevant points, where the black label refers
to the black and gray points together, and the magenta label to the magenta and pink points. We indicate typical error bars on the surface brightness and parameters
(average shortest 68% confidence intervals) in the right corner of every panel.

Figure 9. Heating and length scales of the CR and BN precursors for specific
shock and CR properties (Morlino et al. 2013). Zero marks the location of the
shock front, while the negative distance from the shock front represents the
distance in the pre-shock region. As labeled, different lines present the extent
and level of heating in the precursor for different amounts of turbulent heating
hTH. The black solid line shows the case without CRs and clearly shows the
extent of the BN precursor alone. The immediate pre-shock region is affected
by both BN and CR precursors where the temperature reaches several 106 K.
The CR precursor extends much farther from the shock front (>1017 cm) where
the gas is heated to several 105 K.
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Table 4
Median and Highest Density 95% Confidence Interval of the Parameter Posteriors in the Favored Model of Voronoi Bins

Bin Model WNL1 WNL2 WIL á ñf fIL NL mD NL
[km s−1] [km s−1] [km s−1] [km s−1]

1 NL 60.53 L L L L
[43.84, 80.68]

2 NL 65.12 L L L L
[48.10, 84.66]

3 NL 59.23 L L L L
[44.61, 76.77]

4 NL 72.07 L L L L
[49.95, 94.80]

5 NL 60.90 L L L L
[44.14, 81.94]

6 NLIL 40.63 L 191.02 0.51 L
[24.78, 56.31] [100.15, 308.96] [0.01, 1.55]

7 NLNLIL 35.23 31.68 195.54 0.26 21.65
[15.02, 63.35] [15.11, 79.41] [102.05, 310.43] [0, 0.64] [0.04, 108.74]

8 NL 60.78 L L L L
[45.34, 78.82]

9 NL 46.85 L L L L
[32.28, 61.53]

10 NL 40.87 L L L L
[28.68, 54.37]

11 NL 54.04 L L L L
[35.29, 73.60]

12 NL 78.70 L L L L
[62.54, 95.65]

13 NL 70.71 L L L L
[49.50, 92.40]

14 NLNLIL 40.34 35.18 191.06 0.33 22.74
[15.76, 81.33] [15.50, 72.99] [102.59, 311.14] [0, 0.80] [0.16, 101.29]

15 NL 71.88 L L L L
[43.78, 99.09]

16 NL 75.86 L L L L
[56.59, 96.57]

17 NLIL 39.13 L 212.36 0.88 L
[22.30, 56.71] [100.18, 307.88] [0.01, 6.15]

18 NL 82.43 L L L L
[64.85, 98.87]

19 NLNL 45.04 65.68 L L 91.34
[15.39, 90.16] [39.58, 90.64] [41.02, 115.24]

20 NL 74.45 L L L L
[54.71, 96.58]

21 NL 73.00 L L L L
[47.82, 98.64]

22 NL 68.76 L L L L
[50.01, 88.42]

23 NLNLIL 48.04 49.68 168.44 0.42 51.99
[15.86, 88.08] [19.25, 84.92] [100.05, 295.69] [0, 1.78] [11.42, 153.20]

24 NL 59.97 L L L L
[43.21, 77.48]

25 NL 66.63 L L L L
[36.35, 96.93]

26 NL 70.97 L L L L
[47.59, 95.35]

27 NL 58.66 L L L L
[39.30, 81.32]

28 NL 56.87 L L L L
[41.50, 74.12]

29 NL 56.07 L L L L
[36.44, 79.31]

30 NLIL 59.03 L 181.53 1.44 L
[21.68, 93.56] [103.90, 288.14] [0, 7.08]

31 NL 56.38 L L L L
[37.83, 74.36]

32 NLIL 41.53 L 150.76 1.02 L
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Table 4
(Continued)

Bin Model WNL1 WNL2 WIL á ñf fIL NL mD NL
[km s−1] [km s−1] [km s−1] [km s−1]

[15.31, 76.64] [100.17, 278.80] [0, 3.29]
33 NL 38.17 L L L L

[22.16, 56.19]
34 NL 47.04 L L L L

[30.20, 65.05]
35 NL 72.60 L L L L

[56.45, 89.57]
36 NL 59.26 L L L L

[40.97, 80.03]
37 NL 42.92 L L L L

[23.91, 62.21]
38 NLIL 41.82 L 170.06 0.74 L

[21.28, 66.79] [100.12, 294.73] [0, 2.26]
39 NLNL 51.41 56.03 L L 60.15

[16.46, 90.57] [29.12, 80.18] [9.50, 84.17]
40 NLNL 38.06 63.21 L L 39.90

[15.61, 61.48] [26.59, 96.32] [1.32, 144.16]
41 NLIL 48.34 L 201.48 0.62 L

[24.99, 70.31] [103.46, 310.50] [0.03, 1.67]
42 NLIL 48.09 L 162.60 0.61 L

[27.07, 72.44] [100.39, 291.90] [0.01, 1.82]
43 NLNLIL 44.57 33.42 171.73 0.75 55.59

[15.43, 87.20] [15.03, 77.23] [100.31, 295.94] [0.01, 2.23] [1.57, 97.03]
44 NL 65.49 L L L L

[48.42, 85.13]
45 NL 55.89 L L L L

[38.00, 76.15]
46 NLIL 35.29 L 221.61 0.89 L

[17.55, 53.39] [100.39, 317.73] [0, 10.90]
47 NL 71.18 L L L L

[51.66, 91.45]
48 NL 49.41 L L L L

[32.16, 66.58]
49 NL 43.21 L L L L

[27.87, 63.95]
50 NL 61.30 L L L L

[42.56, 83.35]
51 NLNLIL 50.84 37.90 201.87 0.31 37.67

[16.21, 81.76] [16.10, 66.80] [104.16, 313.03] [0, 0.89] [1.03, 90.84]
52 NL 61.42 L L L L

[39.35, 85.21]
53 NL 54.00 L L L L

[38.21, 71.73]
54 NL 47.73 L L L L

[23.04, 68.53]
55 NLNLIL 33.67 50.83 187.38 0.50 34.31

[15.24, 72.78] [17.70, 88.41] [101.07, 312.58] [0, 1.49] [1.00, 82.17]
56 NL 58.08 L L L L

[38.88, 80.69]
57 NLIL 45.30 L 199.89 1.12 L

[17.24, 72.11] [107.28, 312.43] [0.02, 3.11]
58 NL 74.99 L L L L

[54.48, 97.77]
59 NLNL 57.49 58.12 L L 63.14

[19.54, 93.95] [36.03, 82.85] [11.53, 93.23]
60 NL 66.49 L L L L

[46.53, 89.49]
61 NL 73.42 L L L L

[52.04, 96.65]
62 NL 55.28 L L L L

[37.46, 75.62]
63 NLIL 49.93 L 202.95 0.49 L

[32.62, 69.52] [106.47, 316.80] [0, 1.34]
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correction to compensate for both effects in the individual
exposures. Instead, we reconstruct the flatfield and background
in the final product of the data reduction pipeline, which is a
cube (position, wavelength) of co-added, “stacked” individual
observations. Notably, the flatfield will also have a wavelength
dependence in addition to being position dependent. We
eventually include the flatfield and background in our models.
The advantage of our approach is the preservation of photon
statistics and therefore accurate uncertainties of the model
parameters and evidence.

Before describing the construction of the individual as well
as the co-added flatfield and background, we formalize the
process through which the data are generated and how they are
propagated by the data reduction pipeline.

A.1. Measurement Process

Each datum (measurement) Dxy i, with pixel indices (x,y) and
exposure index i is the response of the telescope and instrument
to the incoming, seeing-convolved flux a d l= ( )d d , ,0 0 ,

Table 4
(Continued)

Bin Model WNL1 WNL2 WIL á ñf fIL NL mD NL
[km s−1] [km s−1] [km s−1] [km s−1]

64 NLIL 38.86 L 191.52 1.12 L
[19.78, 60.12] [107.16, 298.62] [0.12, 2.53]

65 NL 68.07 L L L L
[47.10, 92.23]

66 NL 57.62 L L L L
[42.10, 77.46]

67 NL 65.35 L L L L
[46.28, 87.53]

68 NL 72.89 L L L L
[57.12, 89.85]

69 NL 60.22 L L L L
[41.25, 82.71]

70 NL 46.09 L L L L
[27.58, 67.10]

71 NL 50.96 L L L L
[29.85, 76.82]

72 NL 78.28 L L L L
[61.10, 96.81]

73 NL 64.24 L L L L
[42.79, 89.21]

Note. Shown here are the spatial bins in the eastern filament of Tycho’s SNR. If none of the multi-line models is at least ≈3 times (or 0.5 dex) more likely, the single-
line (NL) model is taken to be the favored one.

Table 5
Same as Table 4 Just for Voronoi Bins in Tycho’s Northern Filament

Bin Model WNL1 WNL2 WIL á ñf fIL NL mD NL
[km s−1] [km s−1] [km s−1] [km s−1]

1 NLNL 33.85 53.16 L L 28.04
[15.04, 61.64] [21.03, 87.55] [0.29, 156.41]

2 NLIL 58.50 L 195.28 0.39 L
[41.77, 75.74] [102.92, 316.25] [0, 1.13]

3 NLIL 54.32 L 156.07 0.41 L
[37.83, 69.52] [100.12, 274.97] [0.02, 1.08]

4 NL 59.63 L L L L
[37.09, 78.26]

5 NLNL 51.95 69.86 L L 39.81
[25.10, 73.85] [34.12, 97.51] [2.97, 173.42]

6 NLNL 42.30 56.58 L L 20.37
[15.65, 83.53] [20.46, 91.93] [0.05, 67.38]

7 NLNL 37.89 60.23 L L 42.00
[15.09, 66.94] [26.97, 93.47] [6.73, 184.78]

8 NLNLIL 44.66 34.55 149.45 0.36 29.63
[15.68, 70.78] [15.22, 80.12] [100.36, 291.76] [0, 0.89] [0.23, 86.09]

9 NL 56.38 L L L L
[37.58, 74.56]
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which varies with sky coordinates a d( ), and wavelength λ:

ò l l l=
-¥

¥
( ) ( ) ( )D d x y F R d, , , 3xy i i xy xy i, 0, ,

where

l a a d d lº = =( ) ( ( ) ( ) )d x y d x y x y, , , , , ,i i i0, 0

has the astrometric solution a a d d= =( ) ( )x y x y, , ,i i , and the
integral over the area of pixel (x,y) implicitly applied.

Fxy is the spatially varying sensitivity of the detector and
optical system—the flatfield image. As expected, and as
verified by us (see below), it is the same for all exposures.

l( )Rxy i, is the pixel- and exposure-specific wavelength filter
imposed by the Fabry–Pérot interferometer (etalon). In our
case, it is accurately described by a universal line-spread
function (LSF), l( )r :

l l= L -( ) ( ) ( )R r , 4xy i xy i, ,

where the wavelength calibration Lxy i, returns the central,
maximum-throughput wavelength for each pixel and exposure
(tuning of the etalon). By definition, the LSF is centered on
(peaks at) the origin. In our case, it is a Gaussian with
dispersion measured from calibration spectra.

Inserting Equation (4) into Equation (3), one sees that the
datum Dxy i, is the LSF-convolved spectral flux l(d x y, ,i ),
evaluated at Lxy i, :

ò l l l

l

= L -

= * = L
º L

l

-¥

¥
( ) ( )

· ( )( )
· ( ) ( )

D d x y F r d

F d r x y

F d x y

, ,

, ,

, , . 5

xy i i xy xy i

xy i xy i

xy i xy i

, 0, ,

0, ,

,

A.2. Data Processing

By way of converting the observed images into data
subcubes, D Dxy i xyl i, , , we make the wavelength information
contained in them explicit and obtain a format that allows direct
co-addition. Each of the 48 “slices” (third index) of a subcube
corresponds to a wavelength, ll. Each observed Lxy i, is
bracketed by two slices, and the corresponding flux Dxy i, is
assigned to them via linear interpolation:

l l l l
l l

=
= L

º
- L - D L - D

L - > D

⎧⎨⎩

·
( )

∣ ∣ ∣ ∣
∣ ∣

( )

D D T

T t

1 :

0 :
, 6

xyl i xy i xyl i

xyl i l xy i

xy i l xy i l

xy i l

, , ,

, ,

, ,

,

where lD is the “size” of each slice, i.e., the distance between
the slices’ central wavelengths,ll. Another way to describe this
assignment is that each slice imposes a triangle filter
l l l l= - - D( ) ( ∣ ∣ )t max 0, 1l l . We will use it again to

construct the co-added flatfield and background cubes.
As Dxy i, itself is a filtered version of the flux, the subcube

Dxyl i, at a given pixel (x,y) is nearly “empty,” except for two
slices l. Adequate coverage of the spectrum therefore
necessitates multiple tunings of the etalon, or imaging the
source in varying locations on the detector, since even for
unchanged tuning, Λ depends on x and y. The resulting
multiple subcubes are then co-added, albeit after projecting and
spatially resampling them onto a common astrometrically

Figure 10. The top panel shows the wavelength-integrated data cube ¢ ¢Dx y .
The effect of the flatfield is clearly visible as a radial surface-brightness
pattern of the background flux in addition to inhomogeneous coverage
(empty corners). Overlaid are »( )25 pix 2 (5″)2 boxes in the pre-shock/post-
shock (blue/red) region, which we used to estimate the incident background
spectrum l( )b and, in turn, the flatfield. The middle panel presents
the normalized spectra of the boxes (light blue/red lines), while the thick
blue and red lines are the mean profiles of the pre- and post-shock boxes.
The shapes of the background spectra are similar across the entire FOV.
The bottom panel indicates differences between the actual background
(“Data”) and the background model (“Bkg”), normalized by the
Poisson noise. The dashed black lines represent the differences in the 32
background boxes separately, the dashed purple line is the mean absolute
difference, and the solid purple line is the standard deviation between the
boxes.

20

The Astrophysical Journal, 846:167 (30pp), 2017 September 10 Knežević et al.



calibrated frame ¢ ¢( )x y, :

a d
¢ ¢⟶ ( )D D 7xyl i x y l i,

,
,

å=¢ ¢ ¢ ¢ ( )D D . 8x y l
i

x y l i,

¢ ¢Dx y l is the final, co-added data cube which, apart from spatial
binning, directly constrains the SNR shock models. We
account for the spatial sensitivity variations and any residual
non-constant spectral sampling rate by including them in the
models, in the form of the co-added flatfield cube, ¢ ¢Fx y l, which
we derive below along with the background cube, ¢ ¢Bx y l.

A.3. Propagation of Flatfield and Background

We represent the incoming flux d i0, as the sum of the
“source” flux (s i0, ) that comprises celestial objects, in particular
the SNR filament that we are interested in, and the background
flux (b i0, ). Because of the linearity of the integral in Equation
(5), the same applies to the LSF-convolved flux di:

l l l
l l
l l

l l l

= +
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= *

= +
= L + L
º +
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0, 0, 0,

0,

0,

3

, , ,

, ,

Note that in contrast to the source component of the data,

= L( ) ( )S s x y, , , 9xy i i xy i, ,

we have absorbed the flatfield in the definition of the data’s
background component,

= L· ( ) ( )B F b x y, , . 10xy i xy i xy i, ,

Due to the linearity of the wavelength assignment (6),

= +
º +

D T F S T B

F S B .
xyl i xyl i xy xy i xyl i xy i

xyl i xy i xyl i

, , , , ,

, , ,

Here we have defined the background subcube =B T Bxyl i xyl i xy i, , , ,
and the flatfield subcube =F T Fxyl i xyl i xy, , , which are the back-
ground components of the data and the flatfield image (the
response to a flat spectrum), respectively, transformed to a
subcube using the same slice-assignment (6) that was used for the
data itself. Also, as for the data, background and flatfield subcubes
are projected onto the same frame and co-added:
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= ¢ ¢ L¢ ¢ ¢ ¢( )S s x y, ,x y i i x y i, , is L( )s x y, ,i xy i, with = ¢ =( )x x x y,i

¢( )y yi given by the astrometric solution. The same transforma-
tion applies to b. Since the co-added frame’s ¢ ¢( )x y,
corresponds to a unique sky position, and we assume the
filament emission (but not necessarily the background!) to be

constant between exposures, l l¢ ¢ = ¢ ¢( ) ( )s x y s x y, , , ,i . Then,
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In the second line, we took ¢ ¢Fx y l i, to be non-zero only
for l nearest to the sampled wavelength, l » L ¢ ¢l x y i, .
Hence, l¢ ¢ L » ¢ ¢¢ ¢ ¢ ¢ ¢ ¢· ( ) · ( )F s x y F s x y, , , ,x y l i x y i x y l i l, , , for all
= ¼l 1, , 48, and analogously for b. However, the background

does not factor out of the co-addition, as it may change
between exposures. In the last step, we have defined the
flatfield and background cubes ¢ ¢Fx y l and ¢ ¢Bx y l as the sum of the
flatfield and background subcubes.

A.4. Background and Flatfield Model

In order to isolate the source flux component of the data, we
still need to model the flatfield and background.
We begin by investigating the background on the co-added

data (8), (11). Using SEXTRACTOR, we mask sources (stars,
galaxies, and the filament itself) on the wavelength-integrated
frame = å¢ ¢ = ¢ ¢D Dx y l x y l1

48 . This frame is the deepest, highest
S/N data product we have available, hence the mask is as
complete as possible. We obtain the set of unmasked pixels,
¢ ¢( )x y,u u , which we can use to measure the background without

“contamination” by celestial sources:

å= =¢ ¢ ¢ ¢ ¢ ¢D B B .x y l
i

x y l i x y l, , ,u u u u u u

Next, in order to ameliorate potential undetected low surface-
brightness source flux incursion to measure the variability of B
and to average over spectral sensitivity variations in ¢ ¢Dx y l, we
select 32 boxes of » ( ) ( )25 pix 52 2, in particularly object-poor
locations. For each box  = ¢ ¢{( ) }x y,j u u j , we measure the
spatially integrated spectrum:





å

å å l

=

= ¢ ¢

¢ ¢ Î
¢ ¢

¢ ¢ Î
¢ ¢ ( )

( )

( )

( )

( )

B B

F b x y, , .

l
j

x y
x y l

x y i
x y l i i u u l

,

Equation 11

,
,

u u j

u u

u u j

u u

It turns out that, apart from flux normalization, all ( )Bl
j are

nearly the same, with differences at the percent level (see
Figure 10). This allows us to conclude that

(i) the spectral part of the co-added flatfield is spatially
invariant, as desired and expected after co-adding ∼2500
exposures with different pointing, orientation and wave-
length tuning plus averaging over a ∼ 5″ box

(ii) the spectral shape of the background component is
spatially invariant:

l l¢ ¢ = ¢ ¢( ) ( ) · ( ) ( )b x y a x y b, , , , 12i i

where ai is the amplitude of the background.
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Proof comes by contradiction: if the spectral shape of the 5″
box-averaged flatfield or background varied with location, ( )Bl

j

would vary. Notably, we also see no systematic change of the
background between the pre- and post-shock regions. Varia-
tions of the background flux on smaller (<5″) spatial scales are
physically unlikely and in any case must be small as the
observed variability can entirely be accounted for by Poisson
(measurement) noise (the middle and bottom panels in
Figure 10). In the bottom panel of Figure 10, we present
differences between the actual background and the modeled
background. There is no systematic effect, and the spatial
variation is within the measurement uncertainty, which in turn
is much smaller than the signal. The variation between
background boxes, as measured by the 32 element sample
standard deviation normalized by the photon noise, is 0.95 on
average across the spectrum (solid purple line), with maximum
value of 1.22. The average absolute deviation (dashed purple
line) is 0.77 on average, close to the theoretical value of 0.8
expected for the absolute value of a standard normally
distributed variable. Therefore, any differences between the
actual background (“Data”) and model (“Bkg”) are fully
explained by measurement uncertainties.

We can therefore measure l( )b on the co-added data cube.
By combining all 32 background boxes, we additionally
minimize noise and residual systematics:

ål l= º( ) ˜( )( )b B b .
j

l
j

The tilde indicates that b̃ is a model of the background
spectrum. The normalization of l( )b is absorbed in ai. We
now assume that ai is spatially invariant, i.e., that the
background amplitude changes only between exposures but

not across the FOV:

¢ ¢ =( )a x y a, .i i

Therefore, also =( )a x y a,i i is spatially constant, and we have

= = L· ˜( )D B F a b .x y i x y i x y i x y i, , ,u u u u u u u u

Here, ( )x y,u u are the non-masked pixels of the co-added frame,
reprojected onto the individual exposures. We do not know the
background amplitudes ai yet, but can already use the
knowledge of l( )b to model Fxy:

å
L

+⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜( )

⟶ ˜ ( )˜ ˜

˜ ˜

D

b
F . 13

i

x y i

x y i
xy

,

,

fit norm.u u

u u

This way, we “divide out” the non-constant background
spectrum, which is imprinted on the measurement via Lxy i, .
The sum on the left side is only carried out for pixels ( ˜ ˜ )x y,u u
that are not masked in any of the exposures. The result of the
sum is a non-normalized flatfield image, which is then modeled
by a fourth-order polynomial. The fit eliminates pixel noise and
interpolates over masked pixels. It is followed by normal-
ization, such that å =F̃ Nx y xy, pix.
Now, we justify that the background amplitude is spatially

constant, and even that the flatfield is indeed constant as
normally expected. We cannot prove this for individual
exposures, as the fluxes are impractically small. However, we
can restrict the sum in Equation (13) to different subsets of
exposures. This way, we derived F̃xy for exposures of only one
specific “channel” (tuning) and for subsets of observations at
different times. The results are invariant within a few percent:
random variations of 3.2% (mean pixel standard deviation)
between flatfields of different observing runs, and 1.5% among
channel-specific flatfields. Again, the conclusion is by contra-
diction: given that exposures vary in pointing, field rotation,
and tuning, a non-constant flatfield or a spatially variable
background amplitude would lead to systematic variations of
F̃ , but we do not observe such variations.

With F̃xy on hand, we measure ai as the flux scaling required
to match the data,

å
å

=
L˜ · ˜( )

a
D

F b
,i

x y x y i

x y xy x y i

, ,

, ,

u u
u u

u u
u u

and reconstruct the background in each exposure:

= L˜ ˜ · ˜( ) ( )B F a b . 14xy i xy i xy i, ,

We then transform the flatfield and background models F̃xy and
B̃xy i, to subcubes in the common astrometric frame and co-add
them, in the same way as the data in Equations (6)–(8). As for
the “real” flatfield and background, Equation (11) ensures that
the resulting co-added cubes correspond to the actual flatfield
and background components in the data cube.
We use ¢ ¢B̃x y l and ¢ ¢F̃x y l to check once more whether our

assumption of a uniform background and invariant flatfield are
fulfilled: the wavelength-integrated = å¢ ¢ ¢ ¢ ¢ ¢( )B F B Fx y l x y l x y l
is indeed flat, and the background residuals - ¢ ¢( )D B x y are zero
apart from Poisson noise and objects (see Figure 11).

Figure 11. Wavelength-integrated background residuals - ¢ ¢( )D B x y . The gray
scale is linear from −10 to +10 counts/pixel. The smooth gray regions have
low signal or are even zero due to low effective exposure time and hence lower
flux (the flatfield was not divided out). The sources (white) were masked in the
flatfield and background construction procedure and additionally avoided by
the background-probing boxes. This applies in particular also to the apparent
faint but extended brightness around the eastern (left) and northern (top)
filaments.
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Appendix B
Photoionization Precursor (PIP)

When gas starts to cool and recombine downstream, the
photons produced escape to the pre-shock region and form a
PIP (Raymond 1979). Although non-radiative shocks lack
recombination zones, PIP can still be created, where the main
sources of the photons produced downstream are He I λ584Å
and He II λ304Å. Ghavamian et al. (2000) reported not only
on diffuse Hα, but also [N II] and [S II] emission extending
over 1′ in front of Tycho’s NE rim, and suggested that it arises
in a PIP. They predicted that the pre-shock gas was heated in
the PIP to ∼12,000 K. Subsequently, Lee et al. (2007)
measured the PIP spectrum in front of “knot g”: narrow Hα
with WNL≈34 km s−1, and [N II] λ6583Å with the width of
23 km s−1.

The similarity of the spectra in the pre- and post-shock
background boxes (middle panel in Figure 10), where pre-
shock boxes partially cover the region of the suspected PIP,
unambiguously shows that the PIP emission in our data is

negligible. Furthermore, since the signal of a PIP increases
toward the shock front, we searched for its signature in nine
pre-shock, 132 pixel regions (magenta boxes in Figure 12) that
were taken to be closer to the filament than the background
boxes (≈7″ away from the filament), but still far enough so that
we do not pick up on projected filament emission and emission
in the CR precursor. The top-right panel shows the comparison
of the putative PIP signal and background model, normalized
by measurement noise. The mean normalized PIP level is
indicated by the solid -magenta line and is 0.13 on average.
Therefore, the possible PIP signal is consistent with zero.
We also show the comparison between the mean PIP and
background flux, including their 1σ uncertainties (bottom-left
panel). Finally, in the bottom-right panel we demonstrate that
the PIP signal is negligible in comparison to the filament flux.
We chose here the location (bin) with the smallest signal per
area; the signal is larger in all other bins, and the putative PIP
even smaller in relation to the signal. We therefore conclude
that there is no or negligible PIP contribution to our filament
flux models.

Figure 12. Magenta boxes in the top-left panel indicate the region where we extracted spectra in search of a potential PIP signal. The difference between the data and
background model in individual pre-shock boxes (black-dashed) and mean PIP level (solid-magenta), divided by the measurement errors, shows that the residual
emission is consistent with Poisson noise. The mean flux (solid black) and the background model (solid red) in the regions of putative PIP emission are directly
compared in the bottom-left panel, with their 1σ uncertainties indicated with the corresponding color-shaded regions. The putative PIP flux and the background are
entirely consistent with one another. In the bottom-right panel, we compare the filament emission (black line and gray-shaded region) in the bin with the smallest SB to
the PIP region signal (magenta line and pink-shaded region), again illustrating that any possible PIP signal is negligible.
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Appendix C
Spatial Binning of the Data

The Voronoi binning (Cappellari & Copin 2003) was
performed setting two criteria: the targeted S/N and the
minimum bin size. The minimum bin size has to be set in order
to account for the seeing of ;1″, which for the spatial scale of
0 2 pixel−1 gives the minimal bin size of ;19 pixels. We set
the targeted S/N=10. The code of Cappellari & Copin (2003)
in its standard version tends to create elongated-shaped bins in
the direction perpendicular to the shock filament. The HST
image of Tycho’s SNR seen in Figures 1 and 2 in Lee et al.
(2010) shows a complex filamentary structure including several
very bright knots as a result of different shock emission
projected along the LOS. Small-scale differential gradients are
very noticeable in the direction of the shock normal, which is
the reason why we used the Weighted Voronoi Tessellation
adaptation of Cappellari & Copin (2003; Diehl & Statler 2006)
that created a couple of rounder bins in the same direction
instead. This way, we created 85 and 15 spatial Voronoi bins in
the eastern and northern parts of the rim (Figure 3),
respectively. Although we see only 2% level variations
between boxes of 252 pixel size, these residual background
variations become important relative to the S/N for bin sizes of
400 pixels and larger. This yields the upper size limit of 400
pixels for the bins used in our analysis. Seventy-three bins (out
of 85) in the eastern and nine bins (out of 15) in the northern
filament fulfill the above criteria and are further considered
while the bins with more than 400 pixels are excluded from the
analysis.

Appendix D
Model Parameters and Prior PDFs

As already mentioned in Section 3.2, we define the total flux,
continuum and line flux fractions, line centroids, and widths as

model parameters. In the case of the NLNL and NLNLIL
models, we define the NL centroid mean má ñNL and the
separation between the two NLs mD NL as parameters. The IL
centroid is introduced with its offset from the NL centroid
(mean) mD IL.
The parameters that we actually sample from are slightly

different from the parameters that we use in Section 3; the
difference enables the direct application of the prior PDFs
(Dirichlet or Beta distributions) to the parameters. These prior
distributions require parameter sets defined in the range (0, 1),
except for the naturally based logarithm of the total flux ln ( )Ftot
for which we use a flat unbound prior. The continuum and line
flux fractions are by definition in the (0, 1) range, where we set
the continuum flux fraction to be dependent on the flux
fractions in the lines = - åf f1c i. The fact that the flux
fractions sum up to 1 and that they are in the range (0, 1) makes
the Dirichlet distribution  =a - [ ]f i NL NL NL IL c, , 1, 2, ,ii

i 1

the perfect choice for their prior PDF. Since we do not favor
any of the flux components, we use a symmetric Dirichlet
distribution with the same index α which we set to a = 1.5 to
disfavor zero fluxes.
The line parameters mNL, má ñNL , mD NL, and mD IL are all

defined with the following functional form: ¢ = -( )x x xmin
-( )x xmax min . mNL or má ñNL are defined in the range
-[V V 4cen FSR , +V V 4cen FSR ], where Vcen is the center of

the free velocity range VFSR (FSR in velocity units) and mD NL
is in the range [0, ]V 2FSR so that in the most extreme case the
two NL centroids are at the edges of the spectral coverage.
mD IL is within V 4FSR , having the absolute upper boundary

set to the upper (lower) boundary of the NL (IL) width
≈100 km s−1. Instead of line widths WNL and WIL defined in
the range [15, 100] km s−1 and [100, 350] km s−1, respectively
(Morlino et al. 2012, 2013), we used their log-widths (natural
logarithm) denoted as =( ) ( )w WlnNL IL NL IL in the same
functional form as for the centroids and separations. For all

Figure 13. Parameter estimation of an NL model via Bayesian inference for the bin in the NE filament of Tycho’s SNR for which we presented the posterior of the
NLIL model parameters in Figure 2 (see its caption for explanation).
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of these parameters, we define a symmetric Beta distribution
prior -a b- -( )x x11 1 with the arguments a b= = 1.5—
slightly favoring the central values of the defined parameter
ranges. The model parameters and their priors are summarized
in the Table 1.

In addition to Figure 2, where we plotted posteriors for the
favored NLIL model for one of the bins, in Figures 13–15 we
show the posteriors for the NL, NLNL, and NLNLIL models,

where the latter two figures show the parameters that we
actually sample from.

Appendix E
MCMC Sampling

Posterior samples were drawn from an ensemble MCMC
sampler (Goodman & Weare 2010), an implementation of

Figure 14. Parameter estimation of an NLNL model via Bayesian inference for the bin in the NE filament of Tycho’s SNR for which we presented the posterior of the
NLIL model parameters in Figure 2 (see its caption for an explanation). Instead of Ftot, WNL1, WNL2, fNL1, and fNL2, we present the log (natural logarithm) of the total
intrinsic flux and intrinsic line widths (ln ( )Ftot , lnWNL1, lnWNL2), and cumulative flux fractions ( fNL1, +f fNL1 NL2).
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which has been popularized as “emcee” (Foreman-Mackey
et al. 2013). Among other advantages, this method provides for
(near-) optimal tuning at every stage of the sampling, which
would otherwise be a substantial challenge and obstacle in the
way of efficient sampling considering 82 different data sets,

four different models for each of them, up to 10 model
parameters, and our intent to test the sampler and results based
on hundreds of additional simulated data sets. We draw the
initial parameters for 128 parallel chains (walkers) uniformly
between the prior boundaries. The unnormalized log-posterior

Figure 15. Parameter estimation of an NLNLIL model via Bayesian inference for the bin in the NE filament of Tycho’s SNR for which we presented the posterior of
the NLIL model parameters in Figure 2 (see its caption for an explanation). Instead of Ftot, WNL1, WNL2, WIL, fNL1, fNL2, and fIL, we present the log (natural logarithm)
of the total intrinsic flux and intrinsic line widths (ln ( )Ftot , lnWNL1, lnWNL2, lnWIL), and cumulative flux fractions ( fNL1, fNL1+ fNL2, fNL1+ fNL2+fIL).
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of a model is computed as a sum of unnormalized log-prior
and log-likelihood for the proposed walker position. Since
our data (fluxes in the spectral bins) result from Poisson
processes, the likelihood is the product of each datum’s
probability under a Poisson distribution with the expectation
value equal to the model prediction. After taking the
logarithm,

å= - - G +
=

=

( ) ( ( )) ( )L d m m dln ln ln 1 , 15
i

i i i
1

N 48

i

where mi are the model predictions at each spectral bin i, and di
are the corresponding data. The last term in Equation (15) (the
factorial term) was left out of the posterior sampling (but not
the evidence calculation) because it is model independent. We
refer to Foreman-Mackey et al. (2013) and Goodman & Weare
(2010) for details of the sampling algorithm. Before checking
the chains’ convergence, we disregard the first 25%, but at least
512, of the samples of each walker (“burn-in”), and further thin
the chains until the autocorrelation time of the thinned sample
is smaller that 5. In order to achieve low noise and to set a first
minimum threshold for the convergence of the chains, we
require at least 213=8096 total samples (all walkers
combined) to be kept after thinning. Once this minimum
number of samples is reached, we additionally impose the
following convergence (stopping) criterion: we split the sample
into subsamples and compute the desired estimators (maximum
posterior sample, median, and 95% confidence interval
boundaries) for each subsample. The variances of the
subsample estimators are then required to be smaller than 5%
of the mean parameter value. In order to reduce the probability
of coincidentally favorable (small) variances from possible
“modes” in the chains, we repeat the process twice, first taking
each of the 128 chains as one subsample, and second, taking
each of the 128 element walker states as subsamples, and use
the arithmetic mean of the resulting eight relative estimator
standard deviations toward our 5% criterion.

To ensure that the applied procedure gives the correct
results, we performed tests of the posterior sampling routine,
using simulated data with known model parameters. We tested
models with S/N in the range [ ]5, 50 and varying background
levels (0%, 50%, and 90% of the total flux). First, we checked
if the posterior distribution reproduces the prior in the =S N 0
limit, but also if the posterior approached a delta function in the
infinity limit, i.e., for very large S/N.

Second, we check if the model parameters of the input model
are reproduced statistically. We ran the algorithm for 200
different realizations of the same model, i.e., each time drawing
the data from the same model prediction with its specified
uncertainty included (each a set of 48 Poisson distributions).
The mean of the distribution of the median values is always
consistent with the input model parameter and the typical
scatter of this mean is 10%–20% for the range of S/N in our
real data.

Finally, we vary model parameters by randomly choosing
them 200 times from within the prior boundaries. Again, for
each of the resulting simulated data, we sample the posterior as
described above and evaluate it in the form of the median of the
marginalized posteriors. We find that the measured median

values scatter symmetrically around the 1:1 relation with the
input model parameters, with the scatter being roughly equal to
the individual posteriors’ standard deviation, as desired. The
distribution of the measured values becomes biased as the input
parameters approach the parameter range boundaries, as
expected for our priors.

Appendix F
Evidence Calculation via the LOO-CV Likelihood

We use the CV likelihood, specifically its “LOO” variant,
to compute model evidences and to compare models (Bailer-
Jones 2012). We prefer it over the standard numeric
(“Bayesian”) integral, because it draws samples from the
posterior instead of the prior. It is hence more efficient, less
dependent on the choice of prior, and in some cases
numerically more stable. The idea of the CV likelihood is
to evaluate the likelihood of part of the data, given the
model and the rest of the data. In our case, we have 48 data
points and measure how well any 47 data points (the
complement, -D k) under the model M predict the 48th
data point (the partition, Dk), as quantified by the comple-
ment’s posterior q -( ∣ )P D M,k and its prediction for Dk. The
process is repeated for all possible (48) partitions. Each time
we leave out one datum (Dk), its partition likelihood Lk is
given by

ò q q q

=

=
q

-

-

( ∣ )

( ∣ ) ( ∣ ) ( )

L P D D M

P D M P D M d

,

, , . 16

k k k

k k

The first term in the integrand is the likelihood of Dk, while the
second term is the posterior PDF after considering the
information contained in -D k. We can numerically (Monte
Carlo) integrate by drawing a number of samples N from

q -( ∣ )P D M,k :

å q»
=

( ∣ ) ( )L
N

P D M
1

, . 17k
n

N

k n
1

Assuming that the data points are independent, the LOO-CV
likelihood is the product of all partition likelihoods,

=  =‐L Lk kLOO CV 1
48 , or

å=
=

( )‐L Lln ln . 18
k

kLOO CV
1

48

It can be shown that ‐LLOO CV for model M is equal to the
Bayesian evidence (E(M)), and we henceforth use it to compute
the Bayes factors, ( ) ( )E M E M1 2 , to compare models.
We tested the ability of the Bayes factors to indicate the

correct model by employing the simulated data. We find that
the typical numerical precision of ‐Lln LOO CV is better than
0.05 dex. At the same time, for data generated from the
parameters and with S/Ns that are typical for the actual data,
the “right” model’s ‐Lln LOO CV is 0.2 dex (50%) better than
any of the alternative models. Nevertheless, on heuristic
grounds (what probability is considered statistically “significant
enough”?) and in order to bracket the practically limited scope
of such tests, we adopt a more conservative+0.5 dex threshold
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(3 : 1 probability) before we consider a model to be preferable
over another.

We have also tested the dependence of the evidence ratios on
the choice of prior. We used the same functional form for the
priors (Table 1), but different α, β distribution parameters.
Specifically, we tested aD values for the Dirichlet distribution,
and a b=B B for the Beta distribution with values of a( D,
a =) {( ) ( ) ( ) ( )}1.5, 1.5 , 1, 1.5 , 1.5, 1 , 1, 1B , where ( )1.5, 1.5
was used for the results presented in the main part of the paper.
We found that for all bins, the mean standard deviation of the
appropriate evidence ratios is 0.07 dex.

In addition, in Figures 16 and 17 we show the posteriors,
medians, and 95% confidence intervals when flat priors, i.e.,
a( D, a =) ( )1, 1B instead of the fiducial ( )1.5, 1.5 , are applied.

We present results for the same two Voronoi bins shown in
Figures 2 and 5. The shape of the posteriors and their medians
are very similar to those obtained with the adopted priors,
demonstrating that our results do not depend strongly on the
choice of prior. WIL posteriors for the adopted and flat prior are
different, but similar to the degree that the median and
confidence interval boundaries change only by 30 km s−1

(»10%). Even with the flat prior, 210 km s−1 is clearly more
probable than the other WIL parameter values; in particular, it is
preferred over values close to the WIL limits. This shows that
the preference for the central WIL values is not just borne out of
the prior shape or range, but genuinely reflects constraints
provided by the data, even if they are not as strong as for other
parameters.

Figure 16. Parameter estimation of an NLIL model via Bayesian inference for the bin in the NE filament of Tycho’s SNR for which we presented the posterior in
Figure 2 (see its caption for an explanation). Posteriors in black are calculated for flat Dirichlet and Beta priors for all parameters. Posteriors from Figure 2 are
overplotted in gray. Among all parameters, the WIL posterior is the most sensitive to the prior choice. Even so, the median and 95% confidence intervals agree to
within ≈10%, and its basic shape remains robust.
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