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A B S T R A C T   

Bamboo-dominated forests are unusual and interesting because their structure and biomass fluctuate in decades-long 
cycles corresponding to the flowering and mortality rhythm of the bamboo. In southwestern Amazonia, these forests 
have been estimated to occupy an area of approximately 160 000 km2, and a single reproductively synchronized patch 
can cover up to thousands of square kilometers. Accurate mapping of these forests is challenging, however: the forests 
are spatially heterogeneous, with bamboo densities varying widely among adjacent sites; much of the area is in
accessible, so field verification of bamboo presence is difficult to obtain and georeferenced records of past flowering 
events virtually non-existent; and detectability of the bamboo by remote sensing varies considerably during its life 
cycle. In this study, we develop a supervised time series segmentation approach that allows us to identify both the 
presence of bamboo forests and the years in which the bamboo flowering and subsequent mortality have occurred. We 
then apply the method to the entire Landsat TM/ETM+ archive from 1984 to the end of 2018 and validate the 
classification by visual interpretation of very high resolution imagery. Collecting accurate ground reference data of 
bamboo presence and bamboo mortality timing is notably difficult in these forests, and we therefore developed a 
methodology that takes advantage of imperfect reference data obtained from the Landsat time series itself. Our results 
show that bamboo forests can be differentiated from non-bamboo forests using any of the infrared bands, but band 5 
produces the highest classification accuracy. Interestingly, there appears to be a temporal difference in the spectral 
responses of the three infrared bands to bamboo flowering and mortality: near infrared (band 4) reflectance reacts to 
the event earlier than shortwave infrared (bands 5 and 7) reflectance. The long Landsat TM/ETM+ archive allows our 
methodology to detect some areas with two mortality events, with a theoretical maximum interval of 29 years. Analysis 
of these pixels with repeated mortality confirms that the life cycles of the local bamboo species (Guadua sarcocarpa and 
G. weberbauerii) last typically 28 years.   

1. Introduction 

Although bamboo is often thought typical of Asia, the largest area of 
bamboo-dominated forests in the world seems to be situated in south
western Amazonia, where they cover about 160 000 km2 (de Carvalho 
et al., 2013). These forests harbor two species of bamboo that are able 
to reach wide dominance in the forest canopy (Guadua sarcocarpa and 
G. weberbauerii, for simplicity collectively referred to as bamboo). Both 
species share characteristics that make it possible to visually detect 
bamboo-dominated forests in remotely sensed images. Firstly, since 
bamboos are grasses, their structure and reflectance are different from 
those of dicotyledonous trees. Secondly, unlike trees, bamboos have a 
gregariously semelparous life cycle. This means that bamboo in
dividuals flower and bear fruit just once and then die. The cycle is 
believed to take about 28 years (de Carvalho et al., 2013), and to be 

synchronous in large spatially aggregated patches. These patches can 
cover up to thousands of square kilometres, which makes the alterna
tion between tree-dominated and bamboo-dominated canopy phases 
clearly visible (Nelson and Bianchini, 2005; de Carvalho et al., 2013; 
Dalagnol et al., 2018). 

The possibility to remotely sense the spatial distribution and tem
poral dynamics of bamboo forests is important because these forests are 
hard to access on the ground. This is partly due to sheer distance to 
roads and navigable rivers, partly because the bamboo itself grows into 
dense and spiny thickets. A sign of inaccessibility is that several ethnic 
groups that have retreated to voluntary isolation live in these forests 
(Kesler and Walker, 2015). Remote sensing studies have already ad
dressed several aspects of bamboo ecology, e.g. quantifying the length 
of its life cycle and assessing which environmental factors might control 
the geographical distribution of bamboo-dominated forests (Nelson and 
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Bianchini, 2005; de Carvalho et al., 2013). By overlaying a map of fire 
occurrences over a map of the timing of the bamboo life cycle, Dalagnol 
et al. (2018) were even able to address an evolutionary question related 
to the emergence of a gregariously semelparous life cycle. 

The currently available estimates of the geographical distribution of 
bamboo-dominated forests are based either on automated delimitation 
using relatively coarse resolution MODIS data (Dalagnol et al., 2018), 
or on manual mapping of bamboo forest patches in higher-resolution 
Landsat images (de Carvalho et al., 2013). Both of these come with their 
specific set of shortcomings. Manual mapping of Landsat imagery is 
very laborious and subjective, which makes it impractical in applica
tions covering large areas and/or multiple time windows. On the other 
hand, the minimum size of detectable bamboo patches in MODIS ima
gery is relatively large due to the coarse pixel size, and since the MODIS 
instruments were only launched in 1999-2002, the archives do not yet 
cover a full bamboo life cycle. Nevertheless, a recent study has used 
MODIS data to derive a prediction of future dynamics in bamboo forests 
(Dalagnol et al., 2018). 

To overcome these problems, a method that combines automatic 
data processing with high spatial resolution and full coverage of the 
bamboo life cycle is needed. Landsat TM and Landsat ETM+ images are 
the most suitable data products for this purpose, because together they 
span more than three decades at a spatial resolution of 30 m. The 
adoption of an open data policy in 2008 (Woodcock et al., 2008) re
sulted in a boom of studies using long Landsat time series (Zhu et al., 
2019) and several authors developed and applied Landsat-based 
methods to detect forest disturbances and dynamics from the tropics to 
the arctic treeline (Kennedy et al., 2010; Townshend et al., 2012; 
Banskota et al., 2014; DeVries et al., 2015; Hermosilla et al., 2015; 
Müller et al., 2016; Bolton et al., 2018). 

Although deforestation can now routinely be identified using 
Landsat time series, identifying low-intensity disturbances correctly 
remains a challenge (Curtis et al., 2018; Song et al., 2018; Cohen et al., 
2017, 2018; Bullock et al., 2020). In particular, the combination of 
subtle disturbance signals and noisy time series data increases the risk 
that noise is incorrectly identified as change or actual changes go un
detected (Cohen et al., 2018). This is especially a problem within tro
pical forests, where both data availability and data quality are low, 
compared to some temperate regions. The reasons for this are varied, 
such as historic data collection and archiving strategies (Wulder et al., 
2016), narrower overlap among adjacent paths close to the equator 
than close to the poles, persistent cloud cover, variable atmospheric 
aerosol properties, and sun-sensor geometry effects (Galvão et al., 2011; 
Nagol et al., 2015; Toivonen et al., 2006). These issues predict low 
disturbance detecting accuracy for phenomena with a relatively subtle 
temporal signal of transition, such as that between bamboo-dominated 
and bamboo-free canopies. 

Attempts have been made to increase the accuracy of low-intensity 
disturbance detection in Landsat time series by incorporating calibration 
data (Cohen et al., 2018; Schroeder et al., 2017), sometimes combined with 
a stacking of results of time series segmentations that use different algo
rithms or different bands (or band combinations) or both (DeVries et al., 
2016; Healey et al., 2018; Bullock et al., 2020). The calibration datasets 
contain information on the exact date and type of disturbance, and they 
have been obtained by visual assessment of large numbers of pixel time 
series, e.g. using the TimeSync software (Cohen et al., 2010, 2018; Healey 
et al., 2018; Schroeder et al., 2017; Pengra et al., 2019) or through com
munity-based sampling efforts (DeVries et al., 2016). A problem with these 
approaches is that they require a heavy time investment. Additionally, the 
exact identification of disturbance (mortality) events in bamboo populations 
from pixel time series may be difficult since preliminary analyses indicate 
that the spectral response to bamboo mortality in different bands may have 
different timing. 

In this study, we have a number of complementary aims. Firstly, we 
develop a supervised Landsat time series analysis based on imperfect 
calibration data to identify, at 30 m resolution, the presence of bamboo- 
dominated forests and the year in which bamboo dieback has occurred. 
Secondly, we use these data to assess the temporal duration of the 
dieback events and the length of the bamboo life cycle. The analysis is 
based on yearly Landsat 4/5 TM and Landsat 7 ETM+ composite 
images over the study area between 1984 and 2018, theoretically al
lowing for the detection of more than a full growing cycle for each 
bamboo population. Finally, we use Landsat's different infrared spectral 
bands to evaluate their ability to correctly identify bamboo-dominated 
forests from their respective temporal patterns, and to assess the spec
trotemporal response of bamboo die-back. 

2. Study site and data 

2.1. Study site 

The study area is located in southwestern Amazonia around the tri- 
border area between Brazil, Peru and Bolivia (Fig. 1). The area has a 
tropical, relatively seasonal climate. The mean annual temperature 
ranges between 24 and 26∘C, and the mean annual rainfall mostly be
tween 1400 mm and 2200 mm, with the driest month receiving 15-40 
mm of rain (Karger et al., 2017). Geologically, the area is situated 
around the Fitzcarrald Arch, and covers the headwater regions of the 
rivers Ucayali, Juruá, Purus and Madeira. 

2.2. Yearly Landsat TM/ETM+ composite images 

We used all Landsat 4/5 TM and Landsat 7 ETM+ images that were 
acquired over the study area from 1984 to 2018 and had a reported 

Fig. 1. Location of the study site in South 
America (left). The black square in the detail of 
the study site (right) indicates the extent of the 
calibration area. Grey and white areas indicate 
validation areas for non-bamboo forests 
(numbered with prefix F) and bamboo-domi
nated forests (numbered with prefix B), re
spectively. The numbering corresponds to 
Table S1, which lists the acquisition dates of 
DigitalGlobe images available in GoogleEarth 
over these validation sites. 
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cloud cover percentage below 80 %. We downloaded the images 
through the USGS/EROS Inventory Service. Temporal Landsat data 
coverage varied greatly both among and within years. Data availability 
was highest during the period 1999–2012 when both Landsat 5 and 
Landsat 7 were operative and especially during the relatively dry season 
between May and October. 

The downloaded images were combined into yearly composites 
following a methodology similar to the one described in Van doninck 
and Tuomisto (2018). Individual scenes were first processed to surface 
reflectance using LEDAPS (Masek et al., 2006) and corrected for the 
combined effect of topographic and sun-sensor geometry (Flood et al., 
2013; Van doninck and Tuomisto, 2017a) using the SRTM digital ele
vation model. Scenes were then combined into yearly pixel-based 
composite images using the multidimensional median criterion (Flood, 
2013; Van doninck and Tuomisto, 2017b), except when only two ob
servations were available in which case the maximum NDVI criterion 
was used. We also recorded, for each pixel in each yearly composite 
image, how many unmasked (cloud- and shadow-free) observations 
were available to select from. Finally, in order to reduce noise that may 
result from imperfect georegistration, we applied a band-wise spatial 
filter over each one of the yearly composite images separately. In the 
filtered image, each pixel was assigned the median value of the 3x3- 
pixels window centred on the original pixel. 

Combining the images into yearly composites helped to reduce the 
problem of missing data and make the time series more uniform, and 
can be expected to improve the signal-to-noise ratio (Van doninck and 
Tuomisto, 2017b). Intra-year phenology is relatively weak in Ama
zonia, and few images in the time series were obtained during the 
period November–April. Therefore, we chose to forego an analysis of 
intra-year vegetation phenology. The multidimensional median com
position criterion selects the observation that is most representative for 
the corresponding yearly time window, and this can be assumed to 
generally have been acquired during the relatively cloud-free season 
from May to October. Even though we allowed up to 80 % cloud cover 
in the selected images, several yearly composites in the time series 
showed areas of missing data, meaning that none of the images ac
quired in that year had cloud-free observations for those pixels. Missing 
data was especially a problem for the years prior to the launch of 
Landsat 7 and its ETM+ sensor in 1999 (Fig. 2). 

2.3. Calibration and validation data 

Reliable calibration and validation of Landsat time series analysis 
for detecting bamboo mortality events require a sizeable amount of 
reference data. We carried out field work on two occasions, but the area 
is extensive and difficult to access, so this only covered a few sites. In 
general, in situ data on the presence or absence of bamboo populations 
in Amazonia is scarce, and even less is known about their dates of 
mortality or other phenological phases. We therefore collected the ex
tensive calibration and validation data needed for this study from re
motely sensed imagery. 

We collected calibration data through visual interpretation of the 
Landsat time series itself. For an area of one by one degree (Fig. 1), we 
digitized polygons of bamboo-dominated forests and non-bamboo for
ests, and estimated the dates of mortality for the bamboo populations 
(Fig. 3 ). Digitization was based on false-colour composite images as
signing three consecutive years of a single spectral band to the three 
colour channels. If the three selected years covered a mortality event for 
a population, that patch lighted up in colour against the greyscale 
colours of stable bamboo or non-bamboo forests, and a polygon around 
that population was drawn and the year of mortality was assigned to 
the polygon. Some uncertainty exists on the estimated mortality dates 
because of the often subtle reflectance changes associated with bamboo 
mortality, and slight differences in interpretation result when assessing 
the different infrared bands. Due to lack of in situ reference data, it was 
impossible to assess the quality of the digitization. Because of the used 

digitization technique, however, we are confident that the assigned 
dates were within two years of the actual disturbance. Furthermore, the 
digitized polygons were spatially coarser than Lansdat's 30 m resolution 
since it was practically infeasible to digitize at the scale of the in
dividual pixel over a 1∘ by 1∘ area. A non-negligible number of pixels 
may therefore have been assigned to the wrong polygon. While we 
acknowledge that the quality of reference data obtained in this way 
may be lower than data collected by interpretation of individual pixel 
time series through, e.g. TimeSync (Cohen et al., 2010), our metho
dology allows for the collection of far more reference data points using 
limited resources. We delineated validation areas of bamboo-dominated 
forests and non-bamboo forests by visual interpretation of DigitalGlobe 
images, available through Google Earth (Fig. 1, Table S1). We aimed at 
including only terra firme forests in these validation areas by excluding 
apparent flood plains of even relatively small rivers. Bamboo-domi
nated forest stands are separable from other forest types by their dis
tinct combination of texture and colour in these very high spatial re
solution images (Fig. S1). Bamboo can be hidden in these images over a 
significant proportion of an area where it is present because tree ca
nopies can overshadow even full-grown bamboo. Accordingly, we de
limited the bamboo validation areas such that we allowed for the pre
sence of even several hectares of continuous cover of forest trees as long 
as bamboo was regularly visible. The total area of polygons identified as 
bamboo-dominated and non-bamboo forests are 7 599 km2 and 
12 141 km2, respectively. 

3. Methodology 

We developed a two-stepped time series segmentation to detect 
areas of bamboo-dominated forests and the start date of mortality 
events. An overview of the method is given in Fig. 3 . In the first 
step, we applied an unsupervised segmentation on the basis of 
knowledge on bamboo biology. Results of this first segmentation 
were then compared to the visual interpretation over the calibra
tion area (Fig. 1). Because of the high noise level in the Landsat time 
series and the subtle disturbance signal, we expected a poor clas
sification accuracy for this unsupervised segmentation. Therefore, 
the output parameters from the first segmentation and the visual 
interpretation together were used to calibrate a support vector 
machine (SVM) classifier. This classifier was then integrated into 
the second, supervised segmentation. Finally, pixel-based results 

Fig. 2. Yearly Landsat false-colour composite based on all TM and ETM+ 
images acquired in 1984 with less than 80 % cloud cover (print); time series of 
yearly Landsat false-colour composites based on all TM and ETM+ images 
acquired from 1984 to 2018 with less than 80 % cloud cover (online). Red, 
green and blue colour channels correspond to short-wave infrared 1 (SWIR1), 
SWIR2 and near infrared (NIR), respectively.  
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were combined in a spatial post-processing, and a disturbance 
signal-to-noise ratio was calculated. 

In order to assess the spectrotemporal response of bamboo die-back, 
the entire analysis chain was executed separately for each of the three 
infrared Landsat TM/ETM+ bands: NIR (near infrared, band 4), SWIR1 
(shortwave infrared, band 5), and SWIR2 (band 7). Strong atmospheric 
contamination over Amazonia results in noisy data in the visible 
Landsat bands 1, 2 and 3 (Van doninck and Tuomisto, 2017b), and we 
therefore excluded these bands and spectral indices using them (e.g., 
Normalized Difference Vegetation Index, Tasseled Cap transformation). 
Previous studies have suggested, and our preliminary analyses con
firmed, that bamboo mortality causes a decrease in surface reflectance 
across the near and shortwave infrared spectrum (de Carvalho et al., 
2013; Dalagnol et al., 2018). Band indices or ratios combining infrared 
bands (e.g., Normalized Burn Ratio) are therefore less suitable for 

discrimination between forests with and without mature bamboo, and 
we did not consider them for analysis. 

3.1. Outlier detection and removal 

Outliers were identified for each pixel time series and each band 
separately by two consecutive detection methods. First, we used a 
global method to detect the most obvious outliers caused by residual 
clouds or cloud shadow. This was done by identifying the observation 
in the time series which had the largest absolute departure from the 
mean value over the time series. If this difference was larger than three 
times the standard deviation of the entire time series, the observation 
was flagged as an outlier and removed from the time series. This pro
cess was repeated until no more global outliers were identified. In the 
second step, a local method identified more subtle outliers resulting, 

Fig. 3. Flowchart of supervised time series segmentation for the pixels of yearly Landsat image composites using a single band (here SWIR1). Numbers in parentheses 
indicate in which section of the text the corresponding processing step is explained. 
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e.g., from haze, smoke or other uncorrected atmospheric effects. Each 
observation in the yearly pixel time series was compared to the pre
ceding and following observations within a temporal window. For each 
observation i, a score τi was calculated as: 

=
| ¯ |

( )
,i

i w

w
i

(1) 

where ρi is the surface reflectance in the processed band for year i, w̄
and ( )w are the mean and standard deviation of surface reflectance 
values for the adjacent observations within the temporal window, re
spectively, and ωi is a weighting parameter. When using multi-dimen
sional median compositing the uncertainty on the pixel-based compo
site is expected to decrease with the number of available observations 
per pixel within the compositing period (Ni), following roughly an ex
ponential decay function (Van doninck and Tuomisto, 2017b). We 
therefore defined ωi as: 

= e ,i
N( 1)i (2) 

where λ is the exponential decay constant. The observation in the time 
series with the largest τi was selected, and if this value was larger than a 
critical value τc, the observation was flagged as a local outlier and re
moved from the time series. This process was repeated until no more 
local outliers are identified. Like many other methods, this noise re
moval approach requires a number of a priori determined parameters, 
in this case the critical value τc, the exponential decay constant λ, and 
the size of the temporal window around each observation. After manual 
assessment for a number of pixels, we set τc = 2, λ = 0.25, and the 
window size at three years on each side of each observation. If more 
than 25 % of the yearly observations in the resulting filtered pixel time 
series were missing, the pixel was not further processed. A ”no data“ 
value was then assigned to that pixel in all output products. 

3.2. Unsupervised model fitting and initial segmentation selection 

Unsupervised model fitting for each infrared band separately was 
based on two assumptions based on the known bamboo ecology and the 
spectral response of bamboo die-off and regrowth. Firstly, it was as
sumed that for a longer period of time between two mortality events, 
surface reflectance of bamboo-dominated forests can be described by a 
linear model. This pattern arises when bamboo gradually increases in 
abundance and starts to dominate the forest canopy and its reflectance, 
and it was the basis of the model fitting in a previous study (Dalagnol 
et al., 2018). Secondly, results by Dalagnol et al. (2018) using MODIS 
data showed that surface reflectance over bamboo-dominated forests 
could be considered constant for a shorter period of time both before 
and after a bamboo mortality event. This is because bamboo plants 
reach full stature already a few years before flowering and mortality, 
and a few years are required before the young bamboo plants have 
grown large enough to influence the remotely sensed signal from the 
forest canopy. 

Based on these two assumptions, we defined an initial score S0 as 
the product of a short-period constant fit improvement and a long-term 
linear fit improvement after segmentation: 

=S SSE SSE
SSE

SSE SSE
SSE

,
o s

s

o s

s0
const const

const

lin lin

lin (3) 

where SSE stands for the sum of squared errors, the subscripts const and 
lin indicate the constant and linear regression model fit, respectively, 
and the superscripts o and s indicate the original and segmented model 
fit, respectively. The score S0 was calculated for each observation in the 
pixel time series, except the first and the two last ones in order to assure 
that segments consist of at least two observations. We defined the two 
short constant periods, before and after mortality, to last for up to six 
observations each, and the two linear periods to last for up to twenty 
observations each. The original constant model was thus fitted to the six 
observations leading up to the target year, or to all observations from 
the start of the time series if this was the smaller number, and the six 
observations following the target year, or all observations to the end of 
the time series if this was the smaller number. Similarly, the original 
linear model was fitted to the twenty observations leading up to and 
twenty observations following the target year, if there were more than 
twenty observations before reaching the beginning or end of the time 
series. The segmented models were then fitted separately to observa
tions leading to and following the target year. 

The spectral response to a vegetation disturbance event is not ne
cessarily instantaneous and can span a period of more than one year. 
We therefore allowed the discontinuity following the target year to be 
of a duration of either one, two or three observations. In the latter two 
cases, the constant or linear model for the segment following the con
sidered year were only fitted for the second or third observation, re
spectively, up to the last observation of that segment. The one or two 
intermediate observations were then fitted through linear interpolation 
(Fig. 4 (a)). For each year, the duration of the discontinuity was then 
defined by selecting the case resulting in the highest score S0. Re
gardless of the duration of the discontinuity, we allowed no more than a 
single year to have a missing observation during this period. Therefore, 
the actual duration of the spectral discontinuity could be registered as 
up to four years. 

For each considered observation (second until third to last), the 
Chow statistic (Chow, 1960) of the segmentation for both the constant 
and linear model was calculated. If the p-value of either of these was 
larger than 0.05, the initial score S0 corresponding to that observation 
was set to zero. As the initial segmentation for the pixel time series, we 
then selected the year corresponding to the largest value of S0. If S0 was 
zero for all observations, the pixel was labelled as non-bamboo forest. 
For those pixel time series for which a statistically significant seg
mentation was identified, we registered the year corresponding to the 

Fig. 4. Example time series for two pixels. Full circles indicate observations 
used in the time series segmentation, open circles indicate observations flagged 
as outliers. (a) Time series with spectral disturbance starting in 1999 and with a 
duration of three years. Full red and blue lines indicate linear and constant 
model fit, respectively, before and after the start of the disturbance, dashed red 
and blue lines indicate linear interpolation for the duration of the disturbance 
for the respective models. (b) Time series with spectral disturbance starting in 
1989 and duration of one year, with indication of the 90th percentile of the time 
series (ρ90), magnitude of the disturbance (Md), and percentile of the start of the 
disturbance within the values of the time series (Pd). 
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maximum S0 as the unsupervised model fit year (Fig. 3). 

3.3. Calibration of the Support Vector Machine classifier 

We randomly selected 100 000 pixel time series from the calibration 
area (Fig. 1) and compared the results of the initial segmentation with the 
visual interpretation of the calibration area. After removing those pixels for 
which no statistically significant initial segmentation was obtained, the re
mainder could be assigned to three groups: pixels that were located in the 
area defined as non-bamboo forests in the visual interpretation; pixels that 
fell within the area defined as bamboo-dominated forests in the visual in
terpretation and for which the year with the maximum S0 score was within 
an error margin of two years of the year visually identified as the mortality; 
and pixels that fell within the area defined as bamboo-dominated forests in 
the visual interpretation but with the year of maximum S0 outside the two 
year error margin. We defined the first two of these groups as false positive 
samples and true positive samples, respectively and subsampled the larger 
of the two to obtain a balanced set. These were then used to calibrate a 
Support Vector Machine (SVM) classifier. Predictive variables were a set of 
three parameters extracted from the selected initial time series segmenta
tion (Fig. 4 (b)): the 90th percentile of the observations in the time series 
(ρ90), the magnitude of the disturbance modelled by the linear fit (Md), and 
the percentile of the start of the disturbance modelled by the linear fit 
within the values of the time series (Pd). We selected these parameters 
because we assumed bamboo mortality causes, for each spectral band, a 
disturbance of a typical magnitude and sign, surface reflectance before 
disturbance is typically at an extreme end of the time series, and maximum 
reflectance over time of bamboo-dominated forests is typically different 
from that of non-bamboo forests. 

We used a SVM with a radial based function (RBF) kernel, which re
quires setting two parameters: gamma and cost. These were set at 0.5 and 
0.25, respectively, since parameter tuning showed that classification accu
racy was rather insensitive to a wide range of RBF gamma and cost para
meters. The calibrated SVM was then used to create a lookup table for the 
range of the three predictor variables in the calibration set and with in
tervals of 0.0005 (reflectance units) for ρ90 and Md, and 0.05 for Pd. 

3.4. Supervised model fitting and final segmentation selection 

In the supervised model fitting, we combined the information 
gained from the calibrated SVM with the unsupervised model fit. After 
global and local outlier detection and removal, the initial score was 
again calculated for each observation in the pixel time series following 
section 3.2 and Eq. (3), starting from the second observation up to the 
third to last, as well as the corresponding parameters ρ90, Md and Pd. We 
then used the calibrated SVM lookup table to obtain the probability P 
(ρ90, Md, Pd) that the model fit at each observation in the pixel time 
series reflects a bamboo mortality event. This leads to a final score S1 

for each observation, defined as: 

=S P S( , M , P ) .d d1 90 0 (4) 

This formulation ensures that the highest value of S1 corresponds to an 
observation that combines a strong improvement in constant and linear 
model fit after segmentation, with a set of disturbance parameters that re
flect bamboo mortality. In analogy to section 3.2, values of S1 were set to 
zero at observations for which the p-value of the Chow statistic for the 
constant or linear model fit was higher than 0.05. Additionally, S1 was set to 
zero at observations for which the corresponding P(ρ90, Md, Pd) was below 
0.5. If, after these operations, all values of the final score for a pixel were 
zero for the time period 1987–2014, the pixel was labelled non-bamboo 
forest. Otherwise, the pixel was classified as bamboo-dominated forest, and 
the year of the observation corresponding to the largest value of S1 was 
identified as the start year of the primary disturbance event. The duration of 
the disturbance (Fig. 4 (a)) for the observation with maximum S1 was also 
written to file. A pixel was labelled as having a secondary disturbance event 
if one or more non-zero values remained for any of the observations within 

the time period 1985–2016 and at least 20 years removed from the ob
servation of primary disturbance. The year with the highest value of S1 

among these was then identified as the secondary disturbance year.The 
period for observation of the primary disturbance year was restricted to 
1987–2014 because this corresponds to the 28 years earlier reported as the 
duration of the Guadua spp flowering cycle. Additionally, this reduced the 
chance that either of the segments after segmentation covered only two 
observations. In case both the primary and the secondary disturbance year 
were within the period 1987–2014 and the primary disturbance year was 
after the secondary, they were switched. 

3.5. Spatial post-processing and calculation of disturbance signal-to-noise 
ratio 

Following our methodology, it is possible that the first year after the 
observation identified as the start of a disturbance event corresponds to a 
missing observation. This introduces an ambiguity in defining the year of 
bamboo mortality. We used a spatial analysis to mitigate this ambiguity, 
where each pixel where this situation occurred was compared to its four 
nearest neighbours. If at least one of these four pixels was assigned the same 
primary disturbance year, but did not have a missing observation the next 
year, this initial year was confirmed. If not, we checked whether at least one 
of the adjacent pixels had a primary disturbance date one year later while 
not having a missing observation the next year. In that case, we added one 
year to the disturbance year of the considered pixel. After checking this for 
all ambiguous pixels, this process was repeated until no more pixels were 
updated. 

In a final step, we masked non-forested pixels using the global forest 
change map of Hansen et al. (2013), and removed clusters of pixels 
labelled as bamboo-dominated forests if they were smaller than the 
minimum mapping unit. The minimum mapping unit was set to 28 
connected pixels (four neighbour connectivity), which corresponds to 
approximately 2.5 ha. 

Calculation of the disturbance signal-to-noise ratio (DSNR) was inspired 
by the metric proposed by Cohen et al. (2018), adjusted to the supervised 
segmentation approach used in our study. As in Cohen et al. (2018), it is 
obtained by dividing spectral difference across the full length of the dis
turbance by the root mean square error (RMSE) of the residuals: 

=DSNR M ,d

n
SEElin

s

(5) 

where we define as signal the magnitude of the disturbance according to the 
linear model (Md, Fig. 4 (b)), and the residuals are obtained from the n 
observations used to fit the linear model.DSNR was calculated for 100 000 
randomly selected pixels in the calibration area (Fig. 1, Fig. 3) that were 
correctly classified as bamboo-dominated forests, and had the modelled 
date of disturbance within two years of the year of mortality as estimated 
from visual interpretation of the calibration area. The metric was calculated 
for the three spectral bands NIR, SWIR1 and SWIR2. 

4. Results 

4.1. Data availability 

Any interpretation of the results of the time series analysis cannot be 
seen independently from the availability of data on which the analysis 
is based. Missing data points in the Landsat time series include years for 
which no (cloud-free) Landsat acquisitions were available, and those 
observations masked as outliers in the multitemporal analysis. The 
number of missing observations and the maximum number of con
secutive years without observation (Fig. 5 ) clearly highlight data 
scarcity for some WRS-2 scenes, as well as permanent cloud cover over 
the Andean foothills in the southwestern part of the study site. 
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4.2. Classification accuracy and disturbance signal-to-noise ratio 

Comparison of the first, unsupervised time series segmentation of 
the SWIR1 band with the visual interpretation over the calibration area 
in a confusion matrix (Table 1 ) shows that of 100 000 randomly se
lected pixels, only 57 % were correctly classified as either non-bamboo 
forest or bamboo forests with date of mortality within the 2-year 
margin. A majority (67 %) of the non-bamboo pixels were labelled as 
bamboo, and 29 % of the bamboo pixels were labelled as such but had a 
disturbance date outside of the 2-year margin. The large misclassifica
tion of noise as disturbances can also clearly be seen in the detail of the 
unsupervised model fit in Fig. 3 . After the second, supervised seg
mentation, the number of non-bamboo pixels for which noise was at
tributed to change was drastically reduced to only 6 % (Table 1). Also 
the number of bamboo pixels that were assigned a wrong disturbance 
date dropped drastically, although most of these were classified as non- 
bamboo in the second step. 

Validation using the high resolution imagery available in Google 
Earth (Fig. 1, Fig. S1, Table S1) revealed that the Landsat SWIR1 band 
succeeded much better in discriminating bamboo-dominated forests 
from non-bamboo forests than the other infrared bands did (Table 2 ). 

Especially the omission errors of the NIR and SWIR2 bands were high, 
above 50 %, compared to only 27.62 % for the SWIR1 band. Commis
sion errors for NIR and SWIR2 (7.8 % and 6.7 %, respectively) were also 
notably higher than for SWIR1 (4.3 %). 

The higher classification accuracy for the SWIR1 band corresponded 
to a higher median disturbance signal-to-noise ratio over the calibration 
area (0.75), compared to the NIR (0.61) and SWIR2 (0.55) bands (Fig. 6  
). While the signals detected using the NIR band (median value of 
magnitude of -3.82 %) were much larger than those in the SWIR1 and 
SWIR2 (-1.99 % and -0.81 %, respectively), the near infrared also suf
fers from a much higher noise level. 

Figure 7 shows the extent of the area classified as bamboo-domi
nated forests and the start year of the disturbance segment for the 
SWIR1 band. Individually processed pixels cluster into patches of si
milar mortality date for sometimes large areas. Several examples of 
”flowering waves“ can be observed, where adjacent bamboo popula
tions show a mortality in adjacent or proximate years (de Carvalho 
et al., 2013). The total area identified as bamboo-forest using SWIR1 
measures approximately 118 000 km2. 

Fig. 5. Number of years with missing or filtered observations in Landsat SWIR1 band per pixel for the period 1984–2018 (a). Maximum number of consecutive years 
with missing or filtered observations in Landsat band 5 per pixel for the period 1984–2018 (b). 

Table 1 
Confusion matrices of validation of the unsupervised and supervised segmen
tation using the SWIR1 band and 100 000 pixels over non-bamboo forests (0) 
and bamboo-dominated forests (1) in the visual interpretation of the calibration 
area. For those pixels assigned to bamboo-dominated forests in both the cali
bration dataset and the prediction, we subdivided the pixel count based on the 
absolute difference between disturbance date assigned by visual interpretation 
and prediction (|ΔY|) Pixels indicated with * and ** were used for training of 
the support vector machine classifier.          

Unsupervised Supervised  

Reference 

Prediction 0 1 0 1 

0 7 087  5 447 20 091  24 969 
1 14 301* |ΔY| = 0 14 895** 1 297 |ΔY| = 0 13 337   

|ΔY| = 1 25 532**  |ΔY| = 1 23 744   
|ΔY| = 2 9 602**  |ΔY| = 2 8 741   
|ΔY| ≥ 3 23 136  |ΔY| ≥ 3 7 821 

Table 2 
Confusion matrices for classification of bamboo-dominated forests (1) and non- 
bamboo forests (0), percentage of correctly classified pixels (PCC), and Cohen's 
kappa coefficient (κ), for the three infrared Landsat bands. The locations of the 
validation areas for bamboo and non-bamboo forests based on very high re
solution DigitalGlobe imagery are shown in Fig. 1 .        

Reference PCC κ 

Prediction NIR    
0 1   

0 12 061 050 4 144 945   
1 338 416 3 988 582      

78.17 0.5036  
SWIR1    

0 1   
0 12 136 075 2 246 383   
1 263 391 5 887 144      

87.78 0.7333  
SWIR2    

0 1   
0 12 115 266 4 152 103   
1 284 200 3 981 424      

78.39 0.5082 
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4.3. Mortality lag and cycle length 

Comparison of the disturbance years for those pixels that were 
identified as bamboo forests in all three infrared bands revealed that the 
timing of the disturbance rarely coincides for the three bands (Fig. 8 ). 
Typically, disturbances in the shortwave infrared bands lagged behind 
on the disturbance in the near infrared band, with SWIR2 showing an 
additional lag on SWIR1. 

For those pixels for which two disturbance events were identi
fied in all three bands, we also calculated the difference between 
the start years of the disturbance segments (Fig. 9 ). This can be 
interpreted as the length of the phenological cycle of bamboo 
growth, flowering and mortality. This cycle length was between 27 
and 29 years for the vast majority of pixels, with a length of 28 
years being dominant for the analysis using the SWIR2 band. Given 
our methodology and the length of the entire Landsat time series 
(1984–2018), the theoretical maximum cycle length is 29 years, 

and the minimum was set to 20 years. 

4.4. Duration of the spectral disturbance 

The time series analysis method returns the length of the dis
turbance segment of the model fit resulting in the highest score, for 
each pixel labelled as bamboo-dominated forest. We report this in Fig.  
10 for the SWIR1 band, which has the highest overall classification 
accuracy. Figure 11 shows the number of pixels with a primary dis
turbance for each year, subdivided by the length of the disturbance 
segment. These figures show that the duration of the disturbance is best 
described by a segment longer than a single year for a majority of the 
pixels in the study area. The length of the disturbance segment is often 
spatially clustered (Fig. 10), revealing patterns similar to those of the 
start year of the segment (Fig. 7). The majority of the pixels have a 
mortality event occurring in the late 1980's and early 1990's (Fig. 11), 
many of these being located in the large, central-northern area shown in 
purple colours in Fig. 7 . 

Fig. 6. Boxplots of disturbance signal-to-noise ratio (DSNR) for Landsat NIR 
(band 4), SWIR1 (band 5) and SWIR2 (band 7). Boxes indicate the interquartile 
ranges, thick lines the median values. 

Fig. 7. Start year of the primary disturbance 
event in bamboo-dominated forests for Landsat 
SWIR1 band. Grey areas indicate pixels classi
fied as non-bamboo forests. Non-forest pixels 
(according to Hansen et al. (2013)) are masked 
out in white. Pixels for which the disturbance 
segment contained more than one missing ob
servation were classified as non-bamboo for
ests. 

Fig. 8. Histogram of difference between start year of disturbance segments in 
the three infrared bands. Shaded bars = NIR-SWIR1 difference, outlined bars = 
NIR-SWIR2 difference. 
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The breakdown of the length of the disturbance events varied 
strongly between spectral bands when considering those pixels identi
fied as bamboo-dominated forests in all three infrared bands. Using the 
SWIR1 band, only 25 % of the bamboo pixels were best modelled using 
a disturbance segment of a single year. This number was much higher in 
the NIR (43 %) and SWIR2 (39 %) bands. 

5. Discussion 

Due to their enormous spatial extent and difficult accessibility, the 
only realistic way to map bamboo-dominated forest in southwestern 
Amazonia is through remote sensing. Previous studies with this goal 
used visual interpretation of Landsat images (de Carvalho et al., 2013) 
or automated mapping using MODIS time series (Dalagnol et al., 2018). 
This study is the first attempt to map the Amazonian bamboo forests 
through a supervised time series segmentation of the entire Landsat 
archive. Our results show that of the three infrared Landsat TM/ETM+ 
bands, SWIR1 is the most useful for mapping bamboo populations, re
sulting in the highest classification accuracy (Table 2) and largest dis
turbance signal-to-noise ratio (Fig. 6). This contradicts previous studies, 
which claim that the near-infrared band is more suitable (de Carvalho 
et al., 2013). Overall, DSNR is low for all three infrared Landsat bands. 
In a study over American forests it was found that DSNR of forest dis
turbance events can be increased significantly when the NIR band is 
combined with either of the SWIR bands into a spectral index (Cohen 
et al., 2018). This is, however, only the case if a forest disturbance event 
results in a decreased NIR reflectance (less photosynthetically active 
vegetation) combined with an increased SWIR reflectance (less water 
absorption by vegetation), or vice versa. The mortality of bamboo 
patches, conversely, results in a decrease of surface reflectance 
throughout the near and shortwave infrared wavelengths. 

Even for the SWIR1 band, a relatively large omission error remains 
(28 %), compared to commission errors. The total area classified as 
bamboo-dominated forests of 118 000 km2 (Fig. 1) is therefore possibly 
underestimated, which explains the difference with previous estimates 
of the bamboo extent of 160 000 km2 (de Carvalho et al., 2013). Part of 
the omission error, and the discrepancy with previous studies, can be 
attributed to the way the pixel-based time series analysis method is 
validated using polygons based on very high resolution satellite ima
gery. These polygons were digitized to encompass large areas of 
bamboo-dominated forests (Fig. 1). However, these areas are not 
homogeneous, and may be composed of denser and less dense areas of 
Guadua bamboo within these forests (see Fig. S1). One or a few clus
tered large trees may prevent the bamboo grasses from dominating the 
canopy, and hide the temporal bamboo signal. Stated differently: not 
every pixel in bamboo-dominated forests has a canopy dominated by 
bamboo. A re-labelling of these small clusters of pixels classified as non- 
bamboo forests to bamboo-dominated forests may result in a decrease 
of omission errors. We, however, chose not to do this since it would 
introduce ambiguity about which disturbance year to assign to these 
pixels. 

Disturbances resulting from bamboo mortality are typically as
signed a later date when the analysis is based on the SWIR bands 
compared to when it is based on the NIR band (Fig. 8). This means that, 
despite resulting in a higher classification accuracy, SWIR1 may not be 
the optimal band to identify the exact date of mortality of a bamboo 

Fig. 9. Length of bamboo phenological cycles, defined as the time between two 
disturbance events in Landsat NIR (a), SWIR1 (b) and SWIR2 (c) bands. Given 
the length of the available Landsat time series, the maximum detectable cycle 
length is 29 years. 

Fig. 10. Length of the disturbance event in bamboo-dominated forests for 
Landsat SWIR1 band. Grey areas indicate pixels classified as non-bamboo for
ests, or identified as non-forest pixels (according to Hansen et al. (2013)). Pixels 
for which the disturbance segment contained more than one missing observa
tion were classified as non-bamboo forests. 

Fig. 11. Number of pixels with primary disturbance event for each start year, 
subdivided in length of the disturbance event. 
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population. Rather, SWIR reflectance changes seem to indicate a post- 
mortality signal. This behaviour is also apparent in the results obtained 
using MODIS by Dalagnol et al. (2018), though they didn’t specifically 
address this. We hypothesise that the delayed response in the SWIR 
wavelengths is because after mortality, dead bamboo plants remain in 
the canopy for some time, thus resulting in a high surface reflectance in 
bands sensitive to leaf water content (de Carvalho et al., 2013). After 
decomposition of these dead plants, surface reflectance will be influ
enced by canopy trees and (pioneer) understory vegetation with higher 
leaf water content. This can also explain why the duration of the 
modelled disturbance is often longer than one year for the SWIR1 band 
(Fig.). For NIR reflectance, on the other hand, the disturbance is more 
often best modelled with a disturbance duration of a single year. This 
indicates a more immediate influence of bamboo mortality on surface 
reflectance. 

For bamboo populations with two disturbance events, the time be
tween these was typically 27 to 29 years, with a dominance of 28 years 
(Fig. 9). These pixel-based results confirm scene-based results from 
previous research which establish a 28-year length of the Guadua 
bamboo life cycle in southwestern Amazonia (de Carvalho et al., 2013). 
Because the entire Landsat TM/ETM+ time series covered a time 
period of 35 years, this life cycle length could only be confirmed for 
populations with mortality during the first and last few years of the 
time series. Including Landsat MSS data into this analysis would allow 
detecting double mortality events for almost all populations in the 
study site, but this sensor lacks the shortwave infrared band which was 
found to be the most informative for this purpose. Estimated date of 
mortality of all populations can now, together with the confirmed life 
cycle length of 28 years, be used to predict future mortality events and 
the availability of large fuel volumes. 

The outline of the bamboo extent we obtained using the supervised 
times series analysis visually corresponds quite well with previous de
lineations of bamboo forests using visual interpretation of Landsat 
Geocover and MODIS mosaics (de Carvalho et al., 2013) or a linear 
model using MODIS time series (Dalagnol et al., 2018). With MODIS, 
one is inherently limited to map bamboo patches with sizes in the order 
of a square kilometer or larger. Furthermore, the MODIS archive only 
goes back to 1999, which is shorter than a full flowering cycle of 
Guadua bamboo of approximately 28 years. Manually delineating 
bamboo populations and their flowering cycle over the entire area using 
Landsat time series is practically not feasible. In this study, we pre
sented a first attempt to map bamboo-dominated forests and estimate 
the date of mortality of different bamboo populations automatically at 
30 m spatial resolution. We also provided the first validation of a map 
of bamboo-dominated forests using very high resolution imagery. 

We presented here a two-stepped approach to segment Landsat time 
series and detect the date of bamboo mortality. The first, unsupervised, step 
is conceptually similar to, e.g., the methodology of De Jong et al. (2013) in 
that it searches for a segmentation that minimizes the residuals after seg
mentation, or of Kennedy et al. (2007) in that it is based on the assumption 
of a distinctive temporal signal before and after the disturbance event, in 
our case short-term constant and long-term linear signals. As expected, 
though, the quality of this unsupervised segmentation was poor, with noise 
in Landsat time series over non-bamboo pixels attributed to change events 
(Table 1). We therefore attempted a second, supervised time series seg
mentation using local calibration data. Theoretically, parameters describing 
disturbance events, e.g. date of disturbance or disturbance magnitude, could 
be directly obtained from visual interpretation of pixel time series. This set 
of parameters could then be fed into a supervised segmentation. Un
fortunately, such visual time series interpretation, e.g. using the TimeSync 
software (Cohen et al., 2010), is labour intensive. In the context of bamboo 
mortality mapping, this is even more so because the spectral response of 
bamboo mortality differs temporally among bands. This means that a 
manual extraction of disturbance date and other parameters should be done 
for each spectral band separately. We therefore suggested a method that 
extracts calibration samples from the initial, unsupervised time series 

segmentation using imperfect reference polygons, which are much easier to 
obtain. A critical condition in our methodology is that at least an important 
fraction of the pixels within the calibration area are assigned the correct 
disturbance year in the initial segmentation (Table 1). 

We here provided results from analysis run on each of Landsat's infrared 
bands individually. In recent years, methods have been proposed to im
prove time series segmentation results by combining outputs from different 
bands or band indices. These can be roughly divided into two groups: rule- 
based predictions and stacked generalizations (Healey et al., 2018). The 
latter relies on accurate reference data to calibrate the ensemble classifier, 
and is therefore less suitable in the context of bamboo mortality mapping 
where such reference data is scarce. Future efforts using rule-based ap
proaches could benefit from the findings of our study. E.g., they could use 
the information in the SWIR1 band to detect where bamboo-dominated 
forests are present, and the information in the NIR band to detect the actual 
date of bamboo mortality. The main limitations when using historic Landsat 
data for the automatic classification of bamboo-dominated forests are data 
availability and data quality. As a result of historic acquisition and storage 
policies and frequent cloud cover over Amazonia, several parts of the study 
area have five or more missing observations in the yearly composite images 
(Fig 5 (a)). Areas where two or more consecutive yearly composite ob
servations are missing (Fig 5 (b)) are especially problematic since the 
methodology presented here only allows for a single missing observation 
over the duration of the disturbance segment (Fig. 4 (a)). Scarcity of Landsat 
images and excessive atmospheric contamination also contribute to high 
noise levels in pixel time series, and hence a low DSNR (Fig. 6). This high 
relative noise level can lead to misleading results when deconstructing the 
pixel time series into a small number of segments in an unsupervised way. 
E.g., for the sample pixel time series provided in Fig. 3, dividing the time 
series into two linear segments from the start of the time series up to 1999 
and from 2000 to the end of the time series results by far in the strongest 
decrease of the residuals. However, from visual assessment we found that 
bamboo mortality for this and surrounding pixels occurs in 1989. Thus, the 
best model fit does not necessarily result in the detection of the feature of 
interest. When incorporating information obtained from calibration data, 
however, the correct year of disturbance is obtained. Bamboo-dominated 
forests in southwestern Amazonia are typically considered as consisting of 
large, homogeneous patches of Guadua populations that flower, bear fruits 
and die back synchronously. Results of this study may suggest that the 
flowering and mortality rhythms within one bamboo population are more 
diffuse. When looking at the modelled date of start of disturbance at the 
scale of the entire study site (Fig. 7), distinct areas can be discerned of 
several tens of kilometers in diameter with a similar disturbance year. When 
focussing on one such patch, however, it is often observed that disturbance 
dates of individual pixels differ one or two years internally. Such internally 
heterogeneous mortality timing is much harder to identify when using only 
low resolution data such as MODIS, or when manually digitizing bamboo 
patches. While part of this within-patch heterogeneity can be attributed to 
the way the yearly pixel-based composites are created, this hypothesis of 
asynchronous die-back within patches is corroborated by anecdotal field 
evidence where we observed bamboo individuals in different life stages 
(fruiting, flowering, dead and as 1 m high seedlings) at the same site. This 
hypothesis could be further tested using additional field surveys and re
peated very high resolution remote sensing observations. 

6. Conclusions 

We present a supervised Landsat TM/ETM+ time series analysis to 
create the first automatic mapping of bamboo-dominated forests in 
southwestern Amazonia at 30 m resolution, and to identify mortality 
dates of the different bamboo populations in the area. Analysis using 
the SWIR1 band resulted in the highest classification accuracy among 
the three infrared bands, but the spectral response in these wavelengths 
appeared to lag behind the actual bamboo mortality. The spectral re
sponse to bamboo mortality in the shortwave infrared often spanned 
several years, which reflects the time required for dead bamboo 
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material to decompose and disappear from the canopy. Using Landsat 
time series of yearly composite images from 1984 until 2018 we were 
able to detect several pixels with two bamboo mortality events and 
derive a typical growing cycle length of 28 years. 
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