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Abstract
In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument,
methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-
movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any
study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database
of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual
reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An
empirically based minimal reporting guideline”).

Keywords Eye movements · Eye tracking · Data quality · Reporting guidelines · Reporting standards ·
Reporting practices · Replicability · Reproducibility

Introduction

Eye tracking is a method used to investigate eye movements,
gaze behaviour, and pupil dilation in many different
research fields (e.g. perception, attention, memory, reading,
psychopathology, ophthalmology, neuroscience, human–
computer interaction, animal research, human factors,
consumer behaviour, optometry etc., see Duchowski, 2002;
Kowler, 2011; Liversedge et al., 2011; Majaranta, 2011;
Rayner, 1998, for overviews). In addition, there is a belief
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that eye tracking will soon become a ubiquitous technology
in laptops and augmented reality headsets for consumers
(e.g. Chuang et al., 2019; Clay et al., 2019). Eye tracking is
widespread and likely to become more so in the future.

While eye tracking may be used in a variety of
research fields to answer very different questions, many
methodological aspects appear to be shared, such as the eye-
tracker models used, or the algorithms for processing and
analysing recorded eye-tracking data. One therefore might
expect that the part of the method sections describing the
eye-tracking setup, and the processing and analysis of the
data it yields, are similar across very different research
fields (such as human factors research and neuroscience).

However, recent research suggests that this is not
necessarily the case. For example, in many studies using
an eye tracker, reporting the quality of the eye-tracking
data obtained is not common practice (see e.g. Hessels &
Hooge, 2019; Holmqvist et al., 2012). Moreover, although
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there exist a number of reporting guidelines for research
using eye trackers (e.g. Carter & Luke, Fiedler et al., 2019;
McConkie, 1981; Oakes, 2010; Strohmaier et al., 2020),
existing guidelines differ substantially from one another,
are based on consensus decisions within a small group of
authors or researchers, and to the best of our knowledge are
not widely used.

The present paper was initiated after several large-
scale meetings between eye-tracking researchers from many
different disciplines. In these meetings, it was established
that there is a need for guidance in what to report in a study
using an eye tracker. However, the needs on what should
be reported may differ substantially between research or
applied fields. Therefore, the first step was to combine
previous research into an empirical foundation for any
future reporting standard.

Evidence-based reporting guidelines are essential for at
least three reasons.

1. Being expected to report a specific set of features of
the experiment may help researchers with planning and
designing their studies, as they will be more aware of
preparing and collecting information that needs to be
reported at a later stage.

2. The adoption of reporting guidelines, leading to
sufficient detail in the reported methods of a study, may
allow reviewers and future readers to assess the validity
of that study’s claims.

3. Following reporting guidelines may assist authors in
providing sufficient detail about a study to enable other
researchers to reproduce (and potentially replicate) a
study. A well-known study on replicability estimated
that a mere one third of the findings in psychological
science are replicable, qualifying this as a ‘replication
crisis’ (Open Science Collaboration, 2015). In eye-
tracking research specifically, replication may be
particularly hampered by an over-reliance on the
performance of the eye trackers and their default
algorithms and settings.

Note that we distinguish between reporting guidelines,
which offer researchers the possibility to make informed
choices of what to report, and reporting standards which
prescribe mandatory reporting items, approved by one or
another authority. We here deliver the empirical foundation
and derived from this what should minimally be reported
according to empirical research. Our efforts may be
followed up by e.g. consensus-based approaches to deliver
formal reporting standards. We expect these to differ
between for example fundamental research fields and
clinical applications, due to different considerations with
regard to e.g. safety, ethics, legal requirements, researcher
background knowledge, and nature of the research field.

In what follows, we review the existing literature with
regard to the following central question: How do the
various aspects of a study using an eye tracker (such
as the instrument, methodology, environment, participant,
etc.) affect the quality of the eye-tracking data obtained,
or the eye-movement and gaze measures? We contrast
what has been shown to be relevant against what already
existing reporting guidelines prescribe and against an
existing database of 207 publications of what researchers
have reported in eye-tracking research on judgement and
decision-making (Fiedler et al., 2019). This review of
empirical research forms the basis of our minimal reporting
guideline.

As will become apparent, a large proportion of the
studies that we discuss are conducted from the perspective
of eye-tracking data quality. Why is that important? Better
data quality may result in, for example, a lower attrition
rate, fewer subjects, shorter experimental sessions, more
statistical power, better diagnosis, etc. In other words, it
means getting more out of each measurement, observation,
or experimental session. The data quality approach entails
scrutinising aspects of the procedure of an eye-tracking
experiment and improving them such that the quality of
the eye-tracking data may be increased. In studies on
eye-tracking data quality, the eye trackers or aspects of
the eye-tracking data analysis are the target of interest,
analogous to the focus on specific traits of humans or
animals in a psychological study. The goal can, for example,
be to understand how the data from an eye tracker changes
when the illuminance of the room, or the distance between
a human’s eye and the eye tracker, is varied. Likewise,
researchers may be interested in the relationship between
aspects of the eye-tracker signal and the age, eye colour, or
eye physiology of the human or animal being tracked.
Often, the effects of such environmental, setup-related or
participant-related factors are quantified in terms of eye-
tracking data quality (see e.g. Ehinger et al., 2019; Hessels
et al., 2015; Holmqvist, 2015; Nyström et al., 2013).

Also, researchers may be interested in how the quality
of eye-tracking data affects eye-movement measures when
fed through a particular aspect of the eye-tracking data
analysis pipeline (Fig. 1). For example, researchers may
be interested in how a ‘fixation duration’ as reported
by a fixation-detection algorithm is affected by the
precision (Table 1) in the gaze-position signal, or how a
measure derived from an area-of-interest (Table 1) analysis
may be affected by the settings of a fixation-detection
algorithm.

This paper may be useful for at least two types of readers:
researchers interested in eye tracking per se, and researchers
for whom eye tracking is not their core business but who use
eye tracking as one of the tools in their research toolbox.
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Fig. 1 From eye orientation to higher-order eye-tracking measures. This is a crude division of the process from eye orientation to higher-order
eye-tracking measures. There may be cases where a more fine-grained division is applicable

Structure of this paper

For eye-tracking researchers at all levels of experience
to follow along, it is vital that we clarify a number of
important terms, among which are the characteristics of
eye-tracking data quality, the various eye-tracking methods,
and common terms in eye-tracking data processing and
analysis. Table 1 lists some common terms and definitions.
Figure 1 furthermore depicts a general flow from eye-
tracking recording to eye-movement measure.

In Section “Measuring data quality of eye-tracker signals”,
we briefly explain how the fundamental data quality mea-
sures for eye-tracking data are operationalised and calcu-
lated. We will use the terms defined in Section “Measuring
data quality of eye-tracker signals”: accuracy, precision,
data loss, latency etc., throughout the paper.

Section “A review of empirical eye-tracking studies as
the basis for a reporting guideline”, the first of the three
subsequent content sections, consists of a scoping review
of available research relevant to our question: How do the
various aspects of a study using an eye tracker, such as
the instrument, methodology, environment, and participant
affect (or relate to) the quality of the eye-tracking data
obtained, the properties of the eye-tracker signals, or the
eye-movement and gaze measures? We furthermore review
how the quality of the eye-tracking data and the data
processing and analysis methods used may affect eye-
movement and gaze measures.

In Section “Reporting practices and existing reporting
guidelines”, we compare the findings from our scoping
review (Section “A review of empirical eye-tracking studies
as the basis for a reporting guideline”) against five existing

reporting guidelines for research with an eye tracker, and
against actual reporting practices. Conveniently for the
latter, four of our co-authors have coded the frequencies of
the actual reporting of 99 common aspects of eye-tracking
experiments from 207 published studies using eye trackers
in research on decision-making. See Fiedler et al. (2019) for
an earlier presentation of the same data.

Finally, Section “An empirically based minimal reporting
guideline” presents a summary of what is empirically
relevant to report. This summary could serve as a flexible
reporting guideline, offering researchers the ability to make
informed choices about what to report for their particular
study. This final section is written from the point of view
that any aspect of a study that matters to the outcome of a
study should be reported.

Measuring data quality of eye-tracker
signals

Eye-tracking data quality is often characterised by three
measures: accuracy, precision, and data loss (see Fig. 2).
Accuracy refers to the difference between the true gaze
position and the gaze position reported by the eye tracker.
Precision refers to the reproducibility of a gaze position by
the eye tracker when the true gaze position does not change.
Finally, data loss refers to the amount of data lost in an
eye-tracker signal. However, another data quality concept
is sometimes reported: system latency, which refers to the
time it takes to produce gaze coordinates from the sensor
data (camera image, for instance). Below, we will give
operationalisations for these data quality concepts.
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Table 1 List of some common terms used in this paper

Term Definition

Pupil-Corneal Reflection (P–CR) A video-based eye-tracking method. Gaze direction is calculated from the corneal reflection (CR)
coordinate and the pupil (P) coordinate in the eye camera image, originally by subtracting CR from
P. The P–CR method currently dominates the eye-tracking market (Section “Eye-tracking methods:
Similarities and differences”).

Dual-Purkinje Imaging (DPI) The DPI system is an analogue eye tracker that bases its estimation of gaze on the relative movement
of an infrared reflection in the cornea (P1) vs. a reflection at the back of the crystalline lens (P4)
(Section “Eye-tracking methods: Similarities and differences”).

Electrooculography (EOG) EOG is a method used to estimate eye orientation from the difference in electrical potential between
the front and back of the human eye (Section “Eye-tracking methods: Similarities and differences”).

Scleral search coils Scleral search coil eye tracking involves attaching a silicon-enclosed copper wire onto the sclera
of the eyeball. The participant is then placed in an oscillating magnetic field, and the amplitude
of induction voltage can be taken to represent eye orientation with respect to the magnetic field
(Section “Eye-tracking methods: Similarities and differences”).

Limbus tracking Limbus trackers use the border between the iris and the sclera to track gaze and eye movements
(Section “Eye-tracking methods: Similarities and differences”).

Retinal image-based tracking Image processing of retinal features (such as blood vessels) are used to register very small eye
movements (Section “Eye-tracking methods: Similarities and differences”).

Calibration The process of mapping eye-tracker measurements to physical gaze direction or gaze position. This
can be done e.g. using fitting procedures or by using physically and biologically plausible models or
a combination of the two (Section “Calibration and accuracy”).

Gaze direction The vectors from an eye, both eyes, or a cyclopean eye, which describe the line of sight.

Gaze position The location of gaze in a measurement plane or space. Gaze is also termed point of regard.

Sampling frequency For relevant eye trackers, the number of gaze direction or gaze position measurements made per
second (Hz), determined by the eye camera or AD-convertor of the system. Sampling frequencies
vary from around 10Hz in some web-camera eye trackers to 10000Hz in some recordings.

Accuracy The difference between the true gaze position (assumed or instructed) and the gaze position reported
by the eye tracker. Typically reported as error in degrees of visual angle where a larger error indicates
poorer accuracy. Inaccuracy is also known as systematic error, while accuracy can be called trueness
(Sections “Measuring data quality of eye-tracker signals” and “Calibration and accuracy”).

Precision The reproducibility of a gaze position from one sample to the next, assuming a stable gaze position.
Typically reported as RMS or STD (or both). Greater error indicates poorer precision. Imprecision
is also known as random or variable error (Sections “Measuring data quality of eye-tracker signals”
and “Signal properties and processing”).

Resolution The just noticeable difference in a signal, which in eye tracking is measured as the smallest reliably
detected eye movement (or rotation of an artificial eye) that an eye tracker can resolve (Holmqvist &
Blignaut, 2020; Poletti & Rucci, 2016; Crane & Steele, 1985).

Data loss The amount of eye-tracking data lost. It is the counterpart of what is commonly called tracking ratio
or availability of eye-tracking data (Sections “Measuring data quality of eye-tracker signals” and
“Signal properties and processing”).

System latency The duration from when an actual eye movement is made, until the corresponding gaze sample is
output by the eye tracker, made accessible for instance to affect change on a monitor in a gaze-
contingent study (Sections “Measuring data quality of eye-tracker signals” and “Signal properties
and processing”). Latency is sometimes referred to as the end-to-end delay or temporal accuracy

(Reingold, 2014, p. 641).
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Table 1 (continued)

Term Definition

Event detection,
classification,
and calculation

Usually refers to the segmentation of an eye-tracker signal into meaningful segments (or events) with
a start, end, and duration, and calculation of event properties. Meaningful segments can be ‘fixation’,
‘saccade’, ‘smooth pursuit’, or other terms (Section “Fixation and saccade detection”). Terminology
varies (Hessels et al., 2018).

Area of Interest (AOI) A segment of a stimulus space (often defined by screen pixel boundaries in monitor-based eye
tracking) that identifies a portion of the stimulus that is meaningful in the experimental design of a
study (such as eyes and mouth areas in face perception, a pack shot in marketing research, or a target
in a visual search experiment). In eye-tracking analysis AOIs allow for the calculation of commonly
reported dependent measures; for instance, the number of times or amount of time gaze is within a
specific AOI, or the number of transitions between AOIs (Section “Area-of-interest (AOI) measures”).

Operationalizing accuracy requires that the participants
look at a set of fixation targets on screen, often just
after having completed the calibration. The accuracy
measurement is commonly known as a validation procedure.

Research on the positioning of validation points is lacking,
but accuracy values may be underestimated (better) if the
same points are used for validation as for calibration, or if
only part of the stimulus is covered by validation points.

Fig. 2 Characteristics of eye-tracking data quality. A Horizontal gaze
position (in Fick, 1854, coordinates, see Haslwanter (1995)) of the
right eye as a function of time. The gaze position was recorded from an
adult participant with an EyeLink 1000 by Hooge et al. (2015). Call-
outs indicate the relatively precise gaze-position signal (compared with
panel B). B Horizontal gaze position in Fick coordinates of the right
eye as a function of time. The gaze position was recorded from an
infant participant with the Tobii TX300 by Hessels et al. (2016). Call-
outs indicate the relatively imprecise gaze-position signal (compared
with panel A), short gaps in the gaze-position signal (data loss), and an
extreme gaze position reported by the eye tracker. The extreme gaze
position is interesting because it can be considered an aspect of eye-
tracking data quality not captured in the measures accuracy, precision,

or data loss. C, D Gaze position signals (black dots) in a 2D repre-
sentation, i.e. as if on a screen. Gaze position signals were recorded
from adult participants by Hooge et al. (2019). Gaze position samples
with high velocity were removed such that saccades are not visible.
Orange markers represent validation targets. They are positioned to
illustrate good/poor accuracy and do not correspond to the location of
the actual validation targets in the experiment by Hooge et al. (2019).
Call-outs indicate validation targets with corresponding precise and
accurate, precise and inaccurate, imprecise and accurate, and impre-
cise and inaccurate gaze position signals, respectively. Note that the
qualifications ‘precise’, ‘imprecise’, ‘accurate’, and ‘inaccurate’ are
relative here and are often quantified
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Additionally, a second validation procedure and accuracy
calculation at the end of the experiment might be beneficial
to be able to detect changes in accuracy between experiment
start and end.

Accuracy may be calculated as the mean difference
between the reported gaze locations near a validation
target and the actual position of that validation target. The
achieved accuracy thus critically depends on participant
gaze during calibration. Instructing the participant to
confirm when s/he is looking at the target (Nyström et al.,
2013) or letting the participant adjust the parameters of the
calibration while getting feedback from online gaze data
(Poletti & Rucci, 2016) may improve accuracy.

When participants produce a saccade to a validation
target, they may under- or overshoot the target, make a
small correction and only then fixate the target. A method
is needed to find the period when the participant looks
at the validation target. Manufacturers have built such
selection methods into their software for calibration and
validation, and some researchers have also investigated and
used various sample selection principles (e.g. Hessels et al.,
2015; Holmqvist, 2015; Niehorster et al., 2020c; Van der
Stigchel et al., 2017). We refer to these studies for details.

Precision of the gaze position signal may be operationalised
in different ways, such as the Root Mean Square sample-
to-sample deviation (RMS-S2S) of a segment of gaze data
collected when the participants’ gaze is fixed on a validation
target. Following Niehorster et al. (2020c), RMS-S2S is
calculated as in Eq. 1:

RMS-S2S =
√
√
√
√

1

n − 1

n−1
∑

i=1

(xi − xi+1)2 + (yi − yi+1)2 (1)

where (xi, yi) and (xi+1, yi+1) are successive gaze positions
during a fixation. Another measure would be the standard
deviation (STD) of that segment or the Bivariate Contour
Ellipse Area (BCEA, Crossland and Rubin, 2002; Steinman,
1965). As detailed in Niehorster et al. (2020c), these
calculations operationalise different aspects of the gaze
signal. Given a stable sampling frequency, this makes the
RMS-S2S value of the gaze signal an indicator of noise
velocity, which can be compared to the velocity threshold
in the event detectors (Section “Fixation and saccade
detection”). In contrast, the STD calculation operationalises
the dispersion of gaze samples in a segment of data. The
dispersion measure STD is calculated as in Eq. 2, where x

denote the mean of quantity x:

STD =
√
√
√
√

1

n

n
∑

i=1

(xi − x)2 + (yi − y)2 (2)

The two calculations (1) and (2) can be applied not only
to gaze data, but to any sequence of data from an eye tracker,
such as pupil and CR position or pupil diameter data to
investigate, for instance, the stability of a pupil dilation
measurement.

Data loss may be operationalised as the percentage (or
proportion) of samples which lack coordinates for the gaze
signal. An example of the latter would be an eye tracker
that has an advertised sampling frequency of 250Hz but
reports only 2000 gaze coordinates during 10 s; this would
represent a data loss of 20%. However, there are other
operationalisations of data loss that may be useful in some
situations: for instance, in some cases, the researcher might
wish to count gaze or pupil samples that are missing due
to blinks as data loss. Blinks may account for about 2%
loss of the total data set (Holmqvist & Andersson, 2017, p.
167). In some cases, gaze shifts outside the tracking range
of the eye tracker may count as data loss. In developmental
research, where young children are prone to look away from
a monitor when they are no longer interested, researchers
might wish to exclude periods of looking away from the
calculation of data loss (see e.g. Hessels et al., 2015;
Wass et al., 2014, for operationalisations of data loss in
developmental research).

System latency (also known as temporal accuracy and
end-to-end delay, e.g. Reingold, 2014, p. 641) may be
operationalised as the average duration from the time of
an actual movement of the tracked eye until the recording
computer signals that the eye movement has taken place. In
a video-based P–CR tracker, the optimal latency is the time
from image acquisition to calculated gaze, which takes 1–
3 samples (1–3ms in a 1000Hz recording, see Holmqvist &
Andersson, 2017, p. 85). Any timing issues in the processes
run by the computers involved in the data recording may
add latencies. A large variability in the latency may be
characterised as poor temporal precision.

Long and variable latencies are problematic for the
interpretation of measurements that are assumed to be
synchronised: eye tracker and EEG, for instance, or eye
tracker and stimulus monitor. The latter is very important
in gaze-contingent research, where latencies are reported to
be 10–60ms, including the delay to the next retrace of the
monitor (Section “Signal properties and processing”).

Latencies can be measured in at least the following five
ways, some of which require specific equipment and/or
software. The first method measures the time until there is
an update in the gaze signal. Methods three to five measure
latency until a display change has been completed. The
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second method can be used for either of these two types of
measurements.

1. Compare the file of the raw data stream against a video
output of the participant’s eye (Leppänen et al., 2015)
or gaze scanpath (Morgante et al., 2012).

2. Equip an artificial eye with two diodes that act as
artificial corneal reflections per IR illuminator, and turn
one off while the other diode is turned on, so that the
eye appears to move, and then measure the time until a
movement is seen in the gaze signal, or until the display
changes (Bernard et al., 2007; Holmqvist et al., 2012;
Reingold, 2014).

3. Shukla et al. (2011) used a mirror positioned next to
the participant’s face and a 300Hz high-speed camera,
which captured the participant’s eye and, through the
mirror, the monitor where the stimuli appeared and
disappeared.

4. Saunders and Woods (2014) tested gaze-contingent
monitors with the EyeLink 1000, by blinding the eye
tracker with an infrared pulse and measuring the time
until the gaze-contingent monitor changed by recording
both the infrared pulse and the monitor with a 1000Hz
camera.

5. Hohenstein and Kliegl (2014) measured the latency
between saccades and display changes in a gaze-
contingent study, with a light sensor attached onto the
monitor.

As is evident from the operationalisations above, lower
values for accuracy, precision, data loss, and system latency
are better: The ideal value is 0 for each data quality measure.
Worse data quality manifests as higher values.

Examples of procedures, formulas, (pseudo)code or links
to software for estimating some measures of data quality and
effects thereof may be found in e.g. Crossland and Rubin
(2002), Blignaut and Beelders (2012), Akkil et al. (2014),
Dalrymple et al. (2018), Hessels et al. (2017), Orquin and
Holmqvist (2018), Kangas et al. (2020), Niehorster et al.,
(2020a, c).

A review of empirical eye-tracking studies as
the basis for a reporting guideline

We will present our review ordered by the categories
Eye-tracking methods, Environment, Setup and geometry,
Participant, Calibration, Features of the experiment, Signal
processing, Event detection, Area-of-Interest measures, and
Higher-order measures. The minimal reporting guideline
itself can be found in Section “An empirically based
minimal reporting guideline”.

Eye-trackingmethods: Similarities and differences

Over the past 130 years (e.g. Delabarre, 1898; Lamare,
1892), many methods for eye movement registration have
been developed. A recent comprehensive overview is
provided by Holmqvist and Andersson (2017, Ch 4). For
other overviews of eye trackers and methods for measuring
eye movements, see Hansen and Ji (2010), Duchowski,
(2007, pp. 51–59), Ciuffreda & Tannen (1995, pp. 184–
205), Young and Sheena (1975), and Ditchburn, (1973, pp.
36–77).

In this section, we describe how characteristics of
the eye-tracker signals differ between the measurement
techniques and between various eye-tracker models. From
the perspective of a researcher embarking on a new project,
with a limited budget, each measurement technique is likely
to have some advantages and some disadvantages. Within
each technique, differences between manufacturer models
in data quality and other properties may be found to be large
enough to determine the success or failure of the upcoming
study.

Table 2 summarises 42 existing cross-comparative bench-
marking studies of eye trackers, which we refer the reader
to for specific details. In short, these 42 studies inform
their readers that data quality often differs very consider-
ably, in very many ways, between eye trackers, while other
eye trackers record data with similar quality. The studies
in Table 2 may assist in assessing whether an eye tracker
can actually produce data of the desired quality, either in
preparation for acquiring a system, or when preparing a
replication where the eye tracker in the intended repli-
cation study differs from the eye tracker in the original
publication.

Summarising studies on accuracy and precision, par-
ticularly, Holmqvist and Andersson (2017) point out that
the difference in distribution of RMS-S2S precision values
between eye trackers may be up to two orders of magnitude,
while in comparison between-subjects differences in preci-
sion within each eye tracker tend to be relatively small. In
contrast, the distributions of accuracy values for each eye
tracker overlap considerably between eye trackers (i.e. they
have similar accuracy), but exhibit a very wide range within
each eye tracker which represents data from people with
different eye physiologies, spectacles, and data obtained
during fixations in the corner vs central positions of moni-
tors. This suggests that for precision, the eye tracker matters
more, while for accuracy: the participant, the calibration and
the geometrical setup matter more. This was found for adult
human participants in the lab and may differ for infants,
animals and difficult recording environments.

As we outline below, irrespective of measurement
method: anything that interferes with obtaining or process-
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Table 2 Comparative benchmarking studies

Eye trackers Examined Publication

EyeLink 1000+, EyeLink II, Tobii Pro Spec-
trum, SMI HiSpeed240, SMI RED250mobile

Small head movements, chinrest, precision,
filter on/off, oculomotor drift

Holmqvist et al. (2021)

Fove-0, Varjo VR-1, HTC Vive Pro Eye,
EyeLink 1000, EOG

Latency Stein et al. (2021)

EyeLink 1000+, SMI RED250, SMI REDm,
Tobii TX300, Tobii X2-60

Power spectral density, colour of noise, filter
on/off, oculomotor drift

Niehorster et al. (2021)

EyeLink1000+, Tobii Pro Spectrum, FLEX Pupil-size artefact Hooge et al. (2021)

SMI ETG2, SMI HTC Vive Accuracy, precision Pastel et al. (2021)

Tobii Pro Spectrum, EyeLink 1000+ Microsaccades, precision Nyström et al. (2021)

DPI Gen5.5, SMI HiSpeed 240, SMI HiSpeed
1250, SMI RED250mobile, SMI ETG 2,
EyeLink II, EyeLink 1000+, Tobii X2-60,
Tobii T120, Tobii TX300, Tobii Pro Spectrum

Accuracy of movement amplitudes, measure-
ment resolution, precision

Holmqvist and Blignaut (2020)

DPI Gen5.5, Tobii Pro Spectrum, EWET1 Accuracy, precision, pupil-size artefact,
microsaccade detection, resolution

Holmqvist et al. (2020)

EyeLink 1000+, SMI RED250, SMI REDm,
Tobii TX300, Tobii X2-60

Five different precision measures, filters
on/off

Niehorster et al. (2020c)

SMI ETG2, Tobii Pro Glasses 2, PupilLabs Accuracy, precision, data loss Niehorster et al. (2020b)

EyeLink 1000, Pupil Labs Accuracy, precision, drift, temporal precision,
number of blinks, blink duration

Ehinger et al. (2019)

EyeLink 1000, SMI HiSpeed 1250 Vergence Hooge et al. (2019)

EyeLink 1000, Stereotracker Accuracy, precision, main sequence Barsingerhorn et al. (2018)

EyeLink 1000, EyeTribe Main sequence modelling, number of saccades Raynowska et al. (2018)

SMI RED250, Tobii TX300 Fixation durations, number of fixations van Renswoude et al. (2018)

EyeLink1000+, EyeTribe, SMI REDn, Tobii
T60XL, Tobii TX300

Data loss and recovery during head movements Niehorster et al. (2018)

DPI Gen 5.5, EyeLink1000, SMI HiSpeed
240, HiSpeed 1250, RED250, RED500 and
REDm, Tobii TX300, T60 XL, X2-60, LC
EyeFollower, EyeTribe

Precision, power spectral density, colour of
noise

Wang et al. (2017)

Tobii T60, Tobii T120, Tobii TX300 Saccadic reaction time Kenward et al. (2017)

DPI Gen 6, Scleral Search Coil Precision, resolution, drift, noise colour Ko et al. (2016)

EyeLink 1000, SMI ETG 2 Main sequence, saccade amplitudes Engbert et al. (2016)

EyeTribe, Tobii EyeX, SeeingMachines face-
LAB, SmartEye Pro, SmartEye Aurora

Accuracy, precision, data loss Funke et al. (2016)

EyeTribe, GazePoint GP3 Pupil diameter Coyne and Sibley (2016)

EyeTribe, SMI RED250 Accuracy, data loss, fixation count Popelka et al. (2016)

SMI RED250, EyeTribe Accuracy, temporal precision Ooms et al. (2015)
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Table 2 (continued)

Eye trackers Examined Publication

DPI Gen 5.5, EyeLink1000, SMI HiSpeed
240, HiSpeed 1250, RED250, RED500 and
REDm, Tobii TX300, T60 XL, X2-60, LC
EyeFollower, EyeTribe

Accuracy, precision, data loss Holmqvist (2015)

EyeLink 1000, Scleral Search Coil Precision, microsaccades, oculomotor drift McCamy et al. (2015)

LC Technologies EyeFollower, SMI RED250,
SMI REDm, Tobii T120, TX300 and X2-60

Data loss and recovery during head move-
ments

Hessels et al. (2015)

SMI RED250, SMI RED500, SMI HiS-
peed1250, Tobii TX300

Accuracy, calibration Blignaut et al. (2014)

EyeLink remote, SMI RED60 Number of fixations Wang et al. (2014)

EyeLink 1000, EyeTribe Precision, drift Dalmaijer (2014)

Tobii X120, T120, EyeLink 1000 Pupil foreshortening Brisson et al. (2013)

EyeLink II and a piezoelectric sensor Microsaccade amplitudes McCamy et al. (2013)

SMI RED250, Tobii TX300 Three precision measures, seating distance Blignaut and Beelders (2012)

EyeLink 1000, Scleral Search Coil Accuracy, saccade dynamics, microsaccades,
pupil-size artefact

Kimmel et al. (2012)

EyeLink 1000, Scleral Search Coil Pupil-size artefact Drewes et al. (2012)

EyeLink II, Scleral Search Coil Saccade dynamics Lappe-Osthege et al. (2010)

SMI RED50, SMI HED50 Accuracy, drift Komı́nková et al. (2008)

Search Coil, Chronos Vision Accuracy, main sequence, torsion Houben et al. (2006)

Tobii 1750, ASL, 501, ASL 504 Accuracy, data loss Nevalainen and Sajaniemi (2004)

Tobii ET-17, LC EyeGaze Accuracy, data loss, drift Cheng and Vertegaal (2004)

EyeLink I, Scleral Search Coil Saccade dynamics Frens and van der Geest (2002)

DPI Gen 5, Scleral Search Coil Saccade dynamics Deubel and Bridgeman (1995)

ing of a feature used in estimating gaze direction (P, CR,
P1, P4, limbus, magnetic induction or retinal features) will
affect the data quality of the signal in the data reported by
the eye tracker.

P–CR eye tracking

Video-based P–CR eye tracking was introduced by
Merchant (1967). In 2021, camera-based P–CR eye trackers
dominate the market almost completely. The P of P–CR eye
trackers refers to the pupil centre in the camera image, and
the CR to one or more reflection centre(s) in the cornea from
infrared illuminators in the eye tracker. P–CR eye trackers
estimate gaze direction as a function of the relative positions
of P and CR coordinates in the pixel coordinate system of

the video image, for instance by subtracting the CR coordi-
nate from the P coordinate. Note that more advanced models
have been developed (Hansen & Ji, 2010).

More types and models of P–CR eye trackers are
available than for any other measurement technique,
and prices vary over a wide range. There exists plenty
of software for stimulus presentation, data processing
and analysis, and the learning threshold for beginning
researchers is lower than for other eye-tracking methods.

Many studies have examined aspects of P–CR eye
trackers (Table 2). A host of issues with the feature
detection of both pupil and corneal reflection may impair
quality of gaze and pupil-size data. As we point out
elsewhere, P–CR trackers suffer from the pupil-size artefact
(Section “Environment”) and the pupil foreshortening
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artefact (Section “Setup and geometry”). Refraction in the
cornea alters the pupil size in the camera image and its
position with respect to the limbus (Villanueva & Cabeza,
2008). Pupil occlusion and mascara can interfere with pupil
detection. Blue irises tend to result in poorer precision
(in dark-pupil eye trackers), which is due to poor contrast
between (a dark) pupil and iris in the infra-red light of video-
based eye trackers (Section “Participants”, and Figure 4.13
in Holmqvist & Andersson, 2017). Combining the pupil
with the CR signal to form the P–CR gaze signal may
amplify post-saccadic oscillations and overestimate peak
saccadic velocity (Hooge et al., 2016).

P–CR eye trackers exhibit clear post-saccadic oscilla-
tions (PSOs) (Hooge et al., 2015; Nyström et al., 2013),
which make it difficult to draw a clear border between
saccade and subsequent fixation, and which has led to the
development of event detection algorithms that include PSO
detection (Larsson et al., 2013; Nyström & Holmqvist,
2010; Zemblys et al., 2019).

Discussing which technologies could be used for future
studies of saccade dynamics, Hooge et al. (2016) reason
that variants of CR-tracking without the involvement of the
pupil feature could be the preferred future method. How-
ever, Holmqvist and Blignaut (2020) reported incorrectly
measured amplitudes of small eye movements (below 2◦) in
all 11 P–CR eye trackers they tested, and suggest that it is
due to erroneous calculations of the CR centre by the image
processing algorithms in the eye trackers, interacting with
the resolution of the eye camera sensor. Other artefacts in
the CR signal arise from changes in head position (relative
to the eye tracker), which may alter the size and the shape of
corneal reflections (Guestrin & Eizenman, 2006). Patterns
in the iris may interact with the CR image and change the
calculated CR center (Tran & Kaufman, 2003). Illumina-
tion levels, sampling frequency and the optic lenses in the
camera may all affect the CR. Droege and Paulus (2009)
point out that the use of low-quality eye cameras may further
degrade precision in the gaze signal, due to the slower pixel
updating, which makes pixels retain some of the bright-
ness of the passing corneal reflection, leaving a bright trace
behind the real reflection, making centre calculation of the
CR image more perilous.

DPI eye tracking

The Dual-Purkinje Imaging (DPI) system is an analogue
eye tracker that bases its estimation of gaze on the relative
movement of the infrared reflection off the cornea (P1)
versus the reflection at the back of the crystalline lens
(P4), and reports P1, gaze and head translation as voltages
(Crane & Steele, 1985). At present, there are around 60
DPI trackers left in the world (Personal communication;
Warren Ward). As the DPI produces a continuous signal,

it can be digitised to the desired sampling frequency
in an AD-converter. Internal bandwidth restrictions limit
the maximum sampling frequency to 39.06kHz (Personal
communication; Warren Ward).

The DPI used to be the main workhorse of many
psychology laboratories and features in many influential
publications such as Frazier and Rayner (1982) and Deubel
and Schneider (1996). The learning threshold is clearly
higher than for P–CR trackers, but the major drawback
of the DPI is that it is a bulky and sensitive machine
built using optoelectronics from the 1970s that are serviced
commercially by only one person. However, the camera-
based DPI built by Rucci et al. (2020) has a data quality
comparable to the original analogue system and is built with
modern electronics, which may revive the DPI measurement
technique.

The P1 in DPI eye tracking is the same reflection as the
CR of P–CR trackers, with the important distinction that P–
CR eye trackers estimate the center of the CR from a small
portion of a pixelated camera image, while the DPI finds the
centre of an analogue light beam. This has been proposed
to be the reason that the DPI does not mismeasure the
amplitudes of small eye movements (Holmqvist & Blignaut,
2020).

The DPI records gaze signals with a quality sufficient to
detect tremor, oculomotor drift, microsaccades, and smooth
pursuit with good reliability (see Holmqvist & Blignaut,
2020; Ko et al., 2016; Poletti & Rucci, 2016, for details).
Holmqvist (2015) report a median precision of 0.008◦
and an accuracy of 0.4◦ across 192 participants, both
better than any video-based P–CR system. The quality of
DPI data is generally lower when recording participants
with small pupils that cover the P4 reflection, which
causes inaccuracies and data loss (Crane & Steele, 1985;
Holmqvist et al., 2020). A DPI is best recorded with
participants who have large pupils, either in dark rooms
or with artificially dilated pupils. The reliance on the
P4 reflection furthermore results in the largest measured
amplitudes of post-saccadic oscillations in any eye tracker
(Deubel & Bridgeman, 1995).

Scleral search coils

Scleral search coils were introduced by Robinson (1963)
and adapted for use with human participants by Collewijn
et al. (1975). The scleral search coil method involves placing
a copper wire coil, embedded in an annulus or contact
lens, onto the sclera. The participant is placed in oscillating
magnetic fields and the induced voltage in the eye coil is
taken to represent the orientation of the eye with respect
to the magnetic fields. This technique was dubbed the gold
standard of eye tracking by Collewijn (1998). Reulen and
Bakker (1982) presented the double magnetic induction
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principle, improved by Bour et al. (1984). Like the DPI,
scleral search coil systems are analogue trackers, and data
can be digitised at very high sampling frequencies. Coils can
even record combined eye and head rotation for the same
participant (Collewijn et al., 1985).

Houben et al. (2006) compared a coil system with a
torsion-capable video eye tracker, finding that the gaze
signal from the coil system was ten times more precise,
and Ko et al. (2016) compared a coil system to a DPI,
finding that although data from a coil system are somewhat
more precise, both systems provide a data resolution
sufficient for reliable detection of intersaccadic (fixational)
eye movements. Collewijn (2001) sampled data at 10000Hz,
and additionally reported a tracking range of 20◦ in all
directions with a resolution of 1’, while Malpeli (1998)
reports a precision of 1’ (0.017◦) and Collewijn et al. (1988)
recorded saccades with amplitudes of up to 80◦.

All studies in Table 2 that have compared EyeLink
systems with scleral search coils reported substantial
agreement in precision and detection of microsaccades and
oculomotor drift in both systems (McCamy et al., 2015,
for a review). Note however that coils have been suspected
to slow down the saccades of participants who wear them
(Frens & van der Geest, 2002; Träisk et al., 2005). However,
coils probably estimate the velocity more accurately than
P–CR eye trackers, which overestimate saccadic velocity
(Hooge et al., 2016).

The scleral coil tracking method is distinctly invasive,
and evidence exists that older coils systems, in combination
with the anaesthetics that were applied, caused temporary
reductions in visual acuity (Irving et al., 2003, but see
Murphy et al. 2001), deformation of the visual field
(Duwaer et al., 1982), and blurred vision (Arend &
Skavenski, 1979). Contemporary search coils are embedded
on flexible contact lenses and used for research and clinical
diagnostic purposes in neuro-ophthalmology and neurology,
due to their high precision, and the fact that patients often
suffer from uncontrolled head and body movements.

EOG

Schott (1922) and Meyers (1929) could produce recordings
of the horizontal component of gaze, based on the corneo-
retinal potential principle discovered in 1849 by Du
Bois-Raymond. An EOG system records eye movements
using electrodes on the side of the eyes that pick up
an electromagnetic field produced by this corneo-retinal
electrical potential of 10–30mV (Brown et al., 2006). The
signal is then taken through an isolated instrumentation
amplifier connected to a chart recorder or a computer. EOG

is an analogue method. EOG systems are often part of
other recording devices. For instance, electroencephalogram
(EEG) systems often have extra electrodes for the eyes that
can be used for EOG recordings.

Brown et al. (2006) proposed a standardized measure-
ment procedure for clinical EOG measurements, aiming at
acquiring high-quality EOG data. Their procedure includes
dilating the pupil, preparing the skin of the participant,
and then applying two electrodes on the sides of each eye
and a reference electrode to the forehead. The corneo-
retinal potential is mainly derived from the retinal pigment
epithelium, and it changes in response to retinal illumina-
tion. Hence, in a totally dark environment, the participant
spends 15 minutes looking at dim fixation targets, followed
by a light phase of similar duration. This darkness-light
sequence maximizes the corneo-retinal potential. The actual
data recording then commences.

EOGs can be a useful variety of eye tracking when
studying larger movements of the eye. Small movements
will drown in the noise of EOG data (compare Fig. 2).
One specific advantage of EOGs is that they can be used
when the eyes are closed, for instance to study REM sleep
(Aserinsky & Kleitman, 1953). However, EOG eye tracking
comes with a poor accuracy, compared with most other
eye trackers: Young and Sheena (1975) report a 1.5–2◦
inaccuracy on average.

Limbus tracking

The first published implementation of a (photo-electric)
limbus tracker was by Török et al. (1951). Limbus trackers
estimate the limbus border between the iris and sclera, either
from video or photosensors. Limbus eye trackers based on
photodiodes were sold for research up until the year 2000 by
the Skalar company, but are now only known for controlling
the laser during refractive surgery of the eye (Arba-
Mosquera & Aslanides, 2012). The Ober Saccadometer is
not a limbus tracker, but a corneal bulge tracker (Holmqvist
& Andersson, 2017, p. 73), although like the Skalar limbus
tracker, the Saccadometer uses photosensors to track the
corneal bulge.

Video-based limbus trackers use the fact that the limbus
border (between iris and sclera) has a contrast comparable
to the pupil-iris border. However, limbus trackers do not
suffer from pupil-based artefacts, which affect both DPI
and P–CR systems. Refraction in the cornea is also not
a problem. Eye trackers with low-resolution cameras may
benefit from using the limbus method. The drawback is that
a large portion of the limbus may be covered by the eyelid,
which puts challenges on image processing.
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Piezoelectric eye tracking

The piezoelectric transduction method, first introduced by
Bengi and Thomas (1968), involves bringing a silicone-
tipped piezoelectric bimorph into contact with the sclera,
typically in the interpalpebral region near the temporal
limbus. It outputs voltage signals, in which horizontal
microsaccades and oculomotor tremor can be detected. This
analogue eye tracker has not been used for purposes other
than measuring intrafixational eye movements. There is a
suspicion that the introduced pressure on the sclera affects
the microsaccade behaviour (see McCamy et al., 2013, for a
discussion).

Retinal image-based eye tracking

Computational tracking of retinal features involves finding
the optic disk, blood vessels and smaller features, and
was first done by Cornsweet (1958). A computer vision
algorithm provides an analysis of the movement of features
in the camera view, and infers eye movements.

Retinal image-based eye trackers are the most accurate
and precise of all existing eye trackers. An early system
by Cornsweet (1958), albeit limited in that it only tracked
features along one axis, could detect eye movements
(microsaccades) down to amplitudes of 10 seconds of arc
(0.0028◦). Putnam et al. (2005) presented very impressive
numbers on gaze position accuracy (5” which is 0.0014◦)
based on snapshots taken with an adaptive optics retinal
camera.

The retinal-based eye trackers with the highest speed and
best accuracy are preferably built from scanning imagery,
specifically from scanning laser ophthalmoscopes (SLO).
These rely on the so-called ‘rolling shutter’ principle to
recover eye motion (Mulligan, 1997), and are especially
effective in SLOs that use adaptive optics that offer high
resolution, high magnification and densely sampled retinal
video (Stevenson & Roorda, 2005). Stevenson et al. (2016)
introduced the first binocular system, which optically
divided a single SLO image field between two eyes.

Retinal imaging systems also generally occlude forward
viewing, impeding stimulus presentation. This may however
change: Bartuzel et al. (2020) describe a MEMS-based reti-
nal imaging system that allows for presentation of stimuli
while recording with a high sampling frequency (1240Hz).
Even then, the measurement range (also “trackable range”)
tends to be smaller than with other eye trackers: Bartuzel
et al. (2020) report an 16◦ range (8◦ left, 8◦ right), which we
can compare to 20–40◦ for the DPI and many video-based
P–CR trackers, and 90◦ or more for scleral coils.

Retinal image-based eye-tracking systems typically rely
on a reference frame which, in a scanning system, is a
single retinal image upon which to register strips of all

movie frames to compute the eye motion. This process
generally yields two outputs; a stabilised movie and an
eye motion trace. If the reference frame is perfect and
every strip from each scanned frame is perfectly registered
to it, then it follows that the eye motion trace will also
be perfect. However, distortions in the reference remain a
challenge to overcome and these distortions yield artefacts
in the eye motion trace. Recent efforts have been made
to correct for these (Azimipour et al., 2018; Bedggood
& Metha, 2017) but, if uncorrected, these artefacts are
evident as peaks in the power spectrum of eye motion
(Bowers et al., 2019).

To date, however, retinal-image-based eye trackers have
had a limited scope of application. The intrinsic trade-off
between accuracy and range has rendered them most useful
to study eye movements during steady fixation (Bowers
et al., 2019). Retinal eye trackers have predominately
been used in ophthalmology applications, often relating to
disease in the retina and how that expresses itself in vision
and miniature eye movements (Godara et al., 2010).

Binocular vs monocular eye tracking

The different technologies above can be constructed or
set up to record either monocularly or binocularly. A
common use of binocular eye tracking, particularly in
remote eye trackers, is to combine the left and right
signal by averaging synchronous data samples from the
two eyes in the recording software, sometimes referred to
as “cyclopean gaze”. Cui and Hondzinski (2006) report
that averaging left and right signals improves accuracy, but
Hooge et al. (2019) found that averaging the gaze positions
from the two eyes improved accuracy only for some of the
participants.

Furthermore, head-mounted eye trackers may suffer from
parallax errors, which happens because the vantage point
of the eye and the scene camera do not coincide, typically
when the measurement is not confined to a single plane.
Binocular averaging is regularly done in glasses-based
eye trackers (SMI ETG, Tobii Glasses, for instance), and
in the Ober Saccadometer, which helps to alleviate the
parallax issue. A thorough investigation of the geometry of
the parallax error is provided by Mardanbegi and Hansen
(2012), Narcizo et al. (2017), and Narcizo and Hansen
(2015), and Tatler et al. (2019).

Alternatively, the two signals from the two eyes can
be used to measure vergence (e.g. Liversedge et al.,
2006). Jaschinski et al. (2010) showed that the EyeLink
II, assuming no environmental and participant artefacts,
can resolve vergence eye movements of just below 40mm
in depth at a 60cm viewing distance. However, vergence
measurements with P–CR eye trackers are sensitive to
artefacts that affect accuracy: Hooge et al. (2019) and
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Jaschinski (2016) both report effects of the pupil-size
artefact on vergence. Calibration for binocular recordings
introduces the choice whether to calibrate both eyes at once,
or separately (Kirkby et al., 2013; Nuthmann & Kliegl,
2009; Švede et al., 2015). Additionally, Wang et al. (2019)
found that the calculation of the vergence point (intersection
between the gaze direction vectors of left and right eye)
may show a large deviation to the fixated point, with a wide
distribution in depth and a misestimation of the vergence
mean point towards the participant.

Environment

Eye tracking may take place in various environments–such
as an MRI scanner, cars, fighter jets, behind a desk, in
VR, and during sports. These environments may differ in
light conditions, vibrations and sound, temperature and the
presence of other people.

Light conditions

Direct sunlight has a critical impact on data quality in video-
based P–CR and DPI eye trackers. Hansen and Pece (2005)
and Holmqvist & Andersson, 2017, p. 138–139) show
several examples of how infrared radiation from sunlight
and hot light bulbs undermine tracking in video-based P–CR
trackers. The importance of a controlled light environment
is exemplified by Wang et al. (2010), who excluded 32%
of participants, recorded while driving a real car, from one
of their analyses due to poor data quality, but only had to
remove 17% of participants recorded in a car simulator.
The authors attributed the difference in data quality to the
variable lighting conditions encountered during real driving.
In a study of six pupil-centre calculation algorithms for
video-based outdoor eye tracking, Fuhl et al. (2016) note
that pupil algorithms have good average performance, but
there are still problems in obtaining robust pupil centres
in the case of poor illumination conditions. Rapid changes
in illumination, common in car driving and flight deck
research, can be detrimental to data quality and lead to
a time-consuming investment in manual post-processing
(Kasneci et al., 2014). Non-commercial algorithms to
improve tracking in sunlight have been developed by Santini
et al. (2018) and Hansen and Pece (2005).

Even moderate changes in light levels can indirectly
affect data quality. Multiple studies have established the
existence of the pupil-size artefact, in which changes in
pupil size affects gaze position accuracy in both video-
based P–CR systems (Choe et al., 2016; Drewes et al.,
2012, 2014, 2011; Hooge et al., 2021, Hooge et al., 2019;
Jaschinski, 2016; Wildenmann & Schaeffel, 2013; Wyatt,
2010) and for the DPI (Holmqvist et al., 2020; Holmqvist,
2015). Manipulating light levels to affect pupil size typically

results in increased gaze inaccuracy of 1 to 5◦. The reason
that changes in pupil-size affect reported gaze direction is
that the pupil constricts and dilates asymmetrically, altering
the pupil shape, and hence the calculated centre of the pupil
image shifts position. In any video-based P–CR eye tracker,
this implies a shift in gaze, even though the eyeball has
not rotated with respect to the head. In a DPI, a small
pupil may result in the P4 reflection at the back of the
crystalline lens to be obstructed. The geometry of the setup,
gaze direction and distance to the eye camera have also
been found to influence the magnitude of pupil-based errors
(Ahmed et al., 2016; Hooge et al., 2021; Wilson et al.,
1992; Wyatt, 2010, 1995). In addition, it has been reported
that pupil size in P–CR eye trackers is also related to some
eye-movement measures, such as the saccadic peak velocity
(Nyström et al., 2016).

Accuracy in video-based P–CR trackers is generally bet-
ter for participants who have smaller baseline pupils (before
calibration), measured under controlled illumination, as
reported by Ahmed et al. (2016) and Holmqvist (2015). For
the DPI eye tracker, the opposite is true: a large baseline
pupil size results in better accuracy (Holmqvist, 2015). The
signals of EOG systems and scleral coils are likely indepen-
dent of pupil size, while data from retinal trackers benefit
from a large pupil.

The pupil-size artefact may affect other measures. For
instance, Hooge et al. (2019) found that light levels affect
vergence estimations, with an error of 0.36–0.75◦/mm
change in pupil size (and similar findings were reported by
Jaschinski, 2016). We can expect that gaze position errors
induced by the pupil-size artefact will inevitably propagate
to many AOI- and other higher-order measures.

Environmental vibrations and ambient noise

Sources of vibration in the recording environment con-
tribute to increased variation in the gaze signal, as exem-
plified by Figure 6.24 in Holmqvist and Andersson (2017),
showing how transients in the signal appear when a person
walks in a room where an artificial eye is being mea-
sured with a tower eye tracker. Vibrations could be expected
to matter particularly on flight decks, in cars, and dur-
ing sports. For instance, De Reus et al. (2012) report that
alignment shifts of the eye tracker inside the flight helmet
due to external motion frequently caused inaccuracies of
gaze (see also Niehorster et al., 2020b). For lab studies,
a nearby elevator shaft, a powerful air conditioning unit,
or vibrations caused by someone walking nearby on hard
floors may add measurable noise to a sensitive eye-tracking
recording. Sound in the recording situation is another form
of oscillation that could make the eye tracker vibrate and
affect the quality of recorded data. However, Hooge et al.
(2019) recorded Tobii TX300 data at an indoor science
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festival with moderately loud music and found accuracy val-
ues close to manufacturer specifications. Controlled studies
of the effect of vibrations on eye-tracking data quality
appear to be lacking.

Presence of others

The presence of other people during the recordings may
affect measures of eye movements and gaze behaviour in
ways that are little understood. Social appropriateness may
matter: The very presence of an eye tracker can impact head
and eye movements, with people looking only at what they
feel is socially appropriate when they believe that an eye
tracker is recording (Risko & Kingstone, 2011; Nasiopoulos
et al., 2015). Distraction is another possible factor: For
instance, infants are easily distracted, looking at nearby
people rather than at the monitor (Tomalski & Malinowska-
Korczak, 2020). Accidental mismeasurements may happen
when the infant is seated in the lap of a parent, and the
eye tracker finds and records the parent’s eyes. Additionally,
Oliva et al. (2017) found longer latencies in the antisaccade
task when adult participants were recorded in proximity to
one another, for reasons that are not well understood.

Special recording environments

The MRI scanner environment consists of a dark and noisy
tunnel, with powerful magnetic fields, in which participants
must lie down. The duration of experiments and pacing
of stimuli often differs from outside the MRI. Importantly,
data quality from video-based P–CR tracking in MRI (SR
Research, SMI, Arrington, Gaze Intelligence) generally
appears to be lower than outside the MRI: poorer precision
and accuracy, and more frequent data loss (Dar et al., 2021).
For infrared limbus trackers (MR-Eyetracker, Cambridge
Research Systems) attached to the headcoil, even small
movements of the head may over time result in data loss.
MRI trackers also exist that use a multicore fiber to transmit
light back to outside the MRI machine where they process
the reflections of the corneal bulge. The Ober MRI-tracker
exhibits crosstalk (i.e. correlation) between horizontal and
vertical signals, which makes the gaze signal useful only for
horizontal tracking.

A curious observation is that saccadic latencies are
longer when obtained in an MRI scanner than outside
the MRI scanner, which could reflect the long fixation
periods between saccades required in scanners, or other
differences, such as participants laying down and potentially
feeling drowsy (e.g. Talanow et al., 2020, their Table 1).
Furthermore, the magnetic field of 7T MRIs has been
reported to induce nystagmus in some participants (Roberts
et al., 2011).

Head-mounted virtual-reality sets allow exclusive control
over the visual stimulation provided to a subject, while
shutting out any visual references provided by the outside
world. Little is known of the data quality of eye trackers
integrated into VR goggles, but Pastel et al. (2021) found
that precision is significantly poorer in the SMI Vive VR
goggles compared to the SMI glasses. Accuracy however
differs only in some conditions, mostly when the distance
to the fixation point changes. Stein et al. (2021) found
that the end-to-end latency of common VR headsets ranged
from 45ms to 81ms (compare Section “Signal properties and
processing”).

Setup and geometry

When preparing a manuscript about an experiment involv-
ing an eye tracker it is important to realise that an eye-
tracking setup is more than just the eye tracker itself.
Hessels and Hooge (2019) point out that a screen-based
eye-tracking setup may consist of at least an eye tracker,
computer screen, a seat for the participant, and a table
or mounting device for positioning the eye tracker. For
wearable eye trackers, the setup includes the participant,
eye tracker, and whatever frame, headbands, helmets or
straps are used to position the eye tracker relative to the
participant’s eyes. With geometry, we mean the “absolute
position and orientations of the eye, the eye-tracker cam-
era, and the IR illuminator” (Hooge et al., 2021), and
in the case of screen-based eye tracking, the screen. The
geometry can thus (partially) be described by the distances
between eye tracker (camera and/or IR illuminator), partic-
ipant, and screen, and their relative orientations. A picture
or schematic can be useful in providing this information,
as done in Choe et al. (2016, Figure 1), Hessels & Hooge
(2019, Figure 2), Valtakari et al. (2021, Figure 1), and our
Fig. 3.

Gaze direction, measurement space andmonitor size

Relevant properties of the setup may include the distance
and relative orientation between participant and eye tracker,
participant and computer screen, and the size and resolution
of the computer screen. Most video eye trackers report
gaze position in pixels on a screen. For some research this
is sufficient (e.g. area-of-interest research in marketing).
For other studies, one may wish to report the orientation
and rotation of the eye in angular measurements (e.g.
Haslwanter, 1995). In order to convert a gaze position on a
screen in pixels to an angular measurement, it is necessary
to know the distance and relative orientation between
participant and eye tracker, participant and computer screen,
and the size and resolution of the computer screen. If the
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Fig. 3 Example of a head-boxed eye-tracking setup. The setup consists of a participant, eye tracker (camera and IR illuminator) and a computer
screen. The geometry of this setup can be described by the relative orientations and distances of the monitor, camera and IR illuminator, and
participant. Some eye trackers have a fixed relation with the computer screen (e.g. Tobii Pro Spectrum), while others do not and allow for more
adjustments (e.g. SR Research EyeLink 1000). Note that the eye-tracker distance and screen distance are not identical. Screen height and width
refer to both the physical and the pixel measures

width and height of the screen are smaller than 20◦ (10◦ to
the left and 10◦ to the right), the small angle approximation
may be applied. For example, this allows one to transform
gaze positions in centimetres or pixels on screen to angles
with a simple multiplication factor. For a general and more
accurate method for this transformation, see Holmqvist &
Andersson (2017, p. 21).

When the monitor is larger than the measurement
range of the eye tracker (Section “Eye-tracking methods:
Similarities and differences”), data quality will be poorer in
the outer parts. Niehorster et al. (2020b), Schlegelmilch and
Wertz (2019), Popelka et al. (2016), Holmqvist (2015), and
Guestrin and Eizenman (2006) all found that data recorded
in the corners of the monitor (or measurement plane) are
of poorer quality than those recorded at the monitor’s
centre. Generally, recordings made while looking at corner
positions exhibit a precision that might be worsened by a
factor of 3, and accuracy by an average 1–10◦, depending
on the system. Such findings led Majaranta et al. (2009)
to suggest putting important information in gaze-controlled
systems in the centre of the screen, to give the user a better
perceived accuracy.

As most P–CR eye trackers do not report physical pupil
size, but pupil size in the eye image, the pupil-size signal
is susceptible to viewing direction and distance. Therefore,

in experimental designs in which the participant is required
to look around the screen, researchers should also be aware
of the pupil foreshortening artefact (Brisson et al., 2013;
Mathur et al., 2013; Young & Sheena, 1975). As the
gaze direction deviates from the eye-tracker camera axis,
the image of the pupil in the eye-camera sensor deforms,
making the pupil shape appear more oval and the pupil
diameter – a common basis for pupil-size measurements –
artificially shorter, and pupil area measurements artificially
smaller. This is of particular importance for experiments
using the pupil size as a measurement for estimates of
the participant’s psychological state (e.g. cognitive load or
arousal) during free-viewing.

Various compensation algorithms have been developed to
decrease the pupil foreshorting artefact, for instance relying
on a geometrical model (Gagl et al., 2011), or using data
from an artificial eye rotating horizontally in front of the
screen (Hayes & Petrov, 2016).

Distance between participant and eye tracker

The distance between participant and eye tracker needs to be
given attention, for all eye trackers, remote as well as head
mounted systems. Chatelain et al. (2020) report that when
participants are allowed to choose for themselves where to
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sit in front of a remote eye tracker, the distance to the eye
tracker ranges from 40–120cm. This self-preferred range of
seating distances is larger than what eye trackers can handle.
Most manufacturers of remote eye trackers recommend
having the distance between the participant and the eye
tracker to be within a narrow range, defined by the optics
of the system, with its centre at around 60–70cm (the LC
EyeFollower being an exception with a specified range of
46–97cm). When a participant moves outside of the tracking
range, the inaccuracies and noise levels in data can quickly
triple and data loss also increases (Blignaut & Beelders,
2012; Blignaut & Wium, 2014; Kolakowski & Pelz, 2006;
Schlegelmilch & Wertz, 2019).

Restrained vs. free headmovements

The history of eye-movement research includes numerous
examples of attempts to minimize the participants’ head
movements. Often, the use of head restriction is based on
assumptions that the recorded data will be of better quality
with a restricted head (e.g. van der Laan et al., 2017).
Although overall there is a lack of studies on the effect
of using chinrests, there are a few indications that they
may be useful: For instance, Hermens (2015) concluded
that in some cases, the EyeLink II may produce artificial
microsaccades due to small head movements, and Cerrolaza
et al. (2012) showed that inaccuracies may originate from
small stabilizing head movements that participants make.
Additionally, Holmqvist et al. (2021) found that recording
participants in a chinrest increased the level of noise in some
eye trackers.

Head restriction methods can be roughly divided into
chinrest, forehead rest, and bite bar/board, the three of
which can be combined to prevent both rotation and trans-
lation of the head. For some animal participants that take
part in concurrent eye-movement and neurophysiological
measurements, such as the rhesus macaque, the desire for
head-movement restriction from both measurement meth-
ods has led to head restraints being surgically attached to
the animal’s skull for data collection with video-based eye
trackers (McFarland et al., 2013) or they may have scle-
ral coils implanted in their eyes for use with magnetic coil
trackers (Kimmel et al., 2012).

The P–CR technique found in the vast majority of eye
trackers today, originally came about to allow some head
movement by the participant (Merchant, 1967). While the
original P–CR method may handle small movements of the
head, at the size of a few millimetres up to a centimetre,
recent remote video-based eye trackers are designed to
allow for free head movements in a much larger space (the
headbox, see Fig. 3), tens of centimetres or more across.

One way to accomplish room for larger head movements
is to use a wide-angled eye camera that covers a large space

around the participant, and use a trade-off: The sampling
frequency of the eye camera can be increased by reducing
the size of the recording window on the camera sensor
so it just samples the eye region. When the participant
moves, this recording window on the camera sensor must be
moved in real-time (or physically, using a pan-tilt camera
as in the LC EyeFollower). Although moving the recording
window allows for larger head-movements, this window
motion introduces sample dropping (data loss) in some eye
trackers (Holmqvist & Andersson, 2017, p. 168). Studying
the effect on accuracy, precision, latency and loss of data,
Blignaut (2018) found that one or two headbox adjustments
per second would have no effect on accuracy, but it did
on spatial and temporal precision (in the author’s custom-
built eye tracker). However, some eye trackers change
sampling frequency altogether when the eye is lost in the
recording window of the camera sensor and the eye tracker
goes into full-sensor search mode (Hessels et al., 2015,
Figure 3).

When participant eyes are at the center of the headbox
eye-tracking data quality is best. When located away from
the headbox center, data quality is negatively affected, as
experienced by many infancy researchers and investigated
experimentally by Hessels et al. (2015) and Niehorster et al.
(2018), who found a strong effect of rotating the head on
the quality of eye-tracking data on a number of eye trackers.
In fact, any relative movement between eye and the eye
camera of the eye tracker can reduce data quality, also in
eye-tracking glasses (Niehorster et al., 2020b).

During gaze interaction, the human–computer interaction
technique of controlling a computer with gaze, the
participant/user has immediate cursor feedback of where
the eye tracker thinks that gaze is located. Gaze inaccuracy
originating from the users’ movements undermines effective
usage. Chinrests are not a solution here, because many
users have involuntary head movements or seating positions
that make a simple head restriction impossible, requiring a
different user interface design (Donegan, 2012). Some users
(try to) actively use head movements to adjust gaze pointing
inaccuracies (Špakov et al., 2014). The authors speculate
that this can be common among people with disabilities who
actually use gaze control in their everyday life.

For infants, adults with certain disabilities, and animals,
head restriction methods are not always practically usable,
and alternative methods for head movement reduction are
often used. Hessels et al. (2015) compared the eye-tracking
data quality of infants recorded in a reclining car seat
versus that of infants sitting on the parent’s lap or in a
highchair. Accuracy was worse (higher) for infants seated
on the parent’s lap or in the highchair than for infants in
the car seat. Yet, a participant’s positioning puts additional
constraints on the placement of the eye tracker. Hessels
and Hooge (2019) found that placing infants in a car seat
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required the eye tracker to be tilted forward substantially,
which that might not be possible for some eye trackers
without extensive modifications and additional equipment.
Similarly, for patients confined to the bed, mounting the
eye tracker on an adjustable arm allowed for effective gaze
interaction for disabled users lying on their back (Blignaut,
2017; Hansen et al., 2011).

Participants

In this section, we review how certain characteristics
of participants are related to the quality of recorded
eye-tracking data, to eye-movement measures and high-
order measures of gaze behaviour. The characteristics we
discuss include gender, age, visual acuity, visual aids,
physiology of the eye region, mental state (e.g. sleep
deprivation, mental fatigue, cognitive workload), expertise,
and psychopathology. A complete review of all these
characteristics – particularly expertise and psychopathology
– is beyond the scope of the present paper. However, our
goal here is to show that these characteristics may be
relevant, which researchers may use when defining their
participant group and exclusion criteria. Whenever possible,
we direct readers to more in-depth reviews on the specific
topics.

Attrition rate

Attrition rate is operationalised as the proportion (or
percentage) of participants who were not included in the
analysis. Attrition rate exhibits a large variation between
studies. For instance, Dalveren and Cagiltay (2019) report
an attrition rate of 17.9% for the EyeTribe, while Holmqvist
(2015) report 1.0% for the same eye tracker. The reported
attrition rates appear to be lower in studies with adult
participants in light-controlled labs, for instance 0–8.2% in
Holmqvist (2015), compared to recordings made in sun-lit
environments, for instance Wang et al. (2010), who report
32% attrition rate during outdoor driving. Attrition rates
may be high for infant studies, for instance: 59–64% in
Burmester and Mast (2010), and for children in the autism
spectrum (100% in Birmingham et al., 2017).

Older remote video-based eye trackers have been
reported to have higher attrition values also for lab studies
with adults. For instance, Sibert and Jacob (2000) reported
38% attrition rate for ASL Model 3250R, while Schnipke
and Todd (2000) reported 62.5% for the ASL 504.

52.2% of the publications in the reporting database
(see Section “Reporting practices and existing reporting
guidelines” for details) report the number of participants
excluded from analysis. Their main reasons for excluding
participants were “data quality” (44.1% of the publica-
tions), “impossible to calibrate” (19.8%), “the participant”

(12.6%), “other” (7.2%), “error in the experimental proce-
dure” (5.4%), and “failed to follow the instructions” (0.9%).
This suggests that poor data quality is the major reason for
excluding participants from analysis.

Alternatively, attrition rate can refer to the number or
proportion of trials or events per participant that were
excluded, for those participants included in the analysis.
In the reporting database, 30.9% of the studies reported
excluding trials or fixations. Each study reported a slightly
different reason for exclusion, many of which relate to
data quality, outliers, technical failures or behavioural
mishaps.

Gender

There are some reports of differences between genders in
gaze behaviour towards other people (Coutrot et al., 2016;
Gluckman & Johnson, 2013; Rupp & Wallen, 2007), and
in pupil reactions to pain (Ellermeier & Westphal, 1995).
Coors et al. (2021) found that although gender-related
differences in eye-movement measures (blink rate, smooth
pursuit gain) do exist, most are negligible in magnitude.

Ethnicity

Blignaut and Wium (2014) report that, statistically, Asian
participants are more difficult to track, and the resulting
data are on average of worse quality than for participants of
European or African ethnicity (see also Holmqvist, 2015).
These findings reflect the generally narrower palpebral
aperture in the east Asian population. Amatya et al. (2011)
found a larger proportion of express saccade makers in
the Asian participant group, indicative of faster saccadic
reaction times.

Age

Data quality as well as many eye movement measures
covary with the age of the participant. Firstly, infant
researchers have consistently shown that eye-tracking
data quality tends to be worse for younger children
than for adults. For example, accuracy and precision are
generally worse, and data loss is generally poorer, for
infants and toddlers than for school-aged children and
adults (Dalrymple et al., 2018; Hessels et al., 2016,
2019). Interestingly, worse precision in infant eye-tracking
data is not due to fixation instability (Seemiller et al.,
2018). Moreover, higher amounts of data loss with infant
participants are not only due to infants looking away more
from the screen, as it is often characterised by short periods
of data loss (less than 100ms: Hessels et al., 2015; Wass
et al., 2014). Neither is this due to blinking, as young
children blink significantly less than adults (Stern et al.,
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1994). In addition, it seems that individual differences in
data quality are larger for the younger participants (5–10
months) than for the older participants (3–9 years, Hessels
& Hooge, 2019). The latter is particularly problematic when
analysis methods are used that are susceptible to differences
in data quality.

The oculomotor system develops into adulthood and old
age. The resting pupil diameter has been found to be larger
for young adults (around 20 years) than for older (around
70 years), independent of luminance level (Bitsios et al.,
1996). Saccadic amplitudes have been found to be shorter
both for children (below 10 years) and older adults (above
60), compared to young adults (30–40 years, Helo et al.,
2014; Açik et al., 2009; Mackworth & Bruner, 1970; Açık
et al., 2010). The latencies of said saccades follow the same
pattern, decreasing from childhood into adulthood (Luna &
Velanova, 2011; Salman et al., 2006), and then increasing
again as participants grow older (Moschner & Baloh, 1994).
Smooth pursuit parameters such as latency (time until the
movement is initiated) and gain (how closely gaze follows
the target velocity) also have been found to be related to age.
While latency is longer for older than for younger adults
(Sharpe & Sylvester, 1978), gain is closer to the ideal value
in young adults compared to children (Luna & Velanova,
2011; Salman et al., 2006).

Binocular coordination during reading is also poorer in
children than in adults (Blythe et al., 2006). In a review
of the eye movements of the aging reader, Paterson et al.
(2020) point out changes both on lexical (e.g. the word
frequency effect), and orthographic levels (e.g. sensitivity to
removal of inter-word spacing). Age variation in fixations
and blinks has not been systematically explored outside
reading research (Marandi & Gazerani, 2019).

Also, with older age, it is more likely that the participant
will wear spectacles or lenses, have droopy eyelids, have
cataracts, or an artificial lens from cataract surgery, macular
degeneration and peripheral scotomas, as well as several
neurodegenerative ailments, which tend to make either data
quality worse or alter eye movements, or both.

Visual acuity and visual impairment

For readers with low acuity, the fixation durations are
longer, saccades shorter, and consequently text reading
takes much longer (Legge et al., 1997). Furthermore,
blurred vision caused by, for instance, myopic refractive
error results in an increase of the amplitude of microsac-
cades (Ghasia & Shaikh, 2015). Eye movements are dra-
matically different for participants with low vision, i.e. a
loss of vision that cannot be corrected by medical or surgi-
cal treatments or conventional eyeglasses, such as macular
degeneration, scotomas, cataracts, or nystagmus (Leigh &
Zee, 2006).

Spectacles, lenses andmakeup

Nyström et al. (2013) investigated the effect of eye-
region physiology, spectacles and other factors on accuracy,
precision and data loss in the SMI HiSpeed1250, finding
poorer precision when participants wear spectacles, and
poorer accuracy, precision and data loss when contact lenses
are worn. In a large follow-up using 12 eye trackers,
Holmqvist (2015) reports up to 10◦ worse accuracy and
up to three times (300%) poorer precision for recordings
where the participants wore spectacles that were scratched
or dirty or that had an anti-reflective coating, compared to
recordings where no visual aids were used. Data recorded
from participants wearing soft contact lenses exhibited
0.5–3◦ poorer accuracy and on average 20–40% poorer
precision, compared to when participants wore no visual
aid. Asking a participant to remove the spectacles to record
data of better quality might result in poorer acuity that may
alter the eye movements (see above).

Makeup (eyeliner, eye shadow and mascara) result in a
poorer accuracy by 0.2–3◦, and up to three times poorer
precision (Holmqvist, 2015). For participants with forward-
and downward-pointing eyelashes, makeup results in poor
data quality (see also Nyström et al., 2013). Mascara is
black in both infrared and visible light, and Holmqvist &
Andersson (2017, Figure 5.5) show eye images from actual
recordings that depict how the dark mascara may interact
with the pupil center calculation.

Physical properties of the eye region

Differences in eye physiology refers to eye colour, lash
direction, ocular dominance, baseline pupil size and more.
Holmqvist (2015), Hessels et al. (2015), and Nyström et al.
(2013) investigated the relation of data quality to physical
properties of eyes, from large groups ranging between 75
and 194 participants, in up to 12 eye trackers, and reported
compatible findings. In this subsection, we report effect
sizes from these three studies, as ranges from the many eye
trackers.

Holmqvist (2015) found that darker pigmentation in
hair, eyes and skin correlate positively with better (lower)
accuracy on most video-based eye trackers (0.5–1◦), and
also better precision (20–80% lower RMS-S2S). The
advantage of dark iris pigmentation over blue eyes has been
hypothesised to result from poor contrast between pupil and
iris when the eye image is recorded in infrared light: A blue
iris is dark, while a brown iris is bright (Holmqvist and
Andersson, 2017, Figure 4.13), providing a clearer contrast
between iris and the dark pupil, which the image processing
algorithms can make better use of.

Clinical participant groups may have features in their
irises that may make tracking more difficult for some eye
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trackers. For instance, participants who lack an iris, known
as aniridia (Beby et al., 2011), are likely difficult to record
with P–CR trackers. Participants with William’s Syndrome
have a stellate pattern in the iris (Tran & Kaufman, 2003)
that could interfere with the CR image of P–CR trackers.
These iris features are often associated with specific eye-
movements. For instance, participants with albinism may
have transillumination effects in their irises, and their lack
of pigmentation in skin and in the retina is associated with
congenital nystagmus (Collewijn et al., 1985).

A smaller baseline pupil results in better accuracy
(up to 2◦) and up to three times poorer precision
(Holmqvist, 2015). Interocular distance is defined as the
distance between pupil centres when looking straight ahead.
Holmqvist (2015) found poorer accuracy (0.5–1.0◦) for
small interocular distances, but only in remote eye trackers.

A larger eye opening (also ‘palpebral fissure’ or ‘eye
cleft’) correlates with better accuracy: up to 1◦ better in fully
open compared to eyes with the smallest palpebral fissure.
Forward or upward-pointing lashes show the best accuracy,
while downward-pointing eye lashes, which Holmqvist
(2015) found in about 10% of their 194 participants,
exhibit a poorer accuracy (up to 4◦) and precision, although
some eye trackers are more affected than others. A more
closed eye is more likely to block the eye tracker’s
view of pupil and CR features, but this depends on the
geometry of the setup, both in remote and head-mounted
systems.

Arousal, mental fatigue and cognitive workload

Ayres et al. (2021) present a meta-study of 33 experiments
and conclude that eye-movement measures of cognitive load
are more sensitive than heart, skin, and brain measures.
Mental workload and arousal are positively associated with
pupil dilation as shown in a large number of controlled
studies and life-like human factors studies, measured using
high- or low-end eye trackers (Einhäuser, 2017). Examples
include performing a memory task (Kahneman & Beatty,
1966), arithmetic tasks (Ahern & Beatty, 1979; Hess & Polt,
1964), Air Traffic Control (Ahlstrom & Friedman-Berg,
2006), (simulated) driving (Čegovnik et al., 2018), tasting
a disgusting drink (Kaneko et al., 2019) and social stress
caused by having to sing a song (Toet et al., 2017). Other
parameters of eye movement behaviour can be affected
as well, but this seems to be context or task dependent.
For instance, for blinking rate, Recarte et al. (2008) and
Čegovnik et al. (2018) found an increase with increasing
workload, whereas Brouwer et al. (2014) found no effect;
and Bauer et al. (1987) and Fogarty and Stern (1989) found
a decrease in blinking rate with increasing workload. This
variation in results may be caused by the differences in the
workload-inducing task across these studies.

Workload has also been reported to decrease microsac-
cade rates but increase their amplitudes (Siegenthaler et al.,
2014), increase fixation duration (Rayner & Pollatsek,
1989) and decrease horizontal scanning during driving
(Recarte & Nunes, 2003). Mental fatigue and workload have
been found to affect saccade and microsaccade dynamics
during visual search (Di Stasi et al., 2013), surgery (Di
Stasi et al., 2014) and for pilots suffering from low levels
of oxygen (Di Stasi et al., 2014). When researchers inves-
tigate workload, these eye-movement measures are often
combined. For instance, Van Orden et al. (2000) devel-
oped a model using regression analyses from eye movement
data on a surveillance tracking task, showing that fixation
duration, blink duration and mean pupil dilation combined
to a robust and reliable predictor of the performance of
surveillance tracking.

Sleep deprivation

Many studies have reported effects of partial and total
sleep deprivation on eye movements. Sleep deprivation is
known to result in increased saccadic latency and reduced
saccadic peak velocity and smooth pursuit velocity, as
well as more antisaccade errors (Ahlstrom et al., 2013;
Fransson et al., 2008; Meyhöfer et al., 2017). Furthermore,
Schalén et al. (1983) present data showing that saccadic and
smooth pursuit peak velocity may vary with the circadian
rhythm.

Moreover, sleep deprivation has been shown to cause
mental fatigue and affect a myriad of cognitive domains
such as memory (Van Der Werf et al., 2009), cognitive speed
(Van Dongen & Dinges, 2005) and arousal (Gunzelmann
et al., 2007), which in turn may affect eye movements.

Expertise

Many eye-tracking studies of expertise have been made.
Good overall reviews are provided by Reingold and
Sheridan (2011) and Gegenfurtner et al. (2011). For
instance, expert chess players tend to have fewer, longer
fixations in the middle, while novices scan more (Charness
et al., 2001). Expert radiologists tend to fixate abnormalities
earlier than novices (Nodine et al., 2002; Alexander et al.,
2020). Even the ability to keep one’s eye still is affected by
training and experience (Cherici et al., 2012; Di Russo et al.,
2003). In medical expertise research, a lack of experience
or familiarity in the task has been correlated with blink
rate and duration, fixation duration, transition rate, and
pupil dilation (Lee et al., 2019, 2020). Machine learning
approaches have been used to differentiate between levels
of language proficiency (Karolus et al., 2017). Findings in
expertise studies do not easily transfer to other domains of
expertise. The one and same participant can be an expert
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in one task while having no expertise in a very related task
(Kevic et al., 2015). In fact, it is important to understand that
the participant’s field of expertise, the task, and the stimulus
are crucial determinants of what effect can be expected in
terms of eye movements.

Pathology and personality

Several different psychiatric disorders have independently
been found to coincide with oculomotor impairments
with medium-to-large effect sizes, although these depend
on diagnosis and experimental task (Alexander et al.,
2018; Smyrnis et al., 2019). For instance, patients with
schizophrenia reliably show reduced smooth pursuit accu-
racy (reduced gain, increased root-mean-square error of
the signal, increased frequency of saccades during pursuit).
In a meta-study on the eye movements of patients with
schizophrenia, O’Driscoll and Callahan (2008) stated that
“Average effect sizes and confidence limits for global mea-
sures of pursuit and for maintenance of gain place these
measures alongside the very strongest neurocognitive mea-
sures in the literature.” (p. 359). Patients with schizophrenia
also reliably show increased rates of direction errors on the
antisaccade task. Similar impairments, albeit with smaller
effect size, are observed in patients with bipolar disorder or
major depressive disorder (Katsanis et al., 1997).

Differences in gaze behaviour between individuals with
and without a diagnosis of autism spectrum disorder (ASD)
have also been substantially investigated (see e.g. Bast
et al., 2021; Guillon et al., 2014; Sasson et al., 2011). One
often-reported finding is differences in gaze behaviour to
the eyes of a face between individuals with and without
an ASD diagnosis (e.g. Dalton et al., 2005; Jones et al.,
2008, 2013; Klin et al., 2002; Rice et al., 2012). However,
these findings are not unequivocal (see e.g. Dapretto et al.,
2006; McPartland et al., 2011; van der Geest et al., 2002).
Several potential explanations have been posited for the
inconsistent findings, including the presence of alexithymia
(Bird et al., 2011) and the cognitive demand required in
the experimental setting (Senju & Johnson, 2009). A meta-
analysis of 122 studies on gaze differences to social and
non-social information between people with and without
autism is given by Frazier et al. (2017). Other reported
differences include eye movements during visual search
(e.g. Keehn and Joseph, 2016; Kemner et al., 2008) and
attentional disengagement (e.g. Keehn et al., 2013).

Furthermore, Alzheimer’s (Kapoula et al., 2014), Parkin-
son’s (Otero-Millan et al., 2018) and Huntington’s are
known to affect several characteristics of eye movements
(Leigh & Zee, 2006).

Variation in human personality has been associated with
eye movements (Bargary et al., 2017) and with gaze patterns
to social stimuli (Wu et al., 2014).

Medication and drugs

For studies that investigate differences in eye-movement
measures between clinical and control groups, recording
patients who may be under medication, the question
may arise whether it is the psychopathological state or
the medication that drives the difference. For example,
benzodiazepine drugs cause reduced saccade peak velocity
(De Visser et al., 2003) as well as increased saccade latency
and reduced spatial accuracy of saccades (Ettinger et al.,
2018). Measures of intra-individual variability of saccades
are also increased. Benzodiazepines also reliably reduce
smooth pursuit velocity (Karpouzian et al., 2019).

Even in non-clinical trials, drug use may be a consider-
ation. Acute consumption of nicotine may improve smooth
pursuit accuracy, reduce catch-up saccades (Meyhöfer et al.,
2019; Avila et al., 2003) and may reduce antisaccade laten-
cies as well as the rates of direction errors in the antisaccade
task (Ettinger & Kumari, 2019). Cannabis has the opposite
effects to nicotine: latencies and errors in the antisac-
cade and memory-guided saccade tasks are increased, and
saccade peak velocity is lower (Huestegge et al., 2009).
Pupil size is affected by some drugs (Newmeyer et al.,
2017). Increased blood alcohol levels impair the quality
of smooth pursuit (Flom et al., 1976; Wilkinson et al.,
1974), decrease saccade velocity (Lehtinen et al., 1979) and
increase fixation durations (Moser et al., 1998). Alcohol
also has effects on gaze behaviour. For instance, Buikhuisen
and Jongman (1972) presented a traffic film containing 86
important events to participants, while tracking their eye
movements. Those who were alcohol-intoxicated fixated on
fewer events, especially when located away from the centre
of the display, than non-intoxicated participants.

Calibration and accuracy

Calibrating the eye tracker for the specific participant is a
prerequisite for recording gaze in some eye trackers and
for optimal accuracy on all eye trackers. In this section,
we first describe the procedure and principles of calibration
generally, how to assess calibration, and correct for poor
accuracy, and then we describe methods for calibrating
challenging participants, such as infants, dogs, and people
with nystagmus. These methods all aim to ensure the best
possible accuracy.

How is calibration done?

Just before or at the beginning of a recording session,
participants typically need to perform a small initial task
of looking at a set of pre-defined targets that either appear
on, or smoothly move across the stimulus monitor, or
are otherwise presented in front of the participant. If the
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recording is made within the software of a video-based
P–CR tracker, when the participant fixates the point, the
eye tracker registers the relative positions of features (such
as P and CR) for each calibration point. Quite often, the
researcher may choose how many targets (often points) will
be shown during this initial phase, and in some cases, where
targets appear, and what the target will look like. For most
other technologies (DPI, coils, EOG, etc.), calibration needs
to be done with custom software and will likely also involve
looking at or following fixation targets.

Fixation targets

The choice of calibration target may have an effect on the
data quality in the subsequent recording. Thaler et al. (2013)
examined which fixation target results in the least dispersion
during fixation for adult participants, while Schlegelmilch
and Wertz (2019) investigated the effects of calibration
targets on the dispersion of the gaze position signal of the
EyeLink 1000 Plus, for infant research. Whether showing
a calibration target that minimises dispersion will result in
better accuracy is unknown.

Colour and luminance of the background

Previously referenced studies on the pupil-size artefact
(Section “Environment”) tell us that changes in pupil size
will affect the accuracy of the gaze position signal. Thus,
calibrating at a different luminance from the luminances
displayed during data collection is likely to affect the
accuracy of the measurement. If stimuli vary in luminance,
it may be useful to calibrate for a range of pupil sizes
(Drewes et al., 2012).

Which data segment to use for the calibration?

The eye-tracking software, manufacturer-based or custom
tailored, selects a segment of data for when it estimates that
the participant is looking at the calibration target. The exact
decision which segment of data is used for calibration is
mostly made by the software itself (Hansen & Ji, 2010).
Nyström et al. (2013), however, showed accuracy is higher
when the participant indicates s/he is looking at the fixation
target, than leaving this decision up to the system. This
finding also relates to the idea behind the participant-
controlled post-calibration by Ko et al. (2016). However,
participant-controlled calibration does not appear to be the
standard in most eye-tracking software today.

Number of targets and the mathematics of calibration

Akkil et al. (2014) reported for the Tobii T60 that calibrating
with 9 points result in a better accuracy compared to using

5 or 2 points, with a difference of about 0.2◦ between the
9-point and the 2-point calibrations.

In a number of video-based eye trackers (most SMIs,
all EyeLinks, and many Tobiis, for instance the T60),
the calibration involves finding a best fit between the
sensor values (P and CR positions in the eye camera, for
instance) and the spatial positions of calibration points.
The exact polynomials used in these equations varies by
the manufacturers, but also by the number of calibration
points. Thus, it is important to realise that the choice of
a specific number of calibration points in the eye-tracker
manufacturer software is also a choice of a specific set
of equations used for the calibration procedure. Each set
of polynomial equations may result in different accuracy
values for the same eye movement data (Blignaut & Wium,
2013; Blignaut, 2014; Cerrolaza et al., 2012).

Modelling the 3D shape of the eyeball is possible when
multiple cameras and/or multiple corneal reflections are
employed. Theoretically, the minimum number of calibra-
tion points is one, and this point is needed to measure
the difference between optical and visual axes (Guestrin &
Eizenman, 2006; Hansen & Ji, 2010). Recently, some man-
ufacturers have developed calibration methods that model
the eyeball more extensively. In particular, the curvature of
the cornea is an important part in these calibration models,
which have been used in eye trackers such as the SMI glasses,
many Tobii eye trackers (US Patent US7,572,008), and in
the open-source eye tracker by Barsingerhorn et al. (2018).

Calibration software is not supplied with every eye tracker.
For instance, the DPI eye trackers require the researcher to
employ custom-built calibration algorithms to establish the
mapping between sensor values and points on the monitor.
Holmqvist (2015) used a RANSAC fit (Fischler & Bolles,
1981) followed by a linear shift to calibrate the DPI.

Using the calibration of another participant

There are also examples of researchers calibrating their eye
tracker on a person other than their actual participant, when
the actual participant is difficult to calibrate. For example,
Kulke (2015) calibrated on adults, and then recorded infants
by reusing that adult calibration, arguing that this procedure
improved data quality compared to calibrating for infants.
Indeed, Harrar et al. (2018) present data showing that this
practice does not introduce non-linearities (variations in
accuracy over space), and also find that calibrating on one
person and recording on another led to a poorer accuracy
by 2–4◦. Similarly, researchers recording with artificial
eyes also calibrate on themselves before recording with the
artificial eye. Holmqvist and Blignaut (2020) show that no
noticeable non-linearities appear in the data when using the
human calibration for a subsequent recording with artificial
eyes, but also note that accuracy is likely to be poorer.
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Validation of the calibration

Present eye-tracker vendor software almost always reports
accuracy after each calibration, recorded on validation
points immediately after the calibration sequence. If
the accuracy is not sufficient after the first calibration,
commercial recording software may allow the operator to
recalibrate several times, and select the calibration with the
best accuracy in the validation test.

Post-calibration correction

Although it is rarely done, a poor accuracy after calibration
can also be improved using a post-calibration correction.
This procedure involves a second round of looking at
points. For instance, Blignaut et al. (2014) used a regression
model to improve accuracy by 0.3–0.6◦. Correction can
also be made by letting the participant manually guide an
online, calibrated, gaze-contingent visualisation of raw gaze
samples to fall exactly in line of his/her gaze (Poletti &
Rucci, 2016), i.e. until these samples are projected onto the
centre of the fovea, and then push a recalibration button,
which in their study improved the already very accurate DPI
by a factor of 2.

Drift, andmethods for drift correction

Accuracy that worsens over time is often called drift
(not to be confused with oculomotor drift), irrespective of
its source: small body adjustments, head-mount slippage,
changes in pupil size, or some change in the hardware or
software setup. Head-mount slippage could be the reason
that the SMI EyeLink I and the SR Research EyeLink II
were known to be so drift-prone that most researchers used
to adjust their calibration, via a one-point drift correction,
once before each trial (e.g. Greene & Rayner, 2001).
Although drift refers to accuracy, other measures may also
be affected by long recordings. For instance, Hessels et al.
(2015) and Wass (2014) report a decline in precision from
an early trial to a later one.

It is not known how much drift there is in current
eye trackers, which are often sold as “drift free” (S. R.
Research, 2017, p. 24), but a certain drift still exists in
some instruments. Nyström et al. (2013) report a 0.2◦ drift
during a 15-min reading task with the SMI HiSpeed 1250,
and Choe et al. (2016, Figure 2) show drift due to the
pupil-size artefact. Ko et al. (2016) found that the DPI
and coils recording artificial eyes drift by around 0.03’
per minute. Drift happens not only in long recordings, but
also in cases where the recording does not immediately
follow calibration: Chatelain et al. (2020) found that when
recording participants on the Tobii 4C in sessions over
one month with no recalibrations, accuracy degraded by

0.30◦ + 0.13◦/month, i.e. the initial drop in accuracy is the
largest.

Drift correction procedures involve re-calibrating with a
single point, shifting all subsequent data by the measured
offset. Later EyeLink models offer drift checks in which
the offset between gaze cursor and target is assessed, and the
experimenter can optionally make a linear shift of estimated
gaze. In infant research, Constantino et al. (2017) implemen-
ted automatic drift correction on the fly, using an appearing
fixation target and a criterion on accuracy. Jones et al.
(2014) instead used a happy face and a probability calculation
that decided whether the infant had fixated on the face, even
if the eye tracker records the contrary, in which case an
automatic drift correction was made. The threshold for when
to perform drift correction may impose a maximum allowed
accuracy. However, this is not the same as the empirically
determined accuracy, and there is no guarantee that a central
drift correction will improve accuracy in more peripheral
points. When the user has a visible gaze cursor, as with
users of gaze-controlled computers, Graupner and Pannasch
(2014) show that they can learn to take advantage of the
visible cursor as a cue to understand variations in accuracy
over space, and choose to recalibrate when it is needed for
the functionality they want.

If accuracy is found to be poor after the recordings are
completed, while inspecting the data as scanpath plots, the
EyeLink Data Viewer by SR Research allows the possibility
of ‘performing drift correction on fixations’ by simply
grabbing any fixation or group of fixations and pulling it to a
new position. A simple test reveals that saccade amplitudes
and velocities also change during these data editing
operations, not only the fixation positions themselves (Data
Viewer 3.1.97). The Data Viewer manual states that when
batch-moving fixations like this, a movement of more than
30 pixel is not acceptable; however, for those users who
want to move fixations more than this, the 30 pixel setting
can easily be changed. Later, SMI also started offering this
feature in the BeGaze software, and it is also possible in
OGAMA (ogama.net). Note that the researcher has to be
very careful not to move fixations in favour of a hypothesis
to avoid subsequently arriving at faulty conclusions.

This practice is mostly relevant for text reading, in
particular when participants read more than one line of
text. Cohen (2013, p. 677) comment on practices in reading
research that “Fixations are typically corrected manually,
sometimes within a program such as EyeDoctor” (https://
blogs.umass.edu/eyelab/software/, accessed 10-03-2021).
Alternative software solutions for re-aligning inaccurate
gaze data to lines of text are offered by Cohen (2013),
Hyrskykari (2006) and Špakov et al. (2019).

Dragging fixations in place has also been applied in infant
research (Frank et al., 2012; Kooiker et al., 2016). Manual
post hoc calibration was commonplace in nystagmus

https://blogs.umass.edu/eyelab/software/
https://blogs.umass.edu/eyelab/software/
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research in the past, and tended to be based on finding the
fixation periods of the nystagmus waveform and using those
gaze locations for the re-alignment (Dell’Osso, 2005).

Binocular calibration

Recording from the participant’s dominant eye results on
average in 0.2◦ better accuracy and also better precision
(Holmqvist, 2015; Nyström et al., 2013), as compared to
recordings from the non-dominant eye. This difference in
data quality between the dominant and non-dominant eye
leads to one consideration when calibrating for binocular
recordings: whether to calibrate both eyes simultaneously
or to instead calibrate the two eyes separately, patching one
while calibrating the other. Calibrating both eyes at once,
binocularly, may give an erroneous (absolute) disparity
value because the calibration procedure assumes that both
eyes are directed towards the calibration point, when in fact
one eye may be slightly off. Nuthmann and Kliegl (2009)
nevertheless calibrate for both eyes simultaneously, arguing
that they can still correctly measure relative changes in
disparity. Švede et al. (2015) and Liversedge et al. (2006)
recommended a separate monocular calibration for each
eye when using binocular recordings, for investigating the
absolute disparity between the two lines of gaze. This
should be done by covering one eye, calibrating the other,
and then switching.

Calibration of special populations

Researchers working with participant populations other than
young adults, such as infants or animals, will likely be
faced with additional challenges during calibration. This
may be due, for example, to these participants not being
able to respond to verbal instructions. While some animals
can to a degree be trained to remain still and to look at
the desired calibration target (Park et al., 2020), infants and
some monkeys can be nudged to look at the desired point by
using contracting and dilating images, or by using transient
appearances of calibration targets on screen (e.g. Hessels
et al., 2015; Jones et al., 2014).

Patients with age-related macular degeneration have
difficulty foveating calibration targets (because they have
no or reduced foveal vision). Harrar et al. (2018, p. 9)
suggest using the calibration of another person and found
that accuracy degrades by 4–8◦ with this method, but that it
does not introduce non-linearities.

Calibrating an eye tracker for participants with an
unstable gaze, such as nystagmus or continuous square wave
jerks, presents the problem that as they look at a calibration
point their eyes will not be still. For these participant
groups, researchers have developed dedicated calibration
routines specific to the particular oculomotor condition

(Dunn et al., 2019; Rosengren et al., 2020). Note that not all
eye trackers allow for these calibration routines, e.g. when
a standard calibration procedure has to be performed before
a recording can commence. Eye trackers that can record
without explicit calibration include the DPI and scleral coils
(Holmqvist & Andersson, 2017, pp. 214–217) and some
P–CR eye trackers.

Features of the experiment

Here, we address only those aspects of experimental design
that may be specifically relevant or problematic in the
context of eye-tracking research such as the operator skill
level, eye-movement measures used as dependent variables,
the number of trials and experiment duration.

Operator skill level

By operator we mean the person (researcher or research
assistant) who records data from the participant. Nyström
et al. (2013) report an advantage of 0.2◦ in the accuracy
recorded by experienced operators, compared to inexperi-
enced, whereas Hessels and Hooge (2019) report experi-
enced operators tend to succeed calibrating difficult partici-
pants where inexperienced operators give up, and point out
that training of operators could have a beneficial effect on
data quality.

The instruction to participants

Task instructions have a strong influence on eye movement
behaviour, as elegantly shown by Buswell (1935, p.
136) and Yarbus (1967, p. 174). The instruction to the
participants is part of the experimental design, and can be
used actively to drive participant behaviour. However, the
small differences in wording may have unexpected effects,
and the exact instruction may need to be verified during
piloting. For instance, asking participants to “fixate” rather
than “hold the eyes still” reduces the rate of microsaccades
(Poletti & Rucci, 2016), and Enright and Hendriks (1994)
found that “staring” differs from “scrutinizing”, in that the
latter involves a larger net muscular force exerted on the
eye from the opposing rectus muscles, pulling the eyeball
backward in its socket.

Trial durations and trial-by-trial effects

Besides the fact that data quality seems to be worse after
longer periods of time (Section “Calibration and accuracy”),
the duration of trials and experiments is relevant also for
other reasons. For instance, during scene viewing, fixations
tend to be shorter and saccade amplitudes longer during the
first second or two of a trial. This can be interpreted as
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an initial overview/ambient scan followed by detailed/focal
inspection, shown by Tatler and Vincent (2008), Unema
et al. (2005) and Buswell (1935) for free-viewing, by Scinto
et al. (1986) for visual search and by Over et al. (2007) for
visual search and free viewing. This would imply that when
trials vary in duration, mean fixation duration for long-
lasting trials may be longer than mean fixation duration
for short trials, irrespective of other factors. Also, when
trials are short, comparing mean fixation durations for short
sequences of saccades, one should consider not including
initial fixation durations because initial fixation durations
are longer than subsequent fixation durations (Hooge &
Erkelens, 1996; Zingale & Kowler, 1987). This also holds
for infant participants (Hessels et al., 2016).

A technical trial-by-trial effect is that the duration of the
initial fixation of a sequence of fixations may not reflect
the whole duration of that initial fixation, because it started
before the trial started, and was cut in two by the change
of trial. In the visual-cognition literature, when analysing
fixation durations, the first and last fixations are typically
discarded (e.g. Nuthmann, 2013).

Tatler and Hutton (2007) found trial-by-trial effects in
the antisaccade task: Both the error rates and latencies
increased on trials following a trial with an erroneous anti-
saccade. Switching from making an antisaccade in one trial
to making a prosaccade in the next trial involves a cost
in increased saccade latency of the prosaccade (Tari et al.,
2019). Similarly, a saccade to a location that was fixated at
the end of the previous trial may be preceded by a prolonged
fixation (Carpenter, 2001), and may affect latencies and
fixation durations in the current trial.

Eye-movement measures as dependent variables

In some research fields the choice of the appropriate eye-
movement measures, and the range of task parameters, for
the study at hand is either straightforward or very well
established. This is for instance the case in reading research
(Clifton et al., 2007), and for studies employing the anti-
saccade paradigm (Antoniades et al., 2013).

In some applied research fields, measure selection is
all but obvious and terminology of measures confusing
(e.g. Sharafi et al., 2015). A line of publications may get
accustomed to a choice of measures that later turns out to
be unfortunate. See for instance Šmideková et al. (2020)
for a discussion of the selection of measures for research in
classroom management.

Naming of events is also variable. What some know as
saccade latency (Holmqvist and Andersson, 2017, p. 580)
is sometimes termed saccade reaction time or calculated as
time to first fixation (Tatham et al., 2020). Fixation duration
is sometimes called ‘fixation time’, but also ‘dwell time’,
or ‘dwell time of the fixation’. Oster and Stern (1980) used

the terms saccadic reaction time and intersaccadic interval
for fixation duration. The original term was ‘pause time’
(Erdmann & Dodge, 1898), and the term ‘pause duration’
was used long into the 1940s.

Terminology for the dwell time measure also varies.
In some parts of human factors research, the dwell time
measure is called ‘glance duration’ (Horrey & Wickens,
2007), while Loftus and Mackworth (1978) used the term
‘duration of the first fixation’ for the first dwell time in an
AOI. Terms like ‘observation’ and ‘visit’ can also be found.
In reading and some parts of scene perception research,
dwell time is often called ‘gaze duration’ or ‘regional
gaze duration’, and ‘first-pass fixation time’ when the AOI
consists of two words (Clifton et al., 2007).

Signal properties and processing

In this section, we discuss the properties and processing of
the stream of data from the eye tracker, such as gaze position
signals, time stamps, pupil-size signal, and more.

Sampling frequency

Sampling frequency (also temporal resolution) is the
number of measurements per second. The sampling
frequency of modern video-based eye trackers ranges from
30 to over 2000Hz. Some eye trackers, like the DPI, scleral
search coils and some other analogue systems have no
sampling frequency. Instead, their analogue signals may be
digitized to any desirable frequency up to at least 10000Hz
(Collewijn, 2001), who remarked that “The choice of
10000Hz followed from the general rule that the (temporal)
resolution of a measurement should preferably be an order
of magnitude better than the expected effect.” (p. 3417). For
video-based eye trackers, the video camera and its settings
determine the sampling frequency.

Sampling frequency is one of the most highlighted
properties of modern eye trackers, often being either a
part of, or mentioned directly in connection to the model
name. The competition for higher sampling frequencies
has made some manufacturers of video-based eye-tracking
systems with multiple cameras interleave image acquisition
to achieve higher effective sampling rates. For instance, the
Tobii Glasses 2 have two cameras per eye, each sampling
the eye at 50Hz. This system is made into a 100Hz eye
tracker by alternately sampling each camera. However, the
alternating samples are offset in the resulting data, yielding
a zigzag pattern that is very common in 100Hz data from
Tobii Glasses but does not happen in 50Hz data (see Figure
11 in Niehorster et al., 2020b). The EyeFollower from
LC Technologies uses two 60Hz cameras, one per eye, to
achieve a net gaze sampling rate of 120Hz by alternatingly
sampling the right and left eyes.
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In theory, high sampling rates when combined with low
velocity noise would allow for very precise determination
of velocity and acceleration, and therefore facilitate more
precise determination of on- and offset of fixation, saccades
and other events. This would obviate the need for filtering
and for averaging metrics such as saccade latency / fixation
duration over large numbers of trials, which are difficult
to record with patients and other groups that only provide
small samples.

In practice, however, the many different eye trackers
exhibit a large variation of both sampling frequencies
and precision levels. Research on the relation between
eye-tracking measures and sampling frequency shows that
some outcome measures (e.g. fixation durations) are less
sensitive to sampling frequency, whereas others (saccadic
peak velocity) are more so.

For instance, Andersson et al. (2010) quantified the effect
of sampling frequency on event durations, such as fixation
durations, in a series of simulations and tests on human eye-
movement data. They also provided estimates of the number
of measurements that are required to average out the mis-
estimations of the on- and offset of fixations due to a low
sampling frequency.

Saccadic peak velocity measures are more dependent on
sampling frequency, but exactly how much more is a matter
of debate. Wierts et al. (2008) showed that although a 50Hz
eye tracker cannot provide accurate saccadic peak accel-
eration/deceleration values, it can be used to accurately
measure peak velocities without aliasing if saccades are at
least 5◦. Inchingolo and Spanio (1985) used a 200Hz EOG
system and found that saccade duration and velocity val-
ues in that data were comparable to those obtained in data
of a 1000Hz system, as long as the saccades were larger
than 5◦ in size. However, using EOG- and photoelectric eye-
tracking systems to study 20◦ saccades, Juhola et al. (1985)
provided evidence that sampling frequency should prefer-
ably be higher than 300Hz in order to reliably calculate
the peak saccade velocity. Mack et al. (2017) replicate the
finding that the peak saccade velocity estimation is more
inaccurate for lower sampling frequencies. Unfortunately,
these somewhat contradictory results are made more diffi-
cult to interpret because of differences in the precision of the
eye trackers, how velocity is calculated, and whether filters
were involved in the velocity calculation. The observations
that both DPI and P–CR technologies misestimate saccade
velocity (e.g. Hooge et al., 2016) add complication to the
interpretation of these studies.

Temporal precision

Temporal precision is the variation in the inter-sample
durations. A perfect temporal precision means that samples

always arrive after exactly the same time interval. However,
when temporal precision is poor, there could sometimes be,
for instance, 33ms between samples, and other times 43ms
(actual intervals found in data from an EyeTribe, Holmqvist
and Andersson, 2017, p. 193). This is indicative of an
unstable sampling frequency, the explanation for which
could be in small head movements, the camera type and
transfer protocols as well as image processing. Examples
of eye trackers with unstable sampling frequencies include
the EyeTribe (Ooms et al., 2015), the Pupil Labs 240Hz
(Ehinger et al., 2019), the Tobii 1750 (Shukla et al., 2011),
and the SMI REDm 60/120, and the SMI RED 250 (Hessels
et al., 2015). Some implementations of algorithms for
filtering, velocity and acceleration calculation, as well as
event detectors, may assume a stable sampling frequency,
and may thus not be suitable for data with unstable sampling
frequencies.

Spatial precision

Precision ranges reported in the publications of Table 2 vary
between eye trackers with a factor of 100 or more (median
RMS-S2S deviation 0.001–0.75◦). Precision ranges vary lit-
tle with calibration, and can be calculated from participants
(and artificial eyes) without their cooperation. Precision cal-
culations can be made in many different ways (Niehorster
et al., 2020c). The resulting precision values change when
filtering the gaze signal with the built-in manufacturer filters
(Niehorster et al., 2021).

Precision recorded with human eyes is often worse (e.g.
higher RMS-S2S deviation) than precision recorded with
artificial eyes (Holmqvist et al., 2021; Niehorster et al.,
2020c), but different artificial eyes may also result in
different precision levels.

Niehorster et al. (2020c) investigated how four differ-
ent precision measures correlate, depend on sampling fre-
quency and express different properties of the signal. In
particular, RMS-S2S deviation reflects the noise velocity in
the signal, while STD (standard deviation) and BCEA of the
gaze signal (bivariate contour ellipse area, Steinman, 1965;
Crossland and Rubin, 2002) are measures of the dispersion
of gaze samples. The slope α of the power spectrum density
instead measures the colour of the noise, as does RMS-S2S
divided by STD (for the same gaze data).

Together, these four measures allow for a more complete
characterization of the precision in gaze data from an eye
tracker. Niehorster et al. (2020c) provide code to generate
noise based on this characterization. Adding synthetic
noise to data is a method to test event detectors, and can
also be used to provide identification privacy in future
consumer products with inbuilt eye-tracking systems (Liu
et al., 2019).
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Filters

The most common way to reduce (improve) precision values
is to employ a filter. McConkie (1981) proposes that all
filters should be reported. Filtering of the resulting data
stream compensates for noise generated earlier at the level
of sensors, light, fans and more. However, filtering affects
various characteristics of the signal differently, and using
the four different measures above allows researchers to
investigate whether filters are present (Niehorster et al.,
2021).

Ko et al. (2016) remarked that an optimal filter should
be based on (a) a characterization of the noise level and
(b) the component of eye movements one is interested in
examining. Most other design criteria of filters seem to
be guided by heuristics, or ‘rules of thumb’, motivated by
visual inspection of the data (e.g. Stampe, 1993). Notice
that pattern matching filters, such as those described by
Stampe (1993, p. 138, known as the heuristic filter in
EyeLink and SMI trackers) and Duchowski (2007) amplify
parts of the gaze signal with a similar appearance to
the filter pattern, while attenuating other portions. Špakov
(2012) compared several noise filters, and revealed that
finite-impulse response filters with triangular or Gaussian
kernel (weighting) functions, and parameters dependent
on signal state, show the best performance, as judged by
a comparison to idealised saccade models using multiple
criteria.

Derivatives of the gaze position signals are used by
both researchers and event detection algorithms. Numerical
differentiation of a signal however amplifies high frequency
content (which is usually noise) in the signal. Specific filters
are therefore often used to counteract the increased high
frequency noise resulting from differentiation. The most
detailed investigations of these filters were conducted by
Inchingolo and Spanio (1985) and Larsson (2010), who
showed how saccade parameters (e.g. duration and peak
velocity) were affected by the type of differentiation filter
and peak velocity threshold in the event detector. Larsson
(2010) concluded that the Savitzky–Golay filter used by
Nyström and Holmqvist (2010) and the differential filter
used by Engbert and Kliegl (2003) produced eye movement
velocity and acceleration most like those found in literature.
Unlike the pattern-matching filters, these two filters make
no strong assumptions on the overall shape of the velocity
curve.

Data loss and interpolation

Several studies have shown that average data loss differs
between eye trackers. Holmqvist (2015) report that the
video-based eye trackers SMI HiSpeed 1250 and the
EyeLink 1000 had the lowest data loss with around 3%

of the raw data samples lost on average, while the Tobii
T60 XL and the TX300 lost 15% or more. Nevalainen
and Sajaniemi (2004) report 3.0–8.7% data loss for the
Tobii 1750 and two ASL trackers, while Funke et al.
(2016) found 22% in EyeTribe and 24% data loss in Tobii
EyeX. For reference, around 2% of the data are lost due
to blinks (Holmqvist and Andersson, 2017, p. 167). In
contrast to the values reported for the TX300 by Holmqvist
& Andersson (2017, p. 167), Hessels et al. (2015, Figure 6)
reported less than 3% data loss for the TX300 for upright
head orientations, and Hessels & Hooge (2019, Figure 9)
reported less than 10% data loss for 9 year old children
measured with the TX300. There is thus a large range in the
reported data loss values for each eye-tracker model. This
suggests that not only the eye-tracker hardware itself plays
a role, but also operator experience, participant groups,
lighting conditions, stimuli and experimental procedures,
and laboratory protocols. This should be taken into account
when interpreting data loss values reported in the literature.

Furthermore, Castner et al. (2020) reported that data loss
values produced by manufacturer software are not always
reliable. They found that for a participant with a reported
tracking ratio of 98% (a data loss of 2%), an additional large
gap in the left eye gaze signal–approximately 3.5s out of a
90s recording–appeared as data loss, but was labelled as a
blink.

Fixation points positioned in the corner of the monitor, as
well as recording participants with downward-pointing eye
lashes and large head movements tend to result in higher
data loss (Hessels et al., 2015; Holmqvist et al., 2011;
Niehorster et al., 2018), though the operator might have a
significant influence as well (Hessels & Hooge, 2019).

Data loss may affect the output of event detection, if
the event detector terminates fixations and other events
whenever a period of data loss is encountered. Holmqvist
et al. (2012) added increasing amounts of data loss (as
short segments) into data with no data loss, and found that
18% data loss reduces the number of fixations by about
one quarter, and increases their average duration by around
50ms, when using the Nyström and Holmqvist (2010)
algorithm. Hessels et al. (2017) found that adding periods
of data loss to eye-tracking data affected the number of
fixations and corresponding fixation durations for different
event detection algorithms strongly and idiosyncratically.

Some algorithms merge fixations close in time and space
where there are small bursts of data loss (Komogortsev
et al., 2010; Wass et al., 2013; Zemblys et al., 2018), redu-
cing some of the effect of periods of data loss. The solution
to gaps in data in the Tobii Pro Lab software is to allow users
to fill the gaps of data loss using a linear interpolation with
synthetic data. This interpolation is selected in the event
detection dialog menu in the Tobii software. The I2MC
algorithm (Hessels et al., 2017) also employs interpolation
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of gaps up to a certain duration, but instead uses a non-linear
Steffen interpolation (Steffen, 1990).

Latency, gaze contingency

Latency (also known as temporal accuracy and end-to-end
delay, e.g. Reingold, 2014) is often defined as the average
end-to-end delay from the time of an actual movement of
the tracked eye until the recording computer signals the
eye movement. Theoretically, there is always a latency of
a few milliseconds, and in the optimal case, it is constant.
Any processes run by the computers involved in the data
recording may add to this basic latency.

A known constant latency is uncritical for most
research (except closed-loop, gaze-contingent experiments).
A variable latency, which translates to high temporal
imprecision, is much more critical, as it cannot be easily
compensated for, particularly if the eye tracker does not
provide reliable timestamps.

A large and variable latency is somewhat tricky to detect,
measure, and prevent, and may come as an unpleasant
surprise long after data were recorded. McConkie (1997)
looked back at the foundational work on reading using gaze-
contingency (McConkie & Rayner, 1975), and remarked
that they were unaware of a filter in the eye-tracker
circuitry that increased the latency by 25ms between
the eye movement and the registered signal, potentially
undermining their conclusions.

Table 3 lists existing measurements of eye-tracker
latencies. Measurement type 1 concerns the time from when
an eye movement is made until the output gaze coordinates
change, while measurement types 2–5 include the time
needed to update the monitor.

Gaze-contingent paradigms and latencies Whether a gaze-
contingent paradigm – for instance, boundary and moving
window paradigms (Hohenstein & Kliegl, 2014; McConkie
& Rayner, 1975; Nuthmann, 2013) or saccadic adaptation
paradigms (McLaughlin, 1967; Pélisson et al., 2010) – can
be run without exceeding the maximum allowed latency
depends on how quickly a gaze coordinate can be fed
back to the stimulus program so that the stimulus monitor
can be changed without the participant realising (facilitated
by saccadic suppression, Campbell & Wurtz, 1978; Holt,
1903). Loschky and Wolverton (2007) reported that it is
enough to update the stimulus image within 60ms after the
onset of the eye movement. However, Slattery et al. (2011)
point out that the position of gaze during the display change
has an effect on fixation durations (for the next word after
the boundary) that can be seen already at 15–25ms delay
of the signal. This behavioural change indicates detection
of the manipulation, and the delay can be compared to the
measured latencies in Table 3. Note that a single detection
may be enough to affect behaviour, which means that
maximum latency, rather than the mean, would be the most
relevant comparison.

Saccade latency measurements versus system latencies In
other cases, researchers are concerned whether their eye-
movement recording was properly synchronized to stimulus
onsets on their displays. Improper synchronization would
for instance affect eye latency measures, such as saccadic
latencies. One method to check this has been to compare the
eye video to the file of the raw data stream or gaze scanpath
(Morgante et al., 2012). This however has the drawback that
both data streams are generated by the same software, and
could be affected by the same latencies. Also, the video is

Table 3 Studies of eye-tracker mean latencies. While measurement
type 1 compares the duration from an eye movement starts until a
change in gaze coordinate, measurements 2–5 include the time needed

to update the monitor in a gaze-contingent setup. Numbers in brackets
denote standard deviations

Type of latency measurement Eye tracker Mean latency Reference

1: Compare raw data file against video of participant eye TX300 20.3–24.1ms Leppänen et al. (2015)

TX60XL 44.5ms (7.3) Morgante et al. (2012)

Timing of gaze data vs network hub time T120 33ms (8.9) Creel (2012)

Comparisons of VOG against EOG-system baseline Five VR-eye trackers 45–81ms Stein et al. (2021)

2: Artificial eye with diodes until display change EL1000, screen 160 Hz 4.82ms (1.86) Reingold (2014)

EL1000, screen 60 Hz 9.69ms (4.79) Reingold (2014)

Artificial eye with diodes / constituent latencies ELII 10.5ms (0.7) Bernard et al. (2007)

3: High-speed camera films eye and monitor through mirror T1750 27ms Shukla et al. (2011)

4: Blinding the eye tracker + high-speed camera EL1000 12–40ms Saunders and Woods (2014)

5: Measure display changes against saccade onset EL1000 10ms Hohenstein and Kliegl (2014)
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usually of a low temporal resolution in comparison to the
eye-tracking data, which limits detection of synchronization
issues to the temporal resolution of the video recording.
As an alternative method of measuring synchronisation,
Shukla et al. (2011) used a mirror positioned next to the
participant and a 300Hz high-speed camera, which made a
recording of the participant’s eye and, through the mirror,
the monitor where the stimuli appeared and disappeared.
Results revealed a variable latency with a mean of 27ms
on their Tobii 1750, similar to the latencies reported by
Leppänen et al. (2015) in a study using the same approach
with a low temporal resolution camera and a Tobii TX300,
while Morgante et al. (2012) reported latencies of up to
54ms for the Tobii TX60XL.

Fixation and saccade detection

Historically, fixation and saccade detection were conducted
manually and was very time-consuming. For instance,
Hartridge and Thomson (1948) presented a novel method to
process eye movements at a rate of approximately 10000s
(almost three hours) of manual work for 1s of recorded data.
Decades later, Monty (1975) remarked: “It is not uncommon
to spend days processing data that took only minutes to
collect” (p. 331–332). Today, software can run a similar
analysis in a matter of minutes, even for several hours
of recorded data. Potential reasons for still doing manual
analysis include that it allows for better general monitoring
of data quality as well as participant performance and
engagement.

Event detection algorithms (or event classification,
see Hessels et al., 2018) are used to process a time
series signal (gaze position, pupil size, etc.) into labelled,
meaningful units, such as fixations, saccades, blinks, etc.
What happens inside the event detection algorithms was
considered important enough by McConkie (1981) that he
recommended that details about these algorithms should be
published in the paper presenting the processed events.

Note that operationalisations for fixations may depend on
the frame of reference (i.e. whether the eye tracker is fixed
to the world or to the head). A moving observer that fixates
a static object in the world, produces a gaze point in the
world that is stationary with respect to the object, but slowly
moving with respect to the head. This point is extensively
discussed in Lappi (2016), Holmqvist and Andersson (2017,
Chapter 7) and Hessels et al. (2018).

There are many different event detection algorithms
available. Here, we describe a select number of them to
give an idea of the breadth and scope. The I-DT finds
fixations using a spatial threshold on maximum gaze
dispersion (typically 0.75–1.5◦) and a temporal threshold
on minimum fixation duration (typically 50–150ms). What

remains are assumed to be saccades. The I-VT instead finds
saccades using a minimum peak velocity criterion (such
as 20–100◦/s), and assumes that everything in between
saccades are fixations. The I-DT and I-VT were described
by Salvucci and Goldberg (2000), and later appeared in
software from manufacturers. For instance, BeGaze by SMI
offers both the I-VT and the I-DT algorithms, whereas Tobii
Pro Lab provides a version of the I-VT, and the Data Viewer
by SR Research has an I-VT-related saccade detector with
both velocity and acceleration thresholds.

The NH2010 algorithm by Nyström and Holmqvist
(2010) is an improvement of the I-VT algorithm which
adapts the peak velocity threshold to the level of noise in
the data, and additionally outputs detected post-saccadic
oscillations. The I2MC by Hessels et al. (2017) is an
algorithm designed to be robust against increasing levels of
noise and data loss, common in infant research.

GazeNet by Zemblys et al. (2019) is a fully end-to-
end machine learning-based event detector that learns from
examples, and detects fixations, saccades, and post-saccadic
oscillations with very high resemblance to human expert
coders. The Deep eye movement classifier by (Startsev
et al., 2019) is another recent machine-learning algorithm
that also detects periods of smooth pursuit in data.

There also exist dedicated event detection algorithms
for data from head-mounted eye trackers, used to describe
gaze behaviour during e.g. navigation in real environments
(Hessels et al., 2020; Niehorster et al., 2020a). For
researchers interested in labelling eye-tracking data from
head-mounted eye trackers into smooth pursuit, fixations
during head movements, OKN, vergence etc, no automated
techniques exist at the moment. However, this is a quickly
evolving field, in which relevant work is done on some of
the problems it involves (Kothari et al., 2020; Larsson et al.,
2014).

Furthermore, there are many other special-purpose
event detectors (for instance, blink detectors, microsaccade
detectors, algorithms for desaccading smooth pursuit or
nystagmus data, and smooth pursuit detectors), summarised
by Holmqvist & Andersson (2017, Section 7.4).

Most event detection algorithms are offline, operating on
already recorded data. However, for gaze-contingent research,
event detection algorithms have to be fast and online,
operating in real-time when saccades happen (Holmqvist
& Andersson, 2017, p. 234–235). This online algorithm
is necessary in the Fixation-Contingent Scene Quality
Paradigm (Henderson et al., 2013; Walshe & Nuthmann,
2014). In the boundary paradigm, however, there is just
a simple check whether raw data (typically one eye only,
see discussion in Nuthmann & Kliegl, 2009, p. 23) have
crossed the boundary, assuming such a crossing to mean that
a saccade is in progress (see also Slattery et al., 2011).
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The risk that poor precision poses for the detection of small
eye movements

Small eye movements may be hidden in the noisy, imprecise
parts of data. For instance, Fig. 2A shows how the large
saccades are often followed by small saccades which are
clearly seen and reasonably easy to detect by algorithms. In
Fig. 2B, the big saccades are visible, but the small saccades,
if they were made during the recording, have left a trace
that is harder to distinguish from noise, for human data
inspectors and algorithms alike.

The degree to which outcome measures of event-
detection algorithms are sensitive to the noise level has
been systematically investigated by Hessels et al. (2017),
Holmqvist (2016), and Holmqvist et al. (2012), who all
investigated the effect of artificially increasing noise levels
(degrading precision) on the outcome of event detectors,
and by van Renswoude et al. (2018), who investigated
correlations between precision and outcome measures.
Effect sizes are large; for instance, using the algorithm by
Nyström and Holmqvist (2010), Holmqvist et al. (2012)
compared the precision levels 0.03–0.37◦ and found an
increase of average fixation durations from 430ms to 630ms
and a reduction of the number of fixations by about one-
third, for the same eye-movement data. Hessels et al. (2017)
and Holmqvist (2016) report (and illustrate in figures) how
for some algorithms, no fixations whatsoever are found
when imprecision increases beyond a certain level.

Algorithm settings

Event detection algorithms have a variety of settings, some
examples of which are the minimal peak velocity threshold
for saccade detection (I-VT, EyeLink), the minimal fixation
duration and the maximum gaze dispersion for fixations (I-
DT). Changing the settings of these algorithms can have
large effects on measures such as number and duration
of fixations and saccades (Blignaut, 2009; Holmqvist,
2016; Manor & Gordon, 2003; Shic et al., 2008). For
some experimental designs, in particular between-subjects
comparisons, and when comparing between studies, or
when conducting replication studies, a change of algorithm
settings may have an impact on the rejection of a hypothesis
(see for instance, Shic et al., 2008, for a within-subjects
design with comparison between different stimulus types).

Settings can be manually adapted based on for instance
the precision of the data. Holmqvist (2016), and (Holmqvist
and Andersson, 2017, Ch 7) provide practical advice on the
relationship between precision and settings and the outcome
measures, for two commonly used algorithms: I-DT and I-
VT. The larger the saccades are in the task, the higher the
thresholds can be. Studies with a focus on small saccades
need good precision and low thresholds.

There are also adaptive algorithms that change the
thresholds based on the precision in the data (e.g. Braunagel
et al., 2016; Engbert & Kliegl, 2003; Hooge & Camps,
2013; Mould et al., 2012; Nyström & Holmqvist, 2010).
However, an adaptive algorithm does not solve the problem
of variable precision, as it may adapt the parameters to the
level of noise, but changed parameters have consequences
in the fixation and saccade output by the algorithm. Hessels
et al. (2017) developed an algorithm which had the explicit
goal to be robust to differences in data quality and enable
comparisons across conditions when there are differences
in data quality. Note, however, that although noise-resilient
algorithms may produce fixations that result in the same
average fixation duration from data of varying precision,
further investigations are needed to assess the extent to
which the individual events (their on- and offsets) change as
precision varies.

Algorithm comparisons

Not everyone is free to choose which event detection
algorithm to use, but for those who are and want
an algorithm adapted to their wishes, there are many
algorithms to choose from. The many existing event-
detection algorithms do not necessarily produce the same
output measures when given the same eye-tracking data.
In fact, several algorithm comparisons have reported large
differences in fixation and saccade measures between
algorithms (Andersson et al., 2017; Benjamins et al.,
2018; Dalveren & Cagiltay, 2019; Komogortsev et al.,
2010; Salvucci & Goldberg, 2000; Stuart et al., 2019).
This research suggests that differences in, for instance,
average fixation durations between studies that use different
algorithms may in part stem for differences between the
algorithms.

It has become common that developers of algorithms
benchmark their novel algorithm against previous ones (e.g.
Hessels et al., 2017; Otero-Millan et al., 2014; Zemblys
et al., 2018, 2019). Event detectors based on machine
learning have started to appear, whose behaviour cannot
be fully described in terms of rules that relate to concepts
humans have about the eye-movement signal. Consequently,
trust in the algorithm derives from benchmarking against
human coders or existing algorithms (Zemblys et al., 2019).

There is an ongoing discussion around the methods in
building and evaluating event detectors, in particular how to
calculate inter-rater reliability, used to compare algorithms
against algorithms or against human coders (e.g. Friedman,
2020; Startsev et al., 2019; Zemblys et al., 2019, 2021).
Other current topics concern whether human coding of
events is a good benchmark to test the algorithms against
(Hooge et al., 2018), or build algorithms from (Zemblys
et al., 2019), and what kind of noise to add to the data when
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testing the noise-robustness of an event detector (Niehorster
et al., 2020c).

Event operationalisation

Fixations, saccade latencies, amplitudes, and curvature have
been operationalised in more than one way. For instance,
a common way to calculate saccade amplitudes is to
calculate the Euclidian distance between start and end of
a saccade (e.g. van der Geest et al., 2002). Alternatively,
the amplitude can be measured as the distance along the
saccade path (calculated, for instance, as duration multiplied
by average velocity). These two amplitude calculations will
differ for curved saccades (Holmqvist & Andersson, 2017,
p. 613).

Different algorithms calculate fixation durations and
other measures in different ways (Andersson et al., 2017).
In particular, some algorithms exclude the post-saccadic
oscillation (PSO) from both the saccade and the following
fixation event (e.g. Nyström & Holmqvist, 2010; Zemblys
et al., 2019), while the I-VT algorithm and the EyeLink
algorithm have no separate detection of PSOs and assign
parts of the PSO either to the saccade or the fixation, largely
depending on the amplitude of the PSO.

Area-of-interest (AOI) measures

Areas of Interest (AOIs, also known as Regions of
Interest, ROI, and Interest Areas, IA) are employed when
the researcher’s interest is in the relation between gaze
behaviour and the visual world (e.g. Buswell, 1935; Viviani,
1990). Researchers may be interested in what parts of a
webpage attract gaze most effectively, and in what order
(Goldberg et al., 2002), or interested in gaze behaviour
while listening to ambiguous sentences about a scene
(Allopenna et al., 1998). AOI-measures such as absolute
or relative time spent in AOIs or the number of transitions
between various AOIs may be used for this.

Areas of Interest provide fundamental processing tools
for the analysis of eye-tracking data, and are used in many
branches of cognitive psychology, architecture, marketing,
clinical research, neuroscience, educational science and
many other fields. Multiple methods exist to relate the
AOIs to the stimulus, presented by Holmqvist & Andersson
(2017, Ch 8), Hessels et al. (2016), and Orquin et al. (2016).

There are methods that assist with the same function
that AOIs are used for, but that are not referred to as
AOIs: Reading researchers use non-proportional fonts and
oftentimes study single sentences only. This way, fixation-
to-word and/or fixation-to-letter assignment is easily done
post-hoc; all they need to know is the horizontal offset of

the sentence and the PPC value (pixel per character), along
with the actual sentence. This also makes gaze-contingent
reading research (moving window and boundary paradigms)
technically easier to implement. For reading researchers
who prefer to use AOIs, both BeGaze from SMI and the
SR Research stimulus presentation software automatically
segments text into AOIs at the word, sentence, and character
level.

When the stimulus consists of animated material or
videos, a static segmentation of space into AOIs may not
suffice. Dynamic interest areas can be made to move in
synch with the underlying object, but may require AOI
measures to be calculated based on raw data samples rather
than using fixations (e.g. because event detectors often are
not reliable when smooth pursuit is present).

AOI size

The size of the AOI is of great importance. If the accuracy
of the gaze data is poor, the eye tracker might report a gaze
position that is outside the AOI, even though the participant
was looking in that area, and vice versa (Holmqvist et al.,
2012).

Hessels et al. (2016) report the effects of altering the
size of AOIs (face stimuli) on important AOI measures
(dwell time, total dwell time, time to first AOI hit), pointing
out that effect sizes are large and the relationship is non-
linear. Below a certain AOI size, the total dwell times
are no longer significantly different between the two AOIs
(eyes vs mouth) used in their study. Orquin et al. (2016)
reanalysed four experiments using different AOI sizes, and
found only some effects of varying AOI size on the outcome
of the statistical analysis. Orquin et al. (2016) also note
that one third of the researchers in their survey reported
conducting analyses with multiple AOI sizes, which may
help confirming that the result is robust over all AOI sizes.

Orquin and Holmqvist (2018) present simulations where
they vary AOI size, the shape and position of the AOIs,
and accuracy and precision, and investigate the effect on
the AOI measure hit rate. They report complex, non-
linear interactions between data quality measures and AOI
properties.

Not only the inaccuracy of the eye tracker matters when
calculating AOI measures from AOIs of different sizes. The
minimum size of an AOI that encircles a target stimulus
is also limited by the inaccuracy of the visuo-oculomotor
system when targeting small objects, which can be larger
for some participant groups (Clayden et al., 2020; Pajak &
Nuthmann, 2013).

It has been suggested that margins should be added
around AOIs to compensate for inaccuracy (Holmqvist &
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Andersson, 2017; Orquin et al., 2016), which may or may
not be possible depending on how densely populated the
stimulus is. Hooge and Camps (2013) point out that if the
visual stimulus is sparse, AOIs could be made as large
as possible, sharing the remaining empty space between
nearby AOIs. Their argument is that in sparse stimuli, there
is not much crowding, and the functional visual field is large
(Engel, 1971; Toet & Levi, 1992). A large functional visual
field implies that objects are visible at larger eccentricities
(or larger distance from the gaze point), allowing observers
to overview larger areas around the gaze point.

Higher-order measures

Outcome measures that build upon or are derived from AOI
or fixation and saccade measures could be referred to as
higher-order measures. As a rule of thumb, the higher-order
measures have a large number of settings that can be varied,
whether in

– scan path analysis (Anderson et al., 2015; Cristino
et al., 2010; Dewhurst et al., 2012; Duchowski et al.,
2010; Jarodzka et al., 2010; Kübler et al., 2014)

– (hidden) Markov models (Chuk et al., 2014; Coutrot
et al., 2018; Ellis & Stark, 1986)

– recurrence quantification analysis (Anderson et al.,
2013; Pérez et al., 2018)

– entropy analyses (Allsop & Gray, 2014, 2017; Hessels
et al., 2019; Hooge & Camps, 2013; Krejtz et al., 2014;
Niehorster et al., 2019)

– heatmap-based analysis (Caldara & Miellet, 2011)

It is reasonable to expect that data loss, as well as
poor precision and accuracy, will be carried through event
detection and AOI procedures, and propagate into these
higher-order measures. Similarly, settings in the event
detector and choices of AOI sizes may also have strong
effects on the higher-order measures.

To date, very few studies have been made of the effect
on higher-order analyses of changing settings and varying
data quality. One example is Krejtz et al. (2015), who show
that the size of gridded AOIs affect gaze transition entropy
results, with non-linear relationships and large effect sizes
in outcome entropy.

Summary

We have reviewed research on how the eye tracker,
methodology, environment, participant, settings of event
detectors and AOI tools, etc., affect (or relate to) the quality
of the eye-tracking data obtained, the properties of the eye-
tracker signals, and the eye-movement and gaze measures.
Our review has shown that there exists a significant body of

research that has investigated the quality of data from eye
trackers and what this quality relates to.

These studies have reported that sunlight and luminance
(environment) have large effects on gaze, that the accuracy,
precision and data loss often vary significantly between
different eye trackers, and that the setup and geometry of
the recording situation is of great importance to the quality
of the data.

These studies have also shown, for instance, that
accuracy, precision and data loss vary between participants,
depending on age, eye-region physiology and many other
factors. We have seen that calibration matters for accuracy,
and that operator skill and trial structures may influence
outcome measures. We have learnt that some researchers
use filters to counter poor precision, interpolation across
gaps of data loss, and manual methods for re-aligning
inaccurate gaze data.

The reviewed literature suggests that algorithms for
event detection vary dramatically between studies and most
algorithms are highly influenced by both precision and
settings. Other research has quantified the large non-linear
effects of data quality on area-of-interest and higher-order
measures.

In the next section, we will examine how the various
factors reviewed above are reflected in current reporting
practices and guidelines.

Reporting practices and existing reporting
guidelines

The many studies reviewed in the previous section show
that the knowledge exists to help make good choices when
conducting a study with an eye tracker. Is this knowledge
readily applied by researchers using eye trackers? How
does our literature review (Section “A review of empirical
eye-tracking studies as the basis for a reporting guideline”)
of important aspects of an eye-tracking study compare to
the reporting practices of researchers using eye trackers? In
the current section, we first summarise reporting practices
from a database of 207 eye-tracking studies of judgement
and decision-making (see Fiedler et al., 2019, for details)
and discuss this in the light of our literature review. We then
discuss reporting practices in light of five existing reporting
guidelines, which attempt to make explicit what researchers
are expected to report.

Reporting practices

The reporting database used here was first made
public on https://decisionlab.shinyapps.io/iGuidelines/ on
June 13, 2018, and later on https://osf.io/ysvzk/?view

section*.10
section*.10
https://decisionlab.shinyapps.io/iGuidelines/
https://osf.io/ysvzk/?view_only=1be57d949dff43e99189ec6ad13f8a23
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only=1be57d949dff43e99189ec6ad13f8a23 as supplemen-
tary material to the present paper. Table 4 present a compre-
hensive synopsis of this section.

Environment Only 12.5% of the 207 publications in the
database report the location and setting where data were
recorded.

Eye tracker Table 4 presents data showing, for instance,
that the eye-tracker model (90.8% of studies) and eye-
tracker sampling frequency (75.8%) are often reported.
While ranges of data quality values differ radically between
eye trackers, sampling frequency is of importance only in
some cases (Section “Signal properties and processing”). In
contrast, the fundamental data quality measures–accuracy,
precision, data loss and latency–are virtually never reported

Table 4 Synopsis of reporting frequencies of different aspects of
studies derived from the reporting database

Aspect %

Environment 12.5

Eye-tracker model 90.8

Sampling frequency 75.8

Number of calibration targets 41.1

Accuracy, vendor specification 29.3

Accuracy, self-measured 3.4

Precision 4.4

Data loss 3.8

Latency 0.5

Monitor resolution 56.6

Monitor size 29.6

Participant to eye-tracker distance 56.5

Use of chinrest 27.5

Method of stimulus presentation 17.9

Analysis software 44.9

Gender 77.8

Age 67.0

Visual aids 40.6

Number of participants 99.0

Number of trials 94.2

Duration of recording 31.0

Attrition rate 51.2

Dependent variables 100.0

Operator skill 0.5

Recalibration 16.4

Event detector 27.0

Provide example stimulus figure (with AOIs) 76.3

AOI size 24.0

in the 207 publications of the database. Only 4.3% of the
studies reported precision, and only 3.8% reported data loss.
Only 0.5% of the studies were found to have reported a
(measured or reiterated) latency value. Studies report the
manufacturer’s specified accuracy (29.3%) almost ten times
more often than self-measured accuracy (3.5%).

Geometry and setup 56.5% of studies reported monitor
resolution, while only 29.6% reported its physical size.
Furthermore, 56.5% of studies reported the distance
between participant and eye tracker (range 18–280cm, with
60 and 70cm being most common). To make full use of one
of these measures, the other two are usually also required.
Reporting all three measures is done in 20.3% of the studies.
In comparison, 27.7% of the studies report that the authors
applied a chinrest during recordings, their reasons are not
revealed by the database.

The software used for stimulus presentation was reported
by 17.9% of the studies. 44.9% of the studies reported
which software was used for data processing and analysis.
The most commonly reported processing tools were SMI
BeGaze, Tobii, and SR Research Data Viewer, while the
most common statistical tools were SPSS, R and Matlab.
Papers that investigate the relationship between software
tools and data quality are to the best of our knowledge
currently lacking.

Participants The gender distribution is reported in 77.8% of
the publications in the reporting database. Although gender
is potentially relevant to certain aspects of some studies,
there is no clear evidence that it is related to eye-tracking
data quality and only to a small extent to aspects of eye
movement behaviour. Age is reported by 67% of the studies
in the reporting database, and in contrast to gender, age
was found to relate to smaller pupil, more frequent use of
spectacles, droopier eye lid and other issues that affect data
quality as well as changes in the eye movements themselves
(Section “Participants”). Of those studies that report age, the
average age is below 25 years in 67.4% of the publications,
and between 26 and 46 years in the remaining 32.6%. Use
of spectacles or lenses for correction for poor visual acuity
of participants is reported by 40.6% of authors. Reports of
having excluded recorded participants from further analysis
were found in 51.2% of the publications, in which case
exclusion criteria were always given.

Calibration 59.4% of the studies report having calibrated
only at the beginning, versus 16.4% who reported having
recalibrated at some point during the study. 41.1% reported
the number of calibration targets, with 9 points being
most common (67% of those studies that report number
of targets), and 5 (17.6%), 13 (5.8%), and 3 (3.5%)

https://osf.io/ysvzk/?view_only=1be57d949dff43e99189ec6ad13f8a23
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occasionally used. Only 2.4% of all studies reported the
background colour of the screen during calibration.

Features of the experiment 99% of the studies in the
reporting database report the number of participants (on
average just above 40). As an example of the range, Noton
and Stark (1971) used data of 2 participants in the first, and
4 in the second experiment, whereas Coors et al. (2021)
compared eye-movement data of almost 4000 people to
draw their conclusions. 94.2% report the number of trials
(on average just below 60). 31% of the authors report the
duration of the total recording. Of those who report this
duration, 31% report durations of 16–30 minutes, 28% 31–
45 minutes and 20% 46–60 minutes. Only one study (0.5%)
reported who recorded their data.

Unsurprisingly, 100% of the authors reported which
dependent variables were used. This number does not
necessarily mean that reporting dependent variables is
straightforward. Naming of dependent variable is often
unclear. For instance, dwell time is also called gaze
duration and glance duration, depending on the research
field. Sometimes terminology is confused, as when fixation
duration is called dwell time, or when time to first fixation
is named saccade latency or saccadic reaction time.

Exclusion criteria Exclusion criteria for trials and events
were reported by 30.9% of the authors, while 53.6% report
having used exclusion criteria for participants. Exclusion
criteria are composed from conditions for data quality and
event values, personal characteristics, behavioural mishaps
by the participants or operators, technical issues, and more.

Event detector Overall, 27.0% reported the event detector
that was used. Among those authors who used fixation-
based or saccade-based measures as their dependent
variables, 37.0% reported their event detector. However,
only 2.1% of those authors who used event detectors in their
analysis reported precision, compared to 4.3% of the authors
overall.

Areas of Interest 76.3% of the authors in the reporting
database included a figure with a stimulus image in their
publication (which may have included an AOI drawn onto
it). Of those who use AOI analyses, 28.7% report accuracy,
although these authors always reiterated values from
manufacturer specifications and never measured accuracy
in their own data. 24% reported the size of their AOIs.
33% of the authors in the reporting database stated that the
AOI was larger than the stimulus object (margin included),
27.5% that the AOI and the stimulus object were the same
size (no margin), and 5% that the AOI was smaller than
the stimulus object (negative margin). 1% of the authors
used overlapping AOIs, 68% made clear that their AOIs do

not overlap, while 31% failed to mention either. Only 8%
mentioned the distance between AOIs, whereof 3% stated a
zero distance between AOIs, and the rest reported distances
between 5 and 241cm.

Summary Many authors in the database report dependent
variables, number of participants, eye-tracker sampling
frequency, and eye-tracker model, which are readily
available in most studies, but often fail to report measures
and settings that we have found to be relevant from a
data quality perspective. We can only speculate as to why
this is: Lack of knowledge of what is relevant to report
may play a role. Some researchers may find it unclear
how to measure and calculate accuracy and precision. An
over-reliance on the eye tracker and its software may add
to that, as evidenced by the large proportion of authors
reporting manufacturer-specified accuracy (29.3%) rather
than measured accuracy (3.5%). In sum, we conclude that
there is a discrepancy between reporting practices (the
current section) and what is relevant to report for a study
using an eye tracker (Section 4).

Existing reporting guidelines

The discrepancy between what is relevant from a data
quality perspective, and the actual reporting practices, raises
the question whether it is difficult for the users of eye
trackers to find out what they need to report.

There are at least five existing reporting guidelines
(Carter & Luke, 2020; Fiedler et al., 2019; McConkie, 1981;
Oakes, 2010; Strohmaier et al., 2020). McConkie (1981)
provides an early but still remarkably relevant example of
general publishing guidance for eye-movement research,
from an era when researchers often built their own eye
trackers, and there were only a few manufacturers who
sold them. In 2010, the journal Infancy adopted a policy
for what to report in eye-tracking studies (Oakes, 2010).
In the field of eye tracking in decision-making studies,
Fiedler et al. (2019) proposed a reporting standard aimed to
support replicability, based on suggestions from a panel of
researchers. Carter and Luke (2020) provide a standard for
reporting for eye-tracking studies, as part of a broader goal
to describe best practices in a variety of disciplines around
psychophysiology. In a review of eye-tracking research on
mathematics education, in preparation of their guideline,
Strohmaier et al. (2020) reported that “Although studies
necessarily vary in the specific eye-tracking method they
use, we found large inconsistencies in the reporting of these
methods” (p. 165).

In Table 5, we summarise all recommendations that are
common to at least two of the existing guidelines. Table 5
shows that there are also inconsistencies between the
existing reporting guidelines. Although all five guidelines
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Table 5 Features of eye-tracking experiments that were common to at least two existing reporting guidelines. Terminology used in this table is by
necessity reduced, but as closely as possible quoted from each guideline publication. See original publications for details

McConkie (1981) Oakes (2010) Fiedler et al. (2019) Strohmeier et al. (2020) Carter & Luke (2020)

Eye tracker Details about the eye-
tracking system

Model / brand A precise description Model and make

Sampling rate Sampling rate Sampling rate Sampling rate Sampling rate

Seating Viewing distance Camera-Participant
distance

Stimulus-Participant
distance

Set-up, viewing distance

Head stabilization How head movements
are dealt with

Movement restrictions Chin-/Headrest used?

Calibration Calibration task
& table

Number & location
of calibration points

Calibration procedure Calibration, recalibra-
tions

Accuracy Accuracy (mul-
tiple tests)

Available information
about accuracy

Average accuracy Accuracy

Precision Noise characteristics Precision

Data loss Percentage Amount & reason Amount & reason

Exclusion Criteria & rationale Number & reason Criteria

Monitor Visual angle of
display

Visual angle
(width/height)

Size & resolution Framerate Make, model, size &
resolution

Blink algorithm Blinks, squints
& irregularities

Blinks, head move-
ments etc

Report & justify
data cleaning

Event detection How saccades
are detected

Procedures &
parameters

Aggregations &
transformations

Algorithm &
thresholds

Software used for
event detection

AOIs How drawn, in
pixels? Same over
trials?

Absolute & rela-
tive size

Position & size Size (pixels & ◦),
matching between
conditions

recognise the importance of reporting monitor properties
and procedures for event detection, they diverge in everything
else. Even when several existing guidelines recommend the
same feature to be reported, they differ in the details such as
which operationalisations and terminology they use.

For instance, McConkie (1981) presents three separate
tests of accuracy that each researcher should conduct
and report, while Oakes (2010) only requires available
information about accuracy to be reported, which may
suggest the accuracy specification by the manufacturer,
and Strohmaier et al. (2020) ask for average accuracy,
i.e. accuracy measured by the researchers in their own
experiment. While Strohmaier et al. (2020) specifically ask
for event detection algorithms and thresholds, Oakes (2010)
asks that future papers provide specifics concerning the
definitions of saccades and fixations.

Furthermore, each guideline appears to have its own spe-
cific focus, which may reflect the field it originated from.
For instance, the guideline by Oakes (2010) requires that

filtering and interpolation algorithms for post-processing of
eye-tracking data be reported. This presumably reflects the
fact that eye-tracking data in infant research tends to have
poor precision and frequent periods of data loss, that may
need interpolation and filtering (Section “Signal properties
and processing”). Also, Oakes (2010) is the only guideline
to ask for recovery time data to be reported: the time it takes
to resume tracking when the eyes reappear in the eye-tracker
camera view after a period of track loss.

The guideline by Strohmaier et al. (2020) asks for “cor-
relation between all used measures”, which is presumably
intended to detect cases where multiple eye-movement mea-
sures are used as separate, independent corroborations of
a single hypothesis, for instance number of fixations in an
AOI, and dwell time in the AOI. A similar argument is made
by Orquin and Holmqvist (2018).

The guideline by McConkie (1981) is the only one to
emphasize measurement and reporting of linearity, system
latency, drift, and multiple tests of accuracy.

section*.59
section*.59
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Table 6 Detailed descriptions of each aspect are found in Section “A review of empirical eye-tracking studies as the basis for a reporting guideline’.
Please note that these suggestions comprise neither a mandatory, nor an exhaustive list; common sense is highly recommended

Section Aspect Examples and units Example reporting

Environment Illuminance lx Ashby et al. (2009, p. 5348)

Vibrations Hz, amplitude

Infrared light sources Sun light, hot light bulbs

Ambient noise dB, distance from sound source, test
tone

Webb et al. (2020)

Presence of others Adoption of standard protocol for
others’ positions, and documen-
tation of protocol deviations

Webb et al. (2020, p. 6)

Eye tracker Manufacturer Holleman et al. (2020, p. 6)

Model name Nuthmann (2013, p. 809)

Technique P–CR, coil, EOG, etc. Hooge and Van den Berg (2000,
p. 2759)

Filters (built-in) Name of filter, on or off Niehorster et al. (2021, p. 6)

Soft- and firmware versions of
any software used

Recording, stimulus presentation,
SDK, processing, and analysis

Niehorster et al. (2020b, p. 4),
Nyström et al. (2021, p. 3)

Monitor Dimensions Physical size (cm), retinal size (◦) Erens et al. (1993, p. 146), Kok
et al. (2017)

Luminance cd/m2 Holmqvist et al. (2020, p. 4)

Contrast Michelson contrast, Weber con-
trast, or RMS contrast.

Paffen et al. (2005, p. 573)

Other properties Brand, type, resolution (in px) Nuthmann and Kliegl (2009, p. 5)

Participant to eye-tracker distance Distance (cm) Kok et al. (2017) and Nuthmann
and Kliegl (2009)

Head movement restrictions Chin- and forehead rest, bite bar Erens et al. (1993, p. 146), Pajak
& Nuthmann (2013, p. 4)

Participant characteristics Age

Visual acuity LogMAR acuity or Snellen acuity

Visual aids / corrections Spectacles, soft or hard lenses Holmqvist (2015, p. 7)

Makeup Mascara, eye liner etc. Holmqvist (2015, p. 7)

Eye colour and specific iris features

Baseline pupil size Physical size (mm) Holmqvist (2015, p. 7)

Interocular distance Physical size (mm) Holmqvist (2015, p. 7)

Palpebral fissure (eye cleft) Physical size (mm) Holmqvist (2015, p. 7)

Eye-lash direction Up, down, forward Holmqvist (2015, p. 7)

Eye dominance Miles’ test

Eye recorded Left, right, dominant, both Kok et al. (2017) and Nuthmann
and Kliegl (2009)

Facial movements; due to speech
etc.

Niehorster et al. (2020b)

Sleep deprivation Duration (e.g. h) Ahlstrom et al. (2013, p. 22)

Expertise Kok et al. (2016) and Emhardt
et al. (2020)

Oculomotor atypicalities (e.g. amblyopia, strabismus, nys-
tagmus)

Thomas et al. (2011)

Clinical characteristics IQ, psychiatric conditions DSM
or ICD; describe

Kapoula et al. (2014)

Substance use (state effects) Medicine, alcohol, nicotine etc. Ettinger and Kumari (2019)
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Table 6 (continued)

Section Aspect Examples and units Example reporting

Calibration Target Holmqvist et al. (2020, p. 4)

Number/position of calibration points Nuthmann and Kliegl (2009, p. 6)

Number/position of validation points Same as calibrations point or not?

Binocular or monocular Nuthmann & Kliegl (2009, p. 6)

Control Participant, operator, software

Operator expertise Duration (yr) or # of participants Hessels & Hooge (2019, p. 4)

Drift compensation and recalibrations Frequency, onset conditions Greene & Rayner (2001),
Vlaskamp et al. (2005, p. 248)

Experiment Trials Definition, number and durations

Instruction

Recording Duration

Breaks Plan for breaks and rest periods

Exclusion criteria Trials or participants, due to charac-
teristics, performance or data quality

Walcher et al. (2017) and Chisari
et al. (2020)

Signal Sampling frequency Hz

Latency ms Hohenstein and Kliegl (2014),
Saunders and Woods (2014), and
Bernard et al. (2007)

Data loss % Holleman et al. (2020)

Attrition rate Number, percentage or proportion Burmester and Mast (2010)

Spatial accuracy ◦ Räihä (2015)

Spatial precision RMS-S2S (◦), STD (◦), or BCEA (◦2) Niehorster et al. (2020c, Table 1)

Events and AOIs Name of event detection algorithm Citation of publication Nuthmann and Kliegl (2009, p.
24), Hessels et al. (2018)

Algorithm thresholds Duration (s), dispersion (◦), or
velocity (◦/s)

Wenzlaff et al. (2018, p. 5)

AOI size Physical size (cm), retinal size
(◦), size on screen or in scene
camera image (px)

Hessels et al. (2020) and Emhardt
et al. (2020)

AOI margin –”– Orquin et al. (2016), Clayden
et al. (2020, p. 47)

Distances between AOIs –”– Sun et al. (2016)

AOI overlap No, yes? How and why?

Sample or event-based AOI metrics

The guideline by Fiedler et al. (2019) is the only one to
ask authors to report on many experimental design parame-
ters, such as inter-stimulus interval, counterbalancing of the
position of AOIs, number of trials and the location where the
data were collected. Furthermore, Fiedler et al. (2019) pro-
vide the most specific recommendations on reporting AOI
details, which makes it surprising that Fiedler et al. (2019)
do not recommend that accuracy be reported.

Carter and Luke (2020) is the only existing guideline to
ask for basic demographic information, and the only one to
also ask for “A list of the dependent variables selected for
analysis, and a justification for that selection”.

Existing guidelines may not be the obvious choice for
all researchers. For instance, Uesbeck et al. (2020) did not
make use of any of the guidelines above, but opted to report
according to the CONSORT reporting guideline, which is
used in the medical sciences (http://www.consort-statement.
org).

Our summary suggests that previous reporting guidelines
are incomplete and inconsistent, and often biased towards
specific research fields. Therefore, in the next section,
we will design a minimal reporting guideline based on
empirical research, which may be used as is or form the
basis for developing mandatory reporting standards.

http://www.consort-statement.org
http://www.consort-statement.org
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An empirically basedminimal reporting
guideline

We have presented research showing how various aspects
of a study with an eye tracker, such as the instrument,
methodology, environment, participant, etc., affect the
quality of the eye-tracking data obtained, the properties of
the eye-tracker signals, and the eye-movement and gaze
measures. We have summarised these aspects in Table 6. We
have then shown that this body of research has not made any
major imprint on current reporting practices. We have also
shown that existing reporting guidelines for research using
an eye tracker leave much to be desired.

Considerations on reporting guidelines
for eye-tracking research

Ideally, all details necessary to replicate a study, or assess
the validity of a study’s claims, should be reported. The
review above forms the empirical foundation for what may
need to be reported in studies using an eye tracker.

Guidelines may also include requirements on, for
instance, data formats and data sharing principles that
make collaboration more convenient. Similarly, researchers

Table 7 Reporting aspects common to all studies. We consider this a
strongly recommended list of aspects to report, albeit not exhaustive

1 Details about the eye tracker (manufacturer, type, technique [video-
based, EOG, dark pupil/bright pupil, etc.]). For wearable eye
trackers, provide details about the scene camera (e.g. sampling
frequency, resolution).

2 Sampling frequency, either of eye tracker itself, or for analogue
systems the sampling frequency of any AD conversion (or some
such). We recommend determining sampling frequency empirically
from the recorded signals.

3 A description of the setup and geometry, including details of head
stabilization if used.

4 A description of the recording environment.

5 The instruction given to participants.

6 Empirically determined data quality for the analysed eye-tracker
signals. For gaze-position signals, this includes at least accuracy,
precision and data loss. For pupil-size signals, this includes at least
data loss, and we recommend a measure of precision. Also report
the software used to calculate these values.

7 An adequate description of the data processing and analysis steps
with all relevant parameters. For example, the pupil-size estimation
algorithm, velocity determination, event-detection algorithms, AOI
analysis.

8 Some of the processing and analysis steps may be hidden in the
software or firmware provided by the eye-tracker manufacturer.
Thus, it is important to also report firmware and software versions
whenever applicable.

9 Exclusion criteria, pre- and post-recording.

publishing in an APA journal that requires gender and
socioeconomic status of participants to be reported should
report those. Such items are not specific to eye tracking,
and are therefore not considered in this paper. For specific
research fields, there may exist additional considerations
for conducting eye-tracking studies (see e.g. Sharafi et al.,
2020, for software engineering). Our minimal guideline can
be appended with such items for use in specific contexts.

Furthermore, previous guidelines have presented a single
list with everything each author must report. We believe
that this is counterproductive. Eye trackers are used in
many different research fields, and not all of the many
aspects in Table 6 are relevant for each and every study.
For example, reporting monitor properties is nonsensical for
studies that do not use screens, such as a wearable eye-
tracking study during locomotion. Reporting the interocular
distance does not make sense for monocular eye-tracking
studies, nor do firmware versions apply to analogue eye
trackers. The exact reporting in each study needs to take
the study’s particularities into account. The purpose of a
reporting guideline should be to provide authors with the
information that allows them to make an informed selection
of which specific aspects to report, how to measure them,
and how to describe them.

Recommendations for making informed choices

Based on these considerations, we have arrived at a
flexible reporting structure with three parts. Firstly, Table 6
provides a list of reporting items that may be useful to
report, depending on the specifics of each particular study.
Secondly, we deem certain central aspects found in our
review to be essential to report in any study. These are
found in Table 7 and could form some kind of minimal
core of future reporting guidelines. The third part of our
recommendations for reporting guidelines comprises a list
of prototypical situations and contexts (Tables 8, 9, 10, 11,
12, 13, 14, 15, 16, 17 and 18), that may assist readers
to select the reporting items from Tables 6 for studies in
specific research areas.

Table 8 Research comparing specific groups of participants

1 Can differences in e.g. gaze behaviour or pupil size be attributed
to differences in eye-tracking data quality between groups?
Determine and report data quality for the different groups and
compare them, including data and trial loss for each group reported
separately.

2 Determine whether there is a relation between data quality and the
outcome measure of interest (within and between groups).

3 For pupil-size studies: consider that the baseline pupil size may
differ between older and younger participants.
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Table 9 Clinical studies or case studies in neuropsychology, psychia-
try, rehabilitation or ophthalmology

1 For case studies, give an extensive description of participant
physiology, such as palpebral fissure, eye colour, and direction of
eye lashes.

2 Give a detailed description of the underlying pathology and its
potential for affecting eye movement recordings. For instance, the
presence of nystagmus (or fixational instability), iris transillumina-
tion defects (for example in albinism) and other iris defects such as
aniridia (because of trauma, or congenital).

3 Describe the level of cooperation of patients/children with the
procedure.

4 Provide any details regarding group characteristics that may impact
data quality, including attentional and behavioural (compliance)
issues, or that may impact interpretation (e.g. cognitive ability
differences between groups).

Table 10 Eye tracking for fixation control, i.e. do participants look
where they are instructed to look?

1 For studies using screens, report monitor properties and measure-
ment area.

2 Report details of participant instructions.

Table 11 Pupil-size estimation

1 Illuminance.

2 Stimulus luminance and contrast.

3 Give a description of the calibration display and content (incl.
luminance).

4 The baseline pupil size.

5 The angle of permitted gaze during pupil measurement, and if
applicable the method to compensate for the pupil foreshortening
artefact.

Table 12 AOI research on a single screen

1 An elaborate description of AOIs (size, margin, distances).

2 How are AOI measures computed from the gaze-position signal
(sample-based or fixation-based)?

Table 13 Research with more than one screen (for instance vehicle
simulators)

1 Dimensions of display(s) and their function (e.g. external front-
facing world, mini-displays to simulate mirrors) as well as
respective viewing distances.

2 If multiple displays are used, explain how eye-tracking data
recorded across multiple displays are fused.

3 Fluctuating illuminance is important given that vehicle simulators
are typically dimly lit with dynamic scenes.

4 AOI description, are they based on display segments or gaze
intersections with physically separate displays.

Table 14 Wearable eye-tracking studies in unconstrained situations,
e.g. in supermarkets, cars, and flight decks, or during locomotion and
sports

1 The illuminance may be important. Particularly changes in
illuminance throughout a measurement.

2 Are there potential vibrations that may affect data quality?

3 Automatic analysis methods for transforming gaze location
from a head-centered to a world-centered description are often
problematic. If used, describe how these methods were validated
by the authors for their use case.

4 If manual analysis is done, provide information on e.g. the
annotation protocol, instructions to the coders, and report inter-rater
reliability.

Table 15 Development, evaluation or validation of eye-tracker
methodology

1 Give an elaborate description of any relevant hardware, software,
the settings, and the recording environment.

2 Give a complete description of the characteristics of participants,
often used as independent variables, or the specifics of artificial
eyes being used.

Table 16 Gaze interaction in applications and experimental studies

1 Rules governing gaze-contingent stimulus exposure e.g. “remove
stimulus when gaze exceeds 250ms” or “commence trial when gaze
is detected”

2 Rules for gaze button activation in gaze interaction applications.

3 Rules governing the detection of gaze within button area (AOIs)
e.g. calculation of gaze position, blink removal/interpolation, and
button size/margin.

Table 17 Gaze-contingent research

1 Quantify lag between eye-tracking data acquisition and display of
the contingent data. Specify this with associated variability; some
systems might enforce a fixed non-variable transport lag at the cost
of higher lags. This can be done by estimating the delay added by
each component of the gaze-contingent system, or by measuring
the end-to-end system latency (Table 3).

2 Describe computing pipeline of the gaze-contingency system. Is
this only graphical rendering or does it involve actuations (e.g.
gaze-controlled prosthetics).

3 Provide information on the stimulus display (typically a monitor),
monitor refresh rate, pixel update latency (pixel response time),
monitor model, and input delay (if some input devices like mouse
is used to trigger something).

4 Rules governing the detection of gaze within AOIs e.g. calculation
of gaze position, blink removal/interpolation, and AOI size/margin.
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Table 18 Saccade reaction time studies

1 Quantify lag between eye-tracking data acquisition and display of
the stimulus. Specify this with associated variability; some systems
might enforce a fixed non-variable transport lag at the cost of higher
lags. This can be done by estimating the delay added by each
component of the eye tracker and monitor system (Table 3).

Conclusions

What is reported in eye-tracking publications is decided
on a case-by-case negotiation between authors, reviewers,
and action editors of the journal/venue in question, which
appears to lead to a large variation in reporting practices
(Table 4).

Our review of the existing literature showed that many
factors in the environment, setup, participant, eye tracker,
experimental design, event detectors, and area of interest
settings may impact the conclusions of any eye-tracking
study. We examined a separate database on what is
reported in published research on decision-making using
eye trackers, which suggests that actual reporting is variable
and may be in need of guidance. We examine five
existing reporting guidelines for eye-tracking research and
concluded that they are inconsistent, incomplete, and little
used.

We have proposed a flexible, minimal reporting guideline
with a core set of aspects which everyone should aim to
report (Table 7), a large list of suggestions that may apply
to many or some studies (Table 6), and several scenarios
for specific uses of eye trackers (Tables 8-18). This
information may help in making informed decisions what to
report.

The reporting items that we have listed may also be used
as a checklist by researchers when designing and conducting
their eye-tracking experiments, and when analysing their
eye-tracking data. Moreover, reviewers and journal editors
may use Table 6 when assessing research during peer-review
to ensure that sufficient detail is provided for replication.

Our proposal of reporting aspects may also be taken as
the empirical component for a future process to develop
a formalised and mandatory reporting standard (using
the EQUATOR approach1 or similar). It is possible that
potential future mandatory standards would differ between
clinical practice and research, or between research fields.
However, we urge all such future endeavours to consider
including the suggestions for reporting that we present in
our empirical approach.

1https://www.equator-network.org/
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Olomouc, Czech Republic

37 The University of Leicester Ulverscroft Eye Unit, Department of
Neuroscience, Psychology and Behaviour, University of Leicester,
Leicester, UK

38 Department of Psychology, University of Erfurt, Erfurt, Germany
39 University of Bern, Bern, Switzerland
40 Max Planck Institute for Human Development, Berlin, Germany
41 School of Computing, University of Nebraska-Lincoln, Lincoln,

Nebraska, USA
42 Center for Child Health, Behavior and Development, Seattle

Children’s Research Institute, Seattle, WA, USA
43 Department of General Pediatrics, University of Washington

School of Medicine, Seattle, WA, USA
44 Eyeviation Systems, Herzliya, Israel
45 Department of Industrial Design, Bezalel Academy of Arts and

Design, Jerusalem, Israel
46 Electrical Engineering, Mathematics and Computer Science

(EEMCS), University of Twente, Enschede, The Netherlands
47 Smart Eye AB, Göteborg, Sweden

http://orcid.org/0000-0003-1738-3207

	Eye tracking: empirical foundations for a minimal reporting guideline
	Abstract
	Introduction
	Structure of this paper
	Measuring data quality of eye-tracker signals
	Operationalizing accuracy
	Precision
	Data loss
	System latency



	A review of empirical eye-tracking studies as the basis for a reporting guideline
	Eye-tracking methods: Similarities and differences

	P–CR eye tracking
	DPI eye tracking
	Scleral search coils
	EOG
	Limbus tracking
	Piezoelectric eye tracking
	Retinal image-based eye tracking
	Binocular vs monocular eye tracking
	Environment

	Light conditions
	Environmental vibrations and ambient noise
	Presence of others
	Special recording environments
	Setup and geometry

	Gaze direction, measurement space and monitor size
	Distance between participant and eye tracker
	Restrained vs. free head movements
	Participants

	Attrition rate
	Gender
	Ethnicity
	Age
	Visual acuity and visual impairment
	Spectacles, lenses and makeup
	Physical properties of the eye region
	Arousal, mental fatigue and cognitive workload
	Sleep deprivation
	Expertise
	Pathology and personality
	Medication and drugs
	Calibration and accuracy

	How is calibration done?
	Fixation targets
	Colour and luminance of the background
	Which data segment to use for the calibration?
	Number of targets and the mathematics of calibration
	Using the calibration of another participant
	Validation of the calibration
	Post-calibration correction
	Drift, and methods for drift correction
	Binocular calibration
	Calibration of special populations
	Features of the experiment

	Operator skill level
	The instruction to participants
	Trial durations and trial-by-trial effects
	Eye-movement measures as dependent variables
	Signal properties and processing

	Sampling frequency
	Temporal precision
	Spatial precision
	Filters
	Data loss and interpolation
	Latency, gaze contingency
	Gaze-contingent paradigms and latencies
	Saccade latency measurements versus system latencies

	Fixation and saccade detection

	The risk that poor precision poses for the detection of small eye movements
	Algorithm settings
	Algorithm comparisons
	Event operationalisation
	Area-of-interest (AOI) measures

	AOI size
	Higher-order measures
	Summary

	Reporting practices and existing reporting guidelines
	Reporting practices
	Environment
	Eye tracker
	Geometry and setup
	The software
	Participants
	Calibration
	Features of the experiment
	Exclusion criteria
	Event detector
	Areas of Interest
	Summary


	Existing reporting guidelines

	An empirically based minimal reporting guideline
	Considerations on reporting guidelines for eye-tracking research
	Recommendations for making informed choices

	Conclusions
	Open Practices Statement
	References
	Affiliations


