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A B S T R A C T   

Fluorescence microscopy enables the direct observation of previously hidden dynamic processes of life, allowing 
profound insights into mechanisms of health and disease. However, imaging of live samples is fundamentally 
limited by the toxicity of the illuminating light and images are often acquired using low light conditions. As a 
consequence, images can become very noisy which severely complicates their interpretation. In recent years, 
deep learning (DL) has emerged as a very successful approach to remove this noise while retaining the useful 
signal. Unlike classical algorithms which use well-defined mathematical functions to remove noise, DL methods 
learn to denoise from example data, providing a powerful content-aware approach. In this review, we first 
describe the different types of noise that typically corrupt fluorescence microscopy images and introduce the 
denoising task. We then present the main DL-based denoising methods and their relative advantages and dis
advantages. We aim to provide insights into how DL-based denoising methods operate and help users choose the 
most appropriate tools for their applications.   

1. Introduction 

Since the beginning of fluorescence microscopy, noise has been an 
inevitable companion of recorded signals. In particular, live imaging 
often requires low illumination intensities and fast imaging, leading to 
the acquisition of noisy images (Fig. 1a). As a post-acquisition step, 
image denoising offers a powerful way to recover high-quality images 
and facilitate downstream analyses such as image segmentation 
(Fig. 1b). Many methods have been developed to reduce noise and 
restore the true signal. The simplest form of this is smoothing the image 
(i.e. Gaussian filtering), which removes noise at the expense of slightly 
blurring the underlying signal. Over the years, more sophisticated 
filtering methods have been proposed (Meiniel et al., 2018), such as, but 
not limited to, Non-local means (NLM) (Buades et al., 2005; Boulanger 
et al., 2010), block-matching 3D (BM3D) (Dabov et al., 2007) or wavelet 
transforms (e.g. PureDenoise (Luisier et al., 2010)). Although these 
advanced methods demonstrated good performance, simpler methods 

such as Gaussian blurring, which are commonly implemented in popular 
image analysis software, remain much more widely used. 

Recently, machine learning (ML) has shown great potential for 
denoising (Belthangady and Royer, 2019; Moen et al., 2019), by 
providing high performance while avoiding effects of blurring by 
learning directly from the data itself. ML refers to algorithms that solve a 
problem from example data rather than hand-crafted mathematical 
procedures. An ML-based denoising system can be viewed as a highly 
complex mathematical function that maps a noisy image to its clean 
counterpart. These functions are often implemented as deep artificial 
neural networks (deep learning, DL) and can involve millions of tunable 
parameters. In this context, the terms learning or training correspond to 
the tuning of these parameters based on training data to improve the 
quality of the denoised image output. A range of methods for DL-based 
denoising, such as CARE (Weigert et al., 2018), 3D RCAN (Chen et al., 
2021) and Noise2Void (Krull et al., 2019) (Fig. 1c), have already been 
demonstrated. In the context of fluorescence microscopy, these methods 
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often outperform the best non-DL approaches when comparing common 
image quality metrics such as SSIM or PSNR (see Box 1 for details) 
(Weigert et al., 2018; Zhang, 2019). 

This review presents a basic description of noise in fluorescence 
microscopy and introduces the main DL strategies for denoising: super
vised and self-supervised training. Although we will primarily focus on 
fluorescence microscopy as one of the most powerful live-cell micro
scopy techniques, the methods and the discussions around it also 
generally apply to other types of imaging methods such as phase 
contrast or electron microscopy, albeit with different noise character
istics. Finally, we give an overview of available DL-based denoising 
software and discuss important pitfalls. 

2. Noise and the task of denoising 

2.1. What is noise? 

Every fluorescence microscopy image is an imperfect representation 
of the underlying structure that is being imaged. Multiple factors 
contribute to this imperfection: limited resolution (defined by the op
tics); uneven illumination or background; unwanted stray or out-of- 
focus-light reducing the image contrast; image artefacts; and, of 

course, noise (Fig. 2a). Here, we consider noise as the discrepancy be
tween the true amount of light si being measured at pixel i, and the 
corresponding measured pixel value xi. We thus explicitly exclude other 
imperfections, as the ones mentioned above. 

In fluorescence microscopy, the most dominant sources of noise are 
the shot noise (a fundamental type of noise due to the nature of light) and 
the detector noise (due to the electronics used to detect light, e.g., cam
eras or photodetectors, see Box 2 for more info) (Jezierska et al., 2016) 
(Fig. 2b). Viewed mathematically, the shot noise follows a Poisson dis
tribution, which scales with the intensity of the signal. Somewhat 
paradoxically, this means that in absolute terms, bright pixels exhibit a 
larger noise level compared to darker ones (as seen in Fig. 2c, standard 
deviation comparison). However, relative to the pixel’s signal, the effect 
is more severe for low signal (Fig. 2c). Detector noise usually affects each 
pixel independently and uniformly, irrespective of the true underlying 
signal. It is often modelled as a simple additive Gaussian noise process. 
Box 2 presents a more mathematically oriented description of the noise 
model. 

The amount of noise in an image, given its true underlying signal 
level, can be quantified to compare denoising algorithm performance or 
simply assess the improvement observed in a specific dataset. Given a 
noisy image x and its corresponding clean counterpart s, a standard 

Fig. 1. Denoising is a critical image processing tool for live fluorescence imaging. (a) The acquisition of high SNR images provides high-quality images but typically 
limits long-term imaging and sample viability. (b) Acquiring noisy data by using low light conditions allows for longer acquisitions due to lower phototoxicity and 
photodamage. Denoising can enable a more robust observation of phenomena by recovering high-quality images. (c) Examples of image denoising performed by 
CARE (Weigert et al., 2018), 3D RCAN (Chen et al., 2021) and Noise2Void (Krull et al., 2019) showcasing the performance of DL-based methods. SNR: 
Signal-to-noise ratio. 
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approach is to compute the mean squared error (MSE). Box 1 gives an in- 
depth description of the MSE as well as of another important noise 
metric, the PSNR, which is often used to compare denoising perfor
mance of different algorithms. 

2.2. The task of denoising 

Image denoising aims to provide a function f(x) ≈ s that takes a noisy 
image as input and returns an approximation of the true clean image as 
output. In order to successfully denoise an image, we need to rely on 
either of the two following components:  

1. Our knowledge of the noise distribution in an image. We can use it to 
ask how likely a potential solution s would give rise to x (see Box 2). 
This rules out any solution that deviates too far from our observed 
image x.  

2. Our knowledge of what clean images generally look like. We might e. 
g. expect an image to be smooth, and formally limit the possible 
denoised outcome to fall within a certain “smoothness” probability 
distribution called the prior. 

Any denoising method is based on making assumptions about the 
noise and/or priors. While some classical methods explicitly use e.g. 
smoothness priors (Rudin et al., 1992; Haider et al., 2016), others do so 
only implicitly, e.g. by applying filters that tend to produce smooth 
results. 

3. Denoising with deep learning 

DL-based methods generally do not make explicit assumptions about 
the priors or noise models. Instead, they learn to expect specific patterns 
from their training dataset, which provide powerful implicit priors. They 

therefore learn what an image “should look like” for that specific 
dataset. For this reason, DL-methods are also referred to as content-aware 
image restoration as previously highlighted (Weigert et al., 2018), and 
therefore typically provide optimal results only for datasets similar to 
that used for training. To achieve this, a neural network trained for 
denoising directly implements the function f(x; θ) ≈ s, where θ generi
cally represents the model parameters, called weights, which determine 
how the input image is transformed into the output image. Training a 
network corresponds to adjusting θ based on training data to optimise 
the network output quality Fig. 3. 

The training strategies can be broadly classified into two categories, 
(i) supervised and (ii) self-supervised, and will determine what training 
dataset needs to be provided. 

Supervised training requires a set of corresponding noisy input 
images and their clean counterparts. In this case, training consists of 
iteratively adjusting θ to minimise the discrepancy between the network 
output and the provided clean target image using for instance the MSE as 
a mathematical metric to be minimised (called the training loss). Su
pervised training works well in practice and is the default approach, 
leading to the highest quality results. However, the requirement for 
paired training data can be problematic. To achieve optimal results, it is 
essential that the training data is of the same type as the data to denoise. 
To avoid artefacts, the user should then ideally acquire new training 
data for each new experiment. One way to gather such training data is to 
record low-exposure and high-exposure images prior to starting a long 
experiment or using fixed samples. Supervised training is especially 
powerful as it does not rely on specific assumptions about the image 
degradation that needs to be corrected. It has therefore been extensively 
used in a wide range of cases, such as denoising of natural images or 
removing out-of-focus light (Weigert et al., 2018). For denoising, an 
innovative supervised training scheme was described by Noise2Noise 
(Lehtinen, 2018) where the network learns to predict one noisy image 

Box 1 
Quantifying noise using image quality metrics. 

It is important to quantify the amount of noise in an image in order to compare denoising algorithm performance or simply assess the 
improvement observed after denoising in a specific dataset. Given a noisy image x and its corresponding clean counterpart s a standard approach 
is to compute the mean squared error (MSE) defined as 

MSE(x, s) =
1
n
∑n

i=1
(xi − si)

2  

where the squared difference is averaged over all pixels i of the image, containing a total of n pixels. 

While the MSE is well suited for comparing e.g. the denoising performance of two different algorithms on a given image, it also comes with some 
caveats. The MSE can lead to surprising and unintuitive results when comparing the quality between two different images. Consider for example 
a low-exposure and a high-exposure recording of the same sample. While it would be reasonable to prefer the high-exposure image, the MSE 
metric will yield the opposite result, giving a lower value for the low exposure recording. The reason for this is that the reduced exposure leads to 
a reduced signal and in consequence to a reduced amount of shot noise (see Fig. 2c and Box 2), which depends on the intensity of the signal. 

The solution to this paradox is to consider not the absolute amount of noise but the noise relative to the signal. The most commonly used metric 
that achieves this is the peak signal to noise ratio (PSNR), which is defined as 

PSNR(x, s) = 10log10(
R(s)2

MSE(x, s)
),

where R(s) = max(s) − min(s) is the range of values occurring in the clean image. A high PSNR corresponds to a close match between x and s (and 
therefore a low noise) and a low PSNR corresponds to a poor match. 

At its core, the PSNR also measures the MSE, but it does so in relation to the range of values in the clean image. This metric will give the expected 
result and assign a lower value to the low-exposure image, which has a reduced amount of noise but also a reduced signal. 

The PSNR is the de-facto standard used to quantify the amount of noise in an image and to judge the quality of denoised images. Note that while 
other metrics have been proposed, mainly to better match the human experience in judging image quality (e.g, structural similarity, SSIM (Wang 
et al., 2004)), we find that they seldom produce different results with respect to ranking the quality of denoising algorithms in fluorescence 
microscopy.  
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from another. The noise being in essence unpredictable, this approach 
results in denoising the input image. 

On the other hand, self-supervised training allows training purely 
from single noisy images. The core idea is to use one part of the image as 
input and another as target. One example of this is the blind-spot 
approach (Krull et al., 2019; Batson and Royer, 2019), whereby, 
inspired by Noise2Noise (Lehtinen, 2018), the network learns to predict 
the intensity at a pixel i only from the surrounding pixels. Leveraging 
certain properties of the noise models distribution in microscopy images 
(see Box 2 for details), the network then learns to denoise the image. 
Today, self-supervised methods are capable of producing crisp results 
that can in many situations be comparable to supervised training (Krull 
et al., 2019; Goncharova et al., 2020), without the need for paired 
training dataset. 

A downside of the self-supervised approach is that the assumption of 
pixel-independent detector noise may in some cases not hold, depending 
on the detector used. Such structured imaging noise (e.g., streaks or 
patterned noise) is not removed and can become clearly visible in the 
network output. 

4. Denoising tools using deep learning 

A number of DL-based denoising tools are now available to 
biomedical researchers without the need for expert programming skills. 
For instance, Noise2Void (Krull et al., 2019) can be directly trained and 
used for predictions using the popular image analysis software Fiji/I
mageJ (Abramoff et al., 2006; Schindelin et al., 2012). ZeroCostDL4Mic 
(Chamier et al., 2021) is also becoming popular among biomedical re
searchers interested in testing and exploring the use of DL for their 
microscopy studies. The ImJoy (Ouyang et al., 2019) platform provides 
an easy-to-use user interface for a range of neural networks including 
CARE (Weigert et al., 2018). In addition, commercial tools from mi
croscope manufacturers are becoming available, e.g, Nikon’s Denoise.AI 
and Zeiss’ Apeer, or from DL-focused image analysis platforms such as 
Leica’s Aivia. 

Additionally, denoising is also commonly used in the field of natural 
images such as photography or astronomy and a range of DL-based tools 
are also available for these, such as Topaz Labs Denoise AI. We however 
do not recommend using these tools for microscopy images since they 

Fig. 2. Noise and other image corruptions typically observed in fluorescence microscopy images. (a) Common image corruptions observed in fluorescence micro
scopy. From left to right: only noise, non-uniform background which may occur from e.g. vignetting, uneven illumination from e.g. laser illumination affected by 
speckle, imaging artefact such as the presence of a ghost image as shown here. (b) Starting from the true structure, the optics limit the resolution of the measurable 
image, leading to a smoothed diffraction-limited image. Upon measurement, the image is subject to signal-dependent Poisson noise (shot noise), and electronic 
detector noise. Only the right-most image can actually be experimentally measured. (c) Line profiles across the red dashed lines shown in (b), highlighting the loss of 
resolution (smoothed edges) and increasing levels of noise. Here, SD refers to the standard deviation of the shot noise, increasing with increasing levels of signal. 
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are developed specifically using photographs as training datasets, 
therefore containing significantly different noise and data structure from 
what is in microscopy images. 

Table 1 presents an overview of the tools for DL-based denoising 
which are currently available within user-oriented platforms. We high
light the type of instructions that are available for the user to exploit the 
methods, as well as the type of software, as was previously done for 
segmentation software (Lucas et al., 2021). Beyond simply denoising 2D 

images, many of the implementations described here have the capabil
ities of working on 3D dataset or even concomitant denoising of multiple 
channels, (see Table 1 for details). DeepCAD, a recent denoising 
implementation based on 3D U-Net (Çiçek et al., 2016), efficiently im
proves the SNR of time-course calcium imaging (Li et al., 2021). Here, 
using additional information from the context of the pixels in any rele
vant dimensions (3D, time or other channels for instance) to denoise 
often greatly improves denoising performance but at the expense of 

Box 2 
Noise model. 

The main noise components observed in microscopy are shot noise and the detector noise (see Fig. 2b). Given an underlying true signal si, 
representing the average number of photons at the detector in pixel i during an exposure, the measured experimental signal xi (in Analog-to- 
Digital Counts, ADC) can be written as follows: 
xi = aφ(si)+ εi  

Where φ(si) represents the shot noise-affected signal (which depends on si), a represents the conversion factor from the number of photons to 
ADC, as measured by the detector, and εi represents the detector noise (in ADC). We will now take a closer look at both components: 

Shot noise is due to the quantum nature of light, i.e., the fact that light can be understood as a stream of discrete photons. The shot noise- 
affected signal φ(si) corresponds to the number of photons measured by a pixel. Given an underlying signal si at the pixel, the number of 
detected photons φ(si) will follow a Poisson distribution, centred around si and is subject to random fluctuations with standard deviation ̅̅̅si

√ . 
Therefore, as shown in Fig. 2c, and perhaps counter-intuitively, when the signal increases, the amount of shot noise increases as well, albeit less 
rapidly than the signal itself, leading to a better SNR overall. 

Detector noise εi is due to the electronic measurement occurring in the camera or photodetector. It often follows a Gaussian distribution with a 
constant standard deviation independent of the underlying signal. Gaussian noise can take negative values, so, to avoid negative values in our 
measured signal xi, most cameras set a constant bias or offset value that is added to the signal. As a consequence, we can think of the detector 
noise as following a Gaussian distribution centred around this offset. The amount of noise will differ depending on the type of detectors used. 
Note that for some detectors and cameras, such as EMCCDs, this simple model of detector noise is inaccurate and we have to include an 
additional signal dependent component (the so-called excess noise). 

Usually, both types of noise share a common property: they typically occur independently for each pixel, which means that the result in one pixel 
does not influence its neighbours. When we therefore think of the noisy recorded image x affected by shot noise and detector noise as being 
drawn from a probability distribution p(x|s), this conditional pixel-independence allows us to describe the distribution as product over pixels: 

p(x|s) =
∏n

i=1
p(xi|si),

where p(xi|si)is the distribution of a noisy value in pixel i given the clean underlying signal si. This feature of the noise is the key to self- 
supervised DL-based denoising. 

Additionally, shot noise and detector noise are centred around the true signal si (ignoring the background offset), so we will sometimes 
measure values xi that are higher and sometimes lower compared to the true signal si. However, if we were to average many acquisitions the 
result would converge towards the true signal. This is another way of saying that the expected value 
Ep(xi |si)[xi] = si  

of the noisy observation is identical to the underlying signal. Noise2Noise (Lehtinen, 2018) training relies on this property to extract the 
denoised images from a pair of noisy images. By trying to solve the impossible task of using one noisy image to predict another, it effectively 
computes this expected value and solves the denoising task. 

Self-supervised methods, such as Noise2Void (Krull et al., 2019), additionally have to rely on the conditional pixel-independence when they 
compute a similar expected value by trying to predict the value at a pixel from its surroundings. 

Unfortunately, some cameras produce structured detector noise that violates this assumption. As a consequence, Noise2Void (Krull et al., 2019) 
can produce images that still contain a pattern of residual detector noise. In our experience, some sCMOS and, depending on the settings, EMCCD 
cameras are particularly susceptible in this regard, while laser scanning microscopes generally do not seem to have this problem at all. A solution 
for self-supervised learning with structured noise has been proposed in StructN2V (Broaddus et al., 2020).  
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longer training times and the need for larger training datasets. 
Beyond the task of denoising, a number of neural networks were 

developed to provide additional functions. For instance, CARE and 3D- 
RCAN (an extension of the RCAN architecture (Zhang, 2018)) are 
actually general image restoration networks that can improve resolu
tion, noise levels or even remove image artefacts. DenoiSeg (Buchholz 
et al., 2020) performs both image denoising and segmentation simul
taneously, leveraging an improved segmentation performance from 
denoising the image. It also has the advantage of not requiring all the 
training data to be segmented therefore minimising the effort in curating 
the training data. DecoNoising (Goncharova et al., 2020) performs both 
image denoising and deconvolution from 2D data as is often done to 
remove out-of-focus signal and improve image contrast. The user only 
needs to provide a representative point-spread function (PSF) of the 
imaging system that can either be measured or simulated for the 
deconvolution. 

Beyond the methods shown in Table 1, other methods have been 
demonstrated but have not yet been integrated within the user-oriented 
platforms that we highlight here. For instance, Noise2Void has been 
evolved to take into account specific noise distributions to improve 
performance (PN2V (Krull et al., 2020)) or to cope with structured noise 

(StructN2V (Broaddus et al., 2020)). 
Also, DivNoising (Prakash et al., 2020) provides not just a single 

image output but a whole distribution of probable images, therefore 
highlighting regions of the image that are predicted with lower 
certainty. 

Commercial platforms such as those shown in Table 1 often use ap
proaches described in published scientific papers, but in other cases, 
such as Nikon’s Denoise.AI, little information about the network ar
chitecture or the training dataset used are available. 

5. Pitfalls and limitations 

Although adequately trained DL-based methods have been shown to 
outperform classical approaches and tend to produce results closer to the 
true signal when assessed with quality metrics such as PSNR and SSIM 
(Weigert et al., 2018; Krull et al., 2019), the application of DL will 
inevitably introduce artefacts and distort pixel intensities, potentially in 
non-linear ways, which may render subsequent intensity-based quanti
fication prone to errors. Eventually, the performance of any denoising 
approach should be assessed based on the final goal of the analysis 
pipeline. For instance, when performing ratiometric analysis of two 
channels, treating both channels independently for denoising will 
almost certainly void the possibility for any quantification from calcu
lating the ratio of the denoised images. In this case, it is likely that the 
quantification may be better performed before denoising. Therefore, we 
do not recommend, at this stage, performing intensity-based quantifi
cation on denoised images but rather to go back to the raw as much as 
possible to avoid artefacts. This observation is true for any sophisticated 
denoising approach, and not just DL-based. There is however scope for 
performing simultaneous denoising of multiple channels using DL which 
would potentially better retain relative intensities. The effect of 
denoising on the quantifiability of the pixel intensities is a matter of 
ongoing research. However, the denoised images can be used to obtain 
certain features of the image, such as a more robust segmentation or 
localisation of objects that is usually the basis for subsequent intensity 
measurements. 

Here, it is essential to remember that the quality of DL-based 
denoising entirely depends on the quality of the training data. Based 
on the training data, the network learns which patterns it can expect to 
find in an image. A network trained on data significantly different from 
the data it is applied to is likely to hallucinate structures not present in 
the sample. Fig. 4 highlights this phenomenon. Here, the model clearly 
learns to expect specific shapes, (implicit structural prior). 

Ideally, training data need to be acquired in the exact same condi
tions as the data to process downstream of training and validation. Self- 
supervised methods have an advantage in this respect, as they allow 
training on the very same data that is to be denoised. 

6. Conclusion 

Recent DL applications to bioimage analysis demonstrate that DL- 
based denoising is pervading the bioimaging community and is 
proving useful for a range of tasks. Here, we provide an overview of DL- 
based denoising as a group of methods that is particularly powerful to 
live-cell imaging. We have considered the advantages and disadvantages 
of supervised and self-supervised denoising methods and presented the 
currently available networks, with some of them providing additional 
functions beyond denoising (e.g., segmentation, deconvolution, distri
bution of probable output image). Importantly, self-supervised ap
proaches can allow denoising from as little as a single noisy image 

Fig. 3. Main deep learning workflow for image denoising. (a) Supervised vs. 
self-supervised training schemes. (b) Validation of the model performance on a 
ground-truth dataset. (c) Once trained and validated, models can be used for 
predictions, often with excellent speed performance. 
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without the need for providing ground truth at the training stage. 
However, as with any computational approach, denoising should be 

applied with care and results checked for potential for artefacts with 
validation steps. While the performance of DL-based methods can 
outperform classical approaches when comparing overall image quality 
metrics (Box 1), the artefacts originating from DL-based denoising, 
notably from the embedding of structural priors (Fig. 4), are an active 
topic of research, and we can hope that community efforts will lead to 
their better understanding in the near future. In particular, there is a 
need for agreed upon quality metrics (Chen et al., 2021) and standard 
dataset for performance testing and comparison (Qiao et al., 2021) 
allowing us to assess any new methods. 

We hope the future will bring more powerful denoising methods, 
especially benefitting from partially supervised approaches and further 
mitigating the heavy burden of curating training datasets. The applica
tion of transfer learning (Wang et al., 2021) will notably allow mini
mising the occurrence of artefacts and allow the use of smaller training 
datasets for building models that will be optimised for specific dataset. It 
will be interesting to further study how networks for denoising large 3D 
multi-colour simultaneously, as is already partially done with CARE 
(Weigert et al., 2018), can utilise the co-dependence between different 
fluorescence channels, within volumes, or even using behaviour in time. 
Currently, a range of tools have the capability to handle 3D dataset (see 
Table 1) which immediately gives the possibility to denoise 2D 
time-course data (2D+t) by replacing the third dimension by the tem
poral dimension. Despite 3D+t (4D) or multi-channel 3D+t (5D) data 
potentially providing better context for denoising, they have not been 
exploited so far, potentially due to the very large data dataset necessary 
for this and their corresponding computational requirements at training 
stage. 

Importantly, the noise model and methods for denoising described 
here have ignored the way in which such images were obtained at the 

microscope. In fact, wide-field, confocal or 2-photon microscopy images 
will generally be well described by the above noise model, but specific 
detectors or acquisition conditions may lead to the presence of struc
tured noise in the data (e.g. stripes due to non-homogenous detector 
properties across pixels of CMOS cameras), which will become more 
challenging to denoise especially for self-supervised approaches (see Box 
2 for further details). 

Another interesting perspective is to move beyond convolutional 
neural networks (CNNs) and use generative DL models, such as Varia
tional Auto-Encoders (VAE) (Prakash et al., 2020; Kingma and Welling, 
2013) or Generative Adversarial Networks (GANs) (Goodfellow, 2014). 
These types of models can in principle be trained purely from noisy data 
and will allow us to embed our knowledge of noise and image formation 
within a microscope. 

Finally, although DL-based denoising can be very powerful, it is not 
always the most efficient way to achieve a particular image analysis 
goal. In fact, it all depends on what is required from the data subsequently 
to the denoising step. If simple denoising such as Gaussian filtering does 
not compromise downstream analysis or quantification, it may not make 
much sense to seek any sophisticated denoising approaches, whether 
DL-based or not. The performance of an algorithm and when a denoising 
approach is good enough should always be assessed with respect to the 
end point of the analysis pipeline. 

In our experience, DL-based denoising should however always be at 
least considered as an option thanks to its potentially high data speci
ficity and performance, but there may in fact be cases where DL-based 
denoising should be avoided. Such cases may include scenarios when 
accurate intensity-based quantifications are performed or when it is very 
challenging to generate training datasets that are representative enough 
of the data subsequently analysed. The latter case may silently lead to 
artefacts that are typically difficult to detect. 

Table 1 
Overview of the currently available user-oriented tools for DL-based denoising. Open-source and commercial tools are available. T: training, P: prediction/pretrained 
model. *DenoiSeg can provide concomitant denoising and image segmentation, but only requires that some of the data be manually segmented for learning both tasks.  

Method Training 
type 

Capabilities Integration Instructions Comments Software type Link Reference 

CARE Supervised 2D, 3D, 
multi- 
channel 

Fiji (P), 
ZeroCostDL4Mic 
(T&P), ImJoy (T&P) 

Website, 
video 
tutorials, 
GitHub page 

Can perform a range 
of image restoration 
tasks 

Free, open- 
source 

https://csbdeep.bioi 
magecomputing.co 
m/tools/care/ 

Weigert et al., ( 
Weigert et al., 
2018) 

Noise2Void Self- 
supervised 

2D, 3D, 
multi- 
channel 

Fiji (T&P), 
ZeroCostDL4Mic 
(T&P), Apeer (P), 
ImJoy (T&P) 

Website, 
video 
tutorials, 
GitHub page 

Can be trained 
directly on the images 
to denoise 

Free, open- 
source 

https://csbdeep.bio 
imagecomputing.co 
m/tools/n2v/ 

Krull et al., ( 
Krull et al., 
2019) 

DecoNoising Self- 
supervised 

2D ZeroCostDL4Mic 
(T&P) 

Website, 
video 
tutorials, 
GitHub page 

Can be trained 
directly on the images 
to denoise, performs 
deconvolution 
simultaneously 

Free, open- 
source 

https://github.com/ 
juglab/DecoNoising 

Goncharova 
et al., ( 
Goncharova 
et al., 2020) 

3D-RCAN Supervised 2D, 3D Aivia (T&P), 
ZeroCostDL4Mic 
(T&P) 

Website Extension of RCAN 
network, can do 
resolution 
improvement 

Commercial, 
code open- 
source 

https://www.biorxiv. 
org/content/10.1101/ 
2020.08.27.270439v1 

Chen et al., ( 
Chen et al., 
2020) 

Noise2Noise Self- 
supervised 

2D Apeer (T&P) Website Requires pairs of 
noisy images 

Commercial https://www.apeer. 
com/app/modules/AI 
-Image-Denoising/ 
d551013b-258a 
-40b0–84aa-f71 
0c6cf02ca 

Lehtinen et al., 
(Lehtinen, 
2018) 

DenoiSeg Partially 
supervised* 

2D Fiji (T&P), 
ZeroCostDL4Mic 
(T&P) 

Website, 
video 
tutorials, 
GitHub page 

Provides denoising 
and segmentation 

Free, open- 
source 

https://csbdeep. 
bioimagecomputing. 
com/tools/denoiseg/ 

Buchholz et al., 
(Buchholz 
et al., 2020) 

Denoise.AI Supervised 2D NIS Elements (T&P) Website Unknown 
architecture 

Commercial https://www.mic 
roscope.healthcare. 
nikon.com/products 
/confocal-microscopes 
/a1hd25-a1rhd25/nis 
-elements-ai 

unknown  
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Fig. 4. Deep learning and structural priors. Artefacts due to structural priors can appear when using data that are significantly different from those used at the training 
stage. The network is likely to produce the patterns it saw during training, even when they are not present in the data. 
Figure reprinted with permission from Möckl et al. (2020) © The Optical Society. 
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