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Abstract In this paper, we generalize the extended supporting hyperplane algo-
rithm for a convex continuously differentiable mixed-integer nonlinear program-
ming problem to solve a wider class of nonsmooth problems. The generalization
is made by using the subgradients of a Clarke subdifferential instead of gradients.
Consequently, all the functions in the problems are assumed to be locally Lips-
chitz continuous. The algorithm is shown to converge to a global minimum of an
MINLP problem if the objective function is convex and the constraint functions
are f◦-pseudoconvex. With some additional assumptions, the constraint functions
may be f◦-quasiconvex.
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1 Introduction

The extended supporting hyperplane (ESH) algorithm to solve smooth (contin-
uously differentiable) convex MINLP problems was presented in [10]. It is based
on the classical supporting hyperplane method derived in [16]. Numerical compar-
isons in [10] suggest that the ESH algorithm is efficient and on par with current
state-of-art MINLP solvers when solving MINLP problems with smooth convex
objective and constraint functions.

Motivated by promising numerical results in [10], we will generalize the ESH
algorithm to cover certain classes of nonsmooth convex MINLP problems. By a
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convex MINLP problem we mean that the objective function is convex and the
feasible set is convex when discrete variables are relaxed to continuous ones. We
require that the constraint functions are f◦-pseudoconvex. With an additional
assumption that the subdifferentials of active constraint functions do not con-
tain zero at points where supporting hyperplanes are computed, the constraint
functions may be f◦-quasiconvex. These function classes are modifications of the
classical pseudo- and quasiconvexity for a locally Lipschitz continuous function.
With these constraint functions the feasible set is convex if the integers are re-
laxed to continuous variables. The generalization of the ESH algorithm follows
similar steps to the generalization of the αECP algorithm in [7]. That is, instead
of gradients we will use the subgradients of the Clarke subdifferential.

The generalization implies that the ESH algorithm presented in [10] is suitable
for smooth pseudoconvex constraint functions as well. In fact, this was essentially
noted in [16], but the term pseudoconvexity was not used.

The ESH and αECP methods share many similarities. In fact, the supporting
hyperplanes were seen as an alternative to the cutting planes for the αECP algo-
rithm in [14]. This will essentially lead to the ESH algorithm. Both methods solve
a sequence of MILP problems and add linear constraints to the MILP problem.
The linear constraints that the ESH method generates are supporting hyperplanes
to the feasible set defined by the nonlinear constraints. Thus, a supporting hy-
perplane usually cuts off more of the infeasible region than a cutting plane. The
downsides of ESH are that we have to know an inner point of the integer relaxed
feasible set and we have to use a line search procedure.

The ESH algorithm is presented briefly in Section 3. In that section, we also
prove that it can solve problems with f◦-pseudoconvex constraint functions. Some
numerical examples are solved in Section 4. Concluding remarks are given in Sec-
tion 5.

2 Preliminaries

In this section, we present some results on nonsmooth analysis and give the defini-
tions of the generalized convexities that we use. First, we define the generalization
of the gradient.

Definition 1 [5] Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. The
Clarke generalized directional derivative of f at x in the direction d ∈ Rn is defined
by

f◦(x;d) := lim sup
y→x

t↓0

f(y + td)− f(y)

t

and the Clarke subdifferential of f at x by

∂f(x) := {ξ ∈ Rn | f◦(x;d) ≥ ξTd for all d ∈ Rn}.

Each element ξ ∈ ∂f(x) is called a subgradient of f at x.

Some basic properties of the subdifferential are given in the next theorem. The
proofs can be found in [5].

Theorem 1 Let f : Rn → R be locally Lipschitz continuous. Then
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(i) ∂f(x) is a nonempty, convex and compact set.
(ii) f◦(x;d) = max {ξTd | ξ ∈ ∂f(x)} for all d ∈ Rn.

The following definitions present the main function classes we are dealing with.

Definition 2 A function f : Rn → R is pseudoconvex, if it is smooth and for all
x,y ∈ Rn

f(y) < f(x) implies ∇f(x)T (y − x) < 0.

Definition 3 A function f : Rn → R is f◦-pseudoconvex (f◦-quasiconvex ), if it
is locally Lipschitz continuous and for all x,y ∈ Rn

f(y) < (≤)f(x) implies f◦(x;y − x) < (≤)0.

Some basic properties of these function classes can be found in e.g. [2]. The
following results can be found on the pages 140-166.

Theorem 2 Let f : Rn → R be locally Lipschitz continuous.

(i) If f is convex or pseudoconvex, then it is f◦-pseudoconvex.
(ii) If f is f◦-pseudoconvex, then it is f◦-quasiconvex.
(iii) If f is f◦-pseudoconvex, then 000 ∈ ∂f(x) implies that x is a global minimizer

of f .
(iv) If f is f◦-quasiconvex, then it is quasiconvex.
(v) If fi, i = 1, 2, . . . ,m are f◦-pseudoconvex (f◦-quasiconvex), then maxi fi is

f◦-pseudoconvex (f◦-quasiconvex).

As can be seen from Theorem 2 (i) f◦-pseudoconvexity is a generalization
of the classical pseudoconvexity. By definition, the level sets of a quasiconvex
function are convex. Thus, Theorem 2 (ii) and (iv) implies that the level sets of
f◦-pseudoconvex or f◦-quasiconvex functions are also convex. The following result
is a straightforward consequence of Theorem 2 (ii) and (iii).

Corollary 1 Let f : Rn → R be an f◦-pseudoconvex function and x ∈ Rn. If there
exists y ∈ Rn such that f(y) < f(x), then f is f◦-quasiconvex and 000 /∈ ∂f(x).

With a certain assumption, f◦-quasiconvexity implies f◦-pseudoconvexity. For
the proof, we need the following lemma, which is also useful in the next section.

Lemma 1 Let f : Rn → R be an f◦-quasiconvex function, y ∈ Rn, a > f(y) and
A ⊂ Rn. If a ≤ f(x) and 000 /∈ ∂f(x) for all x ∈ A, then there exists r > 0 such
that ξT (y − x) ≤ −r ∥ξ∥ < 0 for all x ∈ A and ξ ∈ ∂f(x).

Proof Since f is continuous and f(y) < a, there exists r > 0 such that f(z) < a
for all z ∈ Rn such that ∥z − y∥ ≤ r. Let x ∈ A and ξ ∈ ∂f(x) be arbitrary.

Since 000 /∈ ∂f(x) we may define ŷ = y+
ξ

∥ξ∥r. The f◦-quasiconvexity of f and the

inequalities f(ŷ) < a ≤ f(x) imply

f◦(x; ŷ − x) ≤ 0. (1)

By Theorem 1 (ii), inequality (1) implies ξT (ŷ − x) ≤ 0. Thus,

ξT (y − x) = ξT (ŷ − ξ

∥ξ∥r − x) = −r ∥ξ∥+ ξT (ŷ − x) ≤ −r ∥ξ∥ .

Since 000 /∈ ∂f(x) we have −r ∥ξ∥ < 0 proving the lemma. ⊓⊔
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Theorem 3 Let f : Rn → R be an f◦-quasiconvex function. If 000 ∈ ∂f(x) implies
that x is a global minimum of f , then f is f◦-pseudoconvex.

Proof Let x,y ∈ Rn be points such that f(y) < f(x). By assumption 000 /∈ ∂f(x).
Choosing a = f(x) and A = {x}, Lemma 1 implies

f◦(x,y − x) = max
ξ∈∂f(x)

ξT (y − x) < 0.

Thus, f is f◦-pseudoconvex. ⊓⊔

We denote the closed line segment [x,y] = {λx+ (1− λ)y | 0 ≤ λ ≤ 1} and
(x,y) by the corresponding open line segment.

3 The ESH algorithm

In this section, we consider the ESH algorithm and its convergence properties.
The global convergence is proved for a problem with a linear objective function
and f◦-pseudoconvex constraint functions. With an additional assumption, the
constraint functions may be f◦-quasiconvex. Note that any nonlinear convex ob-
jective function can be transformed to a linear objective function and a convex
constraint. We begin by reformulating the ESH algorithm from [10] to deal with
nonsmooth functions. After that, we prove the convergence results for an MINLP
problem with f◦-pseudoconvex constraint functions.

3.1 Convex constraint functions

The considered problem is

min cTx

s. t. gm(x) ≤ 0 ∀m = 1, . . .M, (P)

x ∈ L ∩ Y,

where each nonlinear function gm : Rn → R is convex but not necessarily smooth
and the compact set L ⊂ Rn defines linear constraints. Integer variables are defined
by index set IZ ⊆ {1, 2, . . . , n} and set Y = {x | x ∈ Rn,xi ∈ Z if i ∈ IZ}. Denote
Cm = {x | gm(x) ≤ 0} and C =

∩M
m=1 Cm. Thus, the feasible set is C ∩ L ∩

Y . Denoting F (x) = maxm {gm(x)} we can also write C = {x | F (x) ≤ 0}. We
denote indexes of active constraint functions on the set {x | F (x) = 0} by I0(x) =
{m | gm(x) = F (x) = 0}. For the moment, we assume that the Slater constraint
qualification holds true. In other words,

there exists a point x ∈ L such that F (x) < 0. (2)

The algorithm will need a point xNLP such that F (xNLP) < 0. This can be
obtained by solving the problem

min F (x) (NLP)

s. t. x ∈ L.
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Note that the problem (NLP) does not need to be solved to a global minimum.
It suffices to find a point x such that F (x) < 0. The idea of the ESH algorithm is
to solve a sequence of mixed-integer linear programming problems

min cTx

s. t. lj(x
j) ≤ 0 j = 1, 2, . . . , k − 1 (MILPk)

x ∈ L ∩ Y,

where lj(x
j) ≤ 0 is a supporting hyperplane generated at a point xj such that

F (xj) = 0. At the first iteration, no such planes exist. Solving (MILP1) then gives
us a solution point x1

MILP. If F (x1
MILP) ≤ 0, we have thus found a feasible point to

the original problem (P). It will be a global minimum since it was found through
minimization on a set containing the original feasible set.

Suppose then that F (x1
MILP) > 0. The point x1 where the first supporting

hyperplane is generated will be found through a line search between points xNLP

and x1
MILP. Since F (xNLP) < 0 < F (x1

MILP) and the constraint functions are
continuous, a point x1 ∈

[
xNLP,x

1
MILP

]
such that F (x1) = 0 is guaranteed to

exist. Since the constraint functions are convex so is F implying x1 will be unique.
A new problem (MILP2) will be formed by adding to (MILP1) the supporting
hyperplane l1(x

1). More accurately, l1(x
1) := ξT (x−x1) ≤ 0, where ξ ∈ ∂gm(x1)

for some m ∈ I0(x
1). The ESH algorithm will continue solving problems (MILPk)

accordingly until a stopping criterion is satisfied. The algorithm is as follows:

Algorithm 3.1 The ESH algorithm

Give a tolerance parameter εg > 0 and set k = 1.

1. If xNLP such that F (xNLP) < 0 is not available, find that kind of point by solving (NLP).
2. Solve the problem (MILPk). Denote the solution by xk

MILP.

3. If F (xk
MILP) ≤ εg then stop: xk

MILP is the final solution.

Otherwise, find xk ∈
[
xNLP,x

k
MILP

]
such that F (xk) =

εg
2

with a line search.
4. Generate (MILPk+1) by adding to (MILPk) the supporting hyperplane

ξT (x− xk) ≤ 0, where ξ ∈ ∂gm(xk) and m ∈ I0(xk).
5. Set k = k + 1 and go to step 2.

Note that if εg > 0 then we will make the supporting hyperplanes on points
xk such that F (xk) =

εg

2 ̸= 0. This ploy allows us to deal with problems that do
not satisfy the Slater constraint qualification. In the interim, we will consider the
theoretical case εg = 0.

In [10] it was shown that the ESH algorithm will converge to a global minimum
if the constraint functions are smooth and convex (and εg = 0). In the algorithm
presented in [10] an LP step was used in order to speed up the algorithm. In this
step the (MILPk) problem is solved with integer variables relaxed to continuous
ones. This allows faster generation of supporting hyperplanes as an LP problem
is easier to solve than an MILP problem. The LP step will stop after a certain
amount of iteration. After the LP step the algorithm starts solving MILP problems
as stated but now there are supporting hyperplanes already in (MILP1) giving
an initial approximation of the feasible set. The LP step does not affect global
convergence although it can result in faster convergence.
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3.2 f◦-pseudoconvex constraint functions

At this point, we are ready to prove that the ESH algorithm can be used success-
fully for a wider class of problems than those with a smooth and convex objective
and constraint functions. We shall first consider the case εg = 0 in which case we
have to require that the Slater constraint qualification holds true. We shall assume
that

i) gm is f◦-quasiconvex for all m = 1, 2, . . . ,M
ii) 000 /∈ ∂gm(x) if m ∈ I0(x).

These conditions are fulfilled for f◦-pseudoconvex constraint functions by Corol-
lary 1 and the Slater constraint qualification (2). Since the level sets of f◦-quasi-
and f◦-pseudoconvex functions are convex, we are dealing with a convex MINLP
problem. That is, the objective function is convex and the feasible set is a convex
set, if the integer variables are relaxed to continuous ones.

The convergence proof proceeds as follows. We will first show that supporting
hyperplanes do not cut off any feasible points. However, they will cut off the
previous solution points of (MILPk) that were not within the set C. In the compact
set L, this results in a solution sequence that has an accumulation point. This point
will be shown to be feasible in C. Finally, this point proves to be a global minimum
of (P ).

We begin by proving that supporting hyperplanes, generated for an f◦-pseudo-
convex function, will not cut off any feasible point. For differentiable functions a
corresponding proof has been given, for example, in [3].

Theorem 4 The supporting hyperplane

ξT (x− xk) ≤ 0, ξ ∈ ∂gm(xk), m ∈ I0(x
k) (3)

does not cut off feasible points.

Proof It is sufficient to prove that the hyperplane (3) does not cut off any points
in Cm ⊃ C. Let y ∈ Cm be arbitrary. Then gm(y) ≤ 0 = gm(xk) and f◦-
quasiconvexity implies g◦m(xk;y − xk) ≤ 0. By Theorem 1 (ii),

ξT (y − xk) ≤ max
ζ∈∂gm(xk)

ζT (y − xk) = g◦m(xk;y − xk) ≤ 0.

Thus, hyperplane (3) does not cut off y proving the theorem. ⊓⊔

The next theorem shows that, if the current solution xk
MILP is infeasible, then

it will be cut off by the supporting hyperplane generated at point xk.

Theorem 5 Let m ∈ I0(x
k) and ξ ∈ ∂gm(xk). If F (xk

MILP) > 0, then
ξT (xk

MILP − xk) > 0.

Proof We may write xk = λxNLP + (1 − λ)xk
MILP, where λ ∈ [0, 1]. In point of

fact, we have λ ∈ (0, 1) since F (xk
MILP) > 0 and F (xNLP) < 0 = F (xk). It is then

straightforward to show that

− λ

1− λ
(xNLP − xk) = xk

MILP − xk.



ESH algorithm for nonsmooth MINLP problems 7

Since gm(xNLP) < gm(xk) and 000 /∈ ∂gm(xk) (assumption ii)) Lemma 1 implies
(by choosing A =

{
xk

}
and a = gm(xk)) that there exists r > 0 such that

ξT (xk
MILP − xk) = − λ

1− λ
ξT (xNLP − xk) ≥ − λ

1− λ
(−r ∥ξ∥) > 0

proving the theorem. ⊓⊔

With Theorems 4 and 5 we can prove the uniqueness of xk.

Corollary 2 If F (xk
MILP) > 0, then xk is unique.

Proof Suppose there exist y, z ∈
(
xNLP,x

k
MILP

)
such that F (y) = F (z) = 0 and

y ̸= z. Without loss of generality we may assume that z ∈
(
y,xk

MILP

)
. By Theorem

4, z is not cut off by the hyperplane generated at y. However, the hyperplane will
then not cut off either xk

MILP contradicting Theorem 5. ⊓⊔

Suppose that at some iteration k we have F (xk
MILP) ≤ 0. By Theorem 4, the

feasible set of (MILPk) includes C. Thus, xk
MILP is a global minimum of (P ). On

the other hand, if F (xk
MILP) > 0 for all k, Theorem 5 implies that the points in

sequence (xk
MILP) are distinct. Since (xk

MILP) ⊂ L and L is a compact set, the
sequence has an accumulation point by the Bolzano-Weierstrass Theorem. Hence,

there exists a converging subsequence (x
kj

MILP) ⊂ (xk
MILP).

Next, we will show that the subsequence (x
kj

MILP) converges to a feasible point.
To prove this, we need the following lemma.

Lemma 2 Let (x
kj

MILP) be a converging sequence and ξj ∈ ∂gmj (x
kj ), where index

mj ∈ I0(x
kj ). Then

lim
j→∞

ξTj∥∥ξj∥∥ (xkj

MILP − xkj ) = 0.

Proof Let ε > 0 be arbitrary. Choose j such that
∥∥∥xkj+1

MILP − x
kj

MILP

∥∥∥ < ε. Then

∣∣∣∣∣ ξTj∥∥ξj∥∥ (xkj+1

MILP − xkj )−
ξTj∥∥ξj∥∥ (xkj

MILP − xkj )

∣∣∣∣∣
≤

∥∥ξj∥∥∥∥ξj∥∥
∥∥∥xkj+1

MILP − x
kj

MILP

∥∥∥ < ε. (4)

Since F (x
kj

MILP) > 0 Theorem 5 implies 0 <
ξT

j

∥ξj∥
(x

kj

MILP − xkj ). Then, by the

feasibility of x
kj+1

MILP in problem (MILPkj+1
)

ξTj∥∥ξj∥∥ (xkj+1

MILP − xkj ) ≤ 0 <
ξTj∥∥ξj∥∥ (xkj

MILP − xkj )

for all j. Hence, by inequality (4) we have limj→∞
ξT

j

∥ξj∥
(x

kj

MILP − xkj ) = 0. ⊓⊔
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Lemma 2 does not imply, thus far, that subsequence (x
kj

MILP) would converge

to a feasible point. It still leaves a possibility that vectors ξj and x
kj

MILP − xkj

converge to vectors that are perpendicular to each other. With the help of f◦-
quasiconvexity this case will be excluded in the next theorem.

Theorem 6 An accumulation point of the sequence (xk
MILP) is a feasible point.

Proof By Lemma 2 we may re-index the convergent subsequence in a way that
ξT

j

∥ξj∥
(x

kj

MILP−xkj )− 1
j ≤ 0 for all j ∈ N, where ξj ∈ ∂gmj (x

kj ) and mj ∈ I0(x
kj ).

Furthermore,

ξTj∥∥ξj∥∥ (xkj

MILP − xkj )− 1

j
≤ 0

=
ξTj∥∥ξj∥∥ (xkj − xkj )

=
ξTj∥∥ξj∥∥ (λkj

xNLP + (1− λkj
)x

kj

MILP − xkj ).

By rearranging the terms we have

λkj

ξTj∥∥ξj∥∥ (xkj

MILP − xkj )− 1

j
≤ λkj

ξTj∥∥ξj∥∥ (xNLP − xkj ).

By choosing a = 0 and Am = {x ∈ L | F (x) = 0, gm(x) = 0} we have xkj ∈ Amj

and g(xNLP) < a. Then Lemma 1 implies

λkj

ξTj∥∥ξj∥∥ (xNLP − xkj ) ≤ −λkj

∥∥ξj∥∥∥∥ξj∥∥rmj = −λkj
rmj ,

for some rmj > 0. Since there are finitely many constraints, r = minm=1,2,...,M {rm} >
0 exists and

−λkj
rmj ≤ −λkj

r for all j ∈ N.

Thus,

λkj

ξTj∥∥ξj∥∥ (xkj

MILP − xkj )− 1

j
≤ −λkj

r.

By solving λkj
from this inequality we obtain

λkj
≤ 1

j

(
r +

ξT

j

∥ξj∥
(x

kj

MILP − xkj )

) <
1

j · r .

Hence, limj→∞ λkj
= 0 implying F (x̂) = 0 where x̂ = limj→∞ x

kj

MILP. ⊓⊔

Finally, the convergence result is given.

Theorem 7 An accumulation point of the sequence (xk
MILP) is a global minimum

of the problem (P ).
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Proof The proof is similar to Lemma 4 in [10]. ⊓⊔

Consider the case where εg > 0. Then, supporting hyperplanes will be gener-
ated at points xk such that F (xk) =

εg

2 . This implies that we do not need the
Slater constraint qualification to hold true. That is, it suffices that F (xNLP) ≤ 0
as was noticed in [10]. In the case of f◦-quasiconvex constraint functions, we have
to require that 000 /∈ ∂gm(x) if the supporting hyperplane is generated from gm at
x. Again, an f◦-pseudoconvex constraint function meets this requirement unat-
tended.

Theorem 4 is valid in the case εg > 0 as well. In the other results, we have to
replace 0 by

εg

2 or εg when appropriate. Then it follows that if we do not find a
point x such that F (x) <

εg

2 , the MILP solutions sequence has an accumulation
point x̂ with F (x̂) =

εg

2 . Thus, we will find a point x satisfying F (x) ≤ εg after
a finite number of iterations. If the objective function is linear, the final solution
point xk

MILP will be an εg-feasible global minimum. That is, F (xk
MILP) ≤ εg and

there exists no feasible point giving a lower objective function value. If a convex
objective function is transformed to a linear objective function, there might be
a feasible solution giving a lower objective function value than the one found.
Nevertheless, this difference is at most εg.

3.3 On solving the NLP problem

To be able to solve a problem the ESH algorithm requires a point xNLP satisfying
strictly all the nonlinear constraints. As previously mentioned, this can be found
by solving (NLP). The compactness of L and the continuity of F guarantees that
a solution exists. If functions gm are f◦-pseudoconvex then so is F by Theorem 2
(v). In this case the nonsmooth problem (NLP) can be solved by e.g. the proximal
bundle (PB) algorithm [15]. If the constraint functions are f◦-quasiconvex then F
will be f◦-quasiconvex by Theorem 2 (v). The PB algorithm will find a stationary
point, which is not guaranteed to solve the problem nor to be a feasible point.

Note that if εg > 0 the point xNLP need only to satisfy F (xNLP) ≤ 0. Then, by
relaxing the integer variables of the original problem we can obtain a continuous
problem, whose global minimum point can be set to xNLP. In the case of f◦-
pseudoconvex constraint functions this problem can be solved by, for example, the
αECP method. Again, if the constraint functions are f◦-quasiconvex, a stationary
point is not guaranteed to be a feasible point. Consider a simple problem

min (x− 1)2

s. t. (x− 1)3 + 1 ≤ 0

−2 ≤ x ≤ 2.

Here, x = 1 is a stationary point in the both proposed feasibility problems. How-
ever, it is not a feasible point. On our best knowledge there does not exist an
algorithm that is guaranteed to find a feasible point if the constraint functions are
f◦-quasiconvex. Nevertheless, if each of the f◦-quasiconvex constraints satisfies
the condition

0 /∈ ∂gm(x) or gm(x) < 0 (5)
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for all x ∈ Rn, then a stationary point is a feasible point. In addition, the function
F̂ (x) := max {0, F (x)} will be f◦-pseudoconvex and the integer relaxed problem
can be solved by αECP. Condition (5) is essentially the Cottle constraint qualifi-
cation.

Recall that a convex objective function f may be transformed to a constraint
function f −µ, where the auxiliary variable µ is the new linear objective function.
If the objective function is convex and nonlinear, it sounds reasonable to use the
relaxed problem to find xNLP. In this case, we can set µNLP = f(xNLP). If (NLP)
is used with constraint function f−µ, the only other constraints that include µ are
user given box constraints. Hence, µNLP would most probably be the given upper
bound being somewhat arbitrary. The value of µNLP affects the values of f − µ in
the line search and, thus, also the frequency of computing supporting hyperplanes
from f − µ.

4 Numerical considerations & examples

In this section, we solve a few example problems with the ESH and the αECP [7,
17] algorithms. In addition, we will discuss some numerical details, especially, the
line search. At first we will motivate why the line search is made to find a point
xk that has been shifted

εg

2 from the set {x | F (x) = 0} in the function space.
Another possibility is a shift in the variable space.

4.1 On the line search

In the implementation and numerical comparison, we will have εg > 0. In the
Algorithm 3.1, we apply a line search to find a point xk such that F (xk) =

εg

2 .
This implies that we do not need the Slater constraint qualification to hold true,
but the result will be an εg-feasible minimum. When comparing the point xk with
the one obtained by the algorithm with εg = 0 we will make a shift

εg

2 in the

function value space towards xk
MILP, that is, away from xNLP.

Next, we will give an example problem which shows that if εg = 0 or even if
we do similar

εg

2 shift in the variable space we would need the Slater constraint
qualification to hold. More accurately, we will create supporting hyperplanes on
points xk + δk, where F (xk) = 0 and

δk =
εg
2

xk
MILP − xk∥∥xk
MILP − xk

∥∥ . (6)

Consider problem (see Figure 1)

min −x1 − x2

s. t. g(x) ≤ 0 (P1)

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2,

where g(x) = max {0, g1(x)} and

g1(x) =


(x2 − 1)2 + x2

1 − 1, x2 > 1

x2
1 − 1, −1 ≤ x2 ≤ 1

(x2 + 1)2 + x2
1 − 1, x2 < −1

.
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The constraint function g is convex and does not satisfy the Slater constraint
qualification.

−2 −1 0 1 2

−
2

−
1

0
1

2

 

 

xNLP

xMILP
1xMILP

2

x1x2

Fig. 1 The feasible set and a part of the solving process of the given example when δ = 1
2
.

The dashed lines represent the first two hyperplanes and the bolded region is the feasible set.

Suppose that we have xNLP = (1, 0). Note that (1, 0) is on the boundary.
When trying to solve this problem with the ESH algorithm with shifts (6) and
0 <

εg

2 < 1, the first solution will be x1
MILP = (2, 2). The line search will find

xk = xNLP = (1, 0) and a supporting hyperplane x ≤ a, (a > 1) will be added to
the next MILP problem. More accurately a = 1+

εg

2
√

5
according to (6), but a > 1

is the property we are interested in. The next solution will be x2
MILP = (a, 2). The

solution process generates sequence (xk
MILP) that converges to the point (1, 2).

However, this point is not even feasible. The ESH algorithm without the shift
(6) and εg = 0 will find x2

MILP = (1, 2) and become fixed there. This is due to
the fact that the supporting hyperplane at xNLP does not cut off (1, 2). However,
the Algorithm 3.1 can solve the problem when εg > 0. In Figure 2, the first six
iterations are shown. The algorithm solves the problem after ten iterations.

In the later examples, we use a line search based on the bisection method.
This guarantees that at each iteration of the line search, we have found an interval
[xL,xU ] such that F (xL) ≤ εg

2 and
εg

2 < F (xU ) ≤ F (xk
MILP). We will stop the line
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−2 −1 0 1 2

−
2

−
1

0
1

2

 

 

12345

6

1’

2’

3’

4’

5’

6’

l l l

l

l

1 2 3

4

5

Fig. 2 Six iterations of the ESH algorithm when solving (P1) with tolerance εg = 0.001.
Plain numbers indicate points xk

MILP and dotted numbers indicate points xk. The dashed
lines represent supporting hyperplanes.

search when a point x satisfying
εg

4 ≤ F (x) < εg has been found. The supporting
hyperplanes will be generated at this point.

In the line search we do not need to calculate all of the constraint functions in
each step. If gm(xk

MILP) < εg then, by quasiconvexity (Theorem 2 (iv)), gm(x) <
εg for all x ∈

[
xNLP,x

k
MILP

]
. Hence, on the line segment

[
xNLP,x

k
MILP

]
, it is

enough to apply the line search on function

Fk(x) = max
m∈Mk

gm(x), where Mk =
{
m | gm(xk

MILP) ≥ εg
}
.

4.2 Theoretical comparison on the αECP and ESH algorithms

Here we present some theoretical differences between the αECP and the ESH
algorithms. For details on the αECP algorithm we refer to [7,17].

The principal difference between the algorithms is the type of cutting plane
that they use. The ESH algorithm creates supporting hyperplanes as explained
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in the previous section and the αECP algorithm creates α-cutting planes. For a
constraint function gm the α-cutting plane created at point xk

MILP reads

gm(xk
MILP) + α · ξT (x− xk

MILP) ≤ 0,

where ξ ∈ ∂gm(xk
MILP) and α ≥ 1 is sufficiently large. For a convex function α = 1

is large enough but for an f◦-pseudoconvex function a sufficiently large α value
is usually not known. In practice, α is first set to 1 but it is updated until the
distance between the α-cutting plane and xk

MILP is less than the given parameter
εz > 0. Nevertheless, for a given εz it can not be guaranteed that an updated
α-cutting plane will not cut off feasible points. The supporting hyperplanes does
not cut off any points from the feasible set even if the constraint functions are
f◦-pseudoconvex. This makes ESH more appealing than αECP to solve problems
involving f◦-pseudoconvex functions. With the ESH algorithm the nonlinear func-
tions have to be evaluated also at points where integer variables attain non-integer
values due to the line search. This restriction does not apply to αECP.

Presumably, a hyperplane that ESH creates usually cuts off more of the infea-
sible region than an updated α-cutting plane. This could lead to a solving process
with a fewer number of MILP problems. If there is more than one constraint func-
tion the approximation of the feasible set may be enhanced by adding more than
one α-cutting plane or supporting hyperplane per iteration. Naturally, creating
more linear constraints leads to larger MILP problems. It is a straightforward
process to create an α-cutting plane for any violating constraint from a solution
point xk

MILP. A supporting hyperplane may be created from a constraint that is
active at the point xk at which the line search ends up. The quasiconvexity of the
constraint functions implies that there are at least as many violating constraints
at xk

MILP as there are active constraints at xk. In other words, if there are many
constraint functions it is possible to make at least as many α-cutting planes as
supporting hyperplanes per iteration. Thus, the use of more than one cutting plane
per iteration benefits αECP more than ESH.

For the ESH algorithm, the cost of solving less MILP problems is attaining
more function evaluations per iteration due to the line search. This will most
probably lead to a greater total number of nonlinear function evaluations. Nev-
ertheless, MILP problems are usually difficult to solve and more time consuming
than multiple nonlinear function evaluation. However, this is not always the case.
In a chromatographic separation problem [6] some function evaluations require
solving partial differential equations and are more time consuming than solving
an MILP problem. Another type of hard constraint functions are probabilistic
constraints which are considered, for example, in [1,13].

4.3 Example problems

In addition to (P1) we apply the ESH algorithm to another simple example prob-
lem and to a facility layout problem [4]. The former of these problems is
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min max
{
(x1 − 2)2, (x2 − 4)2

}
s. t.

|x1 − 3| − 10x1

3x1 + x2 + 1
+ 2 ≤ 0

(x1 − 7)2 − 5x2 ≤ 0 (P2)

1 ≤ x1, x2 ≤ 8

x1 ≥ 0, x2 ∈ Z+.

The objective function of (P2) is convex and nonsmooth. The first constraint
function is f◦-pseudoconvex and the second constraint function is convex.

The third problem (P3) is the facility layout problem presented in [4] and
[12]. The formulation of the problem is presented in the appendix. The problem
(P3) was solved both by using only one linearization per iteration and by creating
linearizations for all violating or active constraint functions.

The number and types of variables together with the types of constraints and
objective functions are summarized in Table 1. Transformation of the convex ob-
jective function to a constraint function leads to one nonsmooth convex constraint
in (P2) and 6 nonsmooth convex constraints in (P3). The use of only one objective
function constraint in (P3) would result in a difficult constraint function. Since the
objective function is a sum of 12 l1-norms of linear functions, the transformation
to only one single constraint would have 212 different gradients on its domain of
definition. Thus, to make a perfect approximation of the objective function, 212

linearizations would be needed. With 6 constraints, each will have only 4 different
gradients.

Table 1 Basic information on the example problems. Here cont=continuous, int=integers and
bin=binary. In the problems (P2) and (P3) the objective function is nonsmooth. In addition,
the f◦-pseudoconvex constraint in (P2) is nonsmooth. The other nonlinear constraints are
smooth.

problem objective
constraints variables

linear convex f◦-pseudoconvex cont int bin
P1 linear - 1 - 2 - -
P2 convex 1 1 1 2 1 -
P3 convex 114 - 7 34 - 42

For the problems (P1) and (P2) the inner points are given as (x1, x2) = (1, 0)
and (x1, x2) = (3, 4), respectively. In the problem (P3) the feasibility problem
is the relaxed problem discussed in Subsection 3.3. The feasibility problem was
solved by the αECP algorithm.

In all of the problems, nonsmooth functions could be presented as a maximum
of two functions. Consequently, a subgradient of a nonsmooth constraint function
could be presented as a gradient of an active function. For example, h(x1, x2) =
|x1 − x2| is a part of a constraint function in (P3) and its subdifferential is

∂h(x1, x2) =


(1,−1) , x1 > x2

[(1,−1), (−1, 1)] , x1 = x2

(−1, 1) , x1 < x2

.
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When x1 = x2 we use point (−1, 1) as the subgradient.
Parameters for the αECP algorithm were the same as those in problem 2 in [7].

In the ESH algorithm similar parameters were used, that is, εg = 0.001. Problems
were solved using a 64-bit windows 7 computer with an Intel i3-2100 3.1GHz
processor. The MILP problems were solved by CPLEX. Table 2 summarizes the
results.

Table 2 Numerical results. The number of function evaluations needed in the line search is in
the column ”f. eval. line s.” The number of function and derivative evaluations, including the
line search that ESH uses, is in the column ” Function eval.”. The number of MILP problems
that was needed to solve the problem is in the column ”# MILP”. The number of linearizations
at the last MILP problem is in the column ”# lin.”. Methods ”ECP.all” and ”ESH.all” creates
linearizations for all violating/active constraints.

prob. method obj. f. eval. function # # lin. CPU
name value line s. eval. MILP time (s)

P1
ESH -2.41 79 104 9 8 1.44
αECP -2.41 - 28 10 9 1.40

P2
ESH 0.360 108 163 10 9 2.15
αECP 0.359 - 59 11 10 2.44

P3
ESH 20.73 5310 6991 108 107 240
αECP 20.73 - 1468 94 91 1180

P4
ESH.all 20.73 3742 5063 80 109 209
αECP.all 20.73 - 1173 24 239 265

The supposed strength of the ESH algorithm compared with the αECP algo-
rithm is a fewer number of MILP problems due to the tighter underestimates of
the nonlinear constraints. From Table 2, we can see that this was true only for
problems (P1) and (P2) but not for problems (P3) and (P4). The αECP algorithm
managed to solve all the problems in a fewer number of function evaluations, as
expected. This holds true even without taking account of the effort needed to solve
the feasibility problem to find the inner point. In problem (P3) solving the feasi-
bility problem required 1468 nonlinear function evaluations and 3 seconds of CPU
time. In the example problems, the nonlinear function evaluations were inexpen-
sive. Consequently, the great difference in the number of function evaluations did
not convert to a great difference in CPU time.

ESH solved problem (P3) in considerably shorter time. The reason for this is
that the MILP problems that the ESH algorithm generated in (P3) were much
easier than those generated by αECP. Both algorithms found the best-known
solution in all of the problems. The difference between the objective function
values in (P2) results from the feasibility tolerance: αECP found a solution that
violates the constraints more but the violation is still within the tolerance.

From the last row of Table 2 we see that αECP benefited from using more
linearizations per iteration. The number of function evaluations, the number of
MILP problems and CPU time were all reduced. Even then αECP could not solve
the problem faster than ESH. The size of the last MILP problem was increased as
expected. In addition, while ESH also benefited from multiple hyperplanes it was
not to the same extent as αECP.

Despite we can solve the nonsmooth formulation of the facility layout problem,
a more efficient way to solve it is to use the same formulation as in MINLP
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Library2 (http://www.gamsworld.org/minlp/minlplib2/html/) problem fo7. That
is, the objective function is transformed to linear constraints and 7 pseudoconvex
constraints are replaced by 14 convex constraints. As suggested by the results in
Table 2, efficiency is further increased if all possible linearizations are created. In
this case, the ESH algorithm solves the problem in 20 seconds while the αECP
algorithm needed 15 seconds. If the objective function is handled as in (P3) but
pseudoconvex constraints are replaced by convex constraints, the solving time for
ESH is 170s and for αECP it is 11s. If the objective function is transformed to
linear constraints and the pseudoconvex functions are kept as they are, the solving
time for ESH is 190s and for αECP it is 370s. Based on these tests, it seems that
the difficult MILP problems that αECP created in (P3) are related to the α-cutting
planes of the pseudoconvex functions.

5 Concluding remarks

In this paper, it was shown that the ESH method can be applied to a problem with
nonsmooth locally Lipschitz continuous functions. The only change to the original
method is to use Clarke subgradients instead of gradients. For a convex objective
function and f◦-pseudoconvex constraint functions the algorithm was shown to
converge to a global minimum. This result requires that the Slater constraint
qualification holds true. If it does not, we can still solve the problem but the
obtained solution might be only εg-feasible. If the subdifferentials of the constraint
functions do not contain zero at the points where supporting hyperplanes are
created, the convergence theorems are also valid for f◦-quasiconvex constraint
functions.

Both the ESH and the αECP algorithms solved all the example problems con-
sidered to the best known solutions. For the ESH algorithm, the higher number
of nonlinear function evaluation was compensated by fewer or easier MILP prob-
lems that led to faster solving times in problems (P2) and (P3). However, it is
not guaranteed that the ESH algorithm solves a problem with a fewer number of
MILP problems as was shown in problem (P3). The superiority of ESH to αECP
when solving (P3) was related to the pseudoconvex constraints. If those constraints
were replaced by appropriate convex constraints, then the αECP could solve the
problem faster.

Generally, if the MILP problems of the original nonsmooth MINLP problem
are hard to solve, ESH should do better than αECP. However, if the bottleneck
of the solving process is expensive nonlinear function evaluations then αECP has
an advantage over ESH.

There is still room for improvement for the ESH algorithm with respect to
the problem classes considered in this paper. In addition to using the LP step, we
may change the line search of the ESH algorithm and the algorithm that solves
the feasibility problem to solve problems more efficiently. Furthermore, by using
similar techniques as in [7] the ESH method might be proven to solve problems
with f◦-pseudoconvex objective function. This will be studied in the future.
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A The facility layout problem: P3

In this problem, 7 departments should be placed in a facility. The width and the height of the
facility are wF = 8.54 and hF = 13, respectively. The decision variables and the indices of the
problem are:
i = indexes of the departments: 1, 2, . . . , 7.
xi, yi= coordinates of the center of department i.
wi = width of the department i.
hi = height of the department i.
Xij , Yij = auxiliary variables.

The problem reads

min
6∑

i=1

|xi − xi+1|+ |yi − yi+1| (7)

s. t. hiwi ≥ ai, i = 1, 2, . . . , 7 (8)

xi +
1

2
wi ≤ wF , i = 1, 2, . . . , 7 (9)

−xi +
1

2
wi ≤ 0, i = 1, 2, . . . , 7 (10)

yi +
1

2
hi ≤ hF , i = 1, 2, . . . , 7 (11)

−yi +
1

2
hi ≤ 0, i = 1, 2, . . . , 7 (12)

1

2
(wi + wj)− (xi − xj) ≤ wF (Xij + Yij), 1 ≤ i < j ≤ 7 (13)

1

2
(wi + wj)− (xj − xi) ≤ wF (1 +Xij − Yij), 1 ≤ i < j ≤ 7 (14)

1

2
(hi + hj)− (yi − yj) ≤ hF (1−Xij + Yij), 1 ≤ i < j ≤ 7 (15)

1

2
(hi + hj)− (yj − yi) ≤ hF (2−Xij − Yij), 1 ≤ i < j ≤ 7 (16)

x1 − x2 ≤ 0 (17)

y1 − y2 ≤ 0 (18)

wlow
i ≤ wi ≤ wup

i , i = 1, 2, . . . , 7 (19)

hlow
i ≤ hi ≤ hup

i , i = 1, 2, . . . , 7 (20)

Xij ∈ {0, 1} , 1 ≤ i < j ≤ 7 (21)

Yij ∈ {0, 1} , 1 ≤ i < j ≤ 7 (22)

The objective is to minimize the distance between consecutive departments. Constraints (7)
define the minimum areas of the departments. Constraints (8)-(11) make sure the departments
are located inside the facility. Constraints (12)-(15) prevent the overlapping of the departments.
Constraints (16)-(17) erase symmetric solutions. The following parameters were used.

Table 3 Parameters of the problem (P3)

i 1 2 3 4 5 6 7
ai 16 16 16 36 9 9 9

wlow
i 2 2 2 3 1.5 1.5 1.5

wup
i 8 8 8 8.54 6 6 6

hlow
i 2 2 2 4.2155 1.5 1.5 1.5

hup
i 8 8 8 12 6 6 6


