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Abstract—Free-to-play has become one of the most popular
monetization models, and as a consequence game developers
need to get the players to purchase in the game instead of
getting players to buy the game. Game analytics and player
monetization prediction are important parts in estimating the
profitability of a free-to-play game. In this paper, we concentrate
on predicting the fraction of monetizing players among all
players. Our method is based on a survival analysis mixture
cure model, and can be applied to unlabeled data collected
from any free-to-play game. We formulate a statistical model
and use the Expectation Maximization algorithm to solve the
latent monetization percentage and the monetization rate. The
original method is modified by using Bayesian inference, and
the results of the versions are compared. The method can be
applied as a preliminary profitability study in situations where
there is no extensive historical game data available, such as game
and business development scenarios that need to utilize real time
analytics.

Index Terms—Bayesian Inference, Free-to-play, Monetization,
Survival Analysis

I. INTRODUCTION

Total revenue from video games reached approximately 110
billion dollars in 2018 [1]. As the gaming industry has grown,
the revenue models have also evolved. Most revenue in the
past was from game purchases and subscriptions whereas
today free-to-play games account for the majority of all game
titles and revenues [1]. Money is made through advertise-
ments, premium upgrades and in-app purchases. However,
only around 5 % of players in a successful free-to-play game
can be expected to monetize [2]. These developments have
made it important to understand exactly what percentage of
players monetize and why they do so.

The data sets collected from games can be divided into a
scale between two extremes:

1) Extensive historical game data spanning maybe years.
2) A completely new game data set with short follow-ups.

The first setting allows the usage of supervised machine
learning models, since it is known which users made the
purchases and can thus be generalized to the same game.
However, in the second setting a new game with only few
observed purchases may be dealt with and the data set is
semisupervised because the correct answers are not known
for most of the players.

The first setting is well suited for academic research. The
second setting occurs when game developers want to use real-
time analytics to understand their current game. They want to
know as soon as possible how profitable a game is expected
to be, as they do not want to expend finances on advertising
if the game is expected to be unprofitable. Game literature
has demonstrated that it is possible to train machine learning
models with good predictive performance in the first setting,
many of which were featured in a recent competition [3].
Research has been more limited in the second setting. The
method presented in this article investigates the second setting,
for a new game with only a short period of data collection.

The goal of our method is to predict the proportion of all
players that will monetize over time. The method belongs
to the field of game analytics, which is concerned with
understanding player behavior. Game developers use real-time
analytics when they are developing or planning to launch a
game. A data set is generated by tracking players for a certain
duration, which we call the follow-up. Some players monetize
during the follow-up, some will monetize later but have not
yet done so, and some players will not monetize. We describe
the percentage of monetizing players as an unknown latent
variable and solve it using the Expectation Maximization algo-
rithm. This article is an extended version of the conference pre-
sentation [4]: prior information of the monetization percentage
is taken into account and the method is tested with a new data
set. The results, however, demonstrate that using unlabelled
data is a more challenging task and requires further research.
Even though our focus is on the monetization percentage and
rate, in principle the latent variable formulation could be used
together with many supervised machine learning models to
train them on data that is semisupervised because of a limited
follow-up. Many real world data sets are somewhere between
these two extremes and the approaches could complement each
other.

There is increasing awareness about the ethical issues of
data collection and model based prediction [5]. Many of these
issues are also present in games, especially in the retention
and monetization aspects of player modeling [6]. The free-to-
play monetization model is also under increased scrutiny, as
there can be problems about disadvantaging certain players
and encouraging problematic financial behavior [7]. Game



developers that plan to use micro-transactions in their game
should also consider these aspects. In our research, the most
relevant ethical issues are obtaining informed consent and
anonymizing the collected data. We have taken into account
the ethical aspects as far as they are related to our research,
although we present the research from a mathematical point
of view.

II. RELATED WORK

Regression and machine learning have been used in studies
to predict player purchases in various problem formulations
for labeled historical data. Random Forest, linear SVM, and
Decision Tree were used first in [8] to classify whether a player
would buy an in-game item after a match. Both general in-
game items purchases and hard currency purchases were pre-
dicted. Similarly, given purchasing and non-purchasing players
with two weeks of history before the purchase, Decision Tree,
Logistic Regression, and SVM were used in [9] to predict
which group the player belonged to, with a focus on the game
agnostic features. In [10], both classification and regression
were used to predict whether the user would make a first
purchase and how many purchases would occur. Decision
Trees, Random Forests, and Support Vector Machines were
used with data set balancing methods. Finally, in [11] two
linear regressions were used to model the number of purchases
and the number of coins purchased at a given level. The focus
was on understanding the impact of gating mechanisms on
retention and monetization.

Survival analysis has been used in gaming for various other
tasks, see [12] for a review. Noncontractual probability models
used in marketing [13] are closest to our approach. These
models predict player purchase counts over time, given a data
set in the second setting. However, one of the most popular
models (BG/NBD) was tested in free-to-play games and the
authors found that the model struggled with covering real data
[14]. It has been suggested that further research should be
conducted to redesign or adjust existing models, in order to
examine better assumptions for free-to-play games. In a recent
approach [15], a model-free method was developed to measure
the mean customer lifetime value (LTV) in the second setting,
but this approach did not predict into the future. Studies have
also investigated how the first purchase predicts overall LTV
[16], which is very useful when used together with our model.

III. METHOD

A. Monetization as a survival analysis model

Monetization can be expressed as a survival analysis model.
Survival analysis is used for analysing time-to-event data with
limited follow-ups and the data gathered from a new game
with short follow-ups is exactly this type of data. In survival
analysis there is a sample for which it is observed which
individuals have a specific event during the follow-up [17].
In our case the event is making the first purchase. The follow-
up means the time an individual is in the study. We will use the
calendar time between a player starting to play the game and
the player making the first purchase. However, not every player

makes the first purchase during the data collection interval.
Those that do not purchase anything during the follow-up, are
censored, which means that their event times are not known
because the follow-up ended before the events occurred.

It can be known which players made a purchase during the
interval and which players were followed until the censoring
time. Mathematically said, there are two variables that are
observed in time-to-event data with limited follow-up: One of
them is the time T = min (T ∗, C) which is either the purchase
time T ∗ or the censoring time C whichever is smaller. The
other variable is the censoring indicator δ = I (C ≤ T ∗) which
is a binary variable demonstrating whether a player made a
purchase before censoring or was censored by the follow-
up. Realizations of these random variables are denoted with
ti = min (t∗i , ci) and δi = I (ci ≤ t∗i ) for the ith player.

In this paper, we assume that the purchase time
T ∗ ∼ Exp (λ) and the censoring time C is implied by the data
collection time. The assumption of purchase time following
the exponential distribution is a special case of the playtime
principle introduced in [18] and has been used to model player
survival [19].

The distribution of event time T ∗ is defined by a survival
function S. In general, the survival function S (t) = 1−F (t),
where F is the cumulative distribution function [20]. Thus S
describes the probability that the event time is greater than the
observation time t and for the exponential model it is

S (t) = P (T ∗ > t) = e−λt. (1)
Now that the probability that a player makes the first purchase
later than the time t is known, the second thing to consider is
the risk for a player to purchase at time t. The instantaneous
risk that a player purchases at time t given that he/she did not
do so until that time, is described by a hazard function h [21]:

h (t) = lim
∆t→0

P (t < T ∗ < t+ ∆t|T ∗ > t)

∆t
= λ. (2)

A probability density function can be calculated from survival
and hazard functions. It is

f (t) = h (t)S (t) (3)
and means the density of purchases at time t.

B. Monetizing players as a mixture cure model

In standard survival analysis, each individual is assumed
to eventually have the event [17]. This assumption does not
apply in free-to-play games since many players seem to never
buy anything. This means that there are two kinds of players,
monetizing and unmonetizing, and the whole population of
the players is a mixture of the two sub-populations. Hence a
mixture cure model [22] is required in order to properly model
this situation.

All unmonetizing players are always censored because they
never purchase anything. However, also some of the monetiz-
ing players might be censored if they were not followed for
long enough. Thus the division into censored and purchased
players does not tell the whole truth about the number of
monetizing players. A third variable, a monetizing indicator ζ,
is used for describing which sub-population the player belongs



to: ζ = 0 for the monetizing population and ζ = 1 for the
unmonetizing. Monetizing indicator ζ ∼ Bern (1− π), and the
probabilities that a player is a monetizing or an unmonetizing
player are P (ζ = 0) = π and P (ζ = 1) = 1 − π, respec-
tively. This variable is partly latent because the value of it is
known only for those players that made a purchase before the
censoring.

In a mixture cure model, the survival function is a
weighted sum of the survival functions of the sub-populations:
S (t) = πSm (t) + (1− π)Su (t), where the weight π is the
percentage of monetizing individuals in the whole sample,
Sm (t) = e−λt and Su (t) ≡ 1. Given that the purchase
time follows the exponential distribution, there are now two
parameters that describe the model: ΨΨΨ = (π, λ). They are
monetization percentage and conversion rate.

An example of this kind of data is shown in Fig. 1. In the
example there are 50 players, of whom nine are monetizing.
It can be seen that two monetizing players have not purchased
before censoring. The players have started within three units
of the calendar time and censoring occurs five time units
after the first player arrived as can be seen in the upper
subplot. This results in different follow-ups for the players as is
demonstrated in the lower subplot. In reality the monetization
status of players, i.e. the colors in the figure, are not known,
and it is necessary to infer from the data set how many players
are going to make a purchase.

Fig. 1. Simulated data example with 50 players: 9 monetizing and 41
unmonetizing. The data were generated with parameters (π, λ) = (0.1, 1.0).

C. Fitting the mixture cure model

We can infer the monetization percentage and the conversion
rate by finding the model parameter vector ΨΨΨ. The likeli-
hood function L shows how likely the probability distribution
samples are, given values for the parameters. The maximum
likelihood (ML) estimate Ψ̂ΨΨML is the parameter vector that
maximizes the likelihood function, i.e. parameter values that

make the given data most likely. In survival analysis the
likelihood function

L (ΨΨΨ) =

n∏
i=1

f (ti|ΨΨΨ)
1−δi S (ti|ΨΨΨ)

δi , (4)

where n is the sample size. However, the logarithm of it,

l (ΨΨΨ) =

n∑
i=1

{(1− δi) log f (ti|ΨΨΨ) + δi logS (ti|ΨΨΨ)} , (5)

is often used instead [23]. Since the logarithm is a strictly
increasing function, the maximum likelihood estimate Ψ̂ΨΨML is
the same for both (4) and (5). In the maximum likelihood
estimation the parameter values converge in probability to the
true parameter values as n→∞ [24].

If the latent monetizing status ζi is somehow known for
every player, the data is said to be complete and the solution
is both simple and intuitive. The total number of players is
denoted with n = n0 + n1, where n0 stands for the number
of monetizing players and n1 is the number of unmonetizing
players. In order to find the maximum likelihood estimate, the
roots of the partial derivatives of (4) or (5) with respect to π
and λ are found separately. Then the parameters simply are

π̂ = n0

n and λ̂ = n0∑
i:ζi=0 ti

. (6)

In other words, the monetization percentage is the fraction
of players that purchase something. The conversion rate is the
number of monetized players divided by their total exposure
time. When considering the fact that E [T ∗] = 1/λ, it can be
seen that the expected purchase time is the average of exposure
times in the monetizing population.

However, there is the latent variable in the mixture cure
model since it is not known which players are monetizing. That
variable makes it impossible to find an explicit equation for
the maximum likelihood estimate. Expectation Maximization
(EM) algorithm [25] is an iterative algorithm that is suitable
for maximum likelihood estimation in situations where there
are missing data or latent variables. In a situation like this,
the observed data is said to be incomplete. As shown in the
appendix, this results in an iterative algorithm, which updates
the current value of the parameter π(k) by

π(k) =
1

n

[ ∑
i:δi=1

π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

+
∑
i:δi=0

1

]
(7)

and the current value of λ(k) is calculated with

λ(k) =
∑
i:δi=0 1∑

i:δi=1
π(k−1)e−λ

(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

ti+
∑
i:δi=0 ti

. (8)

These estimates converge to the global maximum of the
log-likelihood function when k →∞. The values of the log-
likelihood function (5), and the method iterations (7) and
(8) are illustrated with a black line in Fig. 2 for the data
represented in Fig. 1.

There are also some problematic cases when the model
does not work correctly. A zero-frequency problem is present
when all players are censored and there is no information
showing that some of the players monetize. In such a situation
the model is not able to distinguish between the survival



Fig. 2. Values of the log-likelihood as a function of π and λ.
The paths of the EM-algorithm iterations are presented as curves from
the initial guess ΨΨΨ(0) = (0.5, 0.5) to the maximum likelihood estimate(
π̂ML, λ̂ML

)
= (0.14, 1.73) and to the maximum a posteriori estimate(

π̂MAP, λ̂MAP

)
= (0.12, 1.75).

analysis model and the mixture cure model, and the method
predicts what the survival analysis assumes, i.e. that eventually
every player monetizes. This problem can be avoided by
using Laplace smoothing [26] which is a method that makes
all classes (unmonetizing and monetizing populations in our
case) existent by adding pseudo-observations to the data. It
is enough to add one unmonetizing pseudo-observation with
infinite follow-up to the data to avoid the zero-frequency
problem and obtain credible results in reasonable computation
time.

D. Prior information

In addition to Laplace smoothing, the problematic situations
can be avoided by using Bayesian analysis. In that both
prior information and sample information (likelihood function)
are used to obtain a posterior distribution of the considered
parameters [27]. Prior information means that something is
known about the values of the parameters before seeing any
data. For example, it is known that even successful free-
to-play games have monetization percentages in the single
digit range. This means we have prior information about
the monetization percentage π. A natural prior for π is the
Beta (α, β) distribution because its parameters are related to
the numbers of monetizing and unmonetizing players. In fact,
the Laplace smoothing that was used in [4] corresponds to a
Beta (1, 2) distribution. Four examples of Beta distribution are
shown in Fig. 3. By changing the values of the parameters,
the density can be concentrated around a certain monetization
percentage, e.g. with Beta (2, 20) distribution it is around 5 %
and with Beta (10, 82) distribution it is around 10 %.

In Bayesian analysis the optimal values for parameters are
called maximum a posteriori (MAP) estimates because they
maximize the posterior density function. EM-algorithm can
be used also for finding maximum a posteriori estimates. The
deriving of the formulas is shown in the appendix. Now that

Fig. 3. Four examples of the Beta (α, β) prior distribution for the monetiza-
tion percentage.

we use a prior only for the monetization percentage π, only
the formula (7) needs to be modified from the maximum
likelihood case. The current value of the parameter π(k) is
now updated by

π(k) =

[ ∑
i:δi=1

π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

+
∑
i:δi=0

1 + α− 1

]

· 1

n+ α+ β − 2
.

(9)
As can be seen, there are only minor changes in the formula.
They seem very obvious when thinking about the meaning of
the parameters α and β. The parameters can be thought as the
numbers of pseudo-observations that are added in the data:
α− 1 monetizing players and β − 1 unmonetizing players. It
can also be seen that (9) is equal to (7) if a noninformative
prior Beta (1, 1) is used. The EM-algorithm iterations obtained
by using (9) instead of (7) are shown in Fig. 2 as a blue curve.
The MAP estimate is almost the same as the ML estimate, but
it avoids the zero-frequency problem and formalizes the idea
of having prior assumptions about the data.

IV. DATA SETS

Based on the formulas we derived, the model was imple-
mented with the R programming language [28]. First we tested
the variability and bias of the model on generated data. After
that we used a game data set and CDNOW data set to see
how well the model works with real data. Now we introduce
the data sets and verify that the real data sets follow the
assumptions of the model.

A. Generated data

To our knowledge, there is no publicly available person
level data set with many free-to-play games. One of our
primary motivations is to apply the algorithm to completely
new games with limited follow-ups, therefore we simulated
different sample sizes n, censoring times c, and monetization
percentages π and then calculated the estimate π̂ for each data
set.

In the first experiment, we calculated the monetization
percentage estimates for different sample sizes and follow-
up times, given a true value of π = 0.10 and Beta (2, 10) and
Beta (10, 82) priors. The effect of sample size n was tested



with values 100, 500, 1000 and 5000. The censoring time c
was tested with values defined in a way that there is 25 %,
50 %, 75 % or 100 % probability for the monetizing players to
purchase before censoring. For each combination, we conduct
a thousand experiments r = 1, ..., 1000. In each experiment,
we sampled a player data set of size n, where the observed
time ti = min (t∗i , c), and calculated the predicted value of π̂r
using the EM-algorithm.

In the second experiment, we tested the effect of the true
monetization percentage on the estimate, and aimed to find
appropriate prior distributions for them. The effect of the true
monetization percentage was tested with values 0.01, 0.05,
0.1, 0.5 and 0.75. Censoring times were defined the same way
as in the first simulation but with 10–100 % probabilities to
purchase before censoring. The effect of the sample size was
tested with 10 different values varying from 100 to 1000 by
100. For each (n, π, c) triplet, 1000 estimates were computed
and averaged.

B. Game data

The real game data were collected from a free-to-play mo-
bile game by the company whose game it is. The game was in-
development during data collection, and many developments
were made to each version over the game development cycle.
Periodical user acquisition tests were used to evaluate the
current performance. In these tests, a group of players was
obtained by using paid advertisement in Facebook targeted by
country and device operating system. Each player has a ran-
dom hexadecimal ID and hence the data sets are anonymous.
The behaviour of the players was recorded only inside the
game.

The number of players varies between different versions and
only a small percentage of the players purchased an item as
can be seen in Table I. The version subsets are considered as
independent data sets and it is not taken into account that there
may be some players that are included in multiple of them. The
monetization in the game was likely improved from version
1.18 to version 1.21, but the subsequent development in the
1.3x series had no large effect on the percentage of purchasing
players.

TABLE I
NUMBERS OF PLAYERS AND MONETIZED PLAYERS IN THE REAL DATA.

Version # of players # of monetized players π
1.18 1604 6 0.004
1.21 309 6 0.019
1.31 1691 24 0.014
1.32 1582 21 0.013
1.33 1211 18 0.015
1.35 2364 35 0.015

We used these data to create censored data sets that replicate
the actual version user test. The event time was the calendar
time from the beginning of the first session to the first
purchase. We defined censored data sets by varying the data
collection date as 1, ..., D days of calendar time from the
beginning of the first session of the first player. Maximal

follow-up D denotes the actual data collection date, after
which we have no data. This created censored players with
different follow-up times, exactly the same way the data set
would be obtained if it was updated at the end of each day
after the test began.

C. CDNOW data

CDNOW data set consists of a purchase history of 23 570
individuals in an online retail shop. Every individual in this
data set made the first purchase at CDNOW in 1997 during
the first quarter. The data were collected until the end of June
1998. This data set was first used in [29].

We are interested in predicting how many of the customers
will return to the online shop and buy again. The beginning
of the follow-up is now the date of the first purchase and the
event time is the date of the second purchase. Now that we
only know the date instead of knowing also the time of the
purchase, there are some observed times that are equal to zero,
i.e. the second purchase was made the same day as the first
one.

We used the same method as with the game data also with
these data. We created censored data sets that replicate the
situation that the number of returning customers was estimated
every day since the beginning of the data collection. Again the
maximal follow-up is the date when the data collection ended,
which is 30.6.1998.

D. Model assumption verification

There are two assumptions in the model about the data
which need to be verified for the real data. The assumptions
are:

1) the event times are exponentially distributed and
2) there are individuals that do not have the event: π < 1.

Assumption 1 is verified with Q–Q-plots in which the quantiles
of observed event times are compared to the quantiles of an
exponential distribution. The Q–Q-plots for the game data are
shown in Fig. 4. There are some exceptions with late purchase
times, but most of the points are along a straight line. Most
of the points are along the straight line also for CDNOW
data which can be seen in Fig. 5. These suggest that for
the purposes of estimating the monetization fraction, we may
assume that the event times follow exponential distribution.

Akaike’s information criterion [30] is used to verify assump-
tion 2. This method consists of calculating an AIC value for
each compared model and the smaller the value, the better the
model describes the data. The value is calculated with

AIC = 2np − 2 log
(
L̂
)
, (10)

where np is the number of parameters in a model and
L̂ = L

(
Ψ̂ΨΨ
)

. A maximum likelihood estimate is calculated for
the incomplete data likelihood function because the values of
the monetizing indicator ζ are not known and the value of the
complete data likelihood function cannot be calculated. AIC
values in Table II show that the mixture cure model is better
than the regular survival model at explaining the data for every



Fig. 4. Q–Q-plots of the event times of each version.

Fig. 5. Q–Q-plot of the event times of CDNOW data.

game version and for the CDNOW data. This is not surprising,
given our prior knowledge about free-to-play monetization.

TABLE II
AIC VALUES FOR MIXTURE CURE AND REGULAR SURVIVAL MODELS.

Version Model
π < 1 π = 1

1.18 135.6720 154.0050
1.21 114.0415 132.1888
1.31 450.3302 501.7088
1.32 401.4259 436.8337
1.33 338.0034 364.8098
1.35 659.8481 693.9284

CDNOW 16288.19 17165.52

V. RESULTS AND DISCUSSION

The simulation studies were run several times with different
prior distributions. The prior distributions used with real data
sets are chosen based on the results of the simulation studies.

A. Simulation

The results of the first simulation are shown in Fig. 6. The
distributions of the estimates are visualised with boxplots for

every sample size and censoring time. When the probability
to purchase before censoring is one, we know which players
are monetizing and which are not. Thus that case is the same
as if the data were complete. The estimates were calculated
by using two different prior distributions with mode equal to
the true value π = 0.1.

With this experiment we demonstrate the effect of the prior
on the variance of the estimate. It can be seen that the stronger
the used prior is, the smaller the variance of the estimate is.
When the sample size is small and the follow-up is short,
there is hardly any information in the data, the estimate is
mostly based on the prior, and the variance of the estimate
depends on the variance of the prior. When there is more
information in the data (greater sample size or longer follow-
up), the effect of the prior decreases, and the variability of
data implies larger variance of the estimate. When the follow-
up time approaches infinity, there is sufficient information in
the data and the variance decreases again.

Fig. 6. Boxplots of the estimates of monetization percentage π.

The effect of the prior on the bias can be seen in Fig.
7, where the results of the second simulation study are
represented. First the values of the relative bias were shifted
by 1 so that all of them were positive and then logarithm was
taken. Again it can be seen that the stronger the prior and the
less there are monetized individuals in the data, the more the
prior affects the estimate. We can see in the subplots on the
diagonal of Fig. 7 that the most suitable prior distribution is
the one with mode equal to the real monetization percentage.

Based on the simulation studies we can say that the ad-
ditional prior information improves the method in that it
decreases the variance and if it is appropriately chosen, it also
helps to decrease the bias. Strong inappropriate prior might



Fig. 7. Relative bias of monetization percentage π on a logarithmic scale as
a function of censoring time and sample size.

bias the estimate a lot. If the mode of the prior distribution
is a lot smaller than the real monetization percentage, it is
anticipated that there is sufficient information in the data that
decreases the effect of the prior and the estimate might only
slightly underestimate the real value. Then again, if the mode
of the prior distribution is a lot bigger than the real value,
the sample information will not affect the estimate until the
complete data case and the real value is greatly overestimated.
Caution is needed when choosing the prior.

B. Game data

The results for the game data are shown in Fig. 8. A
prior distribution Beta (2, 50), that corresponds to adding 1
monetizing and 49 unmonetizing players, is used. We show
both the computed estimate π̂ and the percentage of monetized
players so far at each censoring time for every game version.
Obviously the percentage of monetized players increases as
there are new monetized players. The value decreases if
the number of monetized players does not increase at the
same rate as the total number of players increases. At first,
the predicted monetization percentages are greater than the
observed monetized percentages, but as the follow-up time is
enlarged, both estimates become equal to the supposed true
value.

In Fig. 7 we can see that a prior with a greater value for
parameter β is better for predicting the small monetization
percentages. Now the prior is chosen so that its mode is 0.02,
which is only a little higher than most of the real monetization

Fig. 8. Estimates for the game data with Beta (2, 50) prior.

percentages shown in table I. The monetization percentage of
version 1.18 is still greatly overestimated at the beginning but
for the other versions the results seem to be similar to the ones
shown before in [4]. Based on our simulation study, the peak
in the beginning again seems to be caused by prior having
a stronger effect than data on the estimate. Later when the
estimate is greater than the true value, it is because the model
predicts that there are players that will monetize although they
have not yet done so.

Despite that we assumed that the number of event times
that are not along the lines in figure 4 is sufficiently small
for satisfying the assumption of the event times following
exponential distribution, those purchase times may affect the
reliability of the method. Some other Weibull distribution
could be considered instead of the exponential distribution.
Another potentially beneficial modification could be that the
observed time was the total time spent playing the game
instead of the calendar time from the beginning of the first
session.

C. CDNOW data

The results for CDNOW data are presented in Fig. 9. We
can see that there are peaks in the percentage estimate in the
beginning when using informative priors. This is again caused
by that there is more information in the prior than in the data.
We can see that the stronger the prior is, the longer it affects
the estimate. When the data starts to affect the estimate, the
estimated percentage is only little higher than the true value.

It is a surprising result that the method does not predict
better for this data set although there are a lot more data and
the percentage of returning customers is a lot bigger than the
monetization percentage in free-to-play games. We thought
that small sample size and very small monetization percentage
are the main reasons, why the model is not able to make better



Fig. 9. Estimates for the CDNOW data with several priors compared to the
real percentage of monetized individuals.

predictions, but based on the experiment with this data set,
those qualities of data do not seem to affect the results that
much. Then again, assuming the event times to follow another
distribution could result in better estimates.

VI. CONCLUSION

The goal of this paper was to investigate a method that
can be used to predict the percentage of monetizing players
in limited follow-up data sets. The method uses a survival
analysis based mixture cure model together with the Expec-
tation Maximization algorithm, which results in an iterative
algorithm that returns the monetization percentage and the
conversion rate in an unlabelled data set. Most real-world data
sets are probably like this, because game developers would like
to use game analytics to improve the game during development
or shortly after launch. Our approach suggested a new way to
develop predictive models for this task.

The updated version of the method also takes prior infor-
mation into account. We improved the idea of using pseudo-
observations by replacing it with Bayesian inference, which
formalizes prior knowledge about a data set. This approach
decreased both the bias and the variance that were observed in
the original method. The results of the simulation studies with
generated data seemed promising: when a more informative
prior was used, the variance decreased a lot and the estimates
seemed to be less biased if the prior was well chosen.

However, with real data the prior information has an effect
only in the beginning when very short follow-ups imply little
information in the data. With sufficient information, the prior
distribution scarcely affects the values of the estimates. The
method was now also tested in the CDNOW data set. We
formulated a similar prediction task by asking how many first
time buyers become recurrent customers. Both the sample size
and the return percentage are a lot higher in the CDNOW data
set. We assumed that the method might work even better for

data with these qualities, but the results were very similar to
those in the game data.

Our findings suggest that it is very difficult to predict the
monetization percentage with unlabelled data sets when there
is no extensive historical follow-up. The required parametric
assumptions are close but do not exactly match real world data
sets and this has a surprisingly large effect on predictive per-
formance. Additionally, statistical theory guarantees that the
parameters will converge to the true values, but in practise this
happens extremely slowly as a function of sample size. The
experiments suggest that parametric methods and asymptotic
guarantees should be viewed with skepticism. We suggested a
method of how unlabelled data can be handled, but additional
research is needed to develop predictive models to this setting,
which was found to be more difficult.
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APPENDIX

We derive the iteration formulas (8) and (9) using the EM-
algorithm in this section. These formulas find the maximum
likelihood estimate in the incomplete data case. EM-algorithm
finds the maximum a posteriori estimate Ψ̂ΨΨMAP for incomplete
data by taking advantage of conditional expectation value
of complete data likelihood function Lc and prior density
function p (ΨΨΨ) [24]. The algorithm consists of two parts:

1) In E-step the conditional expectation of the log complete
data posterior density is calculated:

EΨΨΨ(k) {log p (ΨΨΨ|xxx)|yyy} = Q
(
ΨΨΨ;ΨΨΨ(k)

)
+ log p (ΨΨΨ) ,

(11)
where

Q
(
ΨΨΨ;ΨΨΨ(k)

)
= EΨΨΨ(k) {logLc (ΨΨΨ) |yyy} (12)

estimates the missing data by taking the conditional
expectation of the complete data likelihood function.

2) In M-step a vector ΨΨΨ(k+1) ∈ ΩΩΩ which maximizes the
(11) is found.

These two phases are repeated until convergence is achieved.
It is shown in [25] and [31] that the algorithm converges to a
local maximum of the likelihood function. In our case the log-
likelihood function is concave, which implies that there is only
one maximum and it is the global maximum. The additional
term, the prior density function, in (11) almost always makes
it more concave [24]. Thus these estimates converge to the
global maximum of the log complete data posterior density
function when k →∞. We first derive a formula for (12), then
a formula for (11) and finally find the maximum by finding the
roots of the partial derivatives of (11) with respect to π and λ
separately. At first the conditional probabilities are shown in
table III.



TABLE III
PROBABILITIES OF EVENT TIME T CONDITIONED ON MONETIZING

INDICATOR ζ

P (T |ζ) T = t T > t
ζ = 1 0 1
ζ = 0 λe−λt e−λt

Then the formulas of marginals of survival and density
functions in this mixture cure model case are
S (t) = P (T > t)

= P (T > t|ζ = 0)P (ζ = 0) + P (T > t|ζ = 1)P (ζ = 1)

= e−λt · π + 1 · (1− π)

= 1− π + πe−λt

(13)
and
f (t) = P (T = t)

= P (T = t|ζ = 0)P (ζ = 0) + P (T = t|ζ = 1)P (ζ = 1)

= λe−λt · π + 0 · (1− π)

= πλe−λt.
(14)

Now the formulas of incomplete data likelihood and log-
likelihood functions are functions (4) and (5) having functions
(13) and (14) substituted.

The EM-algorithm requires the complete data likelihood
function which is

Lc (ΨΨΨ | ttt, δδδ, ζζζ) =

n∏
i=1

(
πλe−λti

)1−δi
·
[
(1− π)

I(ζi=1) (
πe−λti

)I(ζi=0)
]δi (15)

and the logarithm of it is

lc (ΨΨΨ|ttt, δδδ, ζζζ) =

n∑
i=1

{(1− δi) [log π + log λ− λti]

+ δi [I (ζi = 1) log (1− π)

+ I (ζi = 0) (log π − λti)]} .

(16)

The last thing needed to define (12) is the probability to be
an unmonetizing player conditioned on purchase time. These
probabilities are calculated with the Bayes’ theorem:

P
(
ζi = j|T > ti,ΨΨΨ

(k−1)
)

=
P(T>ti|ζi=j,ΨΨΨ(k−1))P (ζi=j)

P(T>ti|ζi=0,ΨΨΨ(k−1))P (ζi=0)+P(T>ti|ζi=1,ΨΨΨ(k−1))P (ζi=1)

(17)
and
P
(
ζi = j|T = ti,ΨΨΨ

(k−1)
)

=
P(T=ti|ζi=j,ΨΨΨ(k−1))P (ζi=j)

P(T=ti|ζi=0,ΨΨΨ(k−1))P (ζi=0)+P(T=ti|ζi=1,ΨΨΨ(k−1))P (ζi=1)
,

(18)
and the results are shown in Table IV.

TABLE IV
PROBABILITIES OF MONETIZING INDICATOR ζ CONDITIONED ON EVENT

TIME T

P (ζ|T ) ζ = 1 ζ = 0

T > t 1−π
1−π+πe−λt

πe−λt

1−π+πe−λt
T = t 0 1

The resulting function (12) in a reduced form is

Q
(
ΨΨΨ|ΨΨΨ(k−1)

)
= Eζ|T,ΨΨΨ(k−1) [lc (ΨΨΨ|ttt, δδδ, ζζζ)]

=

n∑
i=1

1∑
j=0

P
(
ζi = j|T > ti,ΨΨΨ

(k−1)
)δi

· P
(
ζi = j|T = ti,ΨΨΨ

(k−1)
)1−δi

lc (ΨΨΨ|ti, δi, ζi)

=
∑
i:δi=0

[
1−π(k−1)

1−π(k−1)+π(k−1)e−λ
(k−1)ti

log (1− π)

+ π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

(log π − λti)
]

+
∑
i:δi=1

[log π + log λ− λti] .

(19)

Now that π ∼ Beta (α, β), the prior density function is

p (π) =
1

B (α, β)
πα−1 (1− π)

β−1
, (20)

where B (α, β) is a beta function. By combining (19) and
logarithm of (20) we get

EΨΨΨ(k) {log p (ΨΨΨ|xxx)|yyy} =∑
i:δi=0

[
1−π(k−1)

1−π(k−1)+π(k−1)e−λ
(k−1)ti

log (1− π)

+ π(k−1)e−λ
(k−1)ti

1−π(k−1)+π(k−1)e−λ
(k−1)ti

(log π − λti)
]

+
∑
i:δi=1

[log π + log λ− λti]

+ log
1

B (α, β)
+ log πα−1 + log (1− π)

β−1

(21)

Finally the formulas (8) and (9) are obtained by solving the
roots of the partial derivatives of (21) with respect to λ and π
separately.
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