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Abstract. A molecular dynamics (MD) simulation to simulate the vortices in

superconductors with artificial pinning sites is presented. The simulation reproduces

the correct anisotropic behavior in angular dependence of critical current. We also

show that the shape of the Jc(B) curve depends on the size of the pinning sites and the

change from p = 0.5 to p ≈ 1 is due to the breaking of the vortex lattice to individually

acting vortices. The results beautifully correspond to experimental data. Furthermore,

we found that the size and shape of the c-axis peak observed with columnar pinning

sites in Jc(θ) also depends on the size of the rods, larger pinning sites leading to

wider peaks. The results obtained from the MD-simulation are similar to those of the

much more computationally intensive Ginzburg-Landau simulations. Furthermore, the

MD-simulations can provide insight to the vortex dynamics within the samples.

PACS numbers:
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1. Introduction

Vortex pinning in high temperature superconductors, most often in YBa2Cu3O6+x

(YBCO), has been under considerable research effort in the last ten years [1].

Applications of superconducting wires typically would need isotropic critical current

density, Jc, which is as high as possible. The typical method of increasing Jc
and decreasing the intrinsic anisotropy is using artificial pinning centers (APC)

which are typically non-superconducting nanoscale inclusions within the matrix of the

superconductor. Depending on the growth method, the APCs form columnar nanorods

or roughly spherical nanoparticles with diameter of a few nanometers.

The Jc of a superconductor in magnetic field is defined by its capability of pinning

vortices as the movement of vortices will cause energy dissipation and a voltage drop.

At low magnetic fields, the vortices are widely separated and the main contribution to

the total force experienced by the vortex comes from the individual pinning sites. The

pinning forces of different kinds of pinning sites have been comprehensively derived by

Blatter et al [2]. If the pinning sites are weak, collective pinning by them determines the

Jc at low fields [3]. Superconductors with only weak pinning sites are not interesting

from application point of view, so they will be left out of our study. The strongest

pinning sites are columnar rods with diameter of the same order of magnitude as the

vortices aligned along the external magnetic field. Large enough rods can also make

the vortices align along the rods instead of the external magnetic field, leading to the

well known c-axis peak observed in e.g. BaZrO3 doped YBCO made by pulsed laser

deposition [4].

At higher magnetic fields, the vortices are closer to each other and the repulsive

vortex-vortex interaction will effectively reduce the pinning force of the pinning sites.

This leads to the reduction of Jc with increasing magnetic fields. If the pinning sites are

very strong, they will break the triangular Abrikosov vortex lattice, which is formed with

weak pinning sites, and each vortex is still individually pinned. In the other extreme,

the pinning sites will not be able to break the lattice and the Jc will depend on the

stiffness of the vortex lattice and the distribution of pinning sites [5].

In this paper, we present a molecular dynamics (MD) simulation of vortices in

pinning landscapes, which do not fulfil the requirements for analytical solutions. This

also enables us to look at the angular dependence of Jc (Jc(θ)) with different types and

orientations of pinning sites. Here θ is the angle between the external magnetic field

and the c axis of YBCO. The angular dependence has been modelled using statistical

approach on the paths of the vortices [6, 7, 8] assuming different orientations and

distributions of pinning sites. Unfortunately, the statistical approach does not really give

microscopic information on the optimal pinning sites, even though it helps to understand

the forms of the Jc(θ) curves.

In this paper we show that the MD simulation can reproduce the correct anisotropic

behavior of Jc with isotropic pinning sites. In addition, we show that the behavior of

Jc(B) changes with the size of the pinning centers in accordance with experimental
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data and that the size of the pinning centers is also a determining factor in Jc(θ).

The simple MD simulations also reproduce results obtained earlier with Ginzburg-

Landau simulations and give insight to the vortex dynamics in the superconductors,

which the GL-simulations do not give. With thorough understanding, real design-based

superconductors can be made.

2. Methods

2.1. Molecular dynamics simulations

We simulate vortices using a simplified MD model, where each vortex is represented by

a chain of particles. In addition to the vortices, pinning sites are also explicitly included

in the simulation as particles, but the YBCO lattice itself is not. Pinning sites are

immobile, and only the particles representing vortices are allowed to move during the

simulation. Dynamics are implemented using the leapfrog version of the velocity-Verlet

algorithm .

The simulations are three-dimensional, but we split the simulation into layers

perpendicular to the YBCO c axis to enhance computational efficiency. This means

that the particles representing vortices are restricted to move only in these ab layers,

and motion in the c direction is not allowed. A vortex is represented by a chain of

particles so that each layer contains exactly one particle. Particles in adjacent layers

are connected by a spring-like force representing the line tension of the vortex. Particles

belonging to different vortices only interact if they are in the same layer. Similarly,

vortex particles only interact with pinning sites which are in the same layer. The only

interaction between layers is the line tension in a vortex. A schematic picture of the

simulation configuration is shown in Fig. 1.

Pinning sites have different interaction radii representing their pinning strength.

Columnar pinning sites are constructed in a similar fashion as the vortices: a column is

represented by a stack of particles where each layer holds exactly one particle.

We apply periodic boundary conditions in the simulation layers, i.e, the YBCO

ab plane. However, we have free boundaries in the c direction. This means that the

simulation is periodically infinite in the ab plane but finite in the c direction. This

models the thin film geometry generally used in YBCO superconductors.

We also include an external magnetic field in the simulation, and the direction

of the magnetic field with respect to the c axis is adjustable. Vortices tend to align

themselves in the direction of the external magnetic field, and this introduces anisotropy

in the simulation. The layered structure of the simulation assumes that the vortices run

approximately in the c direction, and thus magnetic fields nearly perpendicular to the

c axis are incompatible with the layered model. This limits the range of magnetic field

angles we are able to study.

The total force acting on particle i (in layer i) of vortex n is

Ftot
(i,n) =

∑
m 6=n

fvv(i,n),(i,m)+
∑
k

fvp(i,n),(i,k)+
∑
j=i±1

f tension(i,n),(j,n)+
∑
j=i±1

fmagnetic
(i,n),(j,n)+fLorentz(i,n) +fdrag(i,n) .(1)
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Figure 1. A schematic diagram of the used molecular dynamics model. Vortices are

turquoise and pinning sites red. The particles of a vortex are connected with a spring-

like force. For visualisation, only four layers are shown. Interactions are shown with

arrows.

Here fvv(i,n),(i,m) is the force between the particles of vortices n and m in layer i. The

force fvp(i,n),(i,k) is due to the interaction between the particle of vortex n in layer i and

the pinning site k in the same layer. Vortex line tension is represented by f tension(i,n),(j,n), and

this force acts between particles of the same vortex n which are in adjacent layers i

and j. The tendency of the vortex to orient itself along magnetic field lines is driven

by the force fmagnetic
(i,n),(j,n). This force depends on the orientation of the vortex, and thus it

is a function of the positions of vortex particles in adjacent layers. Next, fLorentz(i,n) is the

Lorentz force caused by the transport current and the magnetic field, and finally, fdrag(i,n)

is the drag force that vortices experience in superconductors.

The magnitude of the vortex-vortex force is [9, 10]

fvv =
ε0
λab

K1

(
r

λab

)
, (2)

where ε0 is the characteristic vortex energy per length, λ is the magnetic penetration

depth, r = r(i,n),(i,m) is the in-layer distance between two vortex particles, K1 is the

Bessel function of first kind, first order. The characteristic energy is ε0 = φ2
0/(2πµ0λ

2) ≈
2.76·1011 J/m, where φ0 is the magnetic flux quantum and µ0 the magnetic permeability

of free space.

The force between a vortex and a pinning site is [11, 2]

fvp = ε0
rr20

(r2 + 2εϑξ2ab)
2
, (3)

where r = r(i,n),(i,k) is the in-layer distance between a pinning site and a vortex, r0 the

radius of the pinning site and ξ the coherence length of YBCO and εϑ is the angle-

dependent Blatter scaling parameter[2]

ε2ϑ(θ) =
sin2 θ

γ2
+ cos2 θ, (4)

where θ is the angle between the external magnetic field and the axis along the c lattice

parameter direction and γ is the anisotropy parameter of YBCO (≈ 5.0). The pinning
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site radius was varied in range 0.1 – 6 nm in the simulations. Although, Eq. (3) is

strictly speaking valid only for pinning sites sizes smaller than r0 <
√

2ξ, the error done

in comparison to the force obtained for large pinning sites [2] is small. At large distances

the two equations give asymptotically the same force. The small pinning site force, Eq.

(3), is also numerically stable unlike the large pinning site force, which diverges near

the pinning site.

Vortex line tension energy is [2, 12]

etension = ε0εϑL ln
λ

εϑξ
, (5)

where L is the length of a vortex. Taking the derivative of this energy with respect to

the separation ∆r = r(i,n) − r(j,n) between adjacent vortex particles, one finds the line

tension force. In our layered simulation, where the vortex particles are only allowed

to move in the ab plane, we only need the component of this force in this plane. The

magnitude of this component is

f tension = −ε0r(γ
2 − 1 + lnκ)

dγ2
√
d2 + r2

, (6)

where d = ∆rc = rc,(i,n) − rc,(j,n) is the distance between adjacent vortex particles

in the c direction (i.e., the distance between adjacent layers in the simulation) and

r = ∆rab = rab,(i,n) − rab,(j,n) is the distance between the particles in the ab plane. The

constant κ is the Ginzburg-Landau parameter (100 for YBCO).

The energy of a vortex in an external magnetic field, Bext, tilted at an angle ϕ with

respect to the field, is

emagnetic = −φ0µ0Bext cosϕ. (7)

Differentiating this yields the force

fmagnetic = φ0µ0Bext sinϕ
dϕ

dr
. (8)

The Lorentz force is fLorentz = φ0|B̂ext×Jc| = φ0Jc. The equality holds true because

the current is always kept perpendicular to the magnetic field.

The drag force resist vortex movement, and so it is always opposite to the velocity

v of a vortex particle,

fdrag = −ηv. (9)

The drag coefficient η is [13]

η =
φ0Bc2

ρn
, (10)

where ρn is the normal state resistivity of YBCO[14], 5.3·10−7 Ωm and the upper critical

field[15], Bc2, is 27 T at 77 K in the c direction.

The drag force is dissipative and its inclusion removes energy from the simulation.

Therefore the drag force acts effectively like a Langevin thermostat set to 0 K. If the

vortices are pinned, the drag force will remove energy from the simulation until the
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vortices are completely stationary. If the vortices are not pinned, work done by the

Lorentz force adds energy in the simulation, accelerating the motion of the vortices.

In this case, a steady state is eventually reached, where the work done by the Lorentz

force is cancelled by the negative work done by the drag force and the vortices travel

on average at constant velocity.

In our simulations, we are most interested in distinguishing between the state of

pinned vortices and the state of traveling vortices in order to estimate the critical current.

The exact temperature of the system can affect the tendency of vortices to get pinned,

but in our current simulation we merely assume that the temperature is low and do not

apply a thermostat set to a finite temperature.

The MD model also requires that vortex particles have a mass and vortices with

different masses can behave differently[16]. In this study, we have used a mass of 1020

kg. This value is somewhat arbitrary, but according to our test calculations, our results

do not depend on the precise value of this mass. This is because the timescale of the

simulation is defined by how quickly the vortices reach the steady state where they travel

at constant velocity. The characteristic time, τ , for this process is given by the ratio of

the vortex mass and the drag coefficient, and since η ≈ 10−7 kg/s, a mass of 10−20 kg

gives τ = m/η ≈ 10−13 s. The distance between pinning sites is roughly 10−7 m and

the terminal velocity of vortices, which depends on the Lorentz and drag forces but not

the vortex mass, can go up to 103 m/s. Therefore, vortex travel time from one pinning

site to another is about 10−10 s. This is 1000 times longer than the characteristic time

τ , which means that the vortices reach their terminal velocity very quickly and travel

at constant speed. This result is true as long as τ is clearly smaller than the travel time

between pinning sites, and as long as the mass is in this regime, vortex dynamics do not

depend on the exact value of the mass.

2.2. Simulated systems

The pinning landscapes (pinscapes) contained either nanorods or single nanodots of

different sizes. The distribution of the nanorods in the simulations were randomly

generated so that there is a minimum distance (≈ 20 nm) between the rods. This

was to ensure that the pinscape was as close to the experimentally observed as possible

(e.g. BZO rods in YBCO). The positions of the nanodots were randomly generated in

each layer. In each simulation run several (4–15) pinscapes were used and the results

averaged. The error bars represent the mean error as calculated from these simulations.

The number of vortices in the simulation was determined by the field strength

according to equation B = nφ0, where n is the vortex density. The size of the calculation

area was varied from 200× 200 nm2 to 400× 400 nm2. The larger systems were used at

low fields where vortex density is lower. The used magnetic field range was 0.1 – 2.0

T.

The critical current was iterated by the bisection method. The simulation was run

with one current and the current in the following iteration was adjusted according to
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Figure 2. Jc(θ) curves calculated for different anisotropy constants γ. The points are

the simulation results and the curves show the theoretical dependences. The insets

show examples of vortex configurations (blue rods) in the pinscape formed by isotropic

pinning centers (red spheres) at magnetic field angle of -70◦ for the γ = 5 (top) and

γ = 1 (bottom) points. The B arrow shows the direction of the external field.

the stability of the system. The average of the vortex position was calculated over

all the layers. Additionally, if this condition was not fulfilled, the average speed of the

vortices was checked. A vortex was considered pinned if its current speed was below

a defined limit. As the speed of a vortex is defined by the arbitrarily chosen vortex

particle mass, the speed limit is also arbitrary. In low fields, a lower speed limit was

used, since the force caused by the field is so small that the vortices were practically

always stable. Both the position and speed stability were checked with regular intervals

during the simulation.

3. Simulation results and comparison to experimental data

3.1. Anisotropy

The validity of the anisotropic corrections to the line tension force (Eq. (5)) and the

vortex-pinning site force (Eq. (3)) was checked by running simulations with random

isotropic spherical pinning sites and different anisotropy constants γ. The results for

γ = 1, 3 and 5 with theoretical curves (Eq. (4)) for each are shown in Fig. 2. It is

clearly seen that at high angles the simulation does break up, but it represents reality

fairly well up to 60 degrees with YBCO’s γ = 5. With lower anisotropy the simulation

results start deviating from the theoretical curve at lower angles. The breaking of the

model is due to the layered nature of the simulation, where at high angles the vortices

lie almost along the ab-planes and still do not interact through the layers. Fixing this

would require a real 3 dimensional simulation with interactions between all the vortices

and pinning sites.
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The insets of Fig. 2 show representative stable vortex configurations at external

field angle of -70 degrees. The different anisotropies of the superconductors are visible

in the angles of the vortices seen in the images of the vortex configurations: higher

the anisotropy more slanted the vortex is. The angle of the vortex is defined by two

competing forces. The external magnetic field tries to align the vortex with itself,

whereas the line tension tends to shorten the vortex and thus turn it more along

the thinnest direction of the superconductor. In high anisotropy superconductors the

vortices are more flexible along the planes, thus the vortices are more along the external

field with γ = 5.

3.2. Rod size dependence of Jc(B)

Curving of the Jc(B) dependence in log-log graphs [17] is a typical feature of YBCO

thin films with APC’s. In pure YBCO films, Jc(B) is nicely described with B−α, where

α is around 0.5 at low temperatures. In APC films, on the other hand, a smooth curving

of Jc(B) is observed and determination of α is fairly arbitrary, but generally in range

0.1–0.4 [18, 19, 20]. Instead of Jc(B), many authors have calculated the pinning force

Fp = |Jc ×B| = JcB in the maximum Lorentz force configuration, where Jc and B are

always kept perpendicular. The shape of Fp has been derived by e.g. Dew-Hughes[21]

and Kramer [22] to be

Fp(B) = Fp0

(
B

Bc2

)p(
1− B

Bc2

)q
, (11)

where Fp0 scales the pinning force at maximum, Bc2 is the upper critical field and p and q

are exponents which depend on the type of pinning sites in the sample. In the model by

Dew-Hughes for non-magnetic pinning sites, if the diameter d is much smaller than the

coherence length ξ, p = 0.5 and if d � ξ, p = 1. In high-temperature superconductors

Bc2 has been replaced by Birr [23], as in them Birr marks the limit above which Jc is zero.

We have recently suggested scaling the field with the magnetic field value at maximum

force, Bmax to enable reliable fitting of Eq. (11) [17]. It is immediately seen that in the

first order approximation α = 1−p and the curvature at high field is mostly determined

by q. The value of q can be derived from Ginzburg-Landau (GL) theory to be q = 1[17],

but if derived from the shear modulus c66 of the vortex lattice, value q = 2 is often

obtained[5, 24]. Also statistical variation of the pinning site sizes changes q[25].

To understand the change in the shape of Jc(B), we simulate systems containing

columnar rods of different radii as pinning sites. Fig. 3 shows the dependence of the

scaled pinning force Fp for a 4-wt% BZO- and BCO-doped YBCO films[26, 27], as

well as simulations of 3 nm and 6 nm diameter rods,. The inset shows the measured

and simulated Jc(B) dependeces. The simulated values have been shifted to fit the

experimental data at one field value, but the field dependence has not been changed.

A clear difference is seen between the different sizes of pinning sites. On the right of

the figure, the stable simulation states are shown for 6 nm and 3 nm rods at critical

current in field of 0.75 T, which is below the accommodation field. Even so, only a few
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Figure 3. Scaled pinning forces for 4 wt-% BZO- and BCO-films together with the

simulated values for corresponding pinning site sizes (diameters 3 nm and 6 nm).

The inset shows the measured Jc values as function of external magnetic field. The

simulation Jc values have been shifted to fit the experimental data on the lowest field

value. On the right are shown the stable states of the simulations at critical current

at 0.75 T. The arrow shows the one pinned vortex in the vortex lattice.

of the vortices are pinned into the small diameter rods, and the rest are stabilized by

the vortex-vortex interaction to a lattice. This leads to fast degradation of the critical

current with field. When the pinning sites are large, each vortex is individually pinned,

the lattice is destroyed and the decrease of the critical current is much slower. The

difference of vortex dynamics for different pinning site sizes is clearly visible in the

videos available as supplementary information.

The Fp(B) fit was made for simulation results obtained for pinning site sizes varying

from 0.5 nm to 14 nm, similarly as in Fig. 3. To ease the fitting, q was fixed to 1.1

[17] for all the sizes. First the scaling with Fp,max and Bmax was done and then p fitted.

The fitted p values are shown in Fig. 4 together with experimental data on different

kinds of YBCO films[17] and Ginzburg-Landau simulations [28]. It is clearly seen that

the MD-simulations follow the same size dependence for p as the experimental data and

the GL-simulations. When the pinning sites are small, such as dislocations, p = 0.5

as expected from the Ginzburg-Landau theory. With small pinning sites, the vortex-

vortex interactions are comparable to the vortex-pinning site interactions, which leads

to the vortex lattice staying in tact, as also seen in the supplementary videos. When

the pinning sites are large (d � ξ), we get p ≈ 1, as also expected from the Ginzburg-

Landau theory. In this case the pinning force from the pinning sites is so large that it

breaks the vortex lattice.

Between the extremes of small pinning sites and large pinning sites, it is natural

that p changes smoothly. In these cases the vortex lattice is still somewhat intact,

but distorted. This range is difficult to reach analytically. It should be noted that

the current MD-simulations also reproduce the much more complicated GL-simulations
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Figure 4. The dependence of p on the size of the pinning site. BZO-% refers to samples

with different BZO-doping[26], BZO-T to samples made at different temperatures [29]

and BCO-% to samples with different BCO content[27]. The vertical line shows the

limit above which multivortices were observed in the GL-simulations.

and that in addition e.g. the breaking of the vortex lattice is easily observed in the

MD-simulation.

From these results, we can also conclude that the optimal diameter of pinning sites

is actually quite close to 4ξ, where p reaches ≈ 1 (around 10 nm at low temperature

for YBCO). Above this size the field dependence does not change and in the GL-

simulations multivortices are seen[28]. If the pinning site diameter is further increased

the superconducting cross section of the sample decreases and thus the critical current

density starts to decrease. It has also been observed that adding second phase pinning

sites tends to decrease the zero or self field critical current density [14, 26, 30]. This can

be understood as increase of the magnetic field penetration depths λ due to the decrease

of the superconducting energy gap [31, 32]. The lattice distortions caused by the dopants

diminish the energy gap. This is also seen as the general trend of decreasing Tc with

increasing doping [14, 33]. Therefore limiting the doping to minimum is necessary. The

optimal density of pinning sites depends on the magnetic field used in the intended

application.

3.3. Angular dependence of Jc in films with different rod sizes

In superconducting applications the goal is to have as high and isotropic Jc(θ) as

possible. To that end nanorods have been introduced as pinning sites. These produce a

wide peak in Jc(θ) in the direction of the rod. The actual shapes of Jc(θ) depend on e.g.

diameter, length and orientation of the rods as well as on temperature and magnetic

field. In addition, all real films contain dislocations and twin boundaries, which affect

pinning, specially at low temperatures.
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Figure 5. The simulation results for angle dependent Jc for samples with different

diameter direct nanorods (10, 8, 5 and 3 nm). On the right are vortex configurations

at the critical current with magnetic field angle of 30◦. The lines in the left panel are

experimental data: BZO is from BaZrO3 doped YBCO films with nanorod diameter

around 10 nm (Kang et al[34]), BSO from BaSnO3 doped YBCO films with nanorod

diameter around 7 nm (Horide et al[35]) and GB from YBCO film on Hastelloy

substrate with low angle grain boundaries (Wee et al [36]).

In order to study the effect of rod sizes to the angular dependence, simulations

were run at 0.75 T for rods without any splay. Fig. 5 shows the Jc(θ) results for

nanorods with different diameters along with representative vortex configurations in

the simulation at 30◦angle. It is clearly seen that as the nanorod diameter increases

and the pinning force of the rod increases, the rod is capable of holding segments of

vortex along it. When the magnetic field angle is too high compared to the pinning

force of the rod, the rods act as point pinning sites and vortices follow the external field.

The observed Jc is higher when larger segments of the vortex are pinned. The angle

of change between these modes depends on the rod diameter and thus determines the

width of the observed c-axis peak. The normal anisotropic curve is obtained when the

pinning sites are not strong enough to make the vortices follow them. Animations of

the simulations are available as supplementary material.

To compare the simulated Jc(θ) with experiments, we took previously published

Jc(θ) data from three different kinds of samples. These were BaZrO3 doped film [34]

with 10 nm rods, BaSnO3 doped film [35] with 7 nm rods and an YBCO film on

Hastelloy substrate [36], which had low angle grain boundaries (∆φ = 3◦). The low

angle grain boudaries are assumed to be distorted areas around dislocations and thus a

few nanometer wide. All the data has been taken at 77 K and 1 T, which are readily

available in the literature. The field is close to the one used in the simulation and at this

temperature the twins and normal dislocations are fairly ineffective thus the pinscape

better corresponds to the simple one used in the simulation. The data are shown as
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lines in Fig. 5 and the qualitative agreement is good. The discrepancies at the widths

of the c-axis peaks are explained by splay of the rods in the real samples, the other

pinning sites in the samples and the small scale of the simulations.

4. Conclusions

In this work we have made a molecular dynamics simulation to simulate the vortices

in superconductors with artificial pinning sites. We have shown that the simulation

reproduces the correct anisotropic behavior in angular dependence of critical current.

We also showed that the shape of the Jc(B) curve depends on the size of the pinning

sites and the change from p = 0.5 to p ≈ 1 is due to the breaking of the vortex lattice to

individually acting vortices. The results beautifully correspond to experimental data.

Furthermore, we found that the size and shape of the c-axis peak observed with columnar

pinning sites in Jc(θ) also depends on the size of the rods, larger pinning sites leading to

wider peaks. This is a consequence of the large pinning force of the large pinning sites,

which can stretch the vortices from one pinning site to another. The results obtained

from the MD-simulation are similar to those of the much more computationally intensive

GL-simulations. Furthermore, the MD-simulations can provide insight to the vortex

dynamics within the samples. Thus, we conclude that the very simple MD model can

be used to understand and predict Jc(B) and Jc(θ) behavior of YBCO superconductors.

Obvious improvements to be done in the future are including temperatures higher

than 0 K. The layered simulation presented here is computationally efficient, but it

cannot represent systems where the external magnetic field is oriented close to the ab

plane. Especially, we cannot simulate the experimentally observed ab peaks using this

model. We plan to fix this shortcoming by extending the layered simulation to a full

three-dimensional model.
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