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Three main ductile deformations, D1-D3, and contemporaneous and later shear zones
account for most structures in Central Lapland. The oldest tectono-metamorphic feature
is the bedding-parallel, mostly microscopic S1, overprinted by the main foliation S2,
which is the most prominent structural feature seen in almost all rock types throughout
the study area. Subhorizontal S2 is an axial plane foliation to tight or isoclinal, inclined
to recumbent F2 folds. Kinematic indicators in the central and southern parts of the
study area indicate a northward transport direction, but close to the S and SW border the
Lapland Granulite Belt it may be of opposite direction. F3 folds deform the D2 structures.
F3 folding show an extreme variety regarding the fold vergence with N-vergent folds
in south, SW-W-vergent folds in north and E-vergent folds in west close to the Kolari
shear system. Apparently, the F3 folding seems to be associated with complex tectonic
movement directions, from S to N direction in the south, from NE to SW in the north
and northeast part, and from W to E in the western part of the study area.

Several metamorphic zones have been mapped in the area. These are I) granulite
facies migmatitic amphibolites south of the granulite complex (including the so called
Tanaelv belt next to the granulites); II) high pressure mid-amphibolite facies rocks
south of Zone I, characterised by garnet-kyanite-biotite-muscovite assemblages with
local migmatisation in metapelites, garnet-hornblende-plagioclase assemblages in ma-
fic rocks, local cordierite-orthoamphibole rocks intercalated with mafic volcanics; IIT)
low-pressure mid-amphibolite facies rocks south of Zone I1, garnet-andalusite-staurolite-
chlorite-muscovite assemblages with retrograde chloritoid and kyanite in metapelites,
hornblende-plagioclase-quartztgarnet in metabasites; IV) greenschist facies rocks of the
Central Lapland Greenstone Belt, fine-grained white mica-chlorite-biotite-albite-quartz
in metapelites, actinolite-albite-chlorite-epidote-carbonate in metabasites; V) prograde
metamorphism south of Zone IV from lower amphibolite facies (andalusite-kyanite-
staurolite-muscovite-chloritexchloritoid schists, V.1-2) to mid-amphibolite facies
(kyanite-andalusite-staurolite-biotite-muscovite gneisses,V.3) and upper amphibolite
facies garnet-sillimanite-biotite gneisses (V.5); VI) amphibolite facies pluton-derived
metamorphism related with heat flow from central and western Lapland granitoids,
where Zone V1.2 represents both andalusite and sillimanite-present, and Zone V1.3 only
sillimanite-present, andalusite absent gneisses. Pelitic rocks exhibit decompressional
PT paths where andalusite grade metamorphism was preceded by higher pressure.
Metamorphism was partly related with tectonic thickening during overthrusting of the
Lapland Granulite Belt to the south, but the present metamorphic structure may record
later, postmetamorphic faulting and folding events.

Key words (GeoRef Thesaurus AGI): metamorphic rocks, metapelite, metabasite, min-
eral assemblages, P-T conditions, Central Lapland Greenstone Belt, Paleoproterozoic,
Finland.
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INTRODUCTION

The Central Lapland Greenstone Belt and adjacent
areas bordering the classical Lapland Granulite Beltin
the south and south-west, have recorded six hundred
million years of Paleoproterozoic depositional evolu-
tion from c. 2.5 Ga to 1.88 Ga (Lehtonen et al. 1998,
Hanski et al. 2001). The structural and metamorphic
history of the Lapland Granulite Belt has been con-
strained in many papers (e.g. Eskola 1952, Hérmann
etal. 1980, Raith et al. 1982, Marker 1988, Barbey &
Raith 1990, Korja et al. 1996, Perchuk et al., 2000),
but systematic large-scale regional metamorphic and
structural mapping has not been accomplished in
the adjacent lower grade Proterozoic areas, although
many special studies have dealt with the tectonometa-
morphic evolution of these regions (Gaal et al. 1978,
Kaérkkéinen 1982, Gaal et al. 1989, Ward et al. 1989,
Rastas and Kilpeldinen 1991, Sorjonen-Ward et al.
1997, Lehtonen et al. 1998, Tuisku & Makkonen

1999, Holttda & Viisdnen 2000, Perchuk et al., 2000,
Evins & Laajoki, 2002). However, the structural and
metamorphic history of these areas is in a key position
in tectonic modelling of the Proterozoic orogeny in
the northern Fennoscandian Shield.

The purpose of this work is (i) to map the regional
metamorphic zones in Central Lapland (Fig. 1) by
describing the distribution of metamorphic mineral
assemblages in metapelites and metabasites and by
using geothermometry and geobarometry, (ii) describe
the petrography and mineral chemistry of metapelites
and metabasites, (iii) outline the main deformation
phases and their relationship to metamorphism. This
paper is mainly descriptive, trying to give a general
framework for further development of both tectonic
models and detailed structural and metamorphic
analysis of metamorphogenic ore genesis.

GEOLOGICAL SETTING

The Proterozoic evolution of the Central Lapland
area started with rifting of the Archean crust, produc-
ing andesitic lava flows and dacitic to rhyolitic ash-
flow tuffs and ignimbrites of the Salla Group at the
Archaean-Proterozoic boundary. These subaereally
erupted volcanics are followed by crustally contami-
nated komatiites, siliceous high-Mg basalts and mafic
volcanic rocks of the Onkamo Group. The 2.4 Ga old
Koitelainen layered intrusion cuts the volcanic rocks of
the Salla Group but not those of the Onkamo Group.
This initial rifting-related volcanism was followed by
the sedimentation of arkosic quartzites, carbonate rocks
and mica schists of the Sodankyld Group, probably
before 2.2 Ga that is the age of the mafic/ultramafic
sills of the gabbro-wehrlite association (Hanski 1996)
that have intruded these metasediments. Investiga-
tions of sedimentary facies of these metasediments
suggest a continental margin setting. Deepening of
the sedimentary basin caused accumulation of fine-
grained sediments like phyllites and black schists of
the Matarakoski Formation, the Savukoski Group.

These pelitic metasediments are conformably overlain
by basaltic and peridotitic komatiites and picrites
of the Sattasvaara Formation. Emplacement of
the 2.05 Ga old Keivitsa layered intrusion gives a
minimum age for the Savukoski Group. The sedi-
mentary-volcanic associations described above are
in tectonic contact with the Kittild Group, interpreted
as an allochtonous oceanic unit comprising various
MORB- (mid-oceanridge basalts), OIB- (ocean-island
basalt) and [AT-type (island arc tholeiitic) volcanic
rocks, ophiolitic mantle rocks of Nuttio, and chemical
sediments (Hanski 1997). The allochtonous nature of
this group is, however, questioned by Sorjonen-Ward
et al. (1997), who regard it as an ensialic, autoch-
tonous unit. Younger quartzites and conglomerates
of the Lainio and the Kumpu Groups cap all the pre-
vious rocks with unconformity. These molasse-type
sediments contain pebbles of ca 1.88 Ga magmatic
rocks, providing the maximum age of sedimentation
(Hanski etal. 2000). Detailed descriptions of the above
mentioned stratigraphic successions are provided by
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Fig. 1. The location of the study area as indicated by the box on the geological map of Finland after Korsman et al., 1997.

Lehtonen et al. (1998) and Hanski (2001) and Hanski
etal. (2001).

The oldest dated Proterozoic intrusion is the Nilipda
granite in the northern side of the Central Lapland
Granitoid Complex. Th U-Pb age on zircon in this
granite is 2.1 Ga, but also younger granitoids, dated at
c. 1.84 Ga, occurinthe complex (Huhma, 1986). Rocks

ofthe so called Haaparanta Suite occur in the western
part of Central Lapland and comprise ¢. 1.88—1.89 Ga
deformed (foliated) tonalites, granodiorites and mon-
zonites (Lehtonen etal. 1998), but granitoids of thisage
have been found also in the Sodankyld area in eastern
Lapland (Rasdnen & Huhma 2001). They probably
represent the magmatism associated with the main
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Svecofennian accretional tectonics. So called Hetta
granites in the northern part of the Kittil4 greenstone
area are fine- to medium-grained, variously foliated,
granodioritic to tonalitic intrusive rocks. Some of them
are dated at c. 1.80 Ga, while some contain an older
inherited component (Huhma 1986), suggesting the
origin of deeper source by crustal anatexis. Youngest
granitoids in the area are post-orogenic, 1.77 Ga old
Nattanen-type granites (Huhma 1986; Haapala et al.
1987; Wennerstom and Airo 1998).

Rastas and Kilpeldinen (1991) and Lehtonen et al.
(1998) made structural analyses on selected key areas
in Central Lapland. They reported a polyphase folding
from various directions with at least two late folding

phases, of which E-W folding is younger than N-S
folding. Gaal et al. (1978), however, had an opposite
opinion. Ward et al. (1989) and Sorjonen-Ward et
al. (1997) on the other hand, provided a kinematic
approach. They suggested a plate motion from two
directions: the Svecofennian movement from south
to north and a more or less simultaneous transport
of the Lapland Granulite Belt from north to south or
southwest. This created folds of opposing vergences in
north and south, respectively. Dextral rotation caused
some of the interference patterns seen on geophysical
maps. The overall structural style of the area resembles
that of a fold and thrust belt (Ward et al. 1989).

Deformation

We describe here those ductile deformation events
which are closely related with the evolution of the
regional metamorphism (D1-D3). Apart from these
there is later postmetamorphic deformation that e.g.
accounts for the evolution of late shear zones (Lehtonen
et al. 1998; Viisédnen, 2002).

Structural correlation across such a large area is
problematic without detailed geochronological data
of different tectonic episodes, recalling the possibility
that even a single deformation can locally produce
superimposed structures (e.g. Burg 1999). Since the
now exposed orogen probably was formed by plate
motions from different directions, at different times,
and atvarying intensities, the resulting tectonic mosaic
is extremely heterogeneous. Therefore, the group-
ing of structures under labels D1-D3 below is only
descriptive and is based on the overprinting criteria
within smaller subareas. There are many different
kinds of tectonic and metamorphic blocks exposed
in the area and therefore, we do not believe that
different structures (e.g. D3 structures) in different
places were formed simultaneously. Therefore in a
strict sense, the structures can not be correlated. The
geometrical structure analysis has its limitations in
Central Lapland.

Volcanic and sedimentary depositional structures
(bedding) are quite common in Central Lapland,
helping to identify rock types and the paleoenviron-
ment. Unambiguous younging criteria were, however,
observed veryrarely during mapping, the observations
were mostly made on quartzites. This hampered the
identification of possible overturning of the strata.
According to Ward et al. (1989) and Evins & Laajoki
(2002), however, in spite of recumbent folding, there
are sufficient younging data to preclude the existence
of large-scale fold nappes in Central Lapland.

10

D1 deformation

The oldest tectono-metamorphic feature in Central
Lapland is the bedding-parallel foliation, S1. It can
be seen in mica rich sedimentary rocks within F2 fold
hinges, perpendicular to S2 axial plane foliation, but
rarely observed macroscopically. S1 is also preserved
as inclusion trails within andalusite, garnet and stau-
rolite porphyroblasts. Holttd and Véisénen (2000)
called it as S1a foliation (predating D1), because the
origin of the foliation was ambiguous and it was not
amappable unit. However, the S1 foliation appears to
belocally evenstronger than S2. Therefore, we believe
that it is of tectonic origin, older than S2 and deserves
a separate D1 term, in accordance with terminology
in Lehtonen et al. (1998). However, we did not detect
any folds associated with S1 that would have been
clearly overprinted by D2 deformation.

D2 deformation

The most prominent structural feature seen in most
rock types throughout the study area is the main fo-
liation, S2. In most cases it is subparallel to bedding,
but in some competent rock types such as quartzites
and sandstones, the foliation can be in larger angle to
bedding. Minerals defining the foliation are protolith
and metamorphic grade dependent: in lowest grade
rocks foliation in pelitic rocks comprises chlorite and
muscovite, whereas in higher grade rocks chlorite is
replaced by biotite. When associated with F2 folds,
S2 is an axial plane foliation to commonly tight or
isoclinal folds deforming bedding, SO, and the bed-
ding-parallel, microscopic S1. The orientation of the
main foliation and the early folds vary, but in most
places S2 is gently dipping to flat-lying, and the folds
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Fig. 2. (a) Recumbent folds on a vertical wall of an abandoned marble quarry in Akasjokisuu. Pen in the lower right corner points north. N 7490585,
E 3355993. (b) Recumbent N-vergent folds in chlorite-muscovite schist in Rajala. Pen points north. N 7502895, E 3460515. (c) Photomicrograph of
the rock in Fig. 2b displaying a vertical S1 and horizontal S2. Field of view is 5 mm. (d) Sheared ultramafic rock in Tarpomapad displaying a metre
scale NNE-vergent S-C structure. The hammer shaft points north. N 7527806, E 3453228. Locations of the photograph sites are presented in Fig. 7.

are either recumbent or reclined (Figs 2a and 2b). Ver-
tical axial planes with steep fold axes also exist. The
field observations suggest that this early deformation
was caused by horizontal movements related to thrust
tectonics. However, it is not sure if S2 was originally
horizontal throughout Central Lapland (see also Ward
et al. 1989 and Evins & Laajoki 2002).

In the study area, the gently dipping to horizontal
foliations are still preserved in many places, with an
approximately NNE-SSW elongation lineation on
the foliation plane. In Figs 2b, 2d, 3a and 3b, four
independent observations from different parts of the
study area are presented to argue that the movement
direction was from SSW to NNE. The measurements
of the main lineations are plotted on Fig. 4 and F2
folds on Fig. 5. Some of the S2 form lines, main
thrusts, shear zones and tectonic transport directions
are presented in Fig. 7.

In Fig. 2b, the fold vergence in recumbent F2 folds
indicate a northward transport direction in an outcrop
situated close to the Sirkka shear zone (Fig. 7). Fig.

2d displays a vertical section of an ultramafic rock,
partly altered to serpentinite. This belongs to the same
rock series as the Nuttio serpentinite that, according to
Hanski (1997), is apiece of mantle part of an ophiolite.
The outcrop displays a well-developed S-C structures
that occurs both in millimetre and metre scales, indi-
cating top-to-the NNE movement direction. Fig. 3a
shows a spectacular example of a sigmoidal garnet,
where shear sense is top-to-the N. The example in
Fig. 3b shows a thin section photomicrograph of a
strongly deformed quartzite with a well-developed
quartzrod lineation on a subhorizontal foliation plane.
Small-scale shear bands show top-to-the NNE move-
ment direction.

The examples above indicate northward transport
during D2. It is possible, however, that the structures
described above were reactivated during D3 and some
of them display a composite D2+D3 structure (see
below). Kinematic information from this tectonic
stage is lacking in this work from the S and SW bor-
der the Lapland Granulite Belt. Korja et al. (1996),

11
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Fig. 3. (a) Sigmoidal garnet in mica schist, north is to the right. Field of view is 10 mm. Nuttion Tuorelaki. N 7515889, E 3457831. (b) Dextral shear
bands in quartzite. Field of view is 10 mm. Petkula. N 7510986, E 3490942. (c) Subvertical S2 is folded by E-W late folds with gently S-dipping
axial surfaces. Hammer shaft points north. Petdjavaara. N 7476509, E 3495903. (d) Mica schist folded by inclined N-vergent late folds. Pink granite
is folded and intrudes along axial surfaces (lower right corner). The hammer shaft points north. Pikku-Venevaara. N 7482989, E 3516295. Location
of the photograph sites are presented in Fig. 7
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Fig. 4. Measurements of lineations. Broad arrows show the interpreted tectonic transport directions.
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Fig. 5. Measurements of the F2 and F3 folds. Boad arrows show the interpreted tectonic transport directions.

however, describe SE verging recumbent folding,
but the correlation to structures described above and
below is unclear.

D3 deformation

The geological structures described above are
overprinted by a set or sets of late folds (here collec-
tively called F3 folds) and late shear zones of various
orientation and attitudes (Véisdnen 2002). Folds with
E-W, N-S, NE-SW and NNW-SSE axial traces are all
observed and measured, but the E-W and N-S orienta-
tions dominate. The dips of the axial surfaces of F3
folds also vary from horizontal through moderately
dipping to vertical. These observations closely resem-
ble that of a polyphase folding previously described
as F3 and F4 by Rastas and Kilpeldinen (1991) and
Lehtonen et al. (1998).

We did not find any unambiguous systematic and
repetitive overprinting relationships of late folds of
different orientations in this work. On the contrary,
some observations suggest that they could have been
formed approximately simultaneously or in the
course of the same progressive deformation, possibly
accompanied by rotation. These include e.g. (i) the
similar fold geometry, (ii) the similar metamorphic
grade using mineral growth as criteria, (iii) same
relationship to vein material (carbonate veins, quartz
veins, iron carbonate veins), (iv) fold axes of differ-
ent orientation and attitude were found occasionally
within same outcrops without any obvious overprint-
ing relationships.

In general, in the southern and south-eastern part
of the study area (Sodankylé area), late folds, plotted
as F3 in Fig. 5, are E-W trending, their axial surfaces
range from vertical to moderately dipping, locally even

13
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Fig. 6. (a) Asymmetric NNE-vergent late fold with a steep northern fold limb and a gently dipping southern limb. Rovalaki. N 7511749, E 3463811.
(b) Inclined W-vergent late fold, view looking south. Haapanalehto. N 7555046, E 3458000. (c) W-vergent inclined fold, view looking south. Lompolo,
N 7557161, E 3409693. (d) Granite dike intrudes along the N-S axial surface of a late fold, the hammer shaft pointing north. Vuomilehto. N 7553309,
E 3496939. The thin dot-dash line shows the contact of granite with the folded felsic gneiss. Locations of the photograph sites are presented in
Fig. 7.

subhorizontal with N-vergent fold asymmetry (Fig. 3¢).
Occasionally, pink granite dikes, folded and injected
along axial surfaces, suggest at least some syn- to
late tectonic granitoid magmatism (Figs 3d and 6d).
Late folds are upright to steeply inclined, displaying
a northward vergence in the central part of the area
(Fig. 6a), but eastward vergentin SW and W part of the
area close to the Kolari Shear system (Sorjonen-Ward
et. al. 1997). W-vergent folds have been observed in

14

N and NE part of the area, close to shear zones (Figs
6b and 6c¢), and late folds appear to be upright in
the north-central part of the area. Kinematically, the
late folding seems to be associated with a complex
tectonic movement directions with S to N direction
in the south, from NE to SW or ENE to WSW in the
northern and northeastern parts, and from W to E in
the western part of the study area (see Fig. 7).
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Fig. 7. Tectonic map of the Central Lapland Granitoid Complex. Arrows show the interpreted tectonic transport directions.
Thick solid lines with ticks are thrusts, dashed thick lines are steep shear zones, solid medium lines are late faults, dashed
medium lines are S2 form lines, thin solid lines are S3 axial surfaces. Ki SZ = Kiistala Shear Zone, SZ = Shear Zone, LGB
= Lapland Granulite Belt. Below the map, schematic vertical sections along lines A-A’, B-B” and C-C’. Numbers with letters
show the locations of the photographs presented in Figs 2, 3 and 6.

Metamorphism

Based on the observed mineral assemblages in
mafic and pelitic rocks, the following metamorphic
zones have been observed in the study area (Fig. 8).
Mineral assemblages in each zone are listed in Table
1. Mineral abbreviations are after Kretz (1983).

I Granulite facies migmatitic mafic rocks with grt-
hbl-pl-qtztcpx+opx assemblages, rare peralumi-
nous migmatites with grt-bt-sil-pl-qtz. Assemblage
grt-hbl-cpx-pl-qtz was observed only in this zone
in the study area.

I Mid-amphibolite facies high pressure rocks, grt-

II

v

ky-st-bt-ms-pl-qtz assemblages in pelites, local
minor migmatisation, grt-hbl-pl-qtzin mafic rocks,
locally cordierite-orthoamphibole.

Mid-amphibolite facies low-pressure rocks,
grt-and-st-chl-ms-pl-qtztbt assemblages with
retrograde chloritoid and kyanite, hbl-pl-qtz+grt
in metabasites, typically a strong retrograde meta-
morphism with extensive chloritisation.
Greenschist facies rocks, fine-grained ms-chl-
bt-ab-qtz in metapelites, act-chl-ep-ab-crb-qtz in
mafic rocks.

15
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3352 A543

Fig. 8. Metamorphic map of the study area. See Tabel 1 and text for explanation of the zones, indicated by the Roman numerals. Yellow spots indicate
the known gold desosits after Eilu (1999).

Table 1. Observed silicate mineral assemblages in metapelites and metabasites.

Zone Assemblages Retrograde minerals

1 — grt-bt-sil-ms-chl-pl-qtz+kfs ms, ep, chl, cum, grt, partly hbl
— grt-hbl-pl-qtztcpxtbttcum+tep+chltttn
— hbl-pl-qtz£bt+eptchl

— grt-hbl-opx-cpx-cum-pl-qtz

11 — grt-bt-ms-qtz+ky+st+pl chl, ep
— ky-bt-pl-qtz

— grt-bt-qtztpl+cc

— hbl-pl-qtz+grt+ep+chl

— tre-chl+ol£crb

— tre-spl-pl-chl

— tre-cor-pl-ch

— oam-crd-pl-qtz+bt

— oam-pl-qtz-chl+bt

— grt-bt-chl-pl-qtz+oam+crd
— grt-oam-chl-pl-qtz

111 — grt-st-ms-chl-qtz +ctd+and+ky+pl ctd, ky, partly ms, chl, st
— ms-chl-qtzttur

— hbl-pl-qtztgritep+chl
— grt-cum-qiz

I11.1 — grt-ms-bt-chl-st-pl-qtz+ctd ctd, chl, partly ms, chl
— bt-ms-qtz+tur+chl+pl

Continue next page.
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Zone

Assemblages

Retrograde minerals

v

— chl-ms-qtz+pl+bt+tur+mnz
— bt-chl-qtz+crb

— chl-act-pl-qtzteptcrb *ttn
— chl-pl-qtzxcrbtrttep

— act-pl-ep-qtz-+rt

— act-chlxcum

— chl-crb-ep-pl*qtz

— bt-chl-qtz-£tms

— bt-ms-pl-qtz-mnz

— bt-cum-qtztpl

— ol-crb-srp-op

— srp-op

— ol-tre-optopx

V.1

— and-chl-ms-qtz+cld+ky+pl
— st-cld-chl-pl-qtztky

— ky-chl-ms-qtz+pl+and

— and-bt-ms-pl-qtz+chl

— ms-bt-ky-qtz+grt+chl

partly cld, chl

V.2

— st-ms-chl-pl-qtztky=+tur
— and-ms-chl-pl-qtz+st+ky
— ky-st-ms-chl-pl-qtz

chl (?)

V.3

— st-ky-ms-chl-bt-pl-qtz+sil

— st-ky-and-sil-ms-chl-bt-pl-qtz
— st-bt-ms-pl-qtz+chl

— ky-st-bt-ms-pl-qtz+grt

— ky-bt-ms-pl-qtztand

chl, partly ms

V.4

— ky-st-bt-ms-pl-qtz+grt+st
— bt-ms-pl-qtz

V.5

— st-sil-bt-ms-pl-qtz+grt+ky
— sil-bt-ms-pl-qtz+chl+grt

chl, partly ms

— bt-ms-qtz-tur+chl+pl+crd +and+grt
— bt-scp-crb-qtz

— bt-cum-chl-qtz

— chl-ms-qtz+bt+pl

— bt-ms-kfs-pl-qtz

— bt-ms-ep-pl-qtz

— grt-bt-crb-tictcum

— grt-bt-crb-cum

— grt-bt-Fets-crbtcum=qtz
— grt-Fets-bt-chl-qtz

— hbl-chl-ep-qtz-crb

— hbl-pl-qtz-ep-ttn

— hbl-pl-bt

— hbl-ep-pl

— bt-chl-ep-qtz

— cpx-tr-scp-bt-qtz

— cpx-tr-bt-kfs-qtzxscp

— cpx-hbl-kfs-pl-qtz-ttn+ bt

— bt-ms-pl-qtz+and+chl+tur

— ms-chl-pl-qtz+grt

— grt-st-bt-ms-pl-qtz

— and-crd-bt-ms-qtzgrt+chl+st

— and-st-bt-ms-pl-qtz+sil +grt+chl
— grt-st-bt-pl-qtztsil+and +chl

— bt-ms-ky-crd-qtz+and+sil +chl
— ky-and-sil-ms-crd-qtz

— and-bt-ms-qtz-pl+crd+sil

— hbl-pl-qtz+grt

chl, partly ms, partly st

VI3

— bt-ms-pl-kfs-qtz+sil+pl+chl
— st-sil-bt-ms-pl-qtz+grt

— bt-ms-sil-pl-qtz+chl

— bt-ms-crd-qtz+tsil+pl

— grt-bt-ms-pl-qtz+st+chl

— grt-bt-sil-pl-qtz

— grt-bt-ms-ep-pl-qtz

— grt-bt-ms-sil-kfs-qtz

— grt-bt-cum-chl-crd-pl-qtz

— hbl-pl-qtz+ep+chl+cpx

chl, ep, partly ms, partly crd, partly st
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V Prograde metamorphism from lower amphibolite
facies (and-ky-st-ms-chl-cld-pl-qtz schists = V.1)
to mid-amphibolite facies (ky-and-st-ms-pl-qtz
gneisses =V.2, st-als-bt-ms-pl-qtz gneisses = V.3,
ky-st-bt-ms-pl-qtz-grt gneisses = V.4 and upper
amphibolite facies grt-sil-bt bearing gneisses =
V.5), hbl-pl-qtz in metabasites.

VI Amphibolite facies, pluton-derived metamor-

phism-related with Central and Western Lapland
granitoids, grt-and-ky-sil-crd-bt-ms assemblages,
grade increasing from ms-bt-chl schists (VI.1)
to and-sil-st-bt-ms gneisses (V1.2), and to grt-
bt-ms-sil (VI.3) gneisses towards the granitoid
contacts, locally migmatites, hbl-pl-qtz+grt and
hbl-pl-qtz+cpx in metabasites.

Petrography

Zonel

In Zone I, mafic rocks are mostly migmatitic, the
proportion of tonalitic leucosome varying from few
per cents to >50 % of the rock volume. Garnet-bearing
migmatites have the assemblage grt-hbl-pl-qtz+cpx,
indicating that migmatites were at least partly produced
in a melting reaction

(1) hbl + pl + qtz = grt + cpx + liq.

This reaction is considered as a transition reaction
from amphibolite to granulite facies in high pressures,
although in some compositions it may take place also
in amphibolite facies (Pattison, 2003). High degree
of melting and thermobarometric results indicate
in this case granulite facies conditions. Metatexites
and schlieren-type migmatites are common, epidote,
chlorite and cummingtonite being retrograde phases
after amphibole and pyroxene. Primary brownish
green hornblende has commonly been altered into
bluish amphibole. Orthopyroxene is rare but it occurs
locally in the grt-hbl-opx-cpx-cum-pl-qtzassemblage,
where cummingtonite is a retrograde phase. The
texture of the mafic rocks is granoblastic, and main
minerals are mostly in textural equilibrium forming
dihedral angles. Leucosomes have a typical magmatic
texture, where interstitial quartz is surrounding idi-
omorphic and subidiomorphic plagioclase crystals. In
the Makéra area, close to the Lapland Granulite Belt
contact zone, garnet occurs both as big grains and
narrow coronas between hornblende and plagioclase
(Fig. 9a) in clinopyroxene-absent rocks, indicating,
instead of reaction (1), a continuous reaction

(2) hbl+pl=grt+qtz + H,0.

In the Mikéra area, there are metavolcanic rocks
with primary volcanic textures like amygdules, and
randomly oriented, euhedral plagioclase phenocrysts
in a fine-grained matrix. These rocks have the high-
grade assemblage with grt-amph-pl-qtz=cpx but
annealing has not destroyed the primary magmatic
texture, although these rocks have metatexite interlay-
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ers. Garnet forms coronas around plagioclase in these
rocks, too. In the Lisma area, there are metadolerites
in which clinopyroxene is altered from crystal rims
into brownish green hornblende, indicating a reaction
that took place during cooling,

(3) cpx+pl+H,O=hbl

and garnet coronas are formed between clinopyrox-
ene and plagioclase (Fig. 9b) in a reaction

(4) cpx +pl=grt+ qtz.

Melting reaction (1) has a steep dP/dT slope so that
melting is favoured by increasing temperature (Patti-
son,2003). Reactions (2) and (4) have shallow positive
dP/dT slopes that indicate either near-isobaric cooling
or pressure increase during cooling or heating.

Zone Il

The rocks in the zone Il represent lower grade meta-
morphic conditions than in the zone I. Mafic rocks are
not migmatized but metapelites have leucosomes in
small abundances in the northern part of the zone II.
Migmatization of the metapelitic gneisses is schlieren-
type. Leucosomes form 5-20 mm wide veins and they
are compositionally tonalitic, indicating melting in
water-saturated conditions (Whitney & Irving 1994,
Mouri & Korsman 1999). Bt-st-grt-ms-ky-pl-qtz as-
semblages are common (Figs 9e, 14a, 14c.). Rims
of staurolite and kyanite crystals have often altered
respectively, into sericite, and garnet into chlorite and
biotite, some kyanites are intergrown with muscovite,
biotite and staurolite inclusions occur in muscovite,
garnets are crystallized on staurolite rims, and garnet
has sometimes staurolite inclusions, indicating that peak
metamorphic conditions were probably close to the
univariant KFMASH reaction boundary (Fig. 23a)

(5) bt+st+qtz=grt+ms+als+HO.

The PT conditions of the reaction (5) are close to
the univariant melting reaction

(6) bt+ms+st+pl+qtz=grt+ky + liq
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Fig. 9. Metamorphic textures and reactions in Zones I-III. a) garnet corona between hornblende and plagioclase. Zone I, sample PSH-97-20.2, N
7572940, E 3494520, b) garnet corona between clinopyroxene and plagioclase in metadolerite. Zone I, sample PSH-00-42.1 N7590218, E 3440182,
¢) corundum in a mafic rock. Zone II, sample PSH-99-100.3, N 7579148, E 3437489, d) spinel inclusions in tremolitic amphibole. Zone 11, sample
PSH-99-101.2, N 7578910, E 2561370, e) kyanite replacing muscovite. Zone II, sample JTV-98-49.1, N 7576663, E 3445005, f) chlorite, quartz and

biotite replacing orthoamphibole, sample PSH-97-2.1, N 7544660, E 3494130.

in the system CNKFMASH (Fig. 23b). Because me-
tapelites are migmatitic in the zone II, it is evident
that the reaction (6) or the divariant melting reactions
emanating from this univariant caused most migmati-
sation in staurolite and kyanite bearing rocks.

In the Pokka area, there are boninitic mafic rocks
whose mineral assemblage is colourless-pale green
tremolite and anorthitic plagioclase. These rocks

locally contain corundum, which is texturally in
equilibrium with amphibole and plagioclase (Fig. 9c¢).
Also spinel inclusions occur in amphibole (Fig. 9d).
In the same area, migmatitic pelitic gneisses have the
assemblage grt-ky-bt-ms-pl-qtz.

In a few localities, there are schists that have the
assemblage grt-bt-qtztpltcc. In places, garnets in
carbonate-bearing schist (sample PSH-00—62.1) have
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inclusion-free domains that have preserved the crys-
tal shape of the reactant garnet-producing mineral,
probably epidote (Fig. 11a). Epidote and chlorite are
common retrograde phases after amphibole in mafic
rocks of Zone II. Amphibole is often green to bluish
green hornblende. Inthe Siltaharju area, there are hyrdo
thermally altered cordierite-orthoamphibole rocks,
which are intercalated with mafic metavolcanicrocks.
Typically, in these rocks coarse-grained, orthoamphi-
bole-bearing layers alternate with quartz and plagi-
oclase-bearing layers, giving the rock a spectacular
centimetre-scale banded structure. Orthoamphiboles
garnets of the area may be up to centimetre in size,
the latter containing many quartz inclusions. There
are some exposures where the peak metamorphic
mineral assemblage is not retrograded, but in most
cases amphiboles and biotites are strongly altered
into chlorite which occurs only as a retrograde phase.
Orthoamphiboles typically occur as pseudomorphs that
are totally replaced by chlorite, quartz and biotite (Fig.
91). Unaltered orthoamphiboles are mostly brownish
gedrites having, crystals sometimes almost colourless
anthophyllite rims.

Zone 111

Metapelites in Zone III are strongly schistose, al-
though the primary bedding structures are still observa-
ble inmany places. Grt-st-ms-chl-qtz+cld+and+ky+pl
and ms-chl-qtz+tur are typical mineral assemblages.
Chloritoid was observed only in the southern parts
of Zone III. Biotite is rare in rocks that have grt-st-
AlSiO-ms assemblages, and when present it is only
an accessory or a retrograde phase. Instead, biotite is
common in mica gneisses which have less aluminium
or more calcium than the Al-rich pelitic gneisses of
the zone, having bt-ms-qtzttur+chl+pl or grt-bt-
qtzEpltep+crb assemblages. Biotite-bearing gneisses
occur sporadically throughout the area so that any
biotite-in isograd cannot be defined. Garnet-stauro-
lite-andalusite-chlorite assemblages are common, and
staurolite tends to form pseudomorphs after garnet,
together with chlorite (Fig. 10a). This indicates the
divariant FMASH cooling reaction

(7) grt+H,O=st+chl+qtz.

Garnet has sometimes chloritoid inclusions, which
may indicate that some garnet was formed in the
univariant FMASH reaction

(8) cld + qtz=chl + grt + st + H,O.

Kyanite occurs as small crystals that overgrow an-
dalusite and muscovite and in coronitic aggregates on
staurolite and muscovite, often together with chlorite
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(Figs 10b—10c). The latter texture indicates that much
of the kyanite was formed in a divariant FMASH
cooling reaction

(9) st+qtz+H,O = chl +als.

Kyanite occurs also as inclusions in andalusite and
may therefore also be an earlier phase than anda-
lusite. However, inclusions in andalusite are similarly
randomly oriented as kyanites in the matrix (Fig.
10b), reflecting more likely that kyanite overgrows
andalusite that occurs as big helisitic grains which
may be centimetre-sized. The reaction relationship of
andalusite with staurolite is not clear, but sometimes
andalusite has staurolite inclusions, indicating that
andalusite was at least partly produced in the reac-
tion (9).

In garnet-absent rocks chloritoid occurs in chlorite
and muscovite-filled pseudomorphs after staurolite,
often together with kyanite (Fig. 10d) indicating that
chloritoid was formed in a cooling reaction

(10)chl + st + gtz + H,O = cld + als.

Chloritoid also occurs in pseudomorphs after garnet
that are filled with chlorite, chloritoid, muscovite,
quartz and sometimes andalusite (Fig. 10f), but
biotite not being present in the thin section. These
pseudomorphs have many relic garnet inclusions. It
is possible that garnet first decomposed into chlorite
and staurolite in the reaction (7) and then staurolite
was consumed and chloritoid was formed in the cool-
ing reaction (10).

Zone I11.1

In the southwestern side of Zone III, there is a nar-
row zone belthonzon where, unlike in Zone I11, biotite
occurs in peraluminous rocks. Sedimentary rocks
in this zone are more coarse-grained and gneissose
compared with the schists in Zone III. Therefore this
zone is considered a separate metamorphic Zone I11.1.
Some peraluminous rocks contain garnet, staurolite and
retrograde chloritoid, but A1,SiO, polymorphs where
not observed in this zone. Biotite is mostly randomly
oriented and occurs in muscovite and chlorite-filled
pseudomorphs, where biotite overgrows muscovite and
chlorite and replaces also garnet from the rim. Pseu-
domorphs are sometimes elongated, having the crystal
form of staurolite. Small randomly oriented staurolite
crystals are sometimes present in these pseudomorphs.
These textures indicate that the reaction

(11) chl + ms (% grt) = bt + st + qtz + H,O

proceeded into both directions during cooling and re-
heating (Fig. 23c¢), staurolite having been decomposed
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Fig. 10. Metamorphic textures and reactions in the zone III. a) Staurolite and chlorite replacing garnet, a big andalusite in the lower right corner of
the figure. Sample PSH-98-60, N 7518130, E 3481410, b) Small kyanite crystals overgrowing andalusite and muscovite. Sample PSH-97-11.1, N
7517280, E 3478240, ¢) Small kyanite grains intergrown with muscovite on staurolite rims. Sample PSH-01-14.2, N 7521952, E 3519947, d) Chlo-
ritoid, chlorite and muscovite filled pseudomorph after staurolite, sample PSH-97-7.3, N 7528450, E 3485900, e) Biotite, chloritoid and muscovite
filled pseudomorph. Sample PSH-98-41.2, N 7517980, E 3457930, f) Chlorite, chloritoid, muscovite and quartz filled pseudomorph after garnet.
Sample PSH-97-7.4, N 7528450, E 3485900.

into chlorite and muscovite and then recrystallized Zone IV
with biotite again. Chloritoid occurs only in these

pseudomorphs (Fig. 10e, PSH-98-41), having obvi- Zone 1V represents the lowest grade metamorphic
ously been crystallized in the reaction zone in the study area. The rocks sampled for this study

3 are ultramafic, mafic and intermediate metavolcanic
(12)st +chl + H,0 =cld + qtz rocks and pelitic schists, although the latter are rare

during cooling (Fig. 23c). in Zone IV. Mafic and ultramafic metavolcanic rocks,
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Fig. 11. Metamorphic textures and reactions in Zones III and V.1. a) A pseudomorph after epidote where the original crystal shape is preserved in
garnet. Zone III, sample PSH-00-62.1, N 7548844, E 3460628, b) Cummingtonite inclusions in garnet. Sample PSH-00-1.4, N 7523465, E 2512075,
¢) Cummingtonite altering from rims to ferrotschermakite. Sample PSH-00-1.8, N 7525947, E 3385536, d) Kyanite inclusion in andalusite. Sample
PSH-98-8.2, N 7480252, E 3486120, ¢) Chloritoids in the rock matrix and possible chloritoid pseudomorphs in andalusite. Sample PSH-98-4, N
7471821, E 3495325, f) Chloritoid inclusions in andalusite north of Zone I'V. Sample PSH-98-59.3, N 7512570, E 3486600.

belonging to the Savukoski and Kittild Groups, are
the most abundant rock types in Zone I'V. These rocks
have generally preserved their primary volcanic tex-
tures with randomly oriented plagioclase phenocrysts,
although in many cases these are carbonatized and
epidotized. Carbonate seems to be more common in
the NW part of the greenschist zone than in its eastern
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parts. Ultramafic rocks have usually preserved their
magmatic mineral compositions, which are ol-tre-
op+opx.

Pelitic schists are fine-grained, and if not pervasively
sheared, they have preserved the primary structures,
commonly seen as millimetre to centimetre scale
sedimentary layers. Typical mineral assemblages are
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chl-white mica-qtz-opaque mineralstpltbtt+tur+mnz
and bt-chl-qtz-op+crb. The coarsest average grain
size in the studied samples was ca. 0.05-0.1 mm, but
finer-grained schists are common. Schists with the
coarsest grain size are texturally granoblastic. Biotite
and chlorite sometimes occur as porphyroblasts whose
grain size is up to 0.5—1 mm in diameter.

ZoneV

Zone V consist mostly of metapelites, and it shows
a progressively increasing metamorphic grade from
fine-grained andalusite schists to coarse-grained sil-
limanite gneisses east of the Sodankyld village (Fig.
8). Zone V.1 consists of pelitic schists which have
centimetre-sized andalusites and ca 3—10 mm stau-
rolite porphyroblasts in a fine-grained (ca 0.02-0.1
mm) matrix. The matrix of the rock is formed of
chlorite, muscovite, chloritoid and quartz, and also
magnetite grain aggregates are common. The matrix
grain size is finest in rocks close to Sodankyld. The
average grain size of the matrix generally coarsens
southwards and eastwards in this Zone. Kyanite occurs
asrandomly oriented prisms (normally 0.2—0.5 mm in
length but some prisms may be several millimetres)
in the rock matrix and on andalusite grain boundaries
and as inclusions in andalusite (Fig. 11d). Chloritoid
inclusions in andalusite are rare, but andalusite often
has inclusion free domains which have the shape of
the chloritoid crystals in the matrix (Fig. 11e) which
indicates that in cld-bearing rocks andalusite was
formed in the reaction

(13)cld + qtz = and + chl + H,O.

Some andalusite porphyroblasts have retrograde
coronas formed of inner muscovite layer and outer
chlorite layer. Plagioclase, when present, occurs like
kyanite as randomly oriented idiomorphic 0.5—-1 mm
grains having many quartz and sometimes chloritoid
inclusions. Biotite-bearing assemblages are rare, and
tiny garnet was observed only in one thin section.
Millimetre-sized pseudomorphs filled with chlorite,
albite and muscovite are common, evidently these
are hydrated plagioclases, staurolites and andalusites.
Chloritoid is sometimes present in these pseudo-
morphs, indicating back-reaction (13). Monazite is a
common accessory mineral in Zone V.1.

Prograde chloritoid occurs also north of the green-
schist facies zone IV in a small area in the southern
part of the zone III, where its textural relationships
(inclusions in plagioclase and in andalusite, Fig. 11f)
are exactly the same as in the zone V.1. It is possible
that the greenschists are lying on the rocks of Zone
Il and Zone V, the metamorphic zonation of the

pelite formation continuing under the allochthonous
greenschists.

In Zone V.2, chloritoid disappears, evidently in the
reactions (9), (10), (13) or in

(14)cld + gtz = chl + st + H,O

(Fig. 23d). Metapelites in Zone V.2 are medium
grained gneisses, notschistsasin Zones V.1-2. Melting
has not started and primary bedding is visible in many
places. Staurolite and andalusite may be up to 1-2 cm
in size, and kyanite prisms up to 1 cm are common.
There are andalusite-bearing layers without kyanite
and also kyanite-bearing layers without andalusite.
Kyanite and andalusite occur also together, in these
rocks kyanite is found in the matrix, as inclusions in
andalusite, and as needles on andalusite rims (Fig.
12a). Kyanite inclusions found in andalusite may be
an effect of two-dimensional thin sections, because
on outcrops kyanite needles growing into andalusite
are common.

In Zone V.3, biotite becomes stable occurring often
as large flakes, and grain size the matrix of the coars-
ens in pelitic rocks. Sillimanite also rarely occurs as
fibrolitic grains. Chlorite is less abundant in biotite-rich
than in biotite-poor rocks, therefore it is possible that
Zone V.3 represents the divariant KFMASH chlorite
breakdown reaction (11) chl + mu = bt + st + qtz +
H,O, (Fig. 23d) that has consumed chlorite in some
layers but not completely everywhere. In some out-
crops andalusite, kyanite and sillimanite are found
in the same thin section; in these rocks fibrolitic sil-
limanite is crystallized on plagioclase and mica rims
rather than replaces kyanite or andalusite (Fig. 12b).
This texture indicates that temperature increased into
the field where the divariant KFMASH reaction

(I5)st+ms=bt+als + H,O

took place (Fig. 23d). Chlorite is often a retrograde
phase, and in some exposures staurolites have almost
completely altered into chlorite and muscovite, indi-
cating back-reaction (11).

In Zone V.4, garnet was observed in one exposure
where it occurs in textural equilibrium with relatively
coarse-grained kyanite in the assemblage ky-st-bt-ms-
pl-qtz-grt (Fig. 12¢). This texture indicates that garnet
was formed in reaction (5) bt + st + q = grt + ms + ky
+H,0O. The assemblage and absence of other A1 SiO,
minerals indicates similar metamorphic conditions
as in Zone Il, differing clearly in pressure from the
progressive zoning in V.1-3 and V.4.

In Zone V.5 andalusite was not detected any more
and kyanite occurs only as small relics. Staurolites up
to 1 cm and garnets and plagioclases up to 5-6 mm
are common. Sillimanite is fibrolitic and replaces
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4.7 mm

Fig. 12. Metamorphic textures and reactions in the zones V and V1. a) kyanite-andalusite assemblage, zone V.3, sample PSH-99-72.1, N 7485560, E
3511380; b) kyanite-andalusite-sillimanite-staurolite-biotite assemblage, zone V.4, sample PSH-00-113.2, N 7491153, E 3503060; c) garnet-kyanite-
biotite-muscovite assemblage, zone V.4, sample PSH-98-53.2, N 7494530, E 3505680; d) fibrolitic sillimanite and biotite replacing staurolite, zone
V.5, sample PSH-01-17.1, N 7521105, E 3535306; ¢) kyanite inclusions in plagioclase, zone V.5, sample PSH-01-17.2, N 7521105, E 3535306; f)
garnet inclusions in cordierite, zone V1.2, sample PSH-98-69.1, N 7469020, E 3472710.

sometimes staurolite porphyroblasts together with
biotite (Fig. 12d). These assemblages indicate that
the reactions (5) and (15) locally consumed all stau-
rolite in the sillimanite field. The matrix micas have
strong preferred orientation (S3) but matrix quartz
and feldspar have a granoblastic texture. Some garnet
porphyroblasts are helisitic, containing plenty of quartz
inclusions, but others are almost inclusion-free. When
present, kyanite occurs locally as randomly oriented,
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small grains, and it commonly exists as inclusions in
plagioclase, probably representing prograde relics
(Fig. 12e).

Zone VI

Zone VI covers the area around granitoids of the
central and western Lapland. At the western margin
of Central Lapland Granitoid Complex, the grade
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of metamorphism increases progressively towards
the complex without abrupt change. In the eastern
and northern side of the Central Lapland Granitoid
Complex the change in grade from Zone IV and from
Zone V is connected with shear zones.

In Zone VI.1, metapelites are fine-grained schists
(average matrix grain size < 0.1 mm). Locally, biotite
forms flakes up to 5 mm in a fine-grained matrix, and
in one exposure there was one ca 10 mm cordierite;
tiny andalusites and garnets are very rare in this Zone.
In the country rock of the Pahtavuoma Cu-ore, garnet
is locally present in the alteration zone as 1-3 mm
idiomorphic grains, in skarns that are formed between
amphibole-rich and carbonate-rich layers. The garnet-
bearing assemblage is grt-bt-crb+cum+Fets. Garnet has
often cummingtonite inclusions and cummingtonite is
altered from rims to bluish green ferrotschermakite,
which occurs also as idiomorphic grains, several mil-
limetres in size (Figs 11b—c). These textures indicate
that garnet and ferrotschermakite were formed in the
reaction

(16) cum + cal = grs + Fets.

Another garnet-bearing locality is in the southern
side of Zone IV, where garnet occurs in an iron-
rich rock in the assemblage grt-amph-qtz. In the
Pahtavuoma area schists with the matrix assemblage
bt-qtz-cc locally have scapolite porphyroblasts 3—7
mm in diameter. Scapolite is not restricted only in
this zone and in these assemblages but occurs also
elsewhere in the Central Lapland area. Descriptions
of the scapolite-bearing rocks are given by Tuisku
(1985) and Frietsch et al. (1997).

In Zone VI.2, metapelites are medium grained
gneisses with granoblastic matrix. Andalusite is a
common Al-silicate but it often co-exist with fibrolitic
sillimanite. Cordierite was observed only in a few
localities. In the cordierite-bearing rocks garnet, when
rarely present, occurs as inclusions in cordierite and
onandalusiterims (Fig. 12f). Cordierite has also many
muscovite inclusions, whose optical orientation does
not differ from muscovite in the matrix, and it seems to
replace andalusite from rims. It has also some chlorite
inclusions, so the univariant KFMASH reaction

(17)chl + ms + and + qtz = bt + crd + H,0

may have produced cordierites. In the cordierite-
bearing rocks garnet, when rarely present, occurs as
inclusions in cordierite and on andalusite rims (Fig.
12f). Because cordierite has some staurolite inclusions,
the garnet may also have been a reactant and earlier
mineral than cordierite in a reaction such as

(18) grt +and + H,O = crd + st + qtz.

Fibrolitic sillimanite often replaces andalusite from
rims, indicating reaction

(19)and = sil

Kyanite was observed only in one outcrop (PSH-98—
11). There andalusite, kyanite and sillimanite occur in
the same Mg-rich, coarse-grained metapelite. Assem-
blages in this rock are bt-ms-ky-crd-qtz+and+sil+chl,
bt-ms-crd-qtz+sil and ky-and-sil-ms-crd-qtz. Silli-
manite occurs as fibrolitic grain aggregates, kyanite
forms coarse-grained prisms up to 5—10 millimetres
and andalusite occurs as centimetre-sized helisitic
grains with abundant quartz inclusions. Sillimanite
often replaces andalusite in grain boundaries (Fig.
13a) butrarely kyanite, which forms intergrowths with
muscovite and cordierite. Kyanite and andalusite occur
as inclusions in cordierite, and cordierite coronas are
formed between kyanite and biotite, cordierite form-
ing embayments into biotite (Figs 13b—c). Sillimanite
replaces this muscovite and sometimes occurs as inclu-
sions in cordierite together with muscovite. Although
often close to each other, andalusite and kyanite were
not found in contact, therefore their cystallization
order is unclear. However, if they underwent similar
metamorphism than Zones V.1-4, kyanite crystal-
lization may have been roughly simultaneous with
andalusite. With increasing temperature they were
partly altered into sillimanite and cordierite was
formed in a continuous reaction between Al-silicate
(ky, and, sil) and biotite

(20) bt + als + qtz = crd + ms.

In garnet and staurolite-bearing rocks of Zone V1.2,
andalusite contains inclusions of quartz, biotite, mus-
covite, chlorite, skeletal staurolite and euhedral garnet
(Fig. 13e), indicating that andalusite was formed in
reactions such as (5), (15) and

(21)chl + st + gtz = grt + and + H,O.

In the Mertavaara area there are garnet and anda-
lusite-bearing muscovite-free rocks, where both garnet
and andalusite have staurolite inclusions, indicating
reactions (5) and (21).

Strong retrogression is a typical feature in Zone
VI1.2. Hydration has often destroyed previous garnet,
andalusite and staurolite that are now pseudomorphs,
filled with fine grained muscovite, biotite and chlorite.
Garnets have also been altered into plagioclase and
chlorite (Fig. 13f), and sometimes staurolite, plagi-
oclase and biotite replace garnet from rims indicating
back-reaction (5). Some back-reaction (16) obviously
took place in andalusite-bearing rocks, because anda-
lusite is often rimmed by staurolite.

Zone VL3 represents sillimanite grade, where the
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8.6 mm

3.7 mm

Fig. 13. Metamorphic textures and reactions in Zone V1.2 a) Fibrolite needles on andalusite rim, sample PSH-98-97.3, N 7495066, E 3416256, b)
Kyanite intergrowths with cordierite and muscovite. Sample PSH-98-11B, N 7466644, E 3466995, c) Coexisting andalusite, fibrolitic sillimanite and
kyanite, andalusite is replaced by cordierite corona. Sample PSH-98-11.2, N 7466644, E 3466995, d) Cordierite corona between kyanite and biotite.
Sample PSH-98-11B, e) Staurolite, sillimanite and garnet inclusions in andalusite. Sample PSH-98-97.5, N 7495066, E 3416256, f) Garnet altering
into plagioclase and chlorite. Sample PSH-98-18.2C, N 7485693, E 3447609.

high grade seems to be caused mainly by granitoid
intrusions. Sillimanite is the only Al,SiO, polymorph
in this zone. There may be some changes in grade
inside the zone, depending e.g. on the distance from
granitoid contacts, but those variations could not be
mapped during the course of this study. Locally me-
tapelites are migmatitic, for example on the western
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side of the Central Lapland Granitoid Complex, where
pelitic rocks become migmatitic close to the contact
of granitoids, having granitic leucosomes as narrow
stromatic veins. In Zone V1.3, sillimanite is the only
ALSiO, mineral, although these rocks still contain
grt-als-st-bt-ms-chl-pl-qtz assemblages, typical for
Zone VIL.2. This indicates, that the Al,SiO -forming
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reactions observed in Zone V1.2 started in the anda-
lusite and continued in the sillimanite field in Zone
VI1.3. The western part of the zone V1.3 is character-
ized by potassium-feldspar-rich, reddish gneisses,
which often are plagioclase-free. Idiomorphic and
subidiomorphic potassium-feldspars are surrounded by

interstitial quartz in these rocks, a texture suggesting
that feldspars were crystallized from melt.

In mafic rocks, clinopyroxene is a rare mineral.
With normally a granoblastic texture. In these rocks,
epidote and chlorite are retrograde minerals, typically
occurring in fractures and shear planes.

Metamorphic zones and gold mineralization

The Central Lapland area has tens of known gold
occurrences; some of those are economic (Eilu, 1999).
These occurrences belong to the orogenic gold de-
posit group following the classification of Groves et
al. (1998). They argued, that orogenic gold deposits
were formed during compressional to transpressional
deformation processes at convergent plate margins
in accretionary or collisional orogens. According to
McCuaig & Kerrich (1998), the accretionary environ-
ment is indicated by the distribution of orogenic gold
deposits in belts of great geological complexity, with

gradients of lithology, strain, and metamorphic grade.
Most — although not all — and the largest of these
deposits occur in terranes that were metamorphosed
in greenschist facies. In Fig. 8, there are plotted most
of the known gold occurrences in the study area. This
figure shows, that the majority of them are located in
the greenschist facies Zone I'V. The country rocks of
orogenic gold deposits are mostly strongly altered, ma-
fic and ultramafic volcanic rocks, having white mica,
biotite and carbonate assemblages in the alteration
zones (Korkiakoski 1992, Eilu 1994, Patison 2007).

Deformation and the growth of metamorphic minerals

In Central Lapland, the early structural evolution
(D1+D2) is characterized by subhorizontal folds and
foliations observed throughout the study area, although
in some subareas this might have caused more steeply
dipping structures. The late structural evolution (D3
and later) is characterized by highly variable strike,
dip and intensity of different structural elements.
Because the area is generally poorly exposed, the
relationship of the metamorphic mineral growth with
these deformations can be reliably demonstrated only
in a few localities.

In Zone I, the rock texture is normally granoblastic,
indicating annealing close to the metamorphic peak.
In Zone II, the main foliation of the rock (S2) wraps
around garnets and staurolites which have curved
inclusion trails, suggesting syntectonic growth with
D2 (Fig. 14a). Some big garnets have plenty of quartz
inclusions in the core but very few in the edge (Fig.
14b), indicating rapid growth during the early stage
of the garnet crystallization. Many kyanites are elon-
gated along the S2 (Fig. 14a), but generally randomly
oriented kyanites overgrow S2. Some muscovites in
theserocks are similarly randomly oriented (Fig. 14c).
These features suggest that kyanite growth partly took
place during a static period of deformation inreactions
such as (7) or (11).

In Zone I11, garnet and staurolite have curved inclu-
sion trails, indicating syntectonic growth during D2.
S2 wraps around these porphyroblasts (Fig. 3a). S2 is
not curved around andalusite, but andalusite growth
evidently took place during D2 because the early S2

crenulation cleavage is preserved as inclusion trails
in andalusite. The S2 crenulation cleavage is absent
or weak in the matrix close to andalusite (Fig. 14d).
Kyanite and chloritoid are fine-grained and overgrow
S2 asrandomly oriented crystals (Figs 10d—fand 14e¢)
although chloritoid occurs also elongated along S2.
In Zones II-I11, observations could only rarely be
made from fold, hinges, so e.g. Fig. 14d can record
a situation on the limb of F3 fold where S2 and S3
are parallel, consequently the crenulation cleavage
in andalusite in Fig. 14b could represent either S2
or S3. In the cordierite-orthoamphibole rocks of the
Siltaharju area, orthoamphibole is generally elongated
along S2, but may also randomly overgrow the F3
fold hinges (Fig. 15a).

Zone V is relatively well-exposed, so that observa-
tions on the porphyroblast growth could be made on
the fold hinges. In this area, D3 deformation formed
upright, slightly reclined and even recumbent folds,
whose axial surfaces are in E-W direction and ver-
gences to the north. F3 folds have a well developed
axial plane crenulation cleavage, S3. In Zone V.1, an-
dalusite and staurolite occur as helisitic porphyroblasts
having many quartz and magnetite inclusions trails
which are sometimes sligthly curved near the grain
boundaries when the bedding parallel S1/S2 foliation
is well developed in the matrix. Generally andalusite
overgrows S1/S2, but occasionally S1/S2 foliation
wraps around andalusite porphyroblasts. S1/S2 wraps
clearly around chloritoid grains (Fig. 11e). In Zones
V.2 and V.3, andalusite, kyanite, staurolite and plagi-
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4.7 mm

4.7 mm

Fig. 14. Textures indicating the relationship of mineral growth with deformation phases in Zones II-1II. a) Curved inclusion trails in staurolite and
garnet and S2 parallel kyanite. Zone II, sample PSH-99-102.2, N 7563820, E 3450900, b) Curved quartz inclusion trails in a garnet with an inclusion-
poor rim. Zone II, sample JTV-98-32.1, N 7552059, E 3457464, c) Randomly oriented kyanites and muscovites overgrowing the S2 schistosity. Zone
11, sample PSH-99-99, N 7576623, E 3445579, d) S2 Crenulation in andalusite. Zone III, sample PSH-98-60, N 7518130, E 3481410, ¢) Randomly
oriented kyanite grains overgrowing the main foliation. Zone III, sample PSH-97-11.1, N 7517280, E 3478240, f) Randomly oriented chloritoids
overgrowing the main foliation. zone III, sample PSH-97-7.2, N 7528450 E 3485900.

oclase overgrow the S3 crenulation cleavage which can
be seen as inclusion trails in these minerals (Figures
15b—c). This observation was also made by Evins &
Laajoki (2002), their D2 corresponding with D3 of this
study. The S3 crenulation cleavage sometimes wraps
around andalusite and staurolite, indicating that their
growth took place during D3. Kyanite mostly occurs
as randomly oriented grains (Fig. 15¢). The relation-
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ship of kyanite to D3 deformation is similar to that
of orthoamphibole in the Siltaharju area, although
this does not mean that D3 was coeval everywhere
in Central Lapland. In Zones V.3—-V.5, rock textures
show signatures on annealing, matrix minerals forming
dihedral angles. In annealed rocks, biotite sometimes
occur as randomly oriented flakes.

Alsointhezone V1.2, the F3 crenulation cleavage is
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seenasinclusion trails in big andalusite porphyroblasts.
Inthe western part of the study area, the S3 crenulation
cleavage wraps around andalusites grains, which have
sigmoidal quartz inclusion trails (Fig. 15d).

Above mentioned textural features indicate that
regional metamorphism started during D2 and in
the northern zones it may have reached its peak dur-
ing the D2. In Zone V.1, the PT conditions were in

i 9.6 mm

Fig. 15. Textures indicating the relationship of mineral growth with deformation phases in the zones II-VI. a) chloritized orthoamphiboles overgrowing
F3 fold hinges, sample PSH-97-32.4, zone 11, N 7544700, E 3494300; b) S3 crenulation as inclusion trails in andalusite, sample PSH-99-72.2, zone
V.3, N 7485560, E 3511380; c) S3 crenulation as inclusion trails in kyanite prism, same exposure than in Fig. 16b, sample PSH-99-72.5; d) open S3
crenulation in andalusite, zone VI.2, sample PSH-98-97.5, N 7495066 E 3416256.

the chloritoid field during D2. Some andalusite and
staurolite may have crystallized already then, but as
in Zone V1.2, their growth took place mainly during
D3, especially in Zones V.2—V.5 where chloritoid is
not stable. In Zone V.1 the D3, structures are more
brittle forming shear planes where all minerals are
deformed.

Mineral compositions

Analytical procedure

Mineral analyses were done in the laborotory of the
Geological Survey of Finland, and at the microprobe
laboratory of Department of Earth Sciences in the Upp-
sala University using CAMECA SX-50 microprobes.
The beam width was 10 um for micas and feldspars
and 1 wm for other minerals. The sample current was
25 nA for micas, garnets and amphiboles 15 nA for
feldspars and cordierites. The acceleration voltage
was 15 kV. Natural standards and the ZAF correction
program were used. All analyses at the Uppsala Uni-

versity microprobe laboratory were done using sample
current of 15 nA and acceleration voltage of 20 kV
and. Altogether 1700 microprobe analyses were done
from the study area. Selected analyses from various
metamorphic zones are presented in Appendix 1.

Garnet

Although the Lapland Granulite Belt was not
included in this study, one garnet was analysed for
comparison from peraluminous migmatite of this
belt, whose zoning profile is presented in Fig. 16a
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Fig. 16a. Composition profiles of garnets. Y-axis of the figures is the mole fraction. Symbols: open squares=Mg/(Mg+Fe),
filled squares=Mg/(Fe+Mn+Mg+Ca), open triangles = Ca/(Fet+Mn+Mg+Ca), filled diamonds = Mn/(Fe+Mn+Mg+Ca).
Sample PSH-00-39, Lapland Granulite Belt, N 7599934, E 3460762; sample PSH-97-22.8, zone I, N 756382, E
3493470; sample JTV-98-49.1, zone I, N 7576663, E 3445005; sample JTV-98-32.1 (the same garnet as in Fig. 14b),
zone II, N 7552059, E 3457464; sample PSH-97-28.2, zone 111, N 7543200, E 3495550; sample PSH-97-1.1, zone 11,
N 7544752, E 3493952; sample PSH-98-41.1, sample PSH-98-41.2, zone 111, N 7517980, E 3457930.

(PSH-00-39). This garnetis Mg-rich with Mg-number
(Mg/Mg+Fe) at around 0.35, which is clearly higher
than in any analysed garnet in the other metamorphic
Zones.

In Zone I, garnets were analysed only in mafic
rocks. Garnet in the sample PSH-97-22.8 is Ca-rich
compared with other garnets, the X, is from 0.25 to
0.34, increasing from core to rim (Fig. 16a). Xy in
this garnetis low, from 0.05-0.07. Sample PSH-00—40
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has also Ca-rich garnets with X, from 0.31-0.32,
but the X is higher, from 0.08 in the rim to 0.14 in
the core.

In Zone II, garnets were analysed in metapelites.
Compositionally, small inclusion-free garnets are
only weakly zoned, but the zoning is much stronger
in large garnets like JTV-98-32.1 in Fig. 16a. In this
garnet, X, is increasing and X and X, decreasing
from the core to the rim. In many of the zone III gar-
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Fig. 16b. Composition profiles of garnets. Sample PSH-01-14.3, zone III, N 7521952, E 3519947; sample PSH-01-
17.2, zone V.4, N 7521105, E 3535306; sample 92.3-MJV-99, zone V.4, N 7476970, E 3533028; sample PSH-01-8.2,
zone V.4, N 7504537, E 3513451; sample PSH-98-15.2, zone V1.2, N 7481728, E 3449834; sample PSH-98-97.1,
zone V1.2, N 7495066, E 3416256; sample PSH-98-83.2, zone V1.3, N 7493544, E 3378613; sample PSH-00-10.3,
zone V1.3, N 7557588, E 3409926. Symbols as in Fig. 16a.

nets, both in pelitic and mafic compositions, the XMg which were healed during the late garnet growth. The
is increasing from the core to the rim and the X, is  general zoning pattern in these garnets is that that they
decreasing. Big garnets of the samples PSH-98—41.1  have Ca and Mgrich core areas and these components
and PSH-98-41.2.2 from Zone IIl.1 have several are decreasing to the rim.

decreases and increases in Ca and Mg in composition Garnet extracted from the sample PSH-97-28.2
profiles that are made across large grains (Fig. 16a).  (Fig. 16a) is from cordierite-orthoamphibole rock
This probably does not indicate several PT changes of Zone III. The zoning profile across this garnet is
during the garnet crystallization because the decreases 18 mm, and it shows only aslightincrease in XMg from
in X in the core area of the grain are near fractures  the core (0.10-0.12) to the rim (0.12—0.14). It has Ca
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g. 17. Fe2++Mg vs. Na/(Na+K) plot of muscovites.

and Mn in small abundances, X ._ slightly decreasing
to the rim. Garnets from skarns and iron formations
from Zone VI.1 are very Mg-poor and rich in gros-
sular and almandine.

Muscovites in the rocks of the Kumpu group (Zone
IV) clearly differ from most other white micas in their
Na contents (Fig. 17). The Na/(Na+K) is lower than
0.1 in the white micas of the Kumpu formation in
Zone 1V, but higher than 0.1 in most muscovites from
the other zones. Muscovites from other rocks in the
zone IV have higher Na/(Na+K) ratios, indicating that
their crystallization does not represent the same PT
conditions than muscovites from the Kumpu forma-
tion (cf. Guidotti 1984). Some muscovites from Zone
VL.3 and in the Lapland Granulite Belt also have low
Na/(Na+K), which indicates a retrograde origin for
these white micas. Fe and Mg contents are slightly
higher in muscovites with low Na/(Na+K) than in
other white micas.

Biotites have Mg-numbers roughly betweenMg, .,
depending generally on the Mg content of garnet, and
therefore both the PT conditions and the whole rock
Fe/Mg ratio (Table 2 and Fig. 18). Biotites in skarns
and iron-formations in Zone VI.1 have the lowest
Mg-numbers. AlY! values are lowest in biotites from
the greenschist facies zone IV. TiO, is from 1-3 wt%
in the other zones but 3.2-3.7 wt% in the zone I sam-
ples and 4.1-4.3 wt% within biotites in the Lapland
Granulite Belt.

Chlorites have highly variable Mg-numbers from
Mg, Mg, mostly varying between Mg, ~-Mg_ . The
Si content is higher in most chlorites from the zone
IV (Si2.9-3.4) than in chlorites from the other zones
(Si 2.7-2.9). Si content is high also in chlorites from
one sample from Zone V1.3 (Fig. 19), indicating that
these chlorites are retrograde. Al'! is lower in many
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chlorites from zone IV (0.9-1.6) than in the other
zones (1.3—-1.5) but Al also overlaps within various
metamorphic zones, indicating that chlorite in amphi-
bolite facies zones is mostly retrograde.

Calcic amphiboles are mostly actinolites in Zone
IV, with a few ferroactinolitic compositions, following
the amphibole classification by Leake (1978). Actin-
olitic and ferroactinolitic hornblendes occur close to
the boundaries of Zone IV. In the other zones amphi-
boles are magnesiohornblendes, ferrohornblendes,
tschermakitic and ferrotschermakitic hornblendes. In
the analysed skarns and Fe-rich rocks from the zone
VI.1 amphiboles are ferrotschermakites (Fig. 20).
In Zone VI.3 Mg-rich actinolite occurs in scapolite,
biotite and clinopyroxene-bearing mafic rock. In the
zone III the analysed optically zoned amphiboles
have bluish green magnesio-hornblende cores and
lighter ferrotschermakitic rims. Orthoamphibole from
Zone III (sample PSH-97-28.3) have Mg-numbers at
Mg.. ... The Na O content is 1.6-1.8 wt% and Al O,
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Table 2. Summary of the composition of garnets, plagioclases and biotites. Garnet compositions deviating remarkably from the
average and their sample codes in each metamorphic zone are in italics.

Zone grt grt grt grt pl bt
Rock type 100X 100X, 100X, 100X, 100X | 100Mg-nr
LGB pelitic cores 61-63 01 34-35 03 46 56-58
rims 69-72 01-02 23-26 03
1 mafic cores 55-60 03-04 18-22 19-23 48-68 36-48
rims 57-60 03-04 09-18 19-22 61-71
PSH-00-40 mafic core 52-55 02 13-14 31-32 62 39
rim 55-56 03-05 07-12 31 57
PSH-97-22.8 mafic core 61-65 02-03 05-07 25-30 41
rim 59-61 01-02 04-06 32-34 47
11 pelitic cores 73-76 05-06 15-17 04-06 32-38 49-54
rims 75-78 03-04 13-15 03-04
111 pelitic cores 68-75 02-11 07-12 11-16 42-53 51-59
rims 76-89 01-07 05-14 04-11
PSH-98-41.2.2 pelitic core 68-70 02-04 15-17 10-11 41 33
rim 8§2-89 005-008 06-09 03-08
PSH-97-1.1 mafic core 66-69 05-07 11-12 13-14 39
rim 68-70 03-04 13-14 13-14
PSH-97-38.2 mafic cores 73-74 09-11 03-04 11-16 36 29-30
rims 74-75 09-11 03-04 9-15
crd-oam cores 79-82 03-05 11-14 03-06 05-19 41-48
rocks rims 77-82 02-06 12-14 02-06 03-20
1v.1 mafic 01-20
pelitic 09-31 55-63
Kumpu pelitic 43-44
Kumpu quartzite
1v.2 skarn cores 59-67 15-25 02-03 13-17 49-57 19-22
rims 62-67 14-17 02-03 13-16
83.2-MJV-99 Fe-formation | core 72-73 15 04 09-10 86-87 27-28
rim 72 14 04 11
V.4 pelitic cores 74-78 05-08 11-17 04-06 36-51 38-50
rims 75-717 07-10 10-11 04-05
PSH-01-8.2 pelitic core 62-63 19-24 10-13 06 49 49-50
rim 61-62 24 10 05
VI.2 pelitic cores 50-56 23-31 06-13 05-15 38-39 38-60
rims 52-56 25-31 06-12 06-12
PSH-98-15.2 pelitic cores 76-79 003-02 11-13 10-11 35-38 3841
rims 76 02-03 11 09 35-37
PSH-98-11 pelitic 76
PSH-98-16.1 mafic cores 61-63 07-09 07-08 22-24 40-43
rims 61-62 06-07 08 23
VI.3 pelitic cores 51-55 23-31 12-15 05-09 4044 57-60
Mn-rich rims 52-56 2631 12-14 04-06
pelitic cores 74-80 01-06 16—-18 03-07 40-43 37-58
rims 75-83 01-04 10-15 03-05
PSH-98-80.1 pelitic cores 24-26 57-60 06-08 09-11 97-99 61-62
Mn-rich rims 24-26 56-59 06-08 09-10
PSH-98-85.3 pelitic cores 25-26 41-45 07-08 22-24 97-99 55-56
Mn-rich rims 27 45 05 23
mafic 61-92 74-75
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Fig. 20. Classification of the analysed amphiboles. Symbols as in
Fig. 17.

14.0-16.1 wt%. Cummingtonite which is an alteration
product of ferrohornblende in skarn in the zone VI.1
has Mg-number at around Mg, .

Cordierite was found only in three localities in the
study area. In the cordierite-orthoamphibole rock
sample PSH-97-28.4 from Zone 111, the Mg-number
is Mg,, and the Na,O is 0.41-0.42. In a Mg-rich
peraluminous rock PSH-98-11B (Appendix 1) In
Zone V1.3, the Mg-number is high, Mg . In Zone
V1.2, one cordierite-bearing locality was found, where
the cordierite has Mg .. In the two latter samples the
Na,O-content is 0.10-0.14 wt%.

Clinopyroxenes were found from the zones I and
VI.3. In Zone I, the Mg-numbers are Mg, .., ALO,
2.7-2.9 wt% and Na,O 0.58-0.66 wt%. In the zone
VI3, the scapolite-bearing rock PSH-00-69.2 has
a high Mg-number, Mg, . lower ALO, (0.59-
0.66 wt%) and higher Na,O content (0.99-1.36 wt%)
than other analysed clinopyroxenes, which have
1.2-1.8 wt% Al,0O,, 0.13-0.36 wt% Na,O and Mg-
numbers of Mg, .. Sample PSH-00-4 which is close
to the greenschist facies zone has lower Mg-number
and lower Na,O than sample PSH-00-17 which is
farther from the zone IV (Appendix 1).

Plagioclases are albites in the mafic rocks of Zone
IV, and also in most pelites. In other Zones, plagi-
oclases are mostly oligoclases and andesines, but also
labradorites and depending on the metamorphic grade
and Ca-content of the whole rock, even anorthites.
(Table 2 and Appendix 1).

Staurolites were analysed from Zones III and VI.3.
Mg-numbers are Mg , , in Zone III and in other
Zones Mg, , ... The MnO contents are lowest in stau-
rolites of Zone III, 0—0.47 wt%. In Zone V1.3, MnO
is from 0.83—1.03. Also the ZnO content varies from
0.04-2.44 wt%, and there is not a correlation with the
metamorphic zone.

Chloritoid was analysed only in one locality from
Zone III.1, where it is an alteration product of stauro-
lite. There the Mg-number is Mg, ., while the MnO
content is low, being 0-0.13 wt%.

Geothermometry and geobarometry

Metamorphic pressures and temperatures were
calculated using the Thermocalc v. 3.1 software
(Powell & Holland, 1988 1994; Powell & al. 1998).
The summary of the results, mineral assemblages
used in calculations, and end member activities are
presented in Appendix 2. Metamorphic pressures and
temperatures were calculated using both the core and
rim compositions of garnets with compositions of the
matrix and minerals adjacent to garnet, respectively.
In Zones 1I-VI, this method gives a strong pressure
decrease and moderate or small temperature decrease
from core to rim, as indicated by the arrows in Fig. 21.
These differences are mainly caused by the garnet zon-
ing, because normally the compositional differences of
other minerals are small when the matrix minerals are
compared with those minerals touching garnet. This
difference does not necessarily show the real PT path
experienced by these rocks, because garnet core may
be chemicallyisolated and does not represent chemical
equilibrium with the present rock matrix (Marmo et
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al. 2002). However, most garnets have only a narrow
outer rim, where there is a decvease in Xoe (Fig. 16).
This may record diffusion during cooling and reaction
only with the adjacent minerals, not with the whole
matrix. In these cases the usage of the composition
of the garnet core with the matrix minerals probably
gives temperatures and pressures that are close to the
real maximum T and corresponding P. Some garnets
have a strong zoning from the core to rim (e.g. gar-
nets PSH-98-41.1-2 in Fig. 16a), which evidently is
growth zoning during changing PT conditions. In these
cases the T and P calculated using the compositions
of the garnet core and matrix minerals not touching
garnet may be meaningless. However, garnets in the
sample PSH-98-41 have remarkably higher Mg and
Ca contents in the mineral core than in the edges,
which indicates higher temperatures and pressures
during the early garnet growth.

In Zone I, the peak temperatures and pressures that
were achieved using the core compositions of garnets
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Fig.21. Thermocalc average PT results plotted onthe PT diagram. Symbols:
open dots = zone I, diamonds =zone I1, filled squares = zone I11, filled dots
= zone V.5, open triangles = zone V1.2, filled triangles = zone V1.3.

and compositions of matrix amphiboles, plagioclases
and pyroxenes (when present) are mostly from 770—
890°Cand9.7-11.8 kbars. Also Tuisku and Makkonen
(1999) determined a pressure of around 11 kbars for
one sample from Zone I, although their temperature
(670 °C), is lower, but it may represent cooling, espe-
cially because Tuisku and Makkonen (op. cit.) used
double coronas on olivine in an ultramafic rock for
their PT determination. One sample (PSH-00-40)
gives 966 °C and 13.2 kbars, which is unrealistically
high. In this sample the difference between results
given by garnet core and rim compositions is greatest
(257 °C and 2.8 kbars), so the garnet core may not
represent equilibrium with the matrix assemblage. For
the Zone I, temperatures and pressures are calculated
at a, of 0.4, because in this Zone mafic rocks are
mostly migmatised, and melting evidently decreased
the water activity. Temperatures and pressures calcu-
lated using the garnet rim compositions with adjacent
plagioclases and amphiboles are 50-80°Cand 0.2—1.4
kbars lower than those given by garnet cores. In most
garnets from Zone I, the pressure difference between
the garnet core and rim results are not as remarkable as
inother zones, which indicates anear-isobaric cooling
as suggested also by the reactions in Figures 9a—b. The
standard deviations are rather high for both pressures
and temperatures because of the uncertainties in the
thermodynamic properties of amphibole.

InZone I, the Thermocalc pressures given by garnet
cores are from 7.4-9.9 kbars, to some extent depending
on the mineral assemblages and water activities used

in calculations. In the three studied samples from Zone
II the temperatures given by garnet cores are ca 600—
690 °C, the highest temperature (and the lowest pres-
sure) being from the northern part of the zone where
melting has already started in metapelites. In the sample
JTV-98-28, where the Mg content of garnet is increas-
ing from core to rim the rim compositions give higher
pressures and temperatures than cores. In this sample
garnet has inclusion-rich core and inclusion free rim.
In these kind of samples the garnet zoning represent
growth during the prograde stage of metamorphism,
and the ‘core’ pressures and temperatures may be
meaningless because they probably do not represent
equilibrium with the matrix assemblage.

For Zone III the ‘core’ temperatures are ca. 560—
615 °C when the a ,  is set at 1.0, which may be not
far from the real value because these rocks were not
melted. Otherwise the assemblage used in the Thermo-
calccalculations has a strong influence in the pressures.
In the zone III, most peraluminous schists have both
andalusite and kyanite. If one or both of the Al-sili-
cates are eliminated, the pressures are from 6.1-7.9
kbars, which is too high for the grt-and-st-chl-pl-qtz
assemblage, typical for these rocks. However, if both
andalusite and kyanite are included in the assemblage
used by the Thermocalc, pressures are from 3.9—4.8
kbars, which are reasonable for andalusite-bearing
assemblages.

Temperatures for Zone III.1 are similar with the
temperatures in Zone I11, but the strong zoning in some
garnets is reflected in pressures. In the samples PSH-
98—41.1-2 which have the strongest garnet zoning in
the studied rocks (Fig. 16a), garnet rims give 2.7-2.8
kbar lower pressures (4.5—5.5 kbars) than garnet cores
(7.2-8.3 kbars), the ‘rim’ temperature being ca 10—
40 °C lower than the ‘core’ temperature.

Forthe greenschist facies zone IV, it was not possible
to calculate meaningful Thermocalc temperatures and
pressures. In Table 3, there are temperatures calculated
using the chlorite thermometer of Cathelineau (1988).
Most of these are around 350-400 °C, which are rea-
sonable for the greenschist facies rocks. Temperatures
given by the chlorite thermometer for one rock from
the Kumpu group are around 260 °C. This is clearly
lower than elsewhere in the zone IV, but also chlorite
from a metavolcanic rock close to Kumputunturi give
a similar low temperature (Fig. 22), indicating that
the area close to Kumputunturi represents the lowest
metamorphic grade in the greenschist facies zone.
On the other hand, most analysed chlorites also from
the higher grade zones give temperatures at around
350-400 °C, which indicates the retrograde origin of
chlorite and perhaps simultaneous retrogression with
the greenschist facies metamorphism in Zone I'V. The
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Table 3. Examples of chlorite compositions and temperatures given by the chlorite thermometer of Cathelineau (1988)

Sample PSH-99-37 PSH-99-47 PSH-99-52 PSH-99-57 PSH-99-59 MJV-99-83.2
northing 7480840 7510050 7512820 7500240 7508350 7478895
easting 3478370 3451480 3437620 3491400 3491190 3474068
Si02 24,23 25,36 26,45 25,88 24,23 22,88
TiO2 0,01 0,07 0,04 0,1 0,12 0,12
Al203 23,37 20,8 19,37 21,04 21,53 22,61
FeO 25,75 24,03 25,09 22,38 25,31 32,22
MnO 0,26 0,37 0,44 0,18 0,15 0,26
MgO 14,56 15,19 15,16 17,58 15,12 7,86
Total 88,18 85,82 86,55 87,16 86,46 85,95
Cations/14 oxygens

Si 2,545 2,716 2,823 2,693 2,596 2,566
AllV 1,455 1,284 1,177 1,307 1,404 1,434
AlVI 1,435 1,339 1,257 1,271 1,313 1,552
Ti 0,001 0,006 0,003 0,008 0,01 0,01
Fe 2,261 2,152 2,239 1,947 2,268 3,022
Mn 0,023 0,034 0,04 0,016 0,014 0,025
Mg 2,279 2,425 2,412 2,727 2,415 1,314
T°C 407 352 317 359 390 400

Fig. 22. Regional distribution of the temperatures given by the chlorite thermometer for the greenschist facies Zone
IV. Colours for the metamorphic zones are as in Fig. 8.
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temperatures are close to 400°C in Zone VI.1 on the
southern side of Zone IV. The sample PSH-00-1.7
(Appendix 2) is from the zone VI.1, located in the
western part of the zone IV, where the temperature
has been high enough for garnet growth in skarns.
The Thermocalc pressure for the core of this garnet
is 3.2 kbars, which probably is close to the pressure
for the greenschist facies metamorphism before garnet
crystallized, probably as a consequence of heat flow
from the adjacent granitoids.

Rocks from the sillimanite grade Zone V.5 give
Thermocalc pressures which are of the same order
(3.7-5.3 kbars when a_,  =1) than those given by
grt-st-and-ky assemblages in Zone I11. Advective heat
flow from granitoids probably caused the sillimanite
grade metamorphism in this zone. Thermocalc aver-
age PT calculations were not done in this study for
Zones V.1-3 because of the absence of garnet, but
the coexistence of andalusite and kyanite (Fig. 12a)
indicates, however, that metamorphic pressures were
close to the andalusite-kyanite boundary also in these
rocks.

Both sillimanite-bearing and Al-silicate-absent
pelitic rocks as well as garnet amphibolites from
Zones V1.2-3 give relatively high ‘peak’ Thermocalc
pressures, (6.1-8.1 kbars at ca 610-730 °C), and
similar decreasing pressure trends as other zones in
the core-rim thermobarometry (Fig. 21). However,
when these rocks have both andalusite and sillimanite
(sample PSH-98-97.1, Fig. 13a) or all three Al,SiO;
polymorphs (sample PSH-98-11B, Fig. 13c) and all
minerals present are used in the Thermocalc calcu-
lation, the pressures are low (from 3.3-3.8 kbars),
whichisinaccordance with the presence of andalusite.
Cordierite and andalusite-bearing, plagioclase-free
sample PSH-98-69.1 gives pressures and temperatures
of 4.1-5.1 kbars and 534-627 °C. The high pressures
in some samples, as well as the reaction (21) bt + als
+ gtz = crd + ms which has a relatively flat dP/dT
slope indicate decompression also for this zone. The
temperatures and pressures in many other samples
from Zones V—-VI, especially those given by garnet
rims, plot in the sillimanite field in Fig. 21.

Phase diagrams

The core-core and rim-rim thermobarometry fits
relatively well with the petrogenetic grids for the zones
IL, 111, V and VI in Figures 23a—e, which were con-
structed using the Thermocalc 3.25 software (Powell
& Holland 1988, 1994; Powell etal., 1998; see the web
page http.//www.earthsci.unimelb.edu.au/tpg/thermo-
calc/). The whole rock compositions are from samples
analysed using the XRF method. These compositions

are examples, e.g. a higher Mg/Fe ratio in the whole
rock would raise in each case the univariant curves
and divariant fields to higher pressures. In Zone II the
maximum temperature conditions are interpreted to
have been close the reaction boundary bt + ms + st +
pl+qtz=grt+ky +1liq (Fig. 23b), which fits well with
the average pressures and temperatures given by the
garnet cores. Neither sillimanite nor andalusite was
observed in the zone 11, so the post-peak cooling took
evidently place in the kyanite field, as illustrated by
the arrow in Fig. 23a.

In Zone III, the garnet zoning does not clearly
indicate the early high pressure, and kyanite is a
late retrograde phase. However, some garnets have
chloritoid inclusions, which may indicate that they
were reactants in the reaction (8) cld + qtz = grt + st
+chl+H,O, which takes place in pressures > 7 kbars
in the compositions represented by the analysed me-
tapelites. Therefore the early pressure in the PT path
may have been as high as given by those average PT
calculations where the Al-silicate is absent. Same rocks
have andalusite, retrograde kyanite and chloritoid
which indicates cooling down to conditions, where
the univariant cooling reaction chl+st+qtz+H,0 =
cld+alstook place, straddling at the andalusite-kyanite
boundary (Fig. 23c¢).

In Zone III.1, garnets have altered from rims into
biotite, and staurolites are close to these garnets, which
indicates that PT conditions were in the field where
the divariant KFMASH reaction grt + ms + H,O = bt
+ st + qtz takes place (field grt-bt-st in Fig. 23d). This
is in accordance with the 7.2—8.3 kbar average pres-
sures given by the garnets that have Mg and Ca rich
cores. Because the average Thermocalc pressure for
the garnet rims were around 5 kbars, and there seems
to be late biotite growth in chlorite-muscovite filled
staurolite pseudomorphs, caused by the reaction (15)
chl + mu = bt + st + gtz (field chl-bt-st in Fig. 23d),
the PT path was probably as indicated by the arrow
in Fig. 23d, with some reheating before cooling to
the chloritoid field.

In Zone V, the metamorphic field gradient from the
chloritoid grade to the sillimanite grade is demonstrated
by the dashed arrow in Fig. 23e. Andalusite was pro-
ducedatleast partly by the divariant KFMASH reaction
(13) cld + qtz= and + chl + H,O (field chl-cld-als-ms
in Fig. 23e), and chloritoid was consumed by the uni-
variant and divariant reactions (10) als + cld = chl + st
+qtz +H,0 and (14) cld + gtz = chl + st + H,O (field
chl-st-cld-ms), the PT conditions being also in these
reactions close to the andalusite-kyanite boundary.
With rising temperature, sillimanite was formed in
the divariant reaction st + ms + qtz = bt + sil + H O
(field bt-st-als-ms). Crossing the univariant boundary
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Fig. 23. Pseudosections showing the fields for some of the observed mineral assemblages and reactions in metapelites for various
metamorphic zones in the system KFMASH, apart from Fig. 23b which is for the CNKFMASH. Solid arrows are for possible PT
paths, dashed arrows are for the metamorphic field gradients. a) = zone II, composition SiO, 70.16, AL,O, 15.57, MgO 3.44, FeO
8.82, K,0 2.01 mol.%; b) zone II, composition SiO, 68.15, Al,0, 15.12, MgO 3.34, FeO 8.57, CaO 0.63, Na,0 2.23, K,0 1.95,
mol.%; c¢) zone III, composition SiO, 70.16, AL,O, 15.57, MgO 3.44, FeO 8.82, K,0 2.01 mol.%; d) zone III.1 composition SiO,
71.18, AlL,0, 15.13, MgO 3.24, FeO 8.72, K,0 1.73 mol.%; e) zone V.1-5, Si0, 69.58, AL, O, 18.16, MgO 2.12, FeO 7.80, K,0 2.33
mol.%; f) zone VI.1-3, SiO, 73.99, Al,0, 11.79, MgO 5.44, FeO 5.37, K,0O 3.42 mol.%. Heavy lines are for univariant reactions,
narrow lines are borders of the divariant and trivariant fields.
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bt +st+q = grt+ms + als + H,O may have produced
garnet-sillimanite assemblages in zone V.5.

The dashed arrow in Fig. 23f illustrates the change
in PT conditions from Zones V1.1 to VI.3. Because all
three Al SiO, polymorphs are present in zone V1.2, it
is evident that the PT path was not far from their triple
point. Because some average pressures are high, from
6.1-8.1 kbars, the PT path was probably as indicated
by the solid arrow in Fig. 23f, going down to pressures
where the reaction (21) bt + als + qtz = crd + ms (Fig.

13d) starts with decreasing pressure (field crd-bt-als).
Reaction (21)is strongly dependent on the Fe/Mgratio
of the rock, in compositions that are Mg richer than
the one used in Fig. 23f the reaction takes place in
higher pressures. On the other hand, it is also possible
that the reaction (21) does not represent decreasing
pressure but increasing temperature in near-isobaric
conditions, resulting from advective heat flow from
the granitoid intrusions.

DISCUSSION

The onset of the tectonic evolution of Central
Lapland is characterized by a prolonged extensional
rifting of the Archaean basement and the related vol-
canism, magmatism and sedimentation. This stage
lasted at east 500 Ma from ca 2.5 Ga to ca 2.0 Ga
(papers in Vaasjoki 2001). The orogenic evolution of
Central Lapland that started ca 2.0-1.89 Ga ago, is a
combination of two main tectonic events: the north-
ward or northeastward directed Svecofennian tectonic
movement that thrusted the earlier formations onto the
Archaean basement, and the thrusting of the Lapland
Granulite Belt towards the approximately opposite
direction (Ward etal. 1997). As aresult, the associated
structures in different parts of the Central Lapland are
not straightforwardly correlated with each other. The
correlation of structures is further hampered by the
paucity of suitable structurally controlled granitoids
that could be dated for time markers for different
tectonic events.

The early structural evolution (D1+D2) of Central
Lapland is characterized by subhorizontal folds and
foliations observed throughout the study area, accept-
ing the possibility that in some subareas this might
have caused more steeply dipping structures (Ward et
al. 1989), as is common in many younger fold-and-
thrust belts. In the southern and central part of the
study area, the fold vergences and other kinematic
indicators suggest a N or NE directed tectonic move-
ment during this stage. Subhorizontally deformed
tonalites suggest that the age of the deformation is
around 1.88—1.87 Ga, assuming that the tonalites cor-
relate with the Haaparanta suite intrusions, indicating
a typical Svecofennian age of deformation (see e.g.
Nironen 1997). Close to the Lapland Granulite Belt,
inclined W- to SW-vergent folds were observed, but
their correlation with N-NE-vergent structures in the
south is not known. It is most plausible that the thrusts
were initiated at this period although they were clearly
reactivated in later stages.

The late structural evolution (D3 and later) in Cen-
tral Lapland caused the extreme variety concerning

strike, dip and intensity of different structural elements
now seen on geological and geophysical maps and
observed at outcrop scale. At this stage, the thrusts
that were initiated in earlier stage were reactivated
and the structural pattern with opposing fold vergences
and high strain shear zones developed. Simultaneous
or progressive thrusting from different directions to-
wards the oceanic Kittild group is a peculiar feature in
Central Lapland and cannot be explained by a simple
head-on thrusting. During thrusting older formations
were juxtaposed over younger ones in some places and
vice verse in other places. Metamorphic boundaries at
thrust planes indicate that thrusting was at least partly
late metamorphic or postmetamorphic.

The mineral assemblages and thermobarometry
show very large PT differences between metamorphic
zones, especially pressure differences are remark-
able. When not caused by advective heat from large
granitoid massifs, the changes in metamorphic grade
are connected with shear zones and D3 thrust planes.
The eastward prograde increase in metamorphic grade
in the zone V may reflect an oblique cut of the crust,
revealed by the D3 thrusting where higher grade
eastern zones represent deeper crustal sections. The
increase in grade may also be caused by heat flow from
granitoids which are abundant in Zone V.5.

The present structural geometry shows an inverted
gradient where pressure and temperature increase
upwards in the present tectonostratigraphy from
greenschist facies in the zone IV through garnet-anda-
lusite-staurolite grade in the zone Il and garnet-kyanite
grade amphibolite facies in Zone Il to granulite facies
in Zone I. The inverted gradient could be explained
by crustal thickening caused by overthrusting of the
hot granulite complex onto the lower grade rocks,
as inferred by tectonic transport directions in Fig. 7.
Krill (1985) proposed this mechanism for the Kara-
sjok-Levajok area in the western side of the Lapland
Granulite Belt in northern Norway, where the meta-
morphic zonation is similar to that in our study area.
Tuisku & Makkonen (1999) explained the high pres-
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sure at the margin of the Lapland Granulite Belt as a
consequence of subduction of the Karelian foreland
under the overriding Kola Plate.

These kind of ‘hot-over-cold’ models have been
proposed also to explain the inverted gradients e.g. in
Zanskar Himalaya (Searle & Rex 1989). To preserve
the inverted isograds arapid exhumation and cooling is
needed (Thompson & Ridley 1987). Therefore Searle
& Rex (1989) favoured a model where subsequent
folding and thrusting deformed the normal upward
decreasing Barrovian metamorphic sequence, caus-
ing the present inverted gradient structure. To some
extent similar process may be an explanation also for
the southward decreasing grade from Zone I to the
zone III south of the Lapland Granulite Belt, where
the higher grade gneisses may have been thrusted
onto lower grade schists during the late stage of meta-
morphism, although the granitoids also have had a
thermal input into metamorphism in Central Lapland.
Thrusting probably thickened the crust in a large area
and was followed by decompression as indicated by
the inferred PT paths. Peraluminous metasediments
were not found in the eastern part of Zone II, so it is
unclear whether the eastern side of Zone Il underwent
similar PT evolution than its western part that exhibit
many kyanite-bearing rocks. However, kyanite-bear-
ing metasediments were described by Perchuk et al.
(2000) ca 150 km east of our study area, from the
southern contact of the Tanaelv belt, as well as by
Krill (1985) from the western contact of the Tanaelv
belt in Norway, on the western side of the granulite
complex. Therefore itis probable that also in our study
area, the eastern part of Zone II, represents similar
PT-conditions than its western part, as indicated by
the Thermocalc pressures of ca 7.5 kbars given by
garnet amphibolites and orthoamphibole rocks from
the Siltaharju area.

Generally, the Tanaelv belt (Zone I) has been
described as a separate unit not belonging to the
granulite complex, its metamorphism being caused by
hot granulites (Barbey et al. 1980, 1982, 1984; Krill
1985, Perchuk et al. 2000). However, the structures

in the Tanaelv belt are similar to those in the Lapland
Granulite Belt (Nironen and Ménttari 2003) and the
metamorphic conditions do not differ from those in
lower parts of the granulite complex. The lithology
of the Tanaelv belt differs from that of the Lapland
Granulite Beltbut evidently they were metamorphosed
together in the same thickening process.

There is a several kbar change in the metamorphic
pressure from the kyanite grade Zone II to the anda-
lusite grade Zone III, but the zoning profiles of garnet
and the thermobarometry indicate that the zone Il also
underwent a higher pressure stage, reaching the ‘peak’
temperatures after thickening and decompression.
Zone II may represent the upper plate in thickening
which was cooled more rapidly without reaching
the andalusite field while still reactive. Lower grade
rocks further from the granulites stayed close to their
maximum temperature down to the andalusite field
or to the andalusite-kyanite boundary, and this period
was followed by a near-isobaric cooling to the kyanite
field, maybe representing decompression and cooling
after extensional collapse. In Zone I, the near-isobaric
cooling period took place in much higher pressure,
but these cooling events (Figs. 9a—b and 10b) were
not necessarily simultaneous in Zones I and II.

During the thickening, the greenschist facies rocks
(the Kittild Group) were probably not in their present
position, but they represent a late metamorphic al-
locthon that was accreted to Zones II and III during
late D3. Lithological boundaries around the Kittild
Group are mostly also metamorphic boundaries
which supports this idea. However, the rocks Kittild
of the group have been proposed to continue north to
the Karasjok area in Norway (Lehtonen et al. 1998)
through Zone 11, although there is a major change in
PT conditions from Zone IV to Zone I1. This may mean
that the volcanic rocks in Zone II do not belong to the
Kittild Group, but it is also possible that some parts
of the oceanic unit were included in the thickening
that produced high pressure ampibolite facies rocks
in Zone 11, and other parts were juxtaposed later with
Zones II and III.
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