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Abstract

Background: There is a strong demand for an accurate and objective means of assessing acute pain among hospitalized patients
to help clinicians provide pain medications at a proper dosage and in a timely manner. Heart rate variability (HRV) comprises
changes in the time intervals between consecutive heartbeats, which can be measured through acquisition and interpretation of
electrocardiography (ECG) captured from bedside monitors or wearable devices. As increased sympathetic activity affects the
HRV, an index of autonomic regulation of heart rate, ultra–short-term HRV analysis can provide a reliable source of information
for acute pain monitoring. In this study, widely used HRV time and frequency domain measurements are used in acute pain
assessments among postoperative patients. The existing approaches have only focused on stimulated pain in healthy subjects,
whereas, to the best of our knowledge, there is no work in the literature building models using real pain data and on postoperative
patients.

Objective: The objective of our study was to develop and evaluate an automatic and adaptable pain assessment algorithm based
on ECG features for assessing acute pain in postoperative patients likely experiencing mild to moderate pain.

Methods: The study used a prospective observational design. The sample consisted of 25 patient participants aged 18 to 65
years. In part 1 of the study, a transcutaneous electrical nerve stimulation unit was employed to obtain baseline discomfort
thresholds for the patients. In part 2, a multichannel biosignal acquisition device was used as patients were engaging in non-noxious
activities. At all times, pain intensity was measured using patient self-reports based on the Numerical Rating Scale. A weak
supervision framework was inherited for rapid training data creation. The collected labels were then transformed from 11 intensity
levels to 5 intensity levels. Prediction models were developed using 5 different machine learning methods. Mean prediction
accuracy was calculated using leave-one-out cross-validation. We compared the performance of these models with the results
from a previously published research study.

Results: Five different machine learning algorithms were applied to perform a binary classification of baseline (BL) versus 4
distinct pain levels (PL1 through PL4). The highest validation accuracy using 3 time domain HRV features from a BioVid research

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25079 | p. 1https://www.jmir.org/2021/5/e25079
(page number not for citation purposes)

Kasaeyan Naeini et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:ekasaeya@uci.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


paper for baseline versus any other pain level was achieved by support vector machine (SVM) with 62.72% (BL vs PL4) to
84.14% (BL vs PL2). Similar results were achieved for the top 8 features based on the Gini index using the SVM method, with
an accuracy ranging from 63.86% (BL vs PL4) to 84.79% (BL vs PL2).

Conclusions: We propose a novel pain assessment method for postoperative patients using ECG signal. Weak supervision
applied for labeling and feature extraction improves the robustness of the approach. Our results show the viability of using a
machine learning algorithm to accurately and objectively assess acute pain among hospitalized patients.

International Registered Report Identifier (IRRID): RR2-10.2196/17783

(J Med Internet Res 2021;23(5):e25079) doi: 10.2196/25079
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Introduction

Overview
Pain assessment is a critical public health burden and is essential
to effective pain management, which is associated with many
illnesses [1]. Pain is “an unpleasant sensory and emotional
experience expressed in terms of actual or potential tissue
damage” [2], according to the most widely accepted definition.
Pain is considered to be a subjective experience that is related
to each individual in early life through experiences related to
injury [3]. Such pain, which is termed acute pain, usually lasts
hours, days, or weeks. Acute pain is associated with soft tissue
damage, a surgical procedure, or a brief disease process and
fosters avoidance of the harmful action in the future and
promotes healing by inhibiting activities that might cause further
tissue damage [4]. Pain, as a susceptible and ambiguous
phenomenon, is difficult to quantify [5], particularly when the
patient's own opinion is difficult to reach due to their limited
ability to communicate, as in patients under sedation or
anesthesia, persons with intellectual disabilities, infants, and
patients during critical illness [6]. Uncontrolled pain could cause
some serious complications and may evolve into chronic pain.
This could cause longer recovery in hospitals and delayed
discharge, higher health care costs, and major psychological,
financial, and social ramifications for patients [7]. However,
overtreatment of pain can also result in adverse effects such as
hospital readmission due to poorly controlled pain after
discharge or long-term opioid dependence.

The current and “gold standard” pain assessment relies on
patient self-reporting with tools such as the Visual Analogue
Scale (VAS) and Numerical Rating Scale (NRS). Although
these unidimensional models are considered powerful in acute
pain assessment, they are rife with deficits given their interactive
communication requirement between the patient and nurses,
which is a serious problem in noncommunicative patients [8,9].
Such tools rely on nurses’ knowledge, physical assessment
skills, and interviewing techniques. It is thus meaningful to
develop better tools to assess pain intensity for continuous
real-time pain monitoring. Such a tool not only improves the
care process of noncommunicative patients but can also benefit
other patient populations with timelier treatment, accurate
assessment, and reduced monitoring burden on clinicians [10].

State-of-the-art objective pain intensity assessment algorithms
consist of analysis of physiological and physical pain indicators,

as multiparameter analysis is superior to a singular physiological
parameter [11-13]. Objective pain assessment leverages using
wearable devices to capture the physiological parameters.
Internet-of-Things (IoT) devices, including wearable devices,
play a significant role in objective pain monitoring systems
[10]. As an example, Vatankhah et al [14] measured and
diagnosed pain levels of human using discrete wavelet transform
via electroencephalographic signals. These devices are in charge
of various real-time health monitoring services as well as
continuously processing and analyzing pain intensity levels to
classify them automatically and objectively. However, these
solutions to date have only been evaluated on healthy volunteers
(stimulated pain). This was the motivation to develop a
multimodal data set from postoperative adult patients in
hospitals to get a better understanding of pain intensity
characteristics of real patients. We call the data set UCI iHurt
Database (UCI_iHurtDB) [15]. The data set is planned to be
released for research purposes and, to the best of our knowledge,
is the first comprehensive data set collected from patients
suffering from real postoperative pain.

Electrocardiography (ECG) is useful for indicating the
perception of pain among all of the physiological signals
captured by wearable devices. Heart rate (HR) and heart rate
variability (HRV) are the essential parameters that can be
derived from ECG, as they are both coupled to autonomic
nervous system activity, when internal body functions are
involuntarily regulated, and they can provide a suitable proxy
for examining pain intensity [16]. The most frequently used
vital sign in pain studies is HR as the number of heartbeats,
while HRV features with the extent to which the heart rate
changes over a time interval or the extent to which it is spread
over different frequencies are observed individually and
selectively in some pain studies [17-19]. There are several
approaches for classifying pain intensity of healthy subjects
using machine learning techniques. Lopez-Martinez and Picard
[18] explored traditional machine learning algorithms such as
logistic regression and support vector machine (SVM) with
different kernels, as well as recurrent neural network, to create
a model for no pain versus pain at different intensities. Koenig
et al [19] revealed that HRV is a promising measure of
autonomic reactivity to nociceptive stimulation in healthy adults.
Therefore, we examine HR and HRV features with their
correlation with pain for future biosignal fusion in pain intensity
assessment and pain detection.
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To the best of our knowledge, this is the first work to study the
relations between ECG physiological signal and pain intensity
of postoperative patients to predict different pain intensity levels.
This will promote advancements in both observational and
physiological pain measurement. The technology used in this
paper for objective pain assessment was developed by our group
and presented in our previous work by Sarker et al [20]. The
prototype device can be variably configured for inclusion in a
wide range of applications. It is also validated on healthy adults
under thermal and electrical experimental pain stimulus [21].

In this paper, we looked into the ECG signal as one of the
physiological signals from the human body and examined HR
and HRV features extracted from ECG in several categories to
assess their correlation with pain intensity for future
physiological data fusion in pain intensity assessment. Due to
limited available self-report pain intensity labels, we explored
weak supervision, which has shown that performance of the
end-model can asymptotically improve with data set size,
although noisy sources of supervision are used [22,23]. Thus,
the contributions of this work are twofold: (1) We present
UCI_iHurtDB, a freshly collected data set from postoperative
patients consisting of multimodal biosignals (ECG,
electromyography, electrodermal activity,
photoplethysmography, accelerometer). (2) We provide a novel
weakly supervised method to enhance the sparsely labeled data
set. To the best of our knowledge, this is the first study using
weak supervision in pain assessment.

Interpretation of ECG in Pain Studies
Interpretation of ECG in pain studies starts with the ability to
detect the QRS complex as one of the morphological parts of
the ECG waves, with the focus on the RR intervals (distance
between adjacent R-waves). These peaks are essential in HRV
analysis, where in literature they are usually referred to as NN
intervals. HRV features have been traditionally calculated over
a short period of 5 minutes or over a long period in 24 hours.
However, in some cases such as acute physiological changes,
some HRV features in less than a minute are also taken on as
ultra–short-term analysis. Within each time window, HRV
features can be extracted from NN intervals in several domains
including (1) time domain features and (2) frequency domain
features. HRV features in the time domain consist of statistical
features including but not limited to SD of NN intervals, SD of
average NN intervals, root mean square of successive differences
(RMSSD), NN50, pNN50, and Max(HR) − min(HR). HRV
features in the frequency domain are extracted by the Welch
averaging method using power spectral density.

In literature, HRV analysis has been examined as one of the
main ways to measure pain in different types; in Sesay et al
[24], for instance, with the majority of 120 patients, it was
observed that regarding acute pain after minor surgery, NRS
was correlated with low-frequency (LF) band and the ratio of
LF to high-frequency (HF) band but not with HF. To monitor
the nociception level of patients with multiple physiological
parameters, HF in a 1-minute window was calculated in
Ben-Israel et al [11]. Jiang et al [17] experimented with the
correlation of HRV features in the ultrashort term with acute
pain. They suggested that multiple HRV features can indicate

the change from no pain to pain. Werner et al [25] compared
no pain among pain levels 1-4 using a random forest (RF)
classifier. They reported the detection of pain using a set of
features from ECG signals.

Methods

Setting
The study was approved by the University of California, Irvine
(UCI) institutional review board (HS: 2017-3747). Candidates
were selected from the Acute Pain Service (APS) patient list at
UCI Health in Orange, California. The APS unit at the medical
center serves approximately 100 patients weekly, enabling the
lead Doctor of Medicine to recruit patients.

Study Description, Participants, and Recruitment
This study is a prospective observational data collection from
postoperative patients likely having mild to moderate pain. All
25 participants recruited for this study met the following criteria:
(1) age at least 18 years, (2) received a consult by the APS, (3)
able to communicate, (4) able to provide written informed
consent, and (5) healthy, intact facial skin. They were excluded
if they had (1) any diagnosed condition affecting cognitive
functions (dementia, psychosis), (2) any diagnosed condition
affecting the central nervous system, facial nerves or muscles,
(3) deformities on hand that prevent sensor placement, or (4)
significant facial hair growth in the area where the sensors were
going to be attached.

Potential participants were selected if they were determined to
be eligible to participate in this study based on the
aforementioned inclusion and exclusion criteria. Patients got
both oral and written information about the details of the study.
Candidates were provided at least 24 hours to consider
participation in the study before finalizing the consent form,
and they were recruited to participate in this study after
obtaining the written consent form.

Study Design
After obtaining the written consent form, approximately 30
minutes of continuous ECG data was collected from the patients
in their private room using multiple wearable sensors in two
parts. In the first part, we used a transcutaneous electrical nerve
stimulation (TENS) unit to obtain the baseline of the person.
Patients were asked to increase the intensity of the TENS device
up to the level that was tolerable for them, hold it for at least
10 seconds, and then decrease it to level 0, including additional
rest between TENS challenges. In the second part, patients were
engaged with soft activities such as walking, coughing, sitting,
and lifting legs that may cause pain sensation. To achieve a
better statistical analysis, data collection in both parts, with and
without TENS unit, was repeated two to three times. Subject's
self-report of pain was recorded using NRS. The NRS for pain
is a segmented numeric version of the VAS to measure pain
intensity in one dimension in which a respondent points to the
number on the NRS, an integer from 0 to 10, that best represents
their pain intensity from “no pain” to “worst pain” [26]. We
expect to find solutions from multiple parameters that are robust
in response to different acute pain cases or study designs.
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Data Collection
To develop an algorithm for pain assessment in hospitalized
patients, we tracked physiological signals such as HR, HRV,
and respiratory rate from their ECG signals. The technology
used in this study to capture the aforementioned signals includes
the following components:

1. Biopotential acquisition system for ECG recording—ECG
is a biopotential signal captured from the skin surface with
a device developed by Sarker et al [20]. The system includes
commercially available electrodes (eg, in 24 mm diameter),
electrode-to-device lead wires, an ADS1299-based portable
device, and computer software receiving streaming data
from the portable device. The raw data of each channel at
the rate of 500 samples per second is sent to the computer
software through Bluetooth. The software visualizes the
waveforms and saves the raw data into files. The common
reference electrode is placed on the neutral bony area behind
the ear. This device uses two channels to collect 2-lead
ECG. One channel is to measure the potential between ECG
- right arm and reference, and the other channel is to
measure the potential between ECG - left arm and reference.

2. TENS unit device (Food and Drug Administration–cleared
Class II over-the-counter HealthmateForever YK15AB
electrotherapy device)—TENS units work by delivering
small electrical impulses through electrodes that have
adhesive pads to attach them to a person's skin.

Data Preprocessing

Data Synchronization
The ECG signals from each patient were sampled at a rate of
500 Hz. Data from two channels (left arm, right arm) were
obtained. The patient’s pain levels were simultaneously reported
and saved as labels. For the purpose of synchronicity, the
corresponding Unix timestamps were also obtained while
extracting both ECG and label data. The ECG signals were
trimmed from start to end to match the corresponding label
timestamps. Since the sampling frequency was 500 Hz, each
timestamp had 500 ECG samples associated with it.

Peak Detection
Once these clean signals were obtained, the second step in the
pipeline was to extract peaks. To find the peaks, the signals
were first sampled down to 250 Hz. A bidirectional long
short-term memory network was used to obtain the probabilities
and locations of peaks [27]. A window size of 1000 samples
and stride of 100 samples was used to generate these predictions.
Mean values were obtained from predictions that came from
overlapping windows. The predictions that were below a
particular threshold (0.05) were discarded and filtered out. Only
those peaks that were in local maximum were selected. Once

the peaks were obtained, the signal was resampled back to 500
Hz, and the peak probabilities and locations were obtained. This
method, however, might still be susceptible to false positives
that are likely generated due to the presence of noise or irregular
heartbeats. Therefore, another preprocessing step that removes
peaks that occur too close to each other was employed. A rolling
window was used to remove peaks that occurred in a time period
of 450 milliseconds or less between neighboring peaks. The
final selected peaks were then appended with their
corresponding Unix timestamps. This process was repeated for
every patient.

Noise Removal
The third and final preprocessing step is to remove noise from
the NN interval data. NN intervals are the time intervals between
two successive peaks. They are obtained by subtracting two
successive peak indices. All data points that are within 2
standard deviations of the mean were selected. The rest of the
data points were considered outliers and were removed. Even
after removing these outliers, however, there might still be
anomalous (not a number [NaN]) values in noisy sections of
the data. If the proportion of NaN values exceeded 50 percent,
the noisy sections were discarded. Otherwise, only NaN values
were discarded, and the remaining values were interpolated.
The filtered NN intervals were then saved and used for feature
extraction.

Feature Extraction
In the experiments conducted by Werner et al [25], they used
5.5 seconds of ECG signals and extracted 3 time domain HRV
features from the ECG signal of each subject: (1) the arithmetic
mean of time in between consecutive heartbeats or mean of NN
intervals (AVNN), (2) RMSSD, and (3) the slope of the linear
regression of NN intervals or the measure of acceleration of the
heart rate. We use an open-source Python toolbox named
pyHRV [28] to compute HRV features in our feature extraction
process.

In addition to the 3 time domain features used by Werner et al
[25], we also computed a few other time domain and frequency
domain features. For classification, we conducted two separate
experiments: (1) with the three above features only and (2) with
additional time and frequency domain features using feature
selection. The additional extracted features are mentioned below.

Time Domain Features
There were 19 time domain features extracted from the NN
interval series. They include the slope of the ECG signals and
18 statistical measures. These features were computed using
5.5-second sliding windows. The definitions of these time
domain features are mentioned in Table 1.

J Med Internet Res 2021 | vol. 23 | iss. 5 | e25079 | p. 4https://www.jmir.org/2021/5/e25079
(page number not for citation purposes)

Kasaeyan Naeini et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Time domain heart rate variability features and their definitions.

DescriptionFeature

Beats per minuteHRa (ms)

Mean of NN intervalsAVNN (ms)

Standard deviation of NN intervalsSDNN (ms)

Root mean square of successive NN interval differencesRMSSD (ms)

Number of NN interval differences greater than the specified thresholdNNXX (ms)

Percentage of successive NN intervals that differ by more than XX mspNNXX (%)

aHR: heart rate.

The breakdown of the 19 aforementioned features is explained
as follows: slope of NN intervals—a polynomial fit of degree
1; 5 NN interval features—total count, mean, minimum,
maximum, SD; 9 NN interval difference features—mean
difference, minimum difference, maximum difference, SD of
successive interval differences, root mean square of successive
interval differences, number of interval differences greater than
(a) 20 milliseconds and (b) 50 milliseconds, and percentage of
successive interval differences that differ by more than (a) 20

milliseconds and (b) 50 milliseconds; and 4 heart rate
features—mean, minimum, maximum, and SD.

Frequency Domain Features
There were 13 frequency domain features extracted by
estimating of power spectral density using the Welch method.
These features were computed using 250-second rolling
windows with a minimum threshold of 50 values per window.
The definitions of these frequency domain features are
mentioned in Table 2.

Table 2. Frequency domain heart rate variability features and their definitions.

DescriptionFeature

Absolute power in very low-frequency band (≤0.04)VLF power (s2)

Absolute power in low-frequency band (0.04-0.15)LF power (s2)

Absolute power in high-frequency band (0.15-0.4)HF power (s2)

Peak frequency in low-frequency band (0.04-0.15)LF peak (Hz)

Peak frequency in high-frequency band (0.15-0.4)HF peak (Hz)

Total power over all frequency bandsTotal power (s2)

Ratio of LF-to-HF powerLF/HF (%)

The breakdown of the 13 frequency domain features is explained
as follows: total power—total spectral power over all frequency
bands; 4 HF band fast Fourier transform (FFT) features—peak,
absolute, relative, normalized; 4 LF band FFT features—peak,
absolute, relative, normalized; 3 very low-frequency (VLF)
band FFT features—peak, absolute, relative; and FFT ratio of
HF and LF bands.

Feature Selection
To ensure generalization and avoid overfitting, it is important
to perform feature selection. This, in turn, reduces computational
complexity and the time for training and validating models.
Feature selection models can be placed under three broad
categories: filter-based methods, wrapper-based methods, and
embedded methods. Filter-based methods statistically determine
the relationship between input variables (features) and the target
variable (label). They provide a metric for evaluating and
filtering out features that will be used by the model. They are

also computationally cheaper than the other two methods and
have a reduced risk of overfitting [29]. Among the filter-based
methods, Gini impurity/information gain is a widely used
method to select the most informative features for a
classification problem. Usually, a decision tree–based model
like an RF classifier is used to output a feature importance
vector. Every node of a decision tree represents a condition on
how to split values present in a single feature. In this process,
similar data on the condition variable end up on the same side
of the split. The splitting condition is based on impurity of the
features chosen in every node. During the training process, how
much each feature contributed to the decrease in impurity is
calculated, and features are then ranked based on this measure.

Labels

Label Distribution
Table 3 shows the distribution of NRS pain labels reported by
patients during the clinical trials.
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Table 3. Numerical Rating Scale distribution for 11 pain classes.

nReported Numerical Rating Scale labels

370

521

372

613

834

445

326

167

468

269

410

Since the NRS labels recorded during clinical trials were
collected from real postoperative patients, there are some
inherent challenges due to the distribution of data. For example,
there are 83 occurrences of NRS pain label 4, but there are only
4 occurrences of NRS pain label 10 among all patients. Due to
the subjective nature and the different sources of pain among
our recruited patients, the imbalanced distribution of pain levels
among all patients is inevitable.

To compare our pain assessment algorithm’s performance with
Werner et al [25], we downsampled our pain labels from 11

NRS classes (0-10) to 5 classes (0-4). Data points from NRS
pain label 0 were considered as a baseline, and the remaining
NRS pain labels were distributed among 4 classes. Thresholds
for each downsampled class were carefully chosen in order to
minimize an imbalanced class distribution. Table 4 shows the
resulting distribution after downsampling the NRS pain labels.
The relatively large number of occurrences of NRS pain label
4 increased the number of downsampled PL2 labels over other
downsampled pain labels.

Table 4. Downsampled pain distribution with 5 classes.

nDownsampled pain labels

37BLa

89PL1b

144PL2

92PL3

76PL4

aBL: baseline.
bPL: pain level.

Labeling ECG Features
Since the patients’ NRS values were only reported after
performing some activities, labels were stored sparsely. While
combining ECG features with their corresponding labels, their
timestamps were matched based on the nearest 5.5 seconds
(labeling threshold). More precisely, any ECG feature window
that was within 5.5 seconds of a reported NRS value was given
that value as its label. However, as a consequence of this, all
the feature windows that were not within the labeling threshold
were not given a corresponding label.

To label the remaining unlabeled data points, we employed
Snorkel [23], a weak supervision framework for rapid training

data creation. Snorkel is an end-to-end system that combines
weak supervision sources to label training data with limited
ground truth data. Rather than hand-labeling training data,
Snorkel allows its users to write labeling functions that make
use of heuristics, patterns, third-party machine learning models,
external knowledge bases, and more. Weak supervision is
typically employed to label large amounts of unlabeled data
when there are noisy, limited, or imprecise sources. This
approach eliminates the burden of continuously obtaining NRS
values from patients. The use of Snorkel in our labeling process
allowed us to make use of more data for the purpose of training
and testing our pain algorithm. This consequently led to better
performance during validation. Figure 1 depicts the architecture
that was used to label these unlabeled instances.
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Figure 1. Snorkel labeling architecture. KNN: k-nearest neighbor; RF: random forest; SVM: support vector machine.

All the data points that were within the labeling threshold were
considered “strong” labels, or labels used for training labeling
functions. These strong labels were collected directly from the
patients. The remaining unlabeled data points were considered
“weak” data and were kept aside for the weak supervision
algorithm to label. For the labeling process, only each patient's
strongly labeled data was used to label their own unlabeled
instances. This was done to avoid the possibility of data leakage
during the validation process.

The labeling functions consist of a group of three off-the-shelf
machine learning models: (1) an SVM with a radial basis
function kernel, (2) an RF classifier, and (3) a k-nearest neighbor
(KNN) classifier with uniform weights. Once each of these
models is trained on strong labels, they are used to make
predictions on the weak or unlabeled data. Their predictions are
then collected and converted into a single confidence-weighted
label per data point using Snorkel’s LabelModel function. The
most confident label predictions from each datapoint were
considered as labels for the weak data. It is important to note
that weak supervision does not compromise on the reliability
of our algorithm because we use the weakly labeled data only
for training our models. This way, the performance of our
algorithm can be measured using only real data collected from
patients.

Classification
To compare the performance of our pain algorithm with Werner
et al [25], we performed binary classification on our test data
using the 3 time domain features mentioned in their work. We
split the binary classification problem into 4 different categories:
baseline (BL) versus pain level 1 (PL1), BL versus PL2, BL
versus PL3, and BL versus PL4. Since 1 of the patients had data
from only one downsampled label class, they were discarded
from the classification process. Consequently, we were left with
data from 19 patients.

We evaluated the performance of our pain algorithm using
leave-one-out cross-validation (LOOCV) with the focus on
optimizing the area under the curve (AUC) score. During each
iteration of LOOCV, the data of 18 of the 19 patients, including

those data points that were labeled by Snorkel, were used for
training. For testing, only the strongly labeled data points from
the one patient left out were used. This process is repeated for
all 19 patients to estimate the algorithm’s performance on unseen
data. Due to the presence of an imbalanced distribution of pain
levels within patients, data points from some pain levels were
nonexistent from their data. As a result, it was not possible to
compute either precision or recall for most patients.

The following five classification methods were deployed in our
experiments to identify the best performing model for our pain
assessment algorithm: AdaBoost classifier, XGBoost classifier,
RF classifier, SVM classifier, and KNN classifier.

We also conducted separate experiments with feature selection
using the 32 features mentioned in the Feature Extraction
section. To get the best set of features for classification, we run
LOOCV using an RF classifier. We compute the Gini
importance of each of the features at every fold and select those
features that were at least one standard deviation above the mean
importance score. As a result, it was possible to have different
sets of features in every fold. After computing the best set of
features at every fold, we consider those features that were used
in most of the folds for classification. The following 8 features
were used in the final feature set: (1) total spectral power, (2)
absolute LF power, (3) absolute HF power, (4) mean HR, (5)
relative HF power, (6) normalized HF power, (7) relative VLF
power, and (8) normalized LF power.

Results

Pain Demographic Characteristics
A total of 25 patients with acute pain were engaged by APS and
recruited for this study at UCI Medical Center. However, the
ECG data from 2 patients were missing due to connectivity
issues. Moreover, we found that 3 of the patients had arrhythmia,
so we removed those 3 as well. The average age of patients was
55.6 years (SD 16.24, range 23-89); 52% (13/25) of patients
were male and 48% (12/25) of patients were female (Table 5).
All of the patients (n=20) were taking prescription medication
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at the time of the study. The nature of the procedures for each
participant included the following domains: 50% general surgery
(diagnostic laparoscopy, exploratory laparotomy, and vascular),

25% orthopedics, 15% trauma (thoracic pain and rib plating),
and 10% urology (cystectomy and bladder augmentation).

Table 5. Patient demographic characteristics (N=25).

RangeValueVariable

N/Aa3 (12)Patients excluded due to arrhythmia, n (%)

N/A2 (8)Patients excluded due to missing ECGb data, n (%)

N/A13 (52)Gender, male, n (%)

52.2-112.276.56 (17.31)Weight (kg), mean (SD)

152.4-193170.9 (10.44)Height (cm), mean (SD)

15.1-38.7326.33 (6.14)BMIc (kg/m2), mean (SD)

Procedure domain (n=20), n (%)

N/A10 (50)General surgery 

N/A5 (25)Orthopedics 

N/A3 (15)Trauma 

N/A2 (10)Urology 

aN/A: not applicable.
bECG: electrocardiography.
cBMI: body mass index.

Pain Engagement Results
To make a fair comparison between our pain assessment
algorithm and the work of Werner et al [25], we replicated their
settings into our data set. The comparisons of the accuracy
achieved by our algorithm on all five classifiers while using

only 3 time domain features are shown in Figure 2. Similarly,
Figure 3 shows the same comparison while performing feature
selection. These figures show the mean accuracy across all
subjects while performing 4 different binary classifications
based on pain levels. The final scores are presented in Table 6
and Table 7 below.
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Figure 2. Validation accuracy of all classifiers on BioVid features. BL: baseline; PL: pain level; KNN: k-nearest neighbor; RF: random forest; SVM:
support vector machine; XGB: XGBoost.

Figure 3. Validation accuracy of all classifiers on top 8 features. BL: baseline; PL: pain level; KNN: k-nearest neighbor; RF: random forest; SVM:
support vector machine; XGB: XGBoost.
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Table 6. Validation accuracy of BioVid features.

Werner et alKNNcSVMbRFaXGBoostAdaBoostBinary classification

48.739.0669.1642.9741.3552.63BLd vs PL1e

51.670.9284.1470.8469.5775.68BL vs PL2

56.564.2075.7365.9465.7366.33BL vs PL3

62.044.6862.7244.2444.5541.53BL vs PL4

aRF: random forest.
bSVM: support vector machine.
cKNN: k-nearest neighbor.
dBL: baseline.
ePL: pain level.

Table 7. Validation accuracy of top 8 features.

Werner et alKNNcSVMbRFaXGBoostAdaBoostBinary classification

48.758.6167.0364.3759.4659.94BLd vs PL1e

51.668.5484.7977.1968.8571.06BL vs PL2

56.553.7676.1864.2959.2262.63BL vs PL3

62.032.5163.8643.1760.4439.29BL vs PL4

aRF: random forest.
bSVM: support vector machine.
cKNN: k-nearest neighbor.
dBL: baseline.
ePL: pain level.

We were able to achieve the highest accuracy on the SVM
classifier for both settings, with and without feature selection.
Moreover, there is no noteworthy difference in the performance
of the SVM classifier in both settings. However, while
comparing the other classifiers, it is evident that there is a great
improvement in performance while using feature selection in
the BL versus PL1 category. The performances of the AdaBoost,
XGBoost, RF, and KNN classifiers have a marked increase of
about 12% on average when compared to their counterparts
without feature selection. However, there is a slight decrease
in the AdaBoost and RF classifiers and significant decrease in
the KNN performance in the BL versus PL4 category. On the
other hand, there is an improvement of about 16% in the
XGBoost classifier while performing feature selection in the
BL versus PL4 category. We speculate that the lower accuracy
scores could be due to the relatively smaller number of training
examples available from the downsampled PL4. On the flip
side, due to the relative abundance of training examples from
PL2, there is a spike in performance for all classifiers across
both feature settings in the BL versus PL2 category.

While comparing our algorithm's performance to Werner et al
[25], we can see that our SVM classifier fares significantly
better than their model. The SVM classifier outperforms their
model by an average of 20% across both feature settings for the
first three pain categories (BL vs PL1, BL vs PL2, and BL vs
PL3). Conversely, there is only a slight increase in performance
across both feature settings in the BL versus PL4 category.

Discussion

Strengths
To the best of our knowledge, this is the first study that uses
ECG signals from real postoperative adult patients for the
purpose of developing an automatic pain assessment tool.
Moreover, the use of weak supervision in our data labeling
process is a novel approach that has not been implemented in
pain assessment studies before. It eliminates the need for
constantly asking patients for their pain levels and therefore
reduces the burden placed on them during the trials. The
accuracy scores for this data set with the focus of optimizing it
for AUC using the SVM classifier, especially in the first three
pain categories, are considerably higher than the scores achieved
by Werner et al for both feature settings (with and without
feature selection). We also achieve comparable results for the
last pain category (BL vs PL4). Furthermore, the use of feature
selection in our procedure helps determine the most informative
features and reduces the complexity of our pain models. We
were able to identify the 8 most informative features and
improve the performance of our models in the process.

Limitations
The main limitation in our algorithm is the presence of noise,
in the form of motion artifacts, in our physiological data. Since
we collect data from real postoperative patients in a clinical
setting, they were allowed to move more freely when compared
to experiments performed in a laboratory setting on healthy
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subjects. The presence of noise diminished the quality of our
data. Thus, this negatively impacted the performance of our
algorithm. 

Another limitation in our experiments is the presence of
imbalanced labels in each patient’s data. Since we did not collect
data in a laboratory setting, most patients did not report all the
different pain levels during the trials. Most noticeably, this led
to a relatively smaller number of labeled examples from the
highest pain level (PL4). This consequently decreased the
performance accuracy for that pain category (BL vs PL4). In a
controlled laboratory setting, one can design the study to force
the pain intensity levels to be balanced, which is not feasible in
real settings.

Furthermore, we could not find a significant difference between
different pain levels in our study. We believe this is due to the

fact that variations in ECG signals in response to different pain
levels are much harder to distinguish in comparison to different
pain levels versus baseline. Moreover, it is worth mentioning
that the state of the art in pain assessment focuses on comparing
baseline with other pain levels (eg, Werner et al [25]). We
believe the reason is to find out if the patient has pain (baseline
vs other pain levels).

Conclusions
The experiments proposed in this study show the viability of
our pain assessment algorithm on data from postoperative
patients. The use of weak supervision for labeling and feature
extraction improves the robustness of our approach. We plan
to incorporate multimodal pain assessment methods to further
improve our performance and robustness.
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