
© The Author(s) 2018. Published by Oxford University Press. Page 1 of 23
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2018, 1–23

doi: 10.1093/database/bay120
Original article

Original article

Potent pairing: ensemble of long short-term

memory networks and support vector machine

for chemical-protein relation extraction

Farrokh Mehryary1,2,*, Jari Björne1,3, Tapio Salakoski1,3 and Filip Ginter1

1TurkuNLP group, Department of Future Technologies, University of Turku, Turku, Finland, 2University of
Turku Graduate School, Turku, Finland and 3Turku Centre for Computer Science, Turku, Finland
∗Corresponding author: Tel: +358 2 333 7649; Email: farmeh@utu.fi

Citation details: Mehryary,F., Björne,J., Salakoski,T. et al. Potent pairing: ensemble of long short-term memory networks
and support vector machine for chemical-protein relation extraction. Database (2018) Vol. 2018: article ID bay120;
doi:10.1093/database/bay120

Received 26 February 2018; Revised 5 October 2018; Accepted 7 October 2018

Abstract

Biomedical researchers regularly discover new interactions between chemical

compounds/drugs and genes/proteins, and report them in research literature. Having

knowledge about these interactions is crucially important in many research areas such

as precision medicine and drug discovery. The BioCreative VI Task 5 (CHEMPROT)

challenge promotes the development and evaluation of computer systems that can

automatically recognize and extract statements of such interactions from biomedical

literature. We participated in this challenge with a Support Vector Machine (SVM) system

and a deep learning-based system (ST-ANN), and achieved an F-score of 60.99 for the

task. After the shared task, we have significantly improved the performance of the

ST-ANN system. Additionally, we have developed a new deep learning-based system

(I-ANN) that considerably outperforms the ST-ANN system. Both ST-ANN and I-ANN

systems are centered around training an ensemble of artificial neural networks and

utilizing different bidirectional Long Short-Term Memory (LSTM) chains for representing

the shortest dependency path and/or the full sentence. By combining the predictions of

the SVM and the I-ANN systems, we achieved an F-score of 63.10 for the task, improving

our previous F-score by 2.11 percentage points. Our systems are fully open-source

and publicly available. We highlight that the systems we present in this study are not

applicable only to the BioCreative VI Task 5, but can be effortlessly re-trained to extract

any types of relations of interest, with no modifications of the source code required, if

a manually annotated corpus is provided as training data in a specific file format.

Database URL: https://github.com/TurkuNLP/BioCreativeVI CHEMPROT RE

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://github.com/TurkuNLP/BioCreativeVI_CHEMPROT_RE

Page 2 of 23 Database, Vol. 2018, Article ID bay120

Introduction

BioCreative VI Task 5 challenge (hereinafter referred to
as the ‘shared task’), focuses on extraction of relations
between chemical compounds/drugs and genes/proteins,
stated in biomedical texts (1). The CHEMPROT corpus
that provides such annotations is used as the training and
test data in this task. The aim of the task is to promote the
development of systems for extracting such relations for
use in precision medicine, drug discovery and basic biomed-
ical research (http://www.biocreative.org/tasks/biocreative
-vi/track-5/).

This shared task follows the well-established approach
of pairwise relation extraction in the field of biomedical
text mining. protein–protein interactions (PPI) were one
of the extraction targets in a number of shared tasks
and datasets. The BioCreative II and BioCreative III
challenges (2, 3) focused on pure PPI extraction, while
the BioCreative V CDR Task focused on chemical-
induced disease relation extraction (4). The two drug–
drug interaction shared tasks (DDI-2011 and DDI-2013)
focused on the detection of adverse interactions between
pairs of drugs (5, 6), and the Bacteria–Biotope relation
extraction tasks aimed at extracting the location of bacteria
from scientific web pages or PubMed abstracts (7–9).
Finally, Pyysalo et al. (10) have preprocessed and unified
five publicly available protein–protein interaction corpora
(http://mars.cs.utu.fi/PPICorpora/), in order to facilitate
seamless development and comparison of biomedical
relation extraction methods. Among these tasks, DDI-2013
(6) has become popular for assessing the performance
of relation extraction methods, mainly because it has a
relatively large and challenging corpus.

We approach the BioCreative VI Task 5 challenge as
a classification task where we classify each valid pair of
entities as one of the annotated relation types or as a nega-
tive. We have developed three different systems to address
the task. The first system relies on a rich set of features
and a linear support vector machine (SVM) classifier (11).
The two other systems are based on deep learning and
require less feature engineering. Our shared task artificial
neural network (ST-ANN) system utilizes an ensemble of
neural networks, each having three long short-term memory
(LSTM) chains (12), for representing the words, part-of-
speech (POS) tags and dependency types (DTs) (i.e. edges
in the sentence parse graph) along the shortest depen-
dency path (SDP) connecting the two candidate entities.
Our improved ANN (I-ANN) system is also an ensemble
of neural networks, each having three LSTM chains for
representing the words, POS tags and DTs along the SDP
(similar to the ST-ANN) and a bidirectional LSTM (forward
and backward chains) for learning a representation of the
whole sentence and the two entities of interest in it. We have

also experimented with several methods for combining the
predictions of these systems, with the goal of increasing the
overall performance.

We participated in the shared task with the SVM and
ST-ANN systems (13). On the development set, our system
combination approach outperformed the two individual
systems, achieving an F-score of 61.09. On the test set, our
SVM system achieved the highest result of our submissions
with an F-score of 60.99. After the shared task, we have
significantly improved the performance of the ST-ANN
system. In addition, we have developed the I-ANN sys-
tem, which considerably outperforms the ST-ANN system.
Finally, by combining the predictions of the SVM and I-
ANN systems, we achieved an F-score of 61.46 on the
development set, with a corresponding F-score of 63.10 on
the test set, 2.11 percentage points (pp) higher than our best
test set submission during the shared task. Here we discuss
all approaches and results in detail.

Background

In all the aforementioned biomedical relation extraction
tasks (including BioCreative VI Task 5), the named entities
are manually annotated and given as known data to the
participants, hence the aim is to build methods that are
able to automatically detect statements of relations among
known named entities in the given texts. In addition to the
named entities, the training data for these tasks also include
manually annotated relations, making these tasks ideal for
the development of supervised relation extraction methods.
These machine learning-based methods utilize the provided
training data to train a classifier—e.g. an SVM, an ANN or
a Naive Bayes classifier—capable of detecting statements of
relations in texts.

According to Zhang et al. (14), supervised relation
extraction methods can be broadly divided into three main
groups: (i) feature-based methods, (ii) kernel-based methods
and (iii) deep learning-based methods.

Feature-based methods extract a series of relevant
features from the text in order to train a relation
extraction classifier. In these methods, each entity pair is
represented with a corresponding numerical feature vector
that is further used for either training the classifier or
for detection of the relation(s) (14). The list of features
usually includes (but is not necessarily limited to) bags-of-
words/lemmas/POS/DTs or their n-grams in the sentence
or along the SDP. The Turku Event Extraction System
(TEES) (15)—previously developed by members of our
research group—is an example of such a system, using a
rich set of features to build an SVM classifier. TEES achieved
62.99 F-score in the DDI-2011 task (5), 58.7 F-score in the
DDI-2013 task (6) and the state-of-the-art performance

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

http://www.biocreative.org/tasks/biocreative-vi/track-5/
http://mars.cs.utu.fi/PPICorpora/

Database, Vol. 2018, Article ID bay120 Page 3 of 23

(42.00 F-score) in the Bacteria-Biotope 2013 relation
extraction task (8). Another example is the VERSE system,
developed by Lever and Jones (16), which obtained
the state-of-the-art result with an F-score of 55.8 in
the Bacteria-Biotope 2016 relation extraction task (9).
Similarly to TEES, VERSE also extracts a rich set of features
in order to train a linear SVM, but utilizes a feature selection
component for optimization. Finally, Raihani et al. (17)
achieved the impressive F-score of 71.14 on the DDI-2013
corpus with a system utilizing lexical, phrase, verb, syntactic
and auxiliary features.

Kernel-based methods use kernel functions that are able
to directly calculate the similarity between two instances
(i.e. two machine learning examples) to train a relation
classification model (14, 18). In kernel methods, examples
retain their original representation (e.g. as bag-of-words in
the sentence, sentence dependency parse graph or sentence
shallow parse graph) and the kernel method is able to assign
a label to a given novel example by computing and compar-
ing its similarity to all labeled training set examples (14, 18,
19). An advantage of kernel methods is that they can search
a feature space much larger than could be represented
by a feature-based approach, because the kernel functions
can explore an implicit feature space when calculating the
similarity between two examples (19). Kernel functions are
usually used in conjunction with classifiers like SVM and
voted perceptron (20). Several kernel functions have been
suggested and applied for relation extraction. In a bag-of-
features kernel approach, the words in the sentence are
divided into three groups: before, between and after the
two entities. Each group is further represented with a bag-
of-features. Bunescu et al. (21) used this approach to build
three subsequence-kernels for each bag, with the final kernel
function being simply the sum of the three kernels, which
is further used with an SVM classifier for relation classi-
fication. Another popular family of kernels are tree/graph
kernels. Zelenko et al. (18) developed kernels capable of
comparing the similarity of shallow parse trees and used
them with SVM and voted perceptron classifiers for relation
extraction. Culotta et al. (19) extended the previous work
by introducing the ‘Dependency Tree Kernel’ for relation
extraction and showed that their model outperforms bag-
of-words kernel approach by 20 pp. Reichartz et al. (22)
developed the ‘All-Pairs Dependency Tree Kernel’, and the
‘Dependency Path Tree Kernel’ and showed their kernels
with richer structural features significantly outperform all
published approaches for kernel-based relation extraction
from dependency trees. Finally, Airola et al. (23) devel-
oped the ‘All-Paths Graph Kernel’ for biomedical relation
extraction and showed that their method achieves the state-
of-the-art performance on five protein–protein interaction
corpora.

Feature-based methods extensively rely on natural lan-
guage processing (NLP) tools (e.g. tokenizers, POS tag-
gers, lemmatizers, syntactic parsers, etc.) and require heavy
feature engineering to transform the input data into a
‘representation’ (i.e. a feature vector) that can lead to
a successful relation classification. On one hand, feature
engineering is skill-dependent and time-consuming (24), on
the other hand, the errors in the NLP tools are amplified in
the relation extraction systems, negatively impacting their
performance (14). In contrast, the aim in deep learning
approach is to ‘automatically learn’ efficient representa-
tions, suitable for the relation classification task at hand.
Deep learning achieves this by introducing representations
that are expressed in terms of other, simpler representations
and allowing the computer to automatically learn complex
concepts out of simpler concepts (25). For example, the
concept of a sentence can be expressed by phrases, while
phrases are composed of words and syntactical depen-
dencies among them. This allows a modular design and
training of a hierarchy of representations, with the root
as the final representation used for a prediction task. A
key feature is that lower-level representations (i.e. ‘embed-
dings’) can sometimes be pre-trained in advance, in an
unsupervised fashion and with training data other than the
training data available for the prediction task at hand. A
successful example is pre-trained ‘word embeddings’, the
vector representations for words in a language that are
trained on millions of unannotated sentences, so that words
with similar meanings have similar corresponding vectors
in the vector space model (26). Several studies have shown
that integrating pre-trained word embeddings into deep
neural networks (DNNs) can improve the performance of
downstream prediction tasks.

Deep learning-based relation extraction methods have
recently outperformed feature/kernel-based methods on
different corpora. For example, on the DDI-2013 corpus
(6) all top performing methods are based on DNNs
(24). The only exception is the feature-based system of
Raihani et al. (17) with 71.1 F-score, on par with the
recent deep learning-based methods. recurrent neural
networks (RNN) and convolutional neural networks
(CNN) are the two main neural structures that are
extensively utilized in DNNs for achieving state-of-the-
art performance in various NLP and text mining tasks,
such as syntactic parsing, sentence classification, sentiment
analysis, text summarization, machine translation, named-
entity recognition and relation extraction. CNNs are
inherently efficient in learning ‘local’ or ‘position-invariant’
features through discrete convolution with different size
filters (kernels), because they extract the features based
on n-grams of the sentences. In contrast, RNNs can
directly model sequential data, such as the sequence of

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 4 of 23 Database, Vol. 2018, Article ID bay120

words in sentences (24). LSTM networks (12) and gated
recurrent units (GRUs) (27) are variants of RNNs that
utilize memory cells and/or gating mechanisms to deal
with the vanishing or exploding gradients (28), a problem
associated with RNNs which negatively impacts their
training and prediction performance.

Yin et al. (29) have systematically compared the perfor-
mance of CNNs with LSTMs and GRUs on various NLP
tasks and have shown that the performance of CNN and
LSTM/GRU networks are very close for relation extraction
on the SemEval-2010 corpus (30). However, literature sur-
vey on the DDI-2013 corpus shows that at the moment,
the top three methods on this corpus are based on RNNs
with F-scores higher than those of CNN-based methods.
Lim et al. (31) have achieved the state-of-the-art F-score
of 73.5 with an ensemble of Tree-LSTMs; Zhou et al. (32)
have achieved 73.0 F-score with position-aware attention-
based bidirectional LSTM networks and multitask learning;
and Zhang et al. (24) have achieved 72.9 F-score using
hierarchical bidirectional LSTM networks. In contrast, the
‘dependency-based CNN’ developed by Liu et al. (33) has
achieved 70.8 F-score, the ‘multichannel CNN’ developed
by Quan et al. (34) has achieved 70.21 F-score and the
‘Syntax CNN’ (SCNN) developed by Zhao et al. (35) has
achieved 68.6 F-score. According to Zhang et al. (24)
the main reason is that the DDI-2013 corpus contains
many long and complicated sentences, and compared to
CNNs, RNN-based models can better learn the long-term
dependence of the sentence that is crucial for capturing the
lexical and syntactic features in the long and complicated
sentences. Since CNNs work based on n-grams, they can
encounter problems in learning from long sentences or
sentences that have important clues lying far away from
each other. However, we highlight that the performance of a
neural relation extraction system does not boil down only to
the neural network architecture it uses, but also the inputs
it receives, the feature set that it uses and the training and
optimization procedures that are used to train the system.

On the CHEMPROT corpus, the highest F-score (64.10)
in the shared task has been achieved by Peng et al. (36),
with a system combination approach. Their method is an
ensemble of three separate systems: (i) a CNN-based rela-
tion extraction system that receives the sentence sequence
and the SDP sequence as inputs, (ii) an RNN-based system
that utilizes a bidirectional LSTM network to learn from the
full sentence sequence and (iii) an SVM-based system that
generates features based on the full sentence and SDP. This
suggests that combining the power of neural models with
feature-based methods is a promising approach for relation
extraction. We also participated in the shared task with
a system combination approach, utilizing an SVM-based
system and a deep learning-based system (13). After the

shared task we have improved our neural network models,
hence improving our best F-score by 2.11 pps.

Data

The CHEMPROT corpus is a pairwise relation dataset. All
entities are given as known data to the participants, thus the
task is to predict the relations for valid pairs of these entities.
The relations are directed, always connecting a GENE-type
entity (gene or protein) to a CHEMICAL-type entity. A large
set of distinct types are used for annotating the relations, but
these types are combined into 10 groups that are used as the
actual classes for this task. Further, only five of these classes
are taken into account in the task evaluation. The micro-
averaged F-score of the five target classes is the official
metric used for evaluation.

Cross-sentence relations constitute less than 1% of the
total relations in the CHEMPROT training set. In addition,
only 10 pairs in the training set have been labeled with
multiple relation types. Hence, we formulate the task as a
multi-class classification task where we classify each valid
pair of entities as 1 of the 10 annotated relation types or as
a ‘negative’, and we only focus on candidate pairs belonging
to the same sentence.

Methods

We develop three different systems capable of extracting
relations between CHEMICAL and GENE entities. Our first
system relies on a rich set of features and a linear SVM
classifier (11). The two other systems are based on deep
learning and require less feature engineering. Our ST-ANN
system has been developed during our participation in the
shared task, whereas we have developed the I-ANN system
after the shared task. We also combine predictions of the
SVM classifier with either ST-ANN or I-ANN predictions to
boost the F-score, using a simple algorithm that is optimized
on the official development set. In this section we discuss the
details of each approach.

Preprocessing

We use the TEES system (15) to run a preprocessing pipeline
of tokenization, POS tagging and parsing. We convert the
CHEMPROT corpus into the Interaction XML format
native to the TEES preprocessing system. We test different
parses generated using the TEES preprocessor wrappers
for the BLLIP, Stanford converter and SyntaxNet parser
software (37–39). The default parsing pipeline in our exper-
iments consists of BLLIP constituency parsing with the
biomedical domain model of McClosky (40), followed by
conversion to dependencies using the Stanford conversion

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 5 of 23

tool (38). We test different variants of the Stanford depen-
dencies (SDs) representation, with the ‘CCprocessed’ vari-
ant being the default unless otherwise stated.

The training data incorporates 10 different types of
relations, five of them being evaluated in the task. We also
define and add a ‘negative’ type for the cases where no
relation exists between the two candidate entities. Hence,
we formulate this relation extraction task as an 11-class
classification problem.

SVM-based system

The SVM-based system used in this work is the TEES (15).
The system is applied as is, with no task-specific modifica-
tions. The TEES system uses the SVMmulticlass software as the
multi-class classifier implementation (41).

The TEES system has primarily been developed for
the detection of ‘events’ (42), a more complex alternative
to pairwise relation annotations like those used in the
CHEMPROT corpus. Events consist of a trigger word
(usually a verb) and 0-n directed arguments that can be
named entities like proteins, but also other events. In this
manner, events form a complex graph where the named
entities and triggers are the nodes, and the event arguments
are the edges. For detecting events, the TEES system is built
as a pipeline of consecutive classification steps. In the first
step (entity detection), each word token in the sentence is
classified as a trigger or not. In the second phase (edge
detection), directed edges are predicted between all valid
pairs of entities. Since multiple, different events can use the
same word token as their trigger, the third step (unmerging)
is used to ‘pull apart’ such nodes by classifying all valid
trigger and argument combinations as real events or not.
The fourth step (modifier detection) can be used to detect
binary modality modifiers annotated for some events, such
as negation and speculation.

TEES can also be used for pairwise relation extraction
tasks such as the DDI (drug–drug extraction) challenges
(43) or in the current work, the CHEMPROT task. In such
tasks, only the second step (edge detection) of the TEES
pipeline is used. The set of nodes consists of the given named
entities, and relations are predicted for all valid node pairs;
in the case of CHEMPROT all pairs where the first entity is
of type CHEMICAL and the second of type GENE.

For all the steps in the classification pipeline, TEES relies
on a rich feature representation. While most features for
relation detection are generated from the shortest path of
dependencies between the two entities, dependency chains
outside this shortest path, bags-of-words and the linear
order of tokens are also used for generating features, in an
attempt to capture more of the sentence context outside the
direct relation between the two entities of interest.

We test several different forms of parsing and varia-
tions of predicting the CHEMPROT corpus with TEES,
but find that none of these improve performance over
the default approach (see the Shared task results section
for detailed information). In addition we tried using the
DrugBank dataset (44) as additional features. For the three
CHEMPROT corpus representations, the TEES system is
trained with either the default of all 10 classes, with all the
non-evaluated classes merged into a single class or with the
non-evaluated classes entirely removed. For parses, we try
the BLLIP parser with the McClosky biomodel and with all
five types of Stanford conversion, as well as the SyntaxNet
parser.

ST-ANN system

ST-ANN is a deep learning-based relation extraction system
that requires less feature engineering than the SVM system
and is centered around three main ideas: (i) utilizing LSTM
networks instead of simple RNNs, (ii) focusing on the
words along the SDP and (iii) using an ensemble of neural
networks (with identical architectures) instead of a single
neural network, to stabilize the variance in the performance
caused by the random initialization of the network weights.

The ST-ANN system has an architecture similar to the
successful system we have recently developed for extract-
ing bacteria–habitat relations from biomedical texts (45),
but the predictions of the networks in this ensemble are
aggregated using a different approach, more suitable for
multi-class classification. Each neural network in the ST-
ANN ensemble utilizes three separate LSTM chains for
representing the words, representing the POS tags and
representing the DTs (i.e. edges in the parse graph) along
the SDP that connects the two entities. Figure 1 shows the
architecture of one neural network in the ST-ANN ensemble
with an example sentence from the CHEMPROT training
set and its dependency parse graph as the inputs.

Even though standard RNNs are theoretically efficient
sequence learning models, they usually suffer from the van-
ishing or exploding gradients problem (28): if the network
is deep, during the back-propagation, the gradients may
either decay exponentially and cause the learning to become
very slow or stop altogether (‘vanishing gradients’); or
become excessively large, and cause the learning to diverge
(‘exploding gradients’). To address this problem, LSTM
networks (12) and GRUs (27) have been proposed based
on RNNs. LSTM-based networks exploit memory cells and
gating mechanisms while GRU-based models are simpler
and only utilize a gating mechanism. LSTM and GRU
networks are shown to be much more efficient sequence
modelers compared to simple RNNs. For example,
Zhang et al. (24) have compared standard RNNs with

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 6 of 23 Database, Vol. 2018, Article ID bay120

Figure 1. Architecture of one neural network in the ST-ANN ensemble. The figure illustrates the architecture of one neural network in the ST-ANN

ensemble with an example sentence from the CHEMPROT training set and its dependency parse graph as the inputs. The shortest dependency path

which connects the two entities (“Rapamycin” and “proteasome”) in the parse graph is first discovered. The path is traversed from the CHEMICAL

entity to the GENE entity, producing the sequence of words, the sequence of POS tags, and the sequence of dependency types (edges) along the

path. The words, POS tags and dependency types are then mapped into their corresponding vector representations using embedding lookup layers

and then input to three separate LSTM chains. The outputs of the last LSTM units of the three chains are concatenated together and the resulting

higher dimensional vector (i.e. the SDP vector representation) is input to a hidden dense layer. The hidden layer finally connects to the decision

(classification) layer, which has a softmax activation.

LSTMs and GRUs for relation extraction and have shown
that their standard RNN-based model achieves 61.4 F-score
on DDI-2013 corpus, whereas the equivalent GRU-based
and LSTM-based models achieve 72.4 and 72.9 F-score,
respectively, ∼11 pps higher than the standard RNN-based
model. In this work, we also use LSTM networks instead of
standard RNNs, for capturing the information in the SDP.

The SDP that connects the two entities in the syntactic
parse graph is known to contain most of the relevant
words for expressing the relation between the two entities,
while excluding less relevant and uninformative words (45).
Figure 1 shows an example sentence from the CHEMPROT
training set, its parse graph and the shortest path that
connects the two entities. As can be noticed in the figure,
the SDP for this particular example contains only the sub-
ject ‘Rapamycin’ (the CHEMICAL), the verb ‘inhibits’ and
the direct object ‘proteasome’ (the GENE), whereas less

relevant words (the adverb ‘allosterically’ and the article
‘the’) are put aside. Building a relation extraction system
by focusing on the most important words (e.g. words in
the SDP) can lead to good generalization for unseen data.
Based on this observation, many successful feature-based
and deep learning-based relation extraction methods have
been developed (15, 16, 45–49). The ST-ANN system also
generates the features along the SDP. For this aim, we first
assume the parse graph is undirected and find the shortest
path between the two entities (CHEMICAL and GENE),
and always traverse the path from the CHEMICAL entity
to the GENE entity, regardless of the order of the entity
mentions in the sentence. Based on experiments on the
CHEMPROT development set, we notice this approach
results in significantly better generalization for unseen data,
compared to traversing the path from the first occurring
entity mention in the sentence to the second. Besides the

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 7 of 23

existing DT edges in the parse graph, we also add an artifi-
cial edge between any two adjacent words of the sentence
(word-adjacency edges). As shown by Quirk et al. (50),
this approach mitigates the parsing errors and increases
accuracy and robustness when the system is confronted
with linguistic variation. For instance, if the parser pro-
duces a graph with more than one connected component,
adding these artificial edges to the parse graph assures the
existence of a path between the two entities. We assign
a distance (weight) of one to DT edges and the distance
assigned to word-adjacency edges is treated as a hyper-
parameter, set (to the value of 5) using the grid-search
optimization procedure described later. We then generate
the features based on the words, POS-tags and DTs in
this path.

As Figure 1 shows, each neural network in the ST-
ANN system utilizes three separate LSTM chains. The
sequences of words, POS tags and DTs are first mapped into
sequences of their corresponding vector representations,
i.e. embeddings, by three separate embedding lookup layers
and then used as input to the three LSTM chains. For words,
we use 200-dimensional pre-trained word embeddings
provided by Pyysalo et al. (51), which have been trained
on the texts of all PubMed titles and abstracts and PubMed
Central Open Access (PMC-OA) full text articles using
the word2vec method (26), whereas POS tag and DT
embeddings are initialized randomly at the beginning of
the training. During the training of our system, word
embeddings are fine-tuned while the randomly initialized
POS and DT embeddings are learnt from scratch. The
outputs of the last LSTM units of the three chains are
concatenated together, the resulting higher-dimensional
vector (i.e. the SDP vector representation) is fed to a fully
connected hidden layer. The hidden layer finally connects
to the decision layer, having an output dimensionality
of 11 (corresponding to the number of classes in the
dataset, plus one for the ‘negative’ class), with the softmax
activation.

We train the aforementioned neural network on the
official CHEMPROT training data and evaluate it with the
official evaluation script—provided by the organizers—
on the official development data. At the beginning of
training, all neural network weights (except for the pre-
trained word embeddings) are randomly initialized. After
the training, we notice a slight variation in the measured F-
score (∼1 pp) based on different initial random weights. In
other words, if we repeat training the neural network with
the ‘exact’ hyperparameter values, and over and over again,
the performance of the trained models on the development
set vary in the range of 1 pp. To stabilize the variance in
the performance caused by the random initialization of
the network weights, we train an ensemble of four neural

networks (instead of a single neural network), all identical
apart from the initial (random) weights, and aggregate their
predictions. Each network predicts a set of confidences for
each development/test set example. The final prediction for
an example is generated by summing the confidences of all
networks and selecting the label with the highest overall
confidence. We highlight that this particular ensemble
method does not automatically improve the overall F-score,
but stabilizes the performance of the ensemble (regardless
of the initial random weights in each network). In other
words, the ensemble acts like an average neural network,
but robust and indifferent to the initial random weights
used to train the individual networks. Even though the
1% variation observed in the F-scores does not seem
especially excessive, we use the ensemble method for the
following reasons. Firstly, the ensemble method facilitates
hyperparameter optimization (i.e. finding optimal values
for the hyperparameters), because it ensures the same
performance level can be achieved (on the development set)
if the ensemble is re-trained using the same hyperparameter
values. This helps to make sure the improvements with
values of <1 pp in the F-score are actually due to the
chosen values for the hyperparameters and not caused by
a random initialization of the weights, thus allowing us to
fine-tune the hyperparameters. Secondly, as we discussed
previously, our relation extraction system is not specific
to the CHEMPROT corpus and can be re-trained with
other training data (e.g. the DDI-2013 or the Bacteria-
Biotope corpora) for other biomedical relation extraction
applications. Our previous experiments with similar neural
network-based relation extraction methods and different
corpora indicate that when the number of weights in
a neural network is high and the training set is very
small, the initial random state of a model can have a
significant impact on the final model and its generalization
performance, thus special care is needed when dealing
with such datasets. For example, the Bacteria-Biotope 2016
corpus (9) contains only 524 relations in the training set. We
have previously shown that the F-score on the development
set of this corpus can vary up to 9 pps based on the
different initial random state of the network (45). Training
an ensemble of networks—instead of a single network—
helps to reduce the variance when our system is trained/op-
timized on different corpora for different real-world
applications.

We optimize the following hyperparameters with a grid
search and repeating the cycle of training the ensemble
(with a set of selected hyperparameters) and evaluating
it on the development data: word-adjacency edge weight,
dimensionality of the POS and DT embeddings, output
dimensionality of the LSTMs and the dense layer, activation
functions, dropout rate, learning rate and mini-batch size.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 8 of 23 Database, Vol. 2018, Article ID bay120

For training we use the Nadam optimization algorithm,
with a learning rate of 0.002 and mini-batch size of 32,
values found to be optimal by the grid search. Similarly, we
apply a dropout (52) with 0.2 rate on the output of the first
dense layer. The dropout is the only explicit regularization
method used. Finally, we use the early stopping technique to
obtain the optimal number of training epochs: the training
is stopped once the performance on the development set is
no longer improving, measured using the official evaluation
metric.

I-ANN system

The I-ANN system—also an ensemble of four ANNs—
has been developed after our participation in the shared
task. The neural networks in the I-ANN ensemble have an
architecture similar to the networks in the ST-ANN ensem-
ble (i.e. each neural model utilizes three LSTM chains for
representing the sequence of words, POS tags and DTs along
the SDP), but a bidirectional LSTM (forward and backward
chains) is also added to the architecture for learning a
representation of the full sentence and the two entities of
interest in it.

A literature survey shows that in one comparison per-
spective, relation extraction methods can be divided into
three groups: (i) the methods that only rely on the SDP,
(ii) the methods that process either full sentence tokens or
the entire parse graph (e.g. graph kernels or Tree-LSTMs),
not explicitly targeting and extracting features from the
SDP, and (iii) mixed methods that simultaneously process
full sentence tokens and the SDP and generate two distinct
sets of features (two vector representations) from them.
Recently, the mixed methods have become popular, per-
forming efficiently on various relation extraction datasets.
For example, on the Bacteria-Biotope 2016 relation extrac-
tion corpus (9), the state-of-the-art performance has been
achieved by the VERSE system, a feature-based relation
extraction system developed by Lever and Jones (16) that
generates features based on the word/POS tag/DT n-grams
in the full sentence and also in the SDP, as well as features
that are generated from the two candidate entities and
paths around them in the parse graph. On the DDI-2013
corpus (6), an impressive F-score of 72.9 has been achieved
by Zhang et al. (24) with attention-based bidirectional
LSTM networks that process the sequence of words in the
sentence, as well as the sequence of words in the SDP.
They first divide the sentence into three sub-sequences: the
words before the first entity mention, the words between the
two entity mentions and the words after the second entity
mention. The three sub-sequences and the SDP sequence
are processed by four attention-based bidirectional LSTM
chains that learn the representation for each sequence. The

resulting representations are then processed with an upper-
bidirectional LSTM network that learns the representation
of the full sentence and the SDP. On the CHEMPROT
corpus, the highest F-score in the shared task (64.10) has
been achieved by Peng et al. (36) with a system com-
bination approach. Their method is composed of three
separate systems: (i) a CNN-based relation extraction sys-
tem with separate convolutional layers that simultaneously
learn SDP representation and full sentence representation,
(ii) an RNN-based relation extraction system that utilizes
a bidirectional LSTM network and max pooling to learn
full sentence representation and (iii) an SVM-based system
that generates features based on the SDP and the full
sentence. Based on recent successful works, we believe that
learning two separate representations (for the SDP and for
the full sentence) increases the classification performance
of the relation extraction methods. Particularly in the case
of neural models, since the SDP vector representation and
the full sentence vector representation are usually concate-
nated together and input into subsequent layers, the neural
models learn how to effectively integrate these two vector
representations for the relation extraction task at hand.
Inspired by the work of Zhang et al. (24) and the CNN-
based system of Peng et al. (36), we propose the I-ANN
system that simultaneously learns SDP vector representa-
tion and full sentence vector representation. For learning
the SDP vector representation, we use the same architec-
ture of the ST-ANN system and for learning the full sen-
tence vector representation, we use a ‘bidirectional’ LSTM
and max pooling, similar to the RNN-based system of
Peng et al. (36).

All RNN architectures (standard RNNs, LSTMs and
GRUs) use backward connections: assuming a sentence has
n words (W1, W2, . . ., Wt-1, Wt, . . ., Wn), the output
of the network at time-step t is a function of the input
at time-step t and the output (and/or hidden state) of
the network at time-step t-1, meaning they only capture
information from the past words and the current word in
the sentence. However, in many applications we want the
output (i.e. representation) for a word that is dependent on
whole input sequence, i.e. the context before and after that
word. For example, in speech recognition, if there are two
interpretations of the current word that are both acous-
tically plausible, we may have to look far into the future
(and the past) to disambiguate them (25). For this reason,
‘bidirectional’ recurrent networks (53) and their variants
(e.g. bidirectional LSTM/GRU networks) are introduced. In
these networks, two separate RNNs simultaneously pro-
cess the sequence, but from opposite directions, result-
ing in a forward and a backward representation for each
word. The two representations for each word are further
aggregated (e.g. by taking the sum or concatenation), and

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 9 of 23

the aggregation is used as the final representation of the
word based on the past and the future words in the sentence.
As suggested by Zhang et al. (24) and Peng et al. (36), and
also based on our own experiments on the CHEMPROT
development data, utilizing a bidirectional LSTM (instead
of a forward LSTM) results in better representations for
the sentences, reflected in achieving higher performances for
the relation extraction tasks at hand. Consequently, we also
use a bidirectional LSTM for modeling the full sentence
and the two entities in it. Figure 2 shows the architecture
of one neural network in the I-ANN ensemble with an
example sentence from the CHEMPROT training set and
its dependency parse graph as the inputs.

As Figure 2 shows, each neural network in the I-ANN
ensemble utilizes three LSTM chains for learning SDP vec-
tor representation and two LSTM chains (forward and
backward) for learning full sentence vector representation.
Similar to the ST-ANN system, the words, POS tags and
DTs along the SDP connecting the CHEMICAL entity to
the GENE entity are mapped into their corresponding
vector representations (embeddings) and input to the three
SDP LSTM chains. Simultaneously, for each token of the
sentence, its word, POS tag, relative position to the first
entity, relative position to the second entity and token
type are mapped into their embeddings and concatenated.
Forward and backward sequences of the resulting token
representations are input to the forward and backward
sentence LSTM chains, resulting in two hidden represen-
tation for each token (forward and backward), which are
further concatenated to obtain final representations of the
sentence tokens. Applying max-over-time pooling on these
representations produces a vector representation for the full
sentence. The outputs of the last LSTM units of the three
SDP chains and the full sentence vector representation are
concatenated together and the resulting higher-dimensional
vector is input to a fully connected hidden dense layer. The
hidden layer finally connects to the decision (classification)
layer, which has a softmax activation.

Similar to the ST-ANN system, for words, we use the
same 200-dimensional pre-trained word embeddings pro-
vided by Pyysalo et al. (51). It should be mentioned that
these embeddings are pre-trained on the ASCII-fied PubMed
and PMC-OA texts. Since some CHEMICAL/GENE entity
mentions in the CHEMPROT corpus include unicode char-
acters (e.g. IκBα, M6PR�C, IL-1β, 11β-HSD1, AMPKα, to
name a few), they do not have any corresponding vectors
in the vector space model. Besides, we use only the top 1
million most frequent words from the vector space model.
We thus replace all GENE entity names with the word
‘protein’ and all CHEMICAL entity names with the word
‘chemical’, if the entity name cannot be found in the model.
This resulted in ∼0.5 pp increase in the F-score (when

different neural network models were evaluated on the
official development set).

Similar to Zhao et al. (35), the relative position of each
token to the first and second occurring entities are first
calculated and then non-linearly mapped to their corre-
sponding 10-bit binary vectors (embeddings), where the
first bit of each vector stands for the sign and the remaining
bits for the distance. Additionally, inspired by the idea of
‘named entity embeddings’ introduced by Peng and Lu (54),
for each token of the sentence, a token type (one of the
following values) is assigned accordingly:

1. If the token belongs to a CHEMICAL entity mention.
2. If the token belongs to a GENE entity entity mention.
3. If the token is located before the first occurring entity in

the sentence.
4. If the token is located between the two occurring entities

in the sentence.
5. If the token is located after the second occurring entity

in the sentence.

The word and POS tag embeddings are shared among
the SDP LSTM and the full sentence LSTM chains. During
training, the pre-trained word embeddings are fine-tuned,
while POS, DT, position to the first entity, position to the
second entity and token-type embeddings are all learned
from scratch.

Similar to the ST-ANN system, for stabilizing the vari-
ance in the performance of the I-ANN system (caused by the
random initialization of the network weights), we train an
ensemble of four neural networks, all identical apart from
the initial (random) weights, and aggregate their predictions
using the aforementioned aggregation method. Finally, we
optimize the network hyperparameters by doing a grid
search and repeating the cycle of training an ensemble (with
a set of selected hyperparameters) and evaluating it on the
development data. Table 1 shows a comprehensive list of
the hyperparameters, the list of values that are tested and
the optimal values that have been found and selected to
build the final neural model. For example, for the dimen-
sionality of the POS tag embeddings, we tested the values
25, 50, 75 and 100, and 25 was shown to be the best value
and thus was selected to build the final model. Similarly,
we tested not using a hidden dense layer at all, or using a
hidden layer with the output dimensionality of 300, 500
or 1024, and it was shown that using the additional hidden
dense layer with 1024 output dimensionality leads to better
performance.

System combination

Our SVM and the two deep learning-based systems are
trained with different sets of features. This is a potential

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 10 of 23 Database, Vol. 2018, Article ID bay120

Figure 2. Architecture of one neural network in the I-ANN ensemble. The figure illustrates the architecture of one neural network in the I-ANN

ensemble with an example sentence from the CHEMPROT training set and its dependency parse graph as the inputs. The model utilizes three LSTM

chains for learning SDP vector representation and two LSTM chains (forward and backward) for learning full sentence vector representation. The

words, POS tags and dependency types along the SDP connecting the CHEMICAL entity (“Rapamycin”) to the GENE entity (“proteasome”) are

mapped into their corresponding vector representations (embeddings) and input to the three SDP LSTM chains. Simultaneously, for each token

of the sentence, its word, POS tag, position to the first entity, position to the second entity, and token-type are mapped into their embeddings and

concatenated. Forward and backward sequences of the resulting token representations are input to the forward and backward sentence LSTM chains,

resulting into two hidden representation for each token (forward and backward), which are further concatenated to obtain final representations of the

sentence tokens. Applying max-over-time pooling on these representations produces a vector representation for the full sentence. The outputs of the

last LSTM units of the three SDP chains and the full sentence vector representation are concatenated together and the resulting higher dimensional

vector is input to a hidden dense layer. The hidden layer finally connects to the decision (classification) layer, which has a softmax activation. The

word and POS tag embeddings are shared among the SDP and the full sentence LSTM chains.

case for testing whether combining predictions of the two
systems (SVM with either of ST-ANN or I-ANN) could
help in achieving better performance for this task. We

implement this system combination by merging the relation
predictions from the two systems as either a union (OR)
or an intersection (AND), resolving overlapping predictions

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 11 of 23

Table 1. Hyperparameters of the networks

Hyperparameter groups Hyperparameters Values

Optimal value Tested values

Dimensionality of embeddings Words 200 pre-trained
POS tags 25 [25,50,75,100]
DTs 25 [25,50,75,100]
Relative position to first entity 10 Fixed size. See Zhao et al. (35)
Relative position to second entity 10 Fixed size. See Zhao et al. (35)
Token type 10 [10]

Output dimensionality of LSTMs SDP words 300 [100,200,300,400]
SDP POS tags 200 [100,200,300,400]
SDP DTs 200 [100,200,300,400]
Full sentence tokens 300 [200,300]

Other architecture parameters Word-adjacency edge weight 5 [3,4,5,6]
Hidden layer, output dimensionality 1024 [None, 300,500,1024]
Activation functions tanh [tanh, sigmoid]
Dropout rate 0.2 [0,0.2,0.3,0.4,0.5]

Learning parameters Mini-batch size 16 [16,32,64]
Learning rate 0.0005 [0.0005, 0.001, 0.002]

with conflicting types using the classifier confidence scores.
Since all entities are known data in this task, the predictions
from the two systems can be aligned using pairs of gold
standard entities.

If only one system predicts a relation for a given pair
of entities, it is either included in (OR) or discarded from
(AND) the combination. If both systems predict a relation,
the relation with the higher confidence score is included
in the combination. Both SVM and ANN systems produce
confidence scores in their own ranges. These ranges are
normalized into the 0–1 interval for both systems, after
which the normalized scores are compared. We experiment
with combining all predictions (all 11 possible classes,
including the ‘negative’ class), only positive predictions (all
10 possible classes) or only predictions for the evaluated
classes (only the five target classes) and find that system
combination in fact leads to better performance scores on
the task. Figure 3 illustrates how the predictions of the I-
ANN system and the SVM system are combined to produce
a final set of predictions for the test set.

Results and discussion

We conduct all of our experiments on the official devel-
opment set using the official evaluation script provided by
the organizers. Even though the data is annotated with
10 different relation types, the task only focuses on 5
of themby defining the official performance metric as the
micro-averaged F-score of the five target classes. This is

Table 2. Performance of the systems on the development

set

Evaluation on development set Performance metrics
Precision Recall F-score

SVM 64.55 54.72 59.23
ST-ANN 61.90 55.01 58.25
SVM + ST-ANN (OR, positive
classes)

58.45 63.99 61.09

SVM + ST-ANN (AND, positive
classes)

75.42 48.14 58.77

SVM + ST-ANN (OR, all classes) 65.82 55.55 60.25
SVM + ST-ANN (AND, all classes) 65.82 55.55 60.25
SVM + ST-ANN (OR, eval classes) 56.47 65.07 60.46
SVM + ST-ANN (AND, eval
classes)

79.28 45.78 58.04

most likely due to the fact that there are much less training
examples available in the data for the excluded classes. We
first discuss the results of our participation in the shared
task (with the SVM and ST-ANN systems and their combi-
nation) and then focus on the improved results we obtained
using the I-ANN and its combination with the SVM system.

Shared task results

In this section, we discuss all results we have achieved
during our participation in the shared task. Table 2 shows
the performance comparison of the SVM and ST-ANN
systems, evaluated on the development data.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 12 of 23 Database, Vol. 2018, Article ID bay120

Figure 3. Predicting labels for CHEMPROT test set examples. The figure illustrates how the predictions of the I-ANN system and the SVM system

are combined to produce a final set of predictions for the test set. Each neural network in the I-ANN ensemble predicts a set of confidences for each

test set example. The confidences for each example are summed together and the label with the highest overall confidence score is selected as the

relation type for that example. This aggregation procedure produces the final set of predictions by the I-ANN ensemble. The SVM system also predicts

a set of confidences for each example, and the label with the highest confidence score is selected as the predicted relation type for that example. The

confidence scores of the I-ANN and the SVM system predictions are further normalized into 0-1 interval. Using one of the aforementioned system

combination methods (e.g. intersection or union), the two prediction sets are combined together, producing a combined set of predictions for the

test set. The same procedure is applied for predicting labels for the development set/test set examples.

As Table 2 shows, both the SVM and ST-ANN systems
have very similar performance on the task, with the SVM
having an F-score 1 pp above the ST-ANN. This might be
due to the fact that ST-ANN solely relies on the words
and edges seen on the shortest path and we suspect that
in many cases, the ‘trigger word’ (i.e. a token or sequence
of tokens that expresses the actual relation between the
two candidate entities) might be absent from this path.
Consequently, the ST-ANN might not get the chance to
see this information, whereas the SVM system generates
features based on all tokens and dependencies near the two
entities, as well as those on the shortest path connecting
them. The best SVM performance is achieved with the TEES
default settings, without using the DrugBank (44) features,
using the BLLIP+biomodel+Stanford CCProcessed pars-
ing approach and including all 10 CHEMPROT relation
types in the training data.

We highlight that the Stanford parsing conversion soft-
ware (38) can produce five variants of the SD represen-
tation: ‘basic’, ‘nonCollapsed’, ‘collapsed’, ‘collapsedTree’

and ‘CCprocessed’. As an optimization step, we tried all
aforementioned conversions for the CHEMPROT corpus:
we first performed constituency parsing using the BLLIP
(37) with the biomedical domain model of McClosky (40),
and then used the Stanford conversion tool to obtain dif-
ferent variants of dependency parse graphs. This resulted
in obtaining five variants of the parsed corpus. For each
variant, we trained the SVM system on the training data
and evaluated it on the development data. The evalua-
tion resulted in obtaining 57.13 (‘basic’), 57.47 (‘nonCol-
lapsed’), 57.92 (‘collapsed’), 57.82 (‘collapsedTree’) and
59.23 (‘CCprocessed’) F-scores. The ‘CCprocessed’ vari-
ant outperformed the other parsing conversion methods
by ∼2 pp. Similarly, parsing the corpus with the Syn-
taxNet parser (39) resulted in 53.19 F-score on the devel-
opment set, ∼6 pp below the best result. Consequently, we
used BLLIP+biomodel+Stanford CCProcessed variant for
building the SVM, the ST-ANN and the I-ANN systems.

As Table 2 shows, for both SVM and ST-ANN systems,
recall is considerably lower than precision (for instance,

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 13 of 23

recall is 10 pp below precision for the SVM system). Using
the OR operation in system combination considerably
improves the recall (∼9 pp) while causing a comparatively
lower drop in precision, leading to an ∼1–1.5 pp increase in
the resulting F-score. We observe that discarding negative
predictions and building the combination from all 10
positive classes result in the highest performance on the
development set.

For predicting the test set, we combine the training and
development data when training the SVM system. This is
a common approach when using classifiers such as SVMs.
However, training the neural networks on the combined
data for the ‘optimal’ number of epochs (found during
the optimization) might lead to under/over-fitting, because
more/less training epochs might be needed. Finding the
optimal number of epochs for training the network on the
combined data is challenging. In the shared task, participat-
ing teams were allowed to submit up to 5five different test
set predictions. Hence, we submitted two sets of ST-ANN
predictions: (i) predictions of the ensemble of networks
that are trained for 3 epochs (the optimal number found
in optimization), (ii) predictions of the ensemble when the
networks are trained for 4 epochs. We also combined these
two sets of predictions with the SVM system predictions
(using our system combination approach), resulting in a
total of five sets of test set predictions. Table 3 shows
the official results for our submissions on the test set, as
calculated by the task organizers.

As Table 3 shows, compared to the development set
results, our SVM system has approximately the same level
of performance on the test set, achieving an F-score of
60.99, with a similar imbalance between precision (66.88)
and recall (56.62). However, for the ST-ANN submissions
we notice a significant drop in recall (∼11 pp) with a
small increase in precision (∼1 pp), leading to an F-score
of 52.49 (when the networks are trained for 3 epochs) or
51.85 (when the networks are trained for 4 epochs), which
is ∼6 pp below the F-score seen on the development set.
As a direct result, none of the two system combination
approaches have been able to produce a result better than
the SVM system alone. Hence, our best official shared task

Table 3. Performance of the systems on the test set

Evaluation on test set Performance metrics
Precision Recall F-score

SVM 66.08 56.62 60.99
ST-ANN (trained 3 epochs) 63.73 44.62 52.49
ST-ANN (trained 4 epochs) 63.37 43.87 51.85
SVM + ST-ANN (3 epochs) 61.05 60.06 60.55
SVM + ST-ANN (4 epochs) 60.88 59.89 60.38

score (60.99 F-score) has been obtained using the SVM
system alone.

This massive 6 pp drop in the F-score seen on the test
set for the ST-ANN system is clearly abnormal. After the
organizers published the test set labels, we performed a
comprehensive analysis of the results of this system and
discovered a critical mistake in the pipeline: the training
data had not been shuffled before each training epoch, an
important step preventing mini-batches of highly correlated
examples. Since the neural network objective functions are
non-convex, using different ordering of training samples
may lead to possibly different local minima. The gradient-
descent neural network training algorithms are susceptible
to becoming stuck in those local minima while a better
solution might exist. To summarize, shuffling training data
serves the purpose of reducing variance, increasing the
chance of obtaining mini-batches that are representative
of the overall dataset and thus, making sure the neural
network models remain general and overfit less. In the next
section, we discuss how shuffling the data changed the
results on the development and test sets for the ST-ANN
system.

Improved results

In this section we discuss the improved results we
obtained after the shared task. Table 4 shows the pre-
cision, recall and F-score for all approaches. Row 1
(scores of the SVM system) and Row 2 (scores for the
ST-ANN system, when the networks in the ensemble
are trained for 3 epochs) are from Tables 2 and 3,
for the sake of comparison. The Corrected-ST-ANN system
(Row 3) is identical to the ST-ANN system (i.e. trained with
the exact hyperparameters, including the learning rate and
mini-batch size), except we have shuffled examples before
each training epoch. Row 4 shows the scores achieved by
our I-ANN. Note that the networks in the I-ANN systems
are trained with different learning rate and mini-batch
size (see Table 1), comparing to the ST-ANN system. In
addition, the networks in this ensemble have been trained
for 4 epochs (the optimal value based on optimization on
the development set). Finally, Rows 5–10 show the scores
achieved by combining the predictions of the SVM system
and the I-ANN system, using various aforementioned
system combination approaches. For prediction of the test
set, we have combined training and development data,
when training the SVM, ST-ANN, Corrected-ST-ANN and
I-ANN systems.

As Table 4 shows, by comparing the scores of the
ST-ANN and the Corrected-ST-ANN systems, we notice
that shuffling the examples before each training epoch
results in achieving ∼1 pp increase of the F-score on the

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 14 of 23 Database, Vol. 2018, Article ID bay120

Table 4. Performance of the systems on the development set and the test set

Row System Development set Test set
Precision Recall F-score Precision Recall F-score

1 SVM 64.55 54.72 59.23 66.08 56.62 60.99
2 ST-ANN 61.90 55.01 58.25 63.73 44.62 52.49
3 Corrected-ST-ANN 60.51 58.01 59.23 61.55 53.93 57.49
4 I-ANN 63.18 56.25 59.51 62.39 57.81 60.01
5 SVM + I-ANN (OR, positive classes) 58.70 63.78 61.14 61.65 66.66 64.05
6 SVM + I-ANN (AND, positive classes) 74.73 48.47 58.80 74.45 50.23 59.99
7 SVM + I-ANN (OR, all classes) 65.56 56.17 60.50 65.66 58.21 61.71
8 SVM + I-ANN (AND, all classes) 65.56 56.17 60.50 65.68 58.16 61.69
9 SVM + I-ANN (OR, eval classes) 57.65 65.81 61.46 59.05 67.76 63.10
10 SVM + I-ANN (AND, eval classes) 79.36 46.94 58.99 77.79 48.21 59.53

development set and +5 pp on the test set. We also notice
that the difference between the F-score on the development
set and on the test set is much smaller for the Corrected-ST-
ANN comparing to the ST-ANN system (∼2 pp vs ∼6 pp),
implying that neural networks in the Corrected-ST-ANN
system are more robust classification models.

The Corrected-ST-ANN system achieves the same per-
formance level as the SVM system on the development set
(59.23 F-score), but interestingly, it performs 3.5 pp below
the SVM system on the test set. This suggests the Corrected-
ST-ANN overfits more on the training data. Besides, the
Corrected-ST-ANN system solely relies on SDP features,
while the SVM system generates features based on all tokens
and dependencies near the two entities, as well as those
on the SDP connecting the two candidate entities. We thus
investigate the scores of the I-ANN system since it utilizes
whole sentence tokens, besides the features generated from
the SDP.

Comparing the I-ANN system with the Corrected-ST-
ANN system, we see 0.28 pp F-score increase on the devel-
opment set and a comparatively larger increase on the
test set (2.52 pp). This suggests that incorporating whole
sentence features—besides the SDP features—into the net-
works in the I-ANN system actually helps achieving a better
performance for the task. This is also evident as the I-ANN
system achieves a similar performance level with the SVM
system, both on the development set (59.51 vs 59.23 F-
score) and on the test set (60.01 vs 60.99 F-score), but
with the additional benefit that the I-ANN system requires
much less feature engineering than the SVM system. Still,
the recall is comparatively lower than the precision for the
SVM, Corrected-ST-ANN and I-ANN systems.

We further investigate the potential of different
approaches of combining the predictions of the SVM and
I-ANN systems for achieving a higher score for the task.
As Table 4 shows (Rows 5, 7 and 9), in all different
possible ways of taking the union of the predictions (OR),

the F-score on both development and test set improves over
the SVM and I-ANN systems alone. The best F-score on
the development set (61.46, Row 9) is achieved by first
removing the negative and non-evaluated predictions and
then taking the union of the predictions, and resolving
overlapping predictions with conflicting types by using
the normalized classifier confidence scores. This approach
results in an F-score of 63.10 on the test set, and hence, this
is our best F-score for the task, 2.11 pp higher than our best
test set submission during the shared task. This is also very
close to the highest F-score (64.10), achieved by Peng et al.
(36) in the shared task.

Finally, we notice that our best approach (Row 9) also
leads to the highest recall, both on the development set
(65.81) and the test set (67.76), whereas removing negative
and non-evaluated predictions and taking the intersection
of the predictions (Row 10) leads to the highest precision
of 79.36 on the developments set, and 77.79 on the test set.

Error analysis

In this section we perform an error analysis and compare the
performance of the SVM system with the I-ANN system on
the CHEMPROT test set that contains 800 article abstracts.
Although CHEMICAL–GENE pairs in the test set are anno-
tated with 10 possible positive relation types, only 5 of these
classes are taken into account in the task evaluation, with
the micro-averaged F-score of the five target classes as the
official metric for evaluation. However, since the SVM and
the I-ANN systems are trained to predict and assign one of
the 11 possible labels to each pair(10 positive classes and
a negative class), we find it more informative to consider
all predicted labels when examining and comparing the
performance of the two systems.

The test set includes 5744 positive annotations for 5665
unique CHEMICAL–GENE pairs. Even though the major-
ity of the pairs are annotated with a single positive label,

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 15 of 23

Table 5. Test set annotations

Class name Evaluated
in the task

Relation types Number of
annotations in
the test set

CPR:1 No PART OF 215
CPR:2 No REGULATOR | DIRECT REGULATOR | INDIRECT REGULATOR 1743
CPR:3 Yes UPREGULATOR | ACTIVATOR | INDIRECT UPREGULATOR 667
CPR:4 Yes DOWNREGULATOR | INHIBITOR | INDIRECT DOWNREGULATOR 1667
CPR:5 Yes AGONIST | AGONIST-ACTIVATOR | AGONIST-INHIBITOR 198
CPR:6 Yes ANTAGONIST 293
CPR:7 No MODULATOR | MODULATOR-ACTIVATOR | MODULATOR-INHIBITOR 25
CPR:8 No COFACTOR 25
CPR:9 Yes SUBSTRATE | PRODUCT OF | SUBSTRATE PRODUCT OF 644
CPR:10 No NOT (explicit mention of having no effects/interactions) 267
neg No Generated negatives for the pairs with no gold-standard annotations 10025

there are 79 pairs in the test set with more than one assigned
label. Since both SVM and I-ANN systems predict a single
label for each pair, we repeat the same predicted label for
these multi-label pairs for evaluation. Besides, there are five
cross-sentence annotations in the test set, but since the SVM
and the I-ANN systems only extract relations from single
sentences, we count these five pairs as false negatives. In
addition, we generate negatives (as gold-standard relations)
between any CHEMICAL and GENE entity mentions in the
‘same sentence’ if they do not have any corresponding gold-
standard annotations. Table 5 summarizes the information
about the annotations in the test set that we have used for
our internal evaluation and Table 6 shows the confusion
matrix, precision, recall and F-score for the SVM and the
I-ANN systems. We highlight that the evaluation numbers
in this section are based on the aforementioned evaluation
procedure (i.e. our internal evaluation) and could not have
been obtained using the official evaluation script provided
by task organizers. Hence, there is a slight difference in
the micro-averaged F-score of the target classes (the task
metric) between the numbers reported in Tables 4 and 6,
most likely due to possible differences in the evaluation of
cross-sentence and multi-label pairs (duplications).

As Table 6 shows, both systems have failed to predict
any CPR:7 (modulator) and CPR:8 (cofactor) labels, the
two rarest classes in the dataset by an order of magnitude.
Consequently, the F-score for these classes is zero for both
systems. All pairs with CPR:7 or CPR:8 true label are mis-
classified as having CPR:2, CPR:3, CPR:4, CPR:6, CPR:9
relations or not having any relation (neg), by both systems.

Even though the F-score for the negative class is
relatively high for both systems, all other classes are highly
confused with this class. For example, about 55%
(958/1743) and 43% (742/1743) of the relations having
CPR:2 relation are misclassified as being negative by the
SVM and I-ANN systems, dramatically dropping the recall

for the CPR:2 class. This indicates that the SVM and I-
ANN classifiers are not highly efficient in distinguishing
positive relations from the negative ones. Building a two-
step relation extraction system might be one idea to deal
with this problem. These systems are generally composed of
two classifiers, with the first classifier labeling each relation
as being positive or negative and the second classifier
detecting the type of relation for the pairs that are identified
as positive. As there is high imbalance between the number
of positives and negatives in the corpus, negative sub-
sampling or class weighting might be other promising
techniques to tackle this problem.

Considering the micro-averaged F-score of the target
classes as the overall evaluation metric, the two systems
have very similar performance for the task, with 60.10 F-
score for the SVM system and 60.15 F-score for the I-ANN
system. However, the precision and recall are much more
balanced in the I-ANN system. For example, there is ∼40 pp
difference between the precision and recall for the CPR:one
class in the SVM predictions, whereas the difference is
∼12 pp for the I-ANN system. Similarly, precision and recall
for the CPR:two classes have ∼27 pp difference with the
SVM system, significantly higher that the ∼3 pp difference
with the I-ANN system.

As Table 6 shows, and not surprisingly, the examples
with types CPR:2 (regulation), CPR:3 (upregulation)
and CPR:4 (downregulation) are more misclassified as
each other, but less as other relation types (CPR:5,
CPR:6, CPR:9 and CPR:10) that are semantically very
different. For instance, ∼17% (119/667) of the examples
with CPR:3 (upregulation) true label are misclassified
as having CPR:4 (downregulation) label by the SVM
system whereas only five such examples are misclassified
as having CPR:5 (agonist) or CPR:6 (antagonist) relation.
A manual inspection of the CHEMPROT corpus sentences
revealed that the CPR:2 (regulation) is usually associated

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 16 of 23 Database, Vol. 2018, Article ID bay120

Table 6. Confusion matrix and evaluation metrics for the SVM and the I-ANN systems

SVM
system

Predicted labels Total
annotations

Precision Recall F-score

CPR1 CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 CPR9 CP1R0 neg

True
labels

CPR1 64 11 4 3 0 0 0 0 2 0 131 215 70.33 29.77 41.83
CPR2 5 466 81 178 2 8 0 1 36 8 958 1743 53.69 26.74 35.70
CPR3 0 23 295 119 3 2 0 0 3 2 220 667 55.87 44.23 49.37
CPR4 0 58 44 1175 0 3 0 0 7 7 373 1667 65.35 70.49 67.82
CPR5 0 14 1 19 74 3 0 0 1 3 83 198 73.27 37.37 49.50
CPR6 0 16 0 2 4 154 0 0 1 1 115 293 84.15 52.56 64.71
CPR7 0 7 1 5 0 2 0 0 2 0 8 25 0.00 0.00 0.00
CPR8 0 0 1 5 0 0 0 0 0 0 19 25 0.00 0.00 0.00
CPR9 0 10 4 28 0 0 0 0 233 1 368 644 67.15 36.18 47.02
CPR10 0 30 17 54 0 0 0 0 2 53 111 267 58.24 19.85 29.61
neg 22 233 80 210 18 11 0 0 60 16 9375 10025 79.71 93.52 86.06

Micro-averaged F-score (all classes): 75.39

Micro-averaged F-score (target classes): 60.10

I-ANN
system

Predicted labels Total
annotations

Precision Recall F-score

CPR1 CPR2 CPR3 CPR4 CPR5 CPR6 CPR7 CPR8 CPR9 CPR10 neg
True
labels

CPR1 108 9 1 1 0 0 0 0 5 0 91 215 62.43 50.23 55.67
CPR2 4 731 71 139 13 11 0 0 18 14 742 1743 39.43 41.94 40.64
CPR3 0 52 326 84 1 1 0 0 5 1 197 667 52.84 48.88 50.78
CPR4 0 79 65 1107 2 9 0 0 35 7 363 1667 66.65 66.41 66.53
CPR5 0 18 4 9 102 11 0 0 0 0 54 198 60.00 51.52 55.43
CPR6 0 21 0 8 12 198 0 0 1 0 53 293 73.33 67.58 70.34
CPR7 0 9 4 6 0 2 0 0 0 0 4 25 0.00 0.00 0.00
CPR8 0 5 1 2 0 0 0 0 7 0 10 25 0.00 0.00 0.00
CPR9 0 52 3 8 0 0 0 0 274 5 302 644 56.38 42.55 48.50
CPR10 0 23 16 30 0 4 0 0 9 94 91 267 48.45 35.21 40.78
neg 61 855 126 267 40 34 0 0 132 73 8437 10025 81.56 84.16 82.84

Micro-averaged F-score (all classes): 72.15

Micro-averaged F-score (target classes): 60.15

with words such as ‘regulation’, ‘interaction’, ‘binding’,
‘expression’, ‘relationship’, ‘involvement’, ‘change’ and
‘initiates’. The CPR:3 (upregulation) is associated with
words/phrases such as ‘induced’, ‘promotes’, ‘activates’ and
‘increases the activity of’ and the CPR:4 (downregulation)
is usually expressed with words/phrases such as ‘inhibits’,
‘blocks’ and ‘decreases the activity of’. However, the
CPR:5, CPR:6 and CPR:9 relation types are usually
expressed with semantically very different words such as
‘agonist’, ‘antagonist’, ‘substrate’, ‘catalyzes’, ‘mediates’
and ‘metabolism’.

We performed an error analysis on incorrect test
set predictions made by the two systems. We noticed
that in many cases that the CPR:2, CPR:3 and CPR:4
labels are misclassified as each other, the sentences are

either complex, or if the sentence is simple, the SDP
(or the full sentence) contains words that are usually
associated with different classes. For example, in the
sentence ‘<CHEMICAL>Xanthohumol</CHEMICAL>

and 2-hydroxychalcone induced apoptosis by

<GENE>Bcl-2</GENE> downregulation.’ hav-
ing a CPR:4 (downregulation) interaction between the
‘Xanthohumol’ and ‘Bcl-2’ entities, the relation is
misclassified as CPR:3 (upregulation) by both SVM and
I-ANN systems. The SDP in this sentence (Xanthohumol,
induced, downregulation, Bcl-2) contains the
word ‘induced’ (usually associated with CPR:3) and
‘downregulation’ (associated with CPR:4). Similarly,
there are three CPR:4 (downregulation) relations between
the chemical ‘Cholesterol’ and the three genes in the

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 17 of 23

sentence ‘<CHEMICAL>Cholesterol</CHEMICAL>

also increases <GENE>Amyloid β</GENE>

(<GENE>Aβ</GENE>) deposition and <GENE>

tau</GENE> pathology.’. All the three relations are
misclassified as upregulation by both systems, and the sen-
tence contains the word ‘increases’, mostly associated
with upregulation. In some cases, the sentences contain
a mixture of positive and negative regulations, confusing
the classifiers. For example, in the sentence ‘Although,
<CHEMICAL>imatinib</CHEMICAL> primarily

inhibits <GENE>tyrosine kinases</GENE>,

it also stimulates the activity of <GENE>

EGFR</GENE> <GENE>tyrosine kinase</GENE>

in head and neck squamous tumors.’, the chemi-
cal entity ‘imatinib’ downregulates the (first mention of)
‘tyrosine kinases’, but upregulates the ‘EGFR’ and the
second ‘tyrosine kinases’ entity mention. However,
all three relations are assigned CPR:3 (upregulation) label
by the I-ANN system.

It is also interesting to note that some examples
with CPR:9 type (substrate/product of) are misclassified
as having regulation, upregulation or downregulation
relations. These usually belong to long and very com-
plicated sentences that might be hard even for a non-
expert human to distinguish. For example, the sen-
tence ‘As discussed in this review, various

progestogens including dydrogesterone and

its 20alpha-dihydro-derivative, medroge

stone, promegestone, nomegestrol acetate

and norelgestromin can reduce intratissular

levels of estradiol in breast cancer by

blocking sulfatase and 17beta-hydroxy

steroid-dehydrogenase type 1 activities.’
contains eight chemical entities (‘progestogens’,
‘dydrogesterone’, ‘medrogestone’, ‘Promegestone’,
‘nomegestrol acetate’, ‘norelgestromin’, ‘estra-
diol’, ‘17beta-hydroxysteroid’) and two gene entities
(‘sulfatase’, ‘17beta-hydroxysteroid-dehyd-
rogenase type 1’). All CHEMICAL–GENE pairs
have CPR:4 relation (inhibitor), except (‘estradiol’,
‘sulfatase’), (‘estradiol’, ‘17beta-hydrox-
ysteroid-dehydrogenase type 1’) pairs, which
have CPR:9 (substrate) relation. Both classifiers have
assigned CPR:4 label to all pairs and failed to detect that
‘estradiol’ is the substrate of the genes.

The class label CPR:10 is also very challenging
since it is used for pairs with ‘explicit mention of not
having any effects on’ relation, which is semantically
different from the negative class (‘no information about
having relations/interactions’). For example, in the sen-
tence ‘The induction of <GENE>HO-1</GENE>

by EIH was inhibited by <CHEMICAL>SB203580

</CHEMICAL> but not by <CHEMICAL>SP600125

</CHEMICAL>, <CHEMICAL>PD98059</CHEMICAL>,

nor <CHEMICAL>LY294002</CHEMICAL>.’, the
(HO-1,SB203580) pair has CPR:4 (inhibitor) relation,
whereas the other three chemicals have CPR:10 relation
with ‘HO-1’ gene. As Table 6 shows, the F-score for this
class is low (29.61 with the SVM and 40.78 with the I-
ANN classifier) and this class is highly confused with all
other classes. For example, in the simple sentence ‘Neither
<CHEMICAL>oxycodone</CHEMICAL> nor its

metabolites activated <GENE>PXR</GENE>,

<GENE>CAR</GENE>, or <GENE>AhR</GENE>.’,
all three CHEMICAL-GENE pairs with CPR:10 true label
are mistakenly assigned CPR:3 (upregulation) labels by
our classifiers, most likely because the word ‘activated’
(strong indicator of upregulation) is inside the sentence.
Generally, detecting such relations is a major challenge in
relation extraction and while the I-ANN system performs
better than the SVM system on this class, there is clearly
room for improvement.

We further manually analyzed and compared the mis-
classifications made by the SVM system with the I-ANN sys-
tem in order to check if certain syntactic/semantic patterns
can be linked to only one of the classifiers. We did not find
any particular patterns that can be exclusively attributed
to only one of the systems. In addition, we systematically
compared the two systems based on the average length of
misclassified sentences (in terms of the number of tokens) to
check if one system better deals with longer sentences and
found out both systems have similar performance levels on
long sentences.

Comparison with other methods

In this section, we concisely compare our methods with the
top performing relation extraction methods that are evalu-
ated on the CHEMPROT corpus. Even though 13 teams
participated in the shared task, only 6 teams (including
us) achieved an F-score higher than 50. Table 7 lists the
performance measures of the top performing methods on
the CHEMPROT test set.

As Table 7 shows, the highest F-score (64.10) in the
shared task has been achieved by Peng et al. (36), with a sys-
tem combination approach. Their method is composed of
three separate systems: (i) a CNN-based relation extraction
system that utilizes separate convolutional layers to simul-
taneously learn SDP representation and full sentence rep-
resentation and uses a six-dimensional decision layer (for
the five positive target classes and the negative class) with
softmax activation; (ii) an RNN-based relation extraction
system that utilizes a bidirectional LSTM network and max-
pooling and learns full sentence representation and uses a

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 18 of 23 Database, Vol. 2018, Article ID bay120

Table 7. Top performing methods on the chemprot test set

Row Method summary Authors Task metrics
Precision Recall F-score

1 An ensemble of CNN, RNN and SVM -based systems Peng et al. (36) 72.66 57.35 64.10
2 SVM + I-ANN (our best approach) this paper 59.05 67.76 63.10
3 A deep learning-based method composed of a ‘pretraining’ network and a

‘recognition’ network, utilizing bidirectional LSTMs and CNNs
Corbett and Boyle (55) 56.10 67.84 61.41

4 An ensemble of Tree-LSTM networks Lim and Kang (56) 67.04 51.94 58.53
5 A feature-based method with gradient-boosted trees classifier and a

feature-selection component for optimization
Lung et al. (57) 63.52 51.21 56.71

6 Bidirectional LSTM networks Matos (58) 57.38 47.22 51.81

five-dimensional decision layer (only for the five positive
target classes) with a linear activation; (iii) an SVM-based
system that generates features based on the SDP and tokens
in the full sentence. To combine the predictions and build
an ensemble of the three systems, they use either majority
voting or stacking. For stacking they train a random forest
classifier that uses the confidence scores (obtained from the
CNN, RNN and SVM systems) as features to assign a label
to each example. They build SVM, CNN and RNN models
using 80% of total data (training + development) and build
the ensemble using the remaining 20% of the total data.
In addition, they use 5-fold cross-validation using different
partitions of the data to reduce variability. Hence, they
obtained five SVMs, five CNNs and five RNNs in total.
For participation in the shared task, they submitted five
runs (i.e. five sets of predictions for the test set), two based
on majority voting and three based on the aforementioned
stacking approach, each run using one SVM, CNN and
RNN from one cross-validation iteration. Their best F-
score (Row 1 in Table 7) has been achieved with one of the
submissions based on the stacking approach.

The I-ANN system and the CNN-based system devel-
oped by Peng et al. (36) are similar in terms of simul-
taneously learning full sentence representation and SDP
representation. However, the I-ANN system utilizes LSTM
networks whereas their CNN model uses separate convolu-
tional layers for this purpose. For learning full sentence vec-
tor representation, both I-ANN and the RNN-based system
of Peng et al. (36) use a bidirectional LSTM network. The
I-ANN system is trained to assign 1 of the 11 possible labels
to each example, whereas their CNN/RNN models assign
either one of the five target class labels or the negative label
to each example. The other difference is that the I-ANN
system utilizes an additional dense layer after the LSTM
layers. As discussed in the previous section, these choices
are made based on the optimization process we performed
on the development set. We highlight that unfortunately
Peng et al. (36) have not published the performance mea-
sures of their individual systems, thus we cannot directly

compare the performance of the I-ANN or the SVM system
with their individual systems. As Table 7 shows, our system
combination approach and their best approach perform
closely on the task, achieving 63.10 and 64.10 F-score,
respectively. Their system has higher precision (72.66 vs
59.05), but lower recall (57.35 vs 67.76), compared to our
system.

Corbett and Boyle (55) achieved 61.41 F-score on the
task, 1.69 pp below our best approach, and 2.69 pp below
the best score, with a deep learning-based approach. Their
system is composed of two neural networks: a ‘pretraining’
network that utilizes a bidirectional LSTM network for
transfer learning, and a ‘recognition’ network that utilizes
bidirectional LSTMs and CNNs. The pretraining net-
work—which is trained on all the titles and abstracts from
PubMed records from 1809 to the end of 2015—has three
inputs and two outputs. The inputs are the original sentence
sequence, the ‘substituted’ sequence shifted one token to the
right, and the ‘substituted’ sequence shifted one token to
the left. In the substituted sequences, each token has a 50%
chance of being replaced by a token randomly sampled
from the lines read in that sub-epoch. The pretraining
network has two outputs, one for each of the substituted
shifted sequences, consisting of a sequence of numbers −1
if the token in the substituted sequence is from the original
sequence, or 0 if it was randomly selected. The recognition
network is trained only on the CHEMPROT data and uses
the same LSTM layers that are pre-trained in the pretraining
network and two additional convolutional layers and a
bidirectional LSTM network. They train the pretraining
and the recognition networks with series of epochs, with
the first 5 epochs composed of training both networks, and
the rest only training the recognition network. Although
their system has a lower F-score and recall compared with
our system and the system developed by Peng et al. (36),
its main advantage is the ability to work on raw texts
for extracting CHEMICAL–GENE interactions, e.g. no
sentence parsing is required. Parsing is usually one of the
most time-consuming steps in relation extraction system

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 19 of 23

pipelines, thus eliminating this step may considerably
improve the run-time performance of large-scale real-world
applications.

Lim and Kang (56) participated in the shared task with
an ensemble of Tree-LSTM networks (59) that process
the sentence parse graph. Each node in the Tree-LSTM
architecture is a word in the graph, represented by con-
catenating embeddings of its words, relative positions to the
two entities and a subtree containment feature. The subtree
containment feature for a node is simply ‘True’ when one
of the target entities exists in the leaves of the current
node, and is ‘False’ otherwise. These two values are further
mapped into two 10-dimensional embeddings: if the value
is ‘True’, every element of a vector is +1; otherwise, every
element in a vector is 0. In contrast with normal LSTM
networks in which each unit receives the input only from the
previous unit (i.e. the previous word in the sentence or SDP),
in the Tree-LSTM network, each node in the tree receives
the input from multiple child nodes (leaves) and updates the
hidden state of current node using those inputs. Similar to
the I-ANN system, they also train an ensemble of the neural
networks and aggregate their predictions by simply taking
the sum of the confidence scores to deal with the variance
caused by random initialization of network weights. Their
method achieved an F-score of 58.53 on the task, 4.57 pp
below our F-score and 5.57 pp below the highest F-score
achieved by Peng et al. (36) during the shared task.

Lung et al. (57) achieved an F-score of 56.71 using a
feature-based method that relies on manually engineered
features, extracted from both semantic pattern and
dependency parse graph of the sentence. The semantic
pattern reveals whether/how chemical–protein interactions
are stated in the sentence, whereas the dependency graph
provides the information on how words are interconnected
in the sentence. To analyze the semantic pattern, they
have manually built an extensive list of words (including
the ‘trigger’ words) and check whether these words are
found in the sentence or not. In addition, they employ
a set of features previously found to be beneficial for
protein–protein relation extraction from biomedical texts.
For example, a binary feature captures whether negative
words (e.g. ‘not’, ‘incapable’ and ‘unable’) are in the region
covered by the candidate pair and a binary feature shows
if sentence breaking words (e.g ‘although’, ‘therefore’,
‘whereas’) exist in the region. They have reported these
features are helpful in chemical–protein relation extraction
as well. To analyze the sentence structure, they only target
and extract a set of features from the SDP. These features
include the number of tokens in the SDP, as well as binary
features for checking the presence of different DT edges in
the SDP. They use gradient boosted trees for classification
and feature selection to optimize their system.

Finally, Matos (58) achieved 51.81 F-score on the task
(11.29 pp below our F-score), using relation extraction
systems composed of three to six bidirectional LSTM net-
works. All of their networks utilize three bidirectional
LSTMs for processing the words, POS tags and DTs along
the SDP. However, they also experiment with using up to
three additional bidirectional LSTMs, for processing the
words before/between/after the two entities. Unfortunately,
a few important details are missing from their paper that
are necessary for a correct comparison of their system
with the ST-ANN/I-ANN systems. For example, it is not
clear how the outputs of the bidirectional LSTMs are com-
bined together in their networks (e.g. in the I-ANN system,
max pooling is first applied and SDP and full sentence
vector representations are further concatenated). Similarly,
no details about the output dimensionality and the acti-
vation function of the decision layer in their networks is
mentioned, hence it is not clear whether they assign one of
the five target class/the negative label to each example, or
similarly to the ST-ANN/I-ANN systems, they assign one
of 11 possible labels. On the development set, they achieved
54.70 F-score (with the system that uses all six bidirectional
LSTMs), 56.64 F-score (with the system that uses three
bidirectional LSTMs for the SDP) and their highest F-score
of 59.19 has been achieved with a system utilizing three
bidirectional LSTMs for the SDP and a bidirectional LSTM
for the words between the two entities. However, on the
test set, the network with all six LSTMs has achieved a
lower F-score of 51.81 (with ∼7 pp increase in the precision,
but 14 pp drop in the recall, compared to the results on
the development set). The F-score for the system with the
three bidirectional LSTMs (for the SDP) has dramatically
dropped to 34.18, and for the system with the four bidirec-
tional LSTMs to 36.77. As mentioned in their paper, further
error analysis is needed to give some indication on how
generalization could be improved.

Runtime performance and technical details

We implement the systems using the Python programming
language (v2.7) with the Keras (60) deep learning library
and the Theano tensor manipulation library (61) (as the
backend engine for Keras) for implementing the neural net-
work models. All neural network parameters not explicitly
discussed in this paper were left to their defaults in Keras.
All computations were run on a single server computer
equipped with 64 gigabytes of memory, one 8-core CPU
and one NVIDIA� TESLA� K80 GPU (with 4992 CUDA
cores). Parsing and all python processing, including e.g. file
manipulation, the TEES pipeline and system combination
were run on the CPU, whereas all neural network related

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Page 20 of 23 Database, Vol. 2018, Article ID bay120

calculations (training, optimization and prediction) were
run on the GPU, using the CUDA toolkit version 7.5.

The CHEMPROT corpus contains 2432 PubMed
abstracts (1020 abstracts in the training set, 612 abstracts
in the development set and 800 abstracts in the test set) (1).
Parsing the corpus and conversion into the TEES XML
format takes about 1 hour and 35 minutes. Training the
SVM system takes about 40 minutes, whereas training each
of the four neural models in the I-ANN ensemble takes
∼6 hours, on the combined training and development sets.
These times include feature generation, but the training
and development sets are already converted into the TEES
XML format and parsed. Prediction of the test set using
the SVM system takes ∼4 minutes, and with each of the
four neural networks in the I-ANN ensemble, ∼6 minutes.
Aggregating the predictions of the networks and running
the system combination code takes less than a minute.
Consequently, the prediction time for each abstract is
in average ∼2.2 seconds, assuming that the abstract has
already been parsed.

We highlight that the number of neural networks in the
I-ANN system is implemented as an input parameter in
our software, with 4 being the default value and 1 as the
minimum possible value. Hence, training an ensemble is
optional. However, because of the reasons discussed earlier,
we recommend to train an ensemble of networks when
training/optimizing our system on a new corpus, if sufficient
computational resources are available.

Conclusions and future work

In this study, we presented three different systems capable
of extracting relations between CHEMICAL and GENE
entities, as a part of our participation in the BioCreative VI
Task 5 (CHEMPROT) challenge. Our SVM system relies on
a rich set of features generated from all tokens and depen-
dencies in the SDP and near the two candidate entities.
Unlike the SVM system, our ST-ANN and I-ANN systems
are based on deep learning and require less feature engineer-
ing. The ST-ANN system solely relies on the SDP features,
whereas the I-ANN system utilizes features generated from
the whole sentence, besides the features generated from the
SDP. The ST-ANN system has lower performance compared
to the SVM and I-ANN systems, while the I-ANN and
SVM perform equally well on the development and test
sets, suggesting that incorporating features gathered from
the full sentence actually helps achieving better scores for
the task, regardless of the classification method.

We also experimented with basic methods of combining
the predictions of the SVM and either the ST-ANN or
I-ANN systems (e.g. taking the union/intersection of the
predictions of two systems) and noticed system combina-

tion achieves the highest F-score of 63.10 on the test set,
2.11 pp higher than our best test set submission during the
shared task. Our best F-score is 1 pp below the highest score
achieved by Peng et al. (36) in the shared task.

There are many interesting future directions that we
would like to explore. As we discussed in the previous
section, the SVM and I-ANN systems are not highly effi-
cient in distinguishing positive examples from the negative
examples, i.e. the examples of other classes are highly
misclassified as being negative, lowering the recall of non-
negative classes. We would like to investigate whether two-
stage classification and/or negative sub-sampling or class
weighting can diminish this problem.

Although the ensemble method we used in the I-
ANN system addressed the problem of variance in the
performance (caused by random initialization of network
weights), it does not improve the overall F-score, because
the ensemble acts like an average neural network, but
robust and indifferent to the initial random weights used to
train the individual networks. We would like to try better
ensemble methods. One idea is to train the ensemble but
instead of taking the sum of the ‘all’ networks confidences,
we take the sum of N top-performing networks. Even
though this approach might seem to be very promising,
it can lead to heavy overfitting on the development set
and consequently, poor generalization for unseen data. We
think that heavy regularization and/or cross-validation [as
used by Peng et al. (36)] will be necessary in that case. In
addition, in this work we used basic methods (e.g. taking
union/intersection) for combining the predictions of the
SVM and I-ANN systems. As a future work, we would like
to investigate better system combination approaches [such
as the stacking approach used by Peng et al. (36)], and see
to what extent the overall performance of our method can
be improved.

Even though we used pre-trained word embeddings for
the I-ANN system, other embeddings (e.g. the POS tag and
DT embeddings) were initialized randomly and learnt from
scratch. Similar to using pre-trained word embeddings, we
would like to investigate whether pretraining the other
embeddings can improve the performance of the I-ANN
system. One idea is to train the I-ANN system on other
biomedical relation extraction corpora (such as DDI-2013)
and use the learnt embeddings to train/optimize the I-ANN
system on the CHEMPROT training data.

Additionally, we would like to investigate different
methods of incorporating the information in the whole
parse graph into the neural networks. Although the
I-ANN system utilizes the words/POS tags/DTs in the SDP,
other word-dependencies far outside the SDP can play a
critical role, considerably affecting the meaning of the
relations expressed in the sentence. As discussed in the

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 21 of 23

error analysis section, in the simple sentence ‘Neither
<CHEMICAL>oxycodone</CHEMICAL> nor its

metabolites activated <GENE>PXR</GENE>,

<GENE>CAR</GENE>, or <GENE>AhR</GENE>.’,
all CHEMICAL–GENE pairs with CPR:10 true label
were mistakenly assigned CPR:3 (upregulation) labels
by our classifiers. In this sentence, the key negation
words (‘Neither’ and ‘nor’) are not part of the SDP
connecting the CHEMICAL to the GENE entities, and most
likely because the word ‘activated’ (strong indicator
of upregulation) is in the sentence, the relations are
misclassified. One approach for incorporating the whole
parse graph into neural networks is the Tree-LSTM
neural architecture (59), used by Lim and Kang (56) for
relation extraction. Unfortunately, they achieved 58.53 F-
score on the task, 4.57 pp below our F-score. We would
like to investigate whether/how the Tree-LSTM network
architecture can be modified to obtain higher scores for the
task. Finally, we want to explore different possible ways
of incorporating DT n-grams (i.e. ‘paths’ in the sentence
parse graph) into neural networks as embeddings for this
aim.

We highlight that the systems we presented in this study
are not applicable only to the BioCreative VI Task 5 and can
be effortlessly re-trained to extract any types of relations of
interest, with no modifications of the source code required,
if a manually annotated corpus is provided as training data
in the Interaction XML format (15).

Acknowledgements

We would like to thank the anonymous reviewers who helped us
to improve this paper with their valuable recommendations and
feedback. Computational resources are provided by CSC-IT Center
For Science Ltd, Espoo, Finland.

Funding
ATT Tieto käyttöön grant of the Finnish Ministry of Education.

Conflict of interest. None declared.

References

1. Krallinger,M., Rabal,O., Akhondi,S.A. et al. (2017) Overview
of the BioCreative VI chemical-protein interaction Track. In:
Proceedings of BioCreative VI Workshop, Bethesda, MD, USA,
141–146.

2. Krallinger,M., Leitner,F., Rodriguez-Penagos,C. et al. (2008)
Overview of the protein–protein interaction annotation extrac-
tion task of BioCreative II. Genome Biol., 9, S4.

3. Krallinger,M., Vazquez,M., Leitner,F. et al. (2011) The protein–
protein interaction tasks of BioCreative III: classification/rank-
ing of articles and linking bio-ontology concepts to full text.
BMC Bioinformatics, 12, S3.

4. Wei,C.H., Peng,Y., Leaman,R. et al. (2016) Assessing the state
of the art in biomedical relation extraction: overview of the
BioCreative V chemical-disease relation (CDR) task. Database,
2016, baw032, https://doi.org/10.1093/database/baw032.

5. Segura-Bedmar,I., Martínez,P. and Sánchez-Cisneros,D. (2011)
The 1st DDIExtraction-2011 challenge task: extraction of drug–
drug interactions from biomedical texts. In: Proceedings of the
1st Challenge Task on Drug-Drug Interaction Extraction 2011,
Huelva, Spain, 1–9.

6. Segura-Bedmar,I., Martínez,P. and Herrero Zazo,M. (2013)
SemEval-2013 Task 9: extraction of drug–drug interactions
from biomedical texts (DDIExtraction 2013). In: Second
Joint Conference on Lexical and Computational Semantics
(∗SEM), Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013). Associ-
ation for Computational Linguistics, Atlanta, Georgia, USA.
341–350.

7. Bossy,R., Jourde,J., Bessieres,P. et al. (2011) Bionlp shared task
2011: bacteria biotope. In: Proceedings of the BioNLP Shared
Task 2011 Workshop, Portland, Oregon, USA, 24 June, 2011.
Association of Computational Linguistics, 56–64.

8. Bossy,R., Golik,W., Ratkovic,Z. et al. (2013) Bionlp shared task
2013—an overview of the bacteria biotope task. In: Proceedings
of the BioNLP Shared Task 2013 Workshop, Sofia, Bulgaria,
9 August, 2013. Association of Computational Linguistics,
161–169.

9. Delėger,L., Bossy,R., Chaix,E., et al. (2016) Overview of the
bacteria biotope task at bionlp shared task 2016. In: Proceedings
of the 4th BioNLP Shared Task Workshop, Berlin, Germany,
13 August 2016. Association of Computational Linguistics,
12–22.

10. Pyysalo,S., Sætre,R., Tsujii,J.I. et al. (2008) Why biomedical
relation extraction results are incomparable and what to do
about it. In: Proceedings of the Third International Sym-
posium on Semantic Mining in Biomedicine (SMBM 2008),
Turku, Finland, 1st September 2008. TUCS General Publication,
149–152.

11. Cortes,C. and Vapnik,V. (1995) Support-vector networks. Mach.
Learn., 20, 273–297.

12. Hochreiter,S. and Schmidhuber,J. (1997) Long short-term mem-
ory. Neural Comput., 9, 1735–1780.

13. Mehryary,F., Björne,J., Salakoski,T. et al. (2017) Combining
suppor vector machines and LSTM networks for chemical–
protein relation extraction. In: Proceedings of the BioCreative
VI Workshop, Bethesda, MD, USA, 175–179.

14. Zhang,Q., Chen,M. and Liu,L. (2017) A review on entity rela-
tion extraction. In: 2017 Second International Conference on
Mechanical, Control and Computer Engineering (ICMCCE),
Harbin, IEEE. 178–183.

15. Björne,J. (2014) Biomedical event extraction with machine
learning. Ph.D. Thesis. University of Turku.

16. Lever,J. and Jones,S.J. (2016) VERSE: event and relation extrac-
tion in the BioNLP 2016 Shared Task. In: Proceedings of the
4th BioNLP Shared Task Workshop, Berlin, Germany, 13 August
2016. Association of Computational Linguistics, 42–49.

17. Raihani,A. and Laachfoubi,N. (2016) Extracting drug–drug
interactions from biomedical text using a feature-based kernel
approach. J. Theor. Appl. Inf. Technol., 92, 109.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

https://doi.org/10.1093/database/baw032

Page 22 of 23 Database, Vol. 2018, Article ID bay120

18. Zelenko,D., Aone,C. and Richardella,A. (2003) Kernel
methods for relation extraction. J.machine Learn. Res., 3,
1083–1106.

19. Culotta,A. and Sorensen,J. (2004) Dependency tree kernels for
relation extraction. In: Proceedings of the 42nd annual meet-
ing on association for computational linguistics, Barcelona,
Spain, 21 July, 2004. Association of Computational Linguistics,
423–429.

20. Freund,Y. and Schapire,R.E. (1999) Large margin
classification using the perceptron algorithm. Mach. Learn.,
37, 277–296.

21. Bunescu,R.C. and Mooney,R.J. (2005) Subsequence kernels for
relation extraction. In: Proceedings of the Advances in Neural
Information Processing Systems 18 (NIPS 2005), Cambridge,
MA, USA. MIT Press, 171–178.

22. Reichartz,F., Korte,H. and Paass,G. (2009) Dependency tree
kernels for relation extraction from natural language text.
In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Berlin, Heidelberg. Springer,
270–285.

23. Airola,A., Pyysalo,S., Björne,J. et al. (2008) All-paths graph
kernel for protein–protein interaction extraction with
evaluation of cross-corpus learning, BMC Bioinformatics,
9(Suppl 11), S2.

24. Zhang,Y., Zheng,W., Lin,H. et al. (2017) Drug–drug interaction
extraction via hierarchical RNNs on sequence and shortest
dependency paths. Bioinformatics., 34(5), 828–835.

25. Goodfellow,I., Bengio,Y. and Courville,A. (2016) Deep Learn-
ing. Cambridge, MA, USA. The MIT Press.

26. Mikolov,T., Sutskever,I., Chen,K. et al. (2013) Distributed rep-
resentations of words and phrases and their compositionality.
In: Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 2 (NIPS’13), Lake
Tahoe, Nevada. Curran Associates Inc, 3111–3119.

27. Cho,K., Van Merriënboer,B., Gulcehre,C. et al. (2014) Learning
phrase representations using RNN encoder-decoder for statis-
tical machine translation. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 25 October, 2014. Association for
Computational Linguistics. 1724–1734.

28. Bengio,Y., Simard,P. and Frasconi,P. (1994) Learning long-term
dependencies with gradient descent is difficult. IEEE Trans.
Neural Netw., 5, 157–166.

29. Yin,W., Kann,K., Yu,M. et al. (2017) Comparative study
of cnn and rnn for natural language processing. CoRR,
abs/1702.01923.

30. Hendrickx,I., Kim,S.N., Kozareva,Z. et al. (2009) Semeval-2010
task 8: multi-way classification of semantic relations between
pairs of nominals. In: Proceedings of the Workshop on Semantic
Evaluations: Recent Achievements and Future Directions, Boul-
der, Colorado, 4 June, 2009. Association for Computational
Linguistics. 94–99.

31. Lim,S., Lee,K. and Kang,J. (2018) Drug–drug interaction extrac-
tion from the literature using a recursive neural network. PloS
One, 13, e0190926.

32. Zhou,D., Miao,L. and He,Y. (2018) Position-aware deep multi-
task learning for drug–drug interaction extraction. Artif. Intell.
Med., 87, 1–8.

33. Liu,S., Chen,K., Chen,Q. et al. (2016) Dependency-based con-
volutional neural network for drug–drug interaction extraction.
In: 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). IEEE, 1074–1080.

34. Quan,C., Hua,L., Sun,X. et al. (2016) Multichannel convolu-
tional neural network for biological relation extraction. Biomed
Res. Int., 2016, 1–10.

35. Zhao,Z., Yang,Z., Luo,L. et al. (2016) Drug–drug interaction
extraction from biomedical literature using syntax convolu-
tional neural network. Bioinformatics, 32, 3444–3453.

36. Peng,Y., Rios,A., Kavuluru,R. et al. (2017) Chemical–protein
relation extraction with ensembles of SVM, CNN, and RNN
models. In: Proceedings of the BioCreative VI Workshop.
147–150.

37. Charniak,E. and Johnson,M. (2005) Coarse-to-fine N-best pars-
ing and maxent discriminative reranking. In: Proceedings of
ACL. 173–180.

38. de Marneffe,M.-C., MacCartney,B. and Manning,C.D. (2006)
Generating typed dependency parses from phrase structure
parses. In: Proceedings of the LREC-2006. 449–454.

39. Andor,D., Alberti,C., Weiss,D. et al. (2016) Globally normal-
ized transition-based neural networks. In: Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics, Berlin, Germany, August 7-12, 2016. Association for
Computational Linguistics, 2442–2452.

40. McClosky,D. (2010) Any domain parsing: automatic domain
adaptation for natural language parsing. Ph.D. Thesis. Brown
University.

41. Tsochantaridis,I., Joachims,T., Hofmann,T. et al. (2005) Large
margin methods for structured and interdependent output vari-
ables. J. Mach. Learn. Res., 6, 1453–1484.

42. Kim,J.-D., Ohta,T., Pyysalo,S. et al. (2009) Overview of
BioNLP’09 Shared Task on Event Extraction. In: Proceedings
of the BioNLP 2009 Workshop Companion Volume for Shared
Task, pages 1–9, Boulder, Colorado. Association for Computa-
tional Linguistics, Boulder, Colorado. 1–9.

43. Björne,J., Kaewphan,S. and Salakoski,T. (2013) UTurku: drug
named entity recognition and drug–drug interaction extraction
using svm classification and domain knowledge. Second Joint
Conference on Lexical and Computational Semantics (∗SEM).
In: Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), 2, 651–659.

44. Knox,C., Law,V., Jewison,T. et al. (2011) Drugbank 3.0: a
comprehensive resource for omics research on drugs. Nucleic
Acids Res., 39, 1035–1041.

45. Mehryary,F., Björne,J., Pyysalo,S. et al. (2016) Deep learning
with minimal training data: TurkuNLP entry in the BioNLP
Shared Task 2016. In: Proceedings of the 4th BioNLP Shared
Task Workshop. 71–81.

46. Mehryary,F., Hakala,K., Kaewphan,K. et al. (2017) End-to-
end system for bacteria habitat extraction. In: Proceedings of
BioNLP 2017. 80–90.

47. Cai,R., Wang,H. and Zhang,X. (2016) Bidirectional recurrent
convolutional neural network for relation classification. In:
Proceedings of ACL. 756–765.

48. Xu,Y., Mou,L., Li,G. et al. (2015) Classifying relations via long
short term memory networks along shortest dependency paths.
In: Proceedings of EMNLP. 1785–1794.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

Database, Vol. 2018, Article ID bay120 Page 23 of 23

49. Bunescu,R.C. and Mooney,R.J. (2005) A shortest path depen-
dency kernel for relation extraction. In Proceedings of HLT-
EMNLP. 724–731.

50. Quirk,C. and Poon,H. (2017) Distant supervision for relation
extraction beyond the sentence boundary. In: Proceedings of
EACL. 1171–1182.

51. Pyysalo,S., Ginter,F., Moen,H. et al. (2013) Distributional
semantics resources for biomedical text processing. In: Proceed-
ings of LBM 2013. 39–44.

52. Srivastava,N., Hinton,G.E., Krizhevsky,A. et al. (2014) Dropout:
a simple way to prevent neural networks from overfitting. Mach.
Learn. Res, 15, 1929–1958.

53. Schuster,M. and Paliwal,K.K. (1997) Bidirectional recur-
rent neural networks. IEEE Trans. Signal Process., 45,
2673–2681.

54. Peng,Y. and Lu,Z. (2017) Deep learning for extracting protein-
protein interactions from biomedical literature. In: Proceedings
of the BioNLP 2017 Workshop. 29–38.

55. Corbett,J. and Boyle,J. (2017) Improving the learning of
chemical-protein interactions from literature using transfer
learning and word embeddings. In: Proceedings of the BioCre-
ative VI Workshop. 180–183.

56. Lim,S. and Kang,J. (2017) Chemical–gene relation extraction
using recursive neural network. In: Proceedings of the BioCre-
ative VI Workshop. 190–193.

57. Lung,P.-Y., Zhao,T., He,Z. et al. (2017) Extracting chemical-
protein interactions from literature. In: Proceedings of the
BioCreative VI Workshop, 159–162.

58. Matos,S. (2017) Extracting chemical–protein interactions using
long short-term memory networks. In: Proceedings of the
BioCreative VI Workshop. 151–154.

59. Tai,K.S., Socher,R. and Manning,C.D. (2015) Improved seman-
tic representations from tree-structured long short-term mem-
ory networks. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing,
Beijing, China, July 26-31, 2015. 5 Association for Computa-
tional Linguistics, 1556–1566.

60. Chollet,F. (2015) Keras. https://github.com/fchollet/keras.
61. Al-Rfou,R., Alain,G., Almahairi,A., et al. (2016) Theano: A

Python framework for fast computation of mathematical
expressions. CoRR, abs/1605.02688.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article-abstract/doi/10.1093/database/bay120/5255148 by Turun Yliopiston Kirjasto user on 08 January 2019

https://github.com/fchollet/keras

	Potent pairing: ensemble of long short-term memory networks and support vector machine for chemical-protein relation extraction
	Introduction
	Background
	Data
	Methods
	Preprocessing
	SVM-based system
	ST-ANN system
	I-ANN system
	System combination

	Results and discussion
	Shared task results
	Improved results
	Error analysis
	Comparison with other methods

	Runtime performance and technical details
	Conclusions and future work
	Funding

