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Identification of 90 NAFLD GWAS loci
and establishment of NAFLD PRS and causal
role of NAFLD in coronary artery disease
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Summary
The prevalence of non-alcoholic fatty liver disease (NAFLD), now also known as metabolic dysfunction-associated fatty liver disease

(MAFLD), is rapidly increasing worldwide due to the ongoing obesity epidemic. However, currently the NALFD diagnosis requires

non-readily available imaging technologies or liver biopsy, which has drastically limited the sample sizes of NAFLD studies and

hampered the discovery of its genetic component. Here we utilized the large UK Biobank (UKB) to accurately estimate the NAFLD status

in UKB based on common serum traits and anthropometric measures. Scoring all individuals in UKB for NAFLD risk resulted in 28,396

NAFLD cases and 108,652 healthy individuals at a >90% confidence level. Using this imputed NAFLD status to perform the largest

NAFLD genome-wide association study (GWAS) to date, we identified 94 independent (R2 < 0.2) NAFLD GWAS loci, of which 90

have not been identified before; built a polygenic risk score (PRS)model to predict the genetic risk of NAFLD; and used the GWAS variants

of imputedNAFLD for a tissue-awareMendelian randomization analysis that discovered a significant causal effect of NAFLD on coronary

artery disease (CAD). In summary, we accurately estimated the NAFLD status in UKB using common serum traits and anthropometric

measures, which empowered us to identify 90 GWAS NAFLD loci, build NAFLD PRS, and discover a significant causal effect of NAFLD

on CAD.
Introduction

It is estimated that over 25% of adults worldwide have

non-alcoholic fatty liver disease (NAFLD [MIM: 613282]),

now also known as metabolic dysfunction-associated fatty

liver disease (MAFLD),1 and an increase in NAFLD preva-

lence has paralleled that of other cardiometabolic disor-

ders, such as obesity and type 2 diabetes (T2D [MIM:

125853]). The degree of steatosis (fat in the liver) can be

measured through different imaging techniques, mainly

using abdominal magnetic resonance imaging (MRI) and

magnetic resonance spectroscopy (MRS).2 However, unlike

anthropometric measures, such as body mass index (BMI),

or biochemical measures, such as serum liver enzymes and

lipids levels, abdominal MRI/MRS is not typically conduct-

ed on asymptomatic individuals, and thus NAFLD may go

undiagnosed for years. Therefore, NAFLD is likely under-

diagnosed due to the relative difficulty in obtaining reli-

able measures of liver characteristics. Moreover, NAFLD

may progress to non-alcoholic steatohepatitis (NASH)

and cirrhosis.3 However, abdominal MRI/MRS cannot

identify inflammation, ballooning, or early stages of

fibrosis reliably, and these can only be diagnosed through

histological assessment of liver biopsy.
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Due to the scarcity of abdominal MRI and liver biopsy

data, NAFLD genome-wide association studies (GWASs)

have remained small,4–16 the largest ones comprising

�7,500 individuals in an MRI-based steatosis GWAS5 and

1,500 cases in a biopsy-based NAFLD GWAS.15 Thus, iden-

tifying risk loci for NAFLD has been slower than with other

cardio-metabolic diseases, such as obesity, T2D, or hyper-

cholesterolemia. Given that the diagnosis of NAFLD or

NASH by either imaging or liver histology is not readily

available, one alternative method for identifying individ-

uals with likely NAFLD for GWASs is to establish a NAFLD

risk score from the correlated clinical traits, such as serum

liver enzymes, glucose, and lipid levels. Previously, Bed-

ogni et al.17 reported the widely used fatty liver index

(FLI); however, in a validation study FLI did not outper-

form the simple waist circumference in predicting

NAFLD.18 The existing prediction models are usually built

on a limited sample size, which restricts the robustness/ac-

curacy of the prediction model. Although machine

learning (ML) methods have also been used in predicting

NAFLD,19 they are still limited by the small sample size

and suffer from a potential overfitting problem in certain

small population groups. To improve the assessment of

NAFLD using serum traits, we utilized the individuals
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Table 1. Effect sizes (betas) estimated in the NAFLDS and
NAFLDS_simple models

NAFLDS NAFLDS_simple

GGT 0.0138 0.0144

BMI 0.0395 0.0479

Waist 0.0606 0.0714

ALT 0.0089 0.0125

AST 0.0373 0.0346

HbA1c 0.0360 NA

AST/ALT �0.1299 �0.1794

TG 0.3499 NA

Cholesterol �0.2850 NA

Albumin �0.0035 NA

Age �0.1470 �0.1722

Age2 0.0015 0.0018

Sex �1.0252 �0.9153

T2D 0.4123 NA

The predictors are ranked by their importance in the random forest estimation
model. NA indicates not applicable.
with International Classification of Diseases, Ninth Revi-

sion (ICD9)- and ICD10-based NAFLD diagnoses and liver

MRI data in the extensive UK Biobank (UKB) as the ground

truth for the NAFLD status in our modeling. Accordingly,

using the training cohort, we built an imputation model

of NAFLD and estimated the NAFLD scores (NAFLDSs) in

the full UKB. Utilizing the NAFLDS as the surrogate of

NAFLD, we then performed a GWAS to powerfully identify

a large number of variants for NAFLD and build the poly-

genic risk scores (PRSs) for NAFLD.

Our prediction approach that leverages shared genetics

between fatty liver disease and other metabolic disorders

is also in line with the current change in the nomenclature

from NAFLD to MAFLD,1 which emphasizes the need to

better subphenotype and stratify individuals by applying

more precise genetic, anthropometric, and metabolic phe-

notyping approaches. Thus, our results take the field for-

ward by demonstrating that in the large UK Biobank

only part of the genome-wide genetic correlations are

shared between the individual metabolic and anthropo-

metric predictor traits and NAFLDS.

The leading cause of death from NAFLD is coronary

artery disease (CAD), with an estimated 5%–10% of people

with NAFLD dying from CAD.20 It is unclear whether the

increased risk of CAD mortality in NAFLD individuals is

due to other metabolic traits known to be linked to CAD

and correlated with NAFLD (e.g., dyslipidemia, T2D, or

obesity), and thus the causal direction between NAFLD

and CAD has remained elusive.21 It is important to estab-

lish which CAD risk factors are causal, because therapeutic

interventions should be targeted to these causal risk fac-

tors. Recently, the first MR analysis designed to investigate
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the causal relationship between NAFLD and CAD did not

identify a positive causal effect.22 Here, to disentangle

the causal relationship between NAFLD and CAD that

may be confounded by pleiotropic effects from many car-

diometabolic tissues, we used a tissue-aware two-sample

bi-directional MR analysis, which suggests that the geneti-

cally determined risk of NAFLD is causal for CAD.
Material and methods

This research has been conducted using the UK Biobank Resource

under application number 33934. The GTEx coronary artery cis-

expression quantitative trait loci (eQTL) results were obtained

from the GTEx portal in the version of dbGaP Accession

phs000424.v8.p2. The Kuopio Obesity Surgery (KOBS) cohort

was recruited at the University of Eastern Finland and Kuopio Uni-

versity Hospital, Finland. All individuals gave written informed

consent, and the study protocol was approved by the local ethics

committee. We analyzed the liver RNA sequencing (RNA-seq) and

genome-wide SNP data from 259 KOBS participants.23
Estimating the NAFLDS in UKB
In UKB, the true NAFLD cases were first identified using the

following ICD9/10 codes: 571.5, 571.8, 571.9, K74.0, K74.6,

K75.8, and K76.0, as in previous large administrative data-based

studies of NAFLD prevalence and incidence.24 We then selected

the individuals who have a liver fat percent < 5%, assessed by

abdominal MRI, and no ICD9/10 code-based NAFLD diagnosis

as the true healthy control individuals. We also excluded individ-

uals with liver disease other than NAFLD from all GWAS, PRS, and

MR analyses (see the GWAS analysis section below). Then to esti-

mate the NAFLD status in the full UKB, we used the elastic net reg-

ularization to identify key predictors for the NAFLD status among

the biomarker and anthropometric measurements available in

UKB. Since elastic net tends to shrink the coefficients toward

null, which can bias the results, we chose to perform amultivariate

logistic regression to estimate the actual effect sizes of the predic-

tors. We also compared the NAFLD scoring results obtained using

an elastic net regression (penalized by weights of the predictors)

with the scores obtained using a multivariate logistic regression

(not penalized) and observed a high correlation in the UKB (corre-

lation coefficient > 0.99). Table 1 shows the effect sizes for covari-

ates that have non-zero effect sizes, estimated by the elastic net

regression in our NAFLDS model.

To evaluate the accuracy of this model, we performed a 100-fold

cross-validation in UKB. In more detail, we randomly split the in-

dividuals into 100 groups, so that the training groups contained

99% of the individuals and the remaining independent 1% of

the individuals were estimated based on the trained model. To es-

timate the importance of different predictors, we also trained a

random forest model using the same predictors that we used in

the NAFLDS model. The random forest was employed using the

‘‘randomForest’’25 R package with default parameters. Next, we

compared NAFLDS, FLI,17 hepatic steatosis index (HSI),26 and

gamma-glutamyl transpeptidase (GGT) in estimating the NAFLD

status using a receiver operating characteristic (ROC) curve. To

impute the final NAFLDS in the full UKB cohort, we trained the

NAFLDS model using all the individuals who have ground truth

values (combining both the training and testing group) and

then applied the model to the full UKB cohort. Finally, the
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estimated NAFLDS status was used as the surrogate for the NAFLD

status in our following GWAS, PRS, and MR analyses.
GWAS analysis
We used a linear mixed model implemented by BOLT-LMM to

identify the associations between the genetic variants and selected

traits (NAFLD, CAD, and the predictors of NAFLDS) while taking

into account the population structure in UKB. The CAD individ-

uals were identified using the ICD9/10, as described by Khera

et al.27 The imputed NAFLD status was defined by the NAFLDS us-

ing the cutoff points of �1.5/1.5 (see Results for justification of

these cutoff points). In total, 28,396 NAFLD cases and 108,652

healthy controls were identified at a >90% confidence level. We

also included age, age2, sex, BMI, top 20 genotype PCs, array

type, and center ID as covariates. To decrease genetic heterogene-

ity and avoid confounding due to multiple ethnicities and popu-

lation substructures, only unrelated participants of European

ancestry were included in the analysis. We also excluded individ-

uals with liver disease other than NAFLD from the GWAS, PRS, and

MR analyses using ICD9/ICD10 codes: 571.1–4, 571.6, 572.0,

572.8, 573.3, 573.8–9, K70.0–4, K70.9, K71.0–2, K71.5–9, K72.0–

1, K72.9, K73.0–2, K73.8–9, K74.1–5, K75.0, K75.2–4, K75.9,

K76.1–3, K76.6–9, and K77.0. To fulfill a two-sample MR require-

ment, we performed the CAD GWAS among the individuals who

do not have a solid estimation of NAFLD status (n ¼ 127,635).
cis-eQTL analysis in the KOBS liver RNA-seq data
To identify the cis-eQTLs in the KOBS liver RNA-seq cohort, we

first estimated the gene expression using Kallisto. Only the genes

that had an estimated TPM > 0.1 in more than 90% of the KOBS

liver samples were retained for the analyses. We also performed a

2-pass alignment using STAR and estimated the following tech-

nical factors: mitochondrial reads percent, mRNA reads percent,

uniquely mapped rate, 50 bias, and 30 bias. Then we adjusted the

gene expression for the technical factors, RIN, first 3 genotype

PCs, and 20 SVAs. The cis region was defined as 1 million bases

up/downstream of the transcription start site of the target genes.

Using a permutation-based multiple test correction employed by

fastQTL, we identified 260,748 significant cis-eQTL SNP-target

gene pairs passing false discovery rate (FDR) < 0.05.
Mendelian randomization analysis
Using the summary statistics that we obtained from our GWAS

analysis, we explored the causal relationship between NAFLD

and CAD (diagrammatically NAFLD4CAD). We first overlapped

the KOBS/GTEx liver cis-eQTLs and the GTEx coronary artery

cis-eQTLs and filtered out the shared SNPs that might affect both

the liver and coronary arteries. The cis-eQTLs that only exist in

one of these tissues were identified as the tissue-aware cis-eQTLs.

When using the imputed NAFLD status as the exposure variable,

we identified the variants that are significant both in the NAFLD

GWAS and liver-aware cis-eQTL analysis in the KOBS or GTEx

cohort. The identified SNPs most likely affect the liver health sta-

tus, reflected by the imputed NAFLD status. Then we linkage

disequilibrium (LD) pruned (R2 ¼ 0.2) the overlapping SNPs and

treated the non-redundant SNPs as instrumental variables (IVs).

When testing the causal effect of CAD on NAFLD, we included

both the UKB CAD GWAS SNPs and the CARDIoGRAMplusC4D

CAD GWAS SNPs28 as the candidate IVs and overlapped these

GWAS SNPs with GTEx coronary artery-aware cis-eQTLs. We LD

pruned (R2 ¼ 0.2) the CAD GWAS cis-eQTLs and treated the inde-
Human
pendent CAD GWAS SNPs as IVs. Next, we used MR-PRESSO29 to

correct for the potential horizontal pleiotropy and tested for the

causal effects between the imputed NAFLD status and CAD in

both directions. We also employed a heterogeneity test (Cochran’s

Q test) to search for potential horizontal pleiotropy. When we

used alanine aminotransferase (ALT) as a surrogate for liver health,

we randomly separated UKB into 2 independent groups and per-

formed a two-sample MR, similarly as described for NAFLD4-

CAD. Since the heterogeneity test for ALT/CAD showed a sign

of potential horizontal pleiotropy, we further verified the two-

sample MR using the MR-egger30 that verified our one-way causal

effect of ALT/CAD without detecting any signs of horizontal

pleiotropy (see Results).
Results

NAFLDS model accurately assesses the NAFLD status in

UKB

To impute the NAFLD status using available traits in UKB,

we first identified the NAFLD and healthy control individ-

uals using the same ICD9/10 codes (see Material and

methods) for NAFLD as employed in several previous large

administrative data-based studies of NAFLD prevalence

and incidence.24,31,32 We used MRI (liver fat percent <

5%) and ICD9/10 data (no ICD9/10 NAFLD diagnosis) to

identify healthy control individuals. We also excluded in-

dividuals with liver disease other than NAFLD from all

GWAS, PRS, and MR analyses (see Material and methods).

A total of 2,181 true NAFLD cases and 2,444 true healthy

control subjects were identified. We then selected 14

NAFLD-related traits, including age, BMI, liver enzymes,

blood glucose, and lipid traits as predictors and first used

elastic net33 to select the informative traits for our NAFLDS

model (see Material and methods for the detailed descrip-

tion of ourmodel). All 14 predictors were kept in the elastic

net model, which indicates their important role in esti-

mating the NAFLD status. Since an elastic net model is

known to shrink the coefficients toward null and thus

bias results, we performed a multivariate logistic regression

to train and predict the NAFLD status (see Material and

methods).

Using a 100-fold cross-validation, we assessed the perfor-

mance of NAFLDS, FLI, and HSI on predicting the NAFLD

status. Figures 1A and 1B show that NAFLDS outperformed

FLI and HSI in estimating the NAFLD status in the 100-fold

cross-validation as well as achieved the highest area

under the curve (AUC) in an ROC curve (AUC ¼ 0.89,

95% CI ¼ 0.88–0.90) and in a precision recall curve

(PRC) (AUC ¼ 0.89). Moreover, NAFLDS outperformed all

predictor traits, including ALT, GGT, BMI, and waist, in

predicting the NAFLD status. Figures 1C and 1D show

the comparison between the key predictor traits and

NAFLDS. We also randomly selected 80% of the samples

as the training set and tested the NAFLDS model on

the remaining 20% of the samples. The training/testing

set shows a similar performance as the 100-fold cross-vali-

dation (Figure S1).
Genetics and Genomics Advances 3, 100056, January 13, 2022 3
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Figure 1. ROC and PRC plots show that
NAFLDS outperformed the existing NAFLD
predictors
(A) As demonstrated by an ROC curve,
NAFLDS outperformed FLI and HSI by
achieving higher AUCs.
(B) As demonstrated by a PRC plot, NAFLDS
and NAFLDS_simple outperformed FLI and
HIS and achieved higher AUCs.
(C) In the ROC plot, NAFLDS outperforms
the key predictors, ALT, GGT, BMI, and
waist circumference.
(D) In the RPC plot, NAFLDS outperforms
the key predictors, ALT, GGT, BMI, and
waist circumference.
Moreover, we calculated the positive predictive value

(PPV) and negative predictive value (NPV) of different cut-

off points and set�1.5/1.5 as the low/high cutoff points of

NAFLDS. These cutoff points were selected to call NAFLD

cases and controls at a >90% confidence level, as is evi-

denced by the fact that when we applied the high cutoff

point (1.5), we identified 1,188 NAFLD cases, of which

93% (1,104) were true NAFLD cases, and when we applied

the low cutoff point of �1.5, we identified 1,406 NAFLD-

free individuals, of whom 92% (1,287) were correctly cate-

gorized. Thus, utilizing both the high 1.5 and low �1.5

cutoff points, our NAFLDS model diagnosed the binary

NAFLD status of 2,391 individuals (52% of the overall

study sample) at a high accuracy (R92% in both NAFLD

cases and healthy control individuals).

To investigate the relative importance of the different

predictors, we also applied a random forest model to the

same training/testing groups and observed that GGT, waist

circumference, and BMI ranked high as the most impor-

tant predictors (Table 1). The diabetic traits, such as hemo-

globin A1c (HbA1c) and T2D, were less important predic-

tors. Thus, we trained another linear model that only

relies on the liver enzymes and anthropometric measures

(i.e., ALT, AST, GGT, AST/ALT, waist circumference, sex,

age, age2, and BMI). This simplified model (NAFLDS_sim-

ple) also outperformed FLI, his, and any predictor alone

in the 100-fold cross-validation (Figure 1; Figure S1).

Thus, when all predictors in the NAFLDS model are not
4 Human Genetics and Genomics Advances 3, 100056, January 13, 2022
available, the NAFLDS_simple can be

employed to obtain a similar perfor-

mance on estimating the NAFLD status

as NAFLDS has. Table 1 shows the esti-

mated betas of both NAFLDS and

NAFLDS_simple.

The imputed NAFLD status increases

power in NAFLD GWAS analysis

Since our NAFLDSmodel was shown to

accurately predict NAFLD in the 100-

fold cross-validation, we next trained

the model using all the 4,625 individ-

uals who have the ground truth
NAFLD status and imputed the NAFLD status using

NAFLDS in the full UKB. Using the same 1.5/�1.5 cutoff

point, we observed 28,396 NAFLD cases (NAFLDS > 1.5)

and 108,652 healthy control subjects (NAFLDS < �1.5)

in UKB. We then performed a GWAS analysis on the two

traits (i.e., the NAFLD status [n ¼ 5,059] and the imputed

NAFLD status based on NAFLDS [n ¼ 136,804 after

excluding individuals with other known liver diseases in

UKB]).

In the small GWAS analysis of NAFLD status, we

identified 2 NAFLD GWAS loci with 68 genome-wide sig-

nificant (p value < 5E�8) variants in 2 independent LD

blocks (R2 < 0.2). Comparing to the previously identified

suggestive or significant NAFLD GWAS loci,4–15 our SNPs,

rs73004951 and rs2294915, replicated the previous NAFLD

GWAS loci, TM6SF2 and PNPLA3 (Table S1). Table S2 shows

the detailed summary statistics of all significant GWAS loci

of the NAFLD status. Noteworthy, all of these NAFLD

GWAS variants were also replicated in the GWAS analyses

of the imputed NAFLD status (see below).

Given the larger sample size for the imputed NAFLD sta-

tus (n ¼ 28,396 cases with NAFLDS > 1.5 and n ¼ 108,652

controls with NAFLDS < �1.5) when compared with the

NAFLD status (n ¼ 4,625, verified by ICD codes and MRI

data), we identified substantially more significant GWAS

variants for the imputed NAFLD status than in the NAFLD

status GWAS analysis (see above). All in all, we identified

94 NAFLD GWAS loci for the imputed NAFLD status,



Table 2. Seven of the Previously identified NAFLD GWAS loci were observed in our imputed NAFLD status (n ¼ 136,840) GWAS analyses at
the genome-wide significant level (p < 5E�8) or subgenome-wide significant level (p < 5E�5)

CHR Gene/locia SNP ID Beta p Significance level

Previous significant loci

1 MARC1 (MIM: 614126) rs2642438 �1.09E�3 0.28 –

2 GCKR (MIM: 600842) rs1260326 9.08E�3 2.00E�22 genome

2 GCKR rs780094 8.47E�3 1.70E�19 genome

4 HSD17B13 (MIM: 612127) rs9992651 5.23E�3 5.40E�07 subgenome

7 – rs343062 �8.17E�4 3.80E�01 –

8 PPP1R3B (MIM: 610541) rs4240624 3.90E�3 1.30E�02 nominal

16 ZFP90-CDH1 (MIM: 609451) rs698718 �1.70E�3 1.10E�01 –

19 NCAN (MIM: 600826) rs2228603 �8.47E�3 8.60E�07 subgenome

19 TM6SF2 (MIM: 606563) rs58542926 �9.55E�3 2.70E�08 genome

22 SAMM50 (MIM: 612058) rs3761472 �8.97E�3 9.80E�13 genome

22 SAMM50 rs2143571 �5.73E�3 1.40E�06 subgenome

22 PNPLA3 (MIM: 609567) rs738409 �1.19E�2 3.60E�27 genome

22 IL17RA (MIM: 605461) rs5748926 1.13E�05 9.90E�01 –

22 PARVB (MIM: 608121) rs5764455 �2.33E�04 8.00E�01 –

Previous suggestive loci

1 LYPLAL1 (MIM: 616548) rs12137855 1.85E�3 9.80E�02 –

2 FABP1 (MIM: 134650) rs72943235 �7.26E�4 8.70E�01 –

8 TRIB1 (MIM: 609461) rs2980888 1.00E�2 7.30E�24 genome

8 TRIB1 rs2954021 1.06E�2 3.50E�31 genome

8 FDFT1 (MIM: 184420) rs2645424 1.53E�4 8.70E�01 –

19 MBOAT7 (MIM: 606048)b rs641738 9.22E�4 2.6E�03 nominal

Previous unidentified loci

17 GRB2 (MIM: 108355) rs5015881 �7.99E�3 1.60E�08 genome

Loci were previously identified in NAFLD GWASs.4–16
aThe Gene/loci column shows the nearest gene of the identified NAFLD variant.
bThis variant was derived from a previous study16 that performed a meta-analysis of rs641738 instead of a full GWAS.
with 5,187 significant (p < 5E-8) variants in 94 indepen-

dent LD blocks (R2 cutoff, 0.2), which is 13 times more

loci than reported in the previous NAFLD GWASs together

(Tables S1 and S3). Figure S2 shows the QQ-plots of the p

values calculated in the NAFLD and imputed NAFLD

GWAS analysis. No genome-wide inflation was observed

in Figure S2A (genomic inflation factor lambda ¼ 1.00).

Although Figure S2B showed a sign of higher p values

than expected (lambda ¼ 1.20), it might be caused by a

true polygenic signal captured by the large sample size

rather than the inflation caused by population substruc-

ture, similarly as shown in a previous paper.34 We further

tested this hypothesis by subsampling the imputed NAFLD

cohort to a similar same size (n ¼ 6,425) as the NAFLD sta-

tus. There is no sign of inflation in the subsampled GWAS

analysis (Figure S2C, lambda¼ 1.00). Overall, we identified

90 GWAS loci that have not been identified for NAFLD

before.
Human
To assess the performance of the imputed NAFLDS, we

also compared our NAFLDS GWAS loci to the previously re-

ported NAFLD GWAS loci4–15 observed using substantially

smaller numbers of NAFLD cases and control subjects (see

Table S1). Our imputed NAFLD GWAS replicated all of the

suggestive and significant NAFLD GWAS loci that were

earlier reported by several of the previous small NAFLD

GWASs, including the key NAFLD loci TM6SF2 (MIM:

606563), SAMM50 (MIM: 612058), and PNPLA3 (MIM:

609567) (Table 2), while we did not replicate some of the

previous NAFLD GWAS loci reported by only one of the

previous small NAFLD GWASs (Table 2; Tables S1 and S3).

Next, we overlapped the GWAS loci obtained using the

imputed NAFLD status with liver cis-eQTLs identified

from 208 liver RNA-seq samples from GTEx and 259 liver

RNA-seq samples from KOBS. In total, the GWAS variants

regulated 50 liver eQTL target genes (eGenes) in either

GTEx or KOBS as cis-eQTLs (FDR < 0.05). Among the 50
Genetics and Genomics Advances 3, 100056, January 13, 2022 5



Table 3. The number of GWAS variants shared by the imputed NAFLD status and predictors

Triglycerides HbA1c BMI ALT GGT All

Shared SNPs 3,366 1,669 336 3,360 3,760 4,890

Percentage 64.89% 32.18% 6.48% 64.77% 72.49% 94.27%

Hba1c, hemoglobin A1c; BMI, body mass index; ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase.
liver eGenes, 19 were observed in both GTEx and KOBS.

These results provide potential targets for co-localization

analyses in the future fine mapping studies to further

confirm the co-location between the GWAS and cis-eQTL

variants at each of these loci. Table S4 lists the SNP-liver

eGenepairs at the imputedNAFLDGWAS loci.Noteworthy,

7 of the 19 eGenes are Human Leukocyte Antigen (HLA)

genes that replicated the recent report by Yoshida et al.35

The imputed NAFLD (NAFLDS) GWAS loci overlap

largely with liver enzyme (ALT and GGT) GWAS loci

Since the NAFLDS is predicted using 14 different predic-

tors, we further investigated whether the imputed NAFLD

status (n ¼ 28,396 cases with NAFLDS > 1.5 and n ¼
108,652 control subjects with NAFLDS < �1.5) helps to

identify GWAS loci that cannot be identified by the indi-

vidual predictors of the NALFDS model. We chose five pre-

dictors to represent the five categories of predictors (triglyc-

erides for serum lipid, HbA1c for serum glucose, ALT and

GGT for liver enzyme, and BMI for overall body obesity)

and then performed GWASs for these 5 representative pre-

dictors and compared their GWAS variants with the signif-

icant imputed NAFLD GWAS variants. Table 3 shows that

the majority of the significant imputed NAFLD GWAS var-

iants were replicated in the GWAS of the 5 predictors.

Importantly, among the tested predictors, the liver enzyme

GWAS loci overlapped largely with the imputed NAFLD

(NAFLDS) GWAS. Specifically, we observed an overlap of

64.77% between ALT and NAFLDS GWAS loci and an over-

lap of 72.49% between the GGT and NAFLDS GWAS loci,

while the overlaps for HbA1c (32.18%) and BMI (6.48%)

were much smaller (Table 3). Although this fits the

assumption that liver enzymes directly represent the liver

health status, it also suggests, however, that only part of

the genome-wide genetic correlations are shared between

the individual predictor traits and NAFLDS, as not all liver

enzyme, TG, glucose, and BMI GWAS loci confer the ge-

netic risk of NALFD. Thus, the NAFLDS model may help

capture the critical combination of the composite trait

GWAS loci that confer the genetic NAFLD risk.

When comparing the imputed NAFLD GWAS variants

with the GWAS variants of the predictors, 110 GWAS vari-

ants of imputed NAFLD are specific to the imputed NAFLD

and do not overlap or are not in LD (R2 < 0.8) with the sig-

nificant GWAS variants of these predictors. We then tested

the associations between the 110 GWAS variants with all

14 predictors and identified a set of 8 variants in tight LD

(R2 > 0.80) in a 33-kb region on chromosome 17 that are

not associated with any predictors (all predictor traits
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with p > 5E-8). These 8 imputed NAFLD GWAS variants

belong to the same LD block overlapping the Growth Fac-

tor Receptor Bound Protein 2 (GRB2) gene, suggesting this

gene as a possible underlying gene, though further fine

mapping and functional studies are warranted to identify

the actual regional NAFLD gene. Table S5 shows the sum-

mary statistics of the 8 NAFLD GWAS SNPs at this LD block

in the GRB2 region that do not overlap with the GWAS loci

detected by any predictors (all predictor traits with p > 5E-

8). Noteworthy, as there are other regional variants that do

not reside in this LD block that are associated with waist-

hip ratio adjusted BMI and waist-hip ratio in previous

GWASs,36 the overall GRB2 region thus shows genetic ef-

fects on multiple metabolic traits beyond the imputed

NAFLDS.

A PRS model of the imputed NAFLD status predicts the

risk of NAFLD in UKB

To investigate how the imputed NAFLD GWAS variants

predict individual risk of NAFLD, we constructed a PRS

model for the imputed NAFLD status in UKB. To train

and build the NAFLD PRS model, we separated UKB into

3 independent groups: training set (n ¼ 99,823), test set

(n¼ 34,833), and validation set (n¼ 5,059). The validation

set contained all the case/control individuals whose

NAFLD status was verified by ICD codes or MRI scan while

training, and the test set contained the individuals whose

NAFLD status were imputed by the NAFLDS model. We

first performed a GWAS analysis of the imputed NAFLD sta-

tus in the training set to establish the effect sizes (beta) of

all variants on the NAFLD risk. Then we investigated the

effectiveness of the PRSmodel in the test set using different

combinations of LD pruning thresholds (R2 from 0.2 to

0.8) and p value thresholds (p from 5 3 10�8 to 0.1) using

the polygenic score function in plink.37 In the test set, we

compared the PRS score of the NAFLD cases and healthy

control individuals. Then we divided the individuals into

10 deciles based on their PRS scores and assessed the

odds ratio (OR) of having NAFLD in each of the 10 deciles

when compared to the lowest decile. Figure S3 shows that

in the test set, the imputed NAFLD cases always have a

higher PRS value compared to the imputed healthy con-

trols, and the top decile that has the highest PRS shows

an OR between 1.7 and 2.4. We picked the combination

of R2 < 0.8 and p < 0.1 as the best thresholds, because

this provided the most significant difference in the PRS be-

tween the imputed NAFLD cases and the imputed controls

and also identified the highest OR between the 10th decile

versus the 1st decile. Finally, we applied this model to the
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Figure 2. The ORs of NAFLD for the
decile compared to the people with the
lowest 10% NAFLD PRS score
The error bar shows the 95% confidence
interval of the estimated OR. The x axis
shows the 10 deciles divided by the NAFLD
PRS score. The annotation box indicates
the result comparing the inverse normal
transformed PRS scores between the
NAFLD cases and control subjects using a
Student’s t test.
validation set and observed a concordant difference of the

PRS between the NAFLD cases (identified by ICD codes)

and control subjects (verified by MRI data). Figure 2 shows

that the NAFLD cases have a significantly higher PRS

compared to the control subjects (t ¼ �7.89, p ¼ 3.69 3

10�15), while the OR of the 10th decile when compared

to the 1st decile is 2.1.

NAFLD exhibits a causal effect on CAD

To determine whether there is a causal relationship be-

tween NAFLD and CAD risk, we performed a two-sample

bi-directional MR analysis using the imputed NAFLD status

as the surrogate of the ground truth NAFLD risk in UKB.

MR requires the use of proper IVs, which are often SNPs

that are known to significantly contribute to the exposure

(GWAS SNPs). In UKB, we treated the 5,187 significant

GWAS variants of the imputed NAFLD status as the candi-

date IVs. To perform GWAS in two independent cohorts

required by a two-sample MR setup, we also performed a

GWAS analysis of CAD among the individuals who do

not have a predicted NAFLD status (n ¼ 127,635). With

only 17,188 CAD cases in UKB, we identified fewer signif-

icant CADGWAS SNPs (n¼ 841 without LD pruning) than

in the imputed NAFLDGWAS (n¼ 5,187 without LD prun-

ing). Therefore, we also included the reported known CAD

GWAS SNPs from the large Cardiogram meta-study28 into

our analysis to expand our CAD GWAS SNP pool.

Moreover, the IVs used in an MR analysis should prefer-

ably have a known function to decrease horizontal pleiot-

ropy, as pleiotropy can lead to misleading MR results.29 To

refine the NAFLD and CAD GWAS SNPs to those with a

plausible function in the liver and coronary arteries,

respectively, we determined which of the NAFLDS and

CAD GWAS SNPs are cis-eQTLs in their respective tissues.

We used RNA-seq data of 259 liver biopsies from KOBS to
Human Genetics and Genomic
identify the liver cis-eQTLs. We also

downloaded the cis-eQTLs identified

in the liver and coronary artery tissue

from GTEx v.8 and excluded cis-eQTL

SNPs that overlapped between the

liver and coronary arteries to avoid

including as IVs these SNPs that func-

tion as cis-eQTLs in both tissues. In to-

tal, 58,147 shared cis-eQTLs were

identified in both KOBS and GTEx
liver cohorts, and 464,236 cis-eQTLs were identified in

the GTEx coronary artery samples. We then obtained our

final list of candidate IVs for NAFLDS and CAD by overlap-

ping the respective cis-eQTLs with the significant (p < 5E-

8) NAFLDS or CAD GWAS SNPs.

Figure 3 shows the framework of our MR models. Using

our approach described above to obtain the tissue-aware

eQTL NAFLDS IVs, we first discovered 5 independent SNPs

(R2 % 0.2) that are associated with NAFLD status in UKB

and are liver, but not coronary artery, cis-eQTLs (FDR <

0.05). We identified a significant positive causal effect (beta

¼ 0.16, p value ¼ 5.9 3 10�3) of NAFLDS on CAD in UKB.

To reduce the potential of pleiotropy, we used MR-

PRESSO,29whichcorrects forpotentialhorizontalpleiotropy

in theMR analysis. Moreover, we employed a heterogeneity

test and again did not identify any evidence of pleiotropy (Q

¼ 1.6, p¼ 0.66). To test the potential reverse causal effect of

CAD onNAFLDS, we identified 18 independent SNPs (R2 %

0.2) that are both CADGWAS SNPs and coronary artery, but

not liver, cis-eQTLs. UsingMR-PRESSO to correct for the po-

tential horizontal pleiotropy, we did not find a significant

causal effect of CAD on NAFLDS (beta ¼ 0.28, p ¼ 0.24).

To further verify the direction of the causal effect of

NAFLD onCAD,we performed a similar two-sampleMRus-

ing ALT as the surrogate of liver health. Similarly, we

observed a significant causal effect of high ALT level on

the risk of CAD (beta¼ 0.017, p¼ 0.014) usingMR-PRESSO,

while the reverse causal effect (CAD/ALT) remained insig-

nificant (beta ¼ 0.51, p ¼ 0.42. Although MR-PRESSO did

not identify any potential pleiotropy, the heterogeneity

test showed a slight sign of pleiotropy (Q ¼ 43, p ¼ 2.6E-

2). Therefore, we further utilized MR-egger and verified

the causal effect of ALT on CAD. In more detail, MR-egger

also identified the significant causal effect of ALT on CAD

(beta ¼ 0.048, p ¼ 0.031), while no sign of pleiotropy was
s Advances 3, 100056, January 13, 2022 7



Figure 3. Workflow of combining liver/coronary artery cis-eQTL and UKB GWAS variants to a tissue-aware, bi-directional MR be-
tween imputed NAFLD and CAD
observed (p.pleio¼ 0.15). Table S6 shows the summary sta-

tistics of all IVs utilized in the MR analysis.

In summary, we identified the IVs for the MR analyses

using the GWAS SNPs of imputed NAFLD and CAD in

the UKB and refined these IVs to those with functional ev-

idence in their respective tissues by selecting the tissue-

aware IVs. Our tissue-aware bi-directional MR analysis

demonstrated that NAFLD causally increases the risk of

CAD and did not identify any evidence of reverse causality

(i.e., CAD causing increased NAFLD).
Discussion

Weused the UKB cohort to develop an estimationmodel of

NAFLD. By combining the relevant serum traits (i.e., liver

enzymes, lipids [triglycerides, cholesterol], diabetes-related

traits [HbA1c, T2D status], age, sex, waist circumference,

and BMI), our imputed NAFLDS achieved a high accuracy

on NAFLD (AUC ¼ 0.89) and outperformed the existing

FLI17 index, HSI26 index, and the key liver enzymes, ALT

and GGT (Figure 1). Since the predictors are non-indepen-

dent traits, the estimated betas cannot directly be used to

infer the importance of the predictors in NALFD. Thus,

we also employed a random forest method to predict

NAFLD with these same predictors and identified that

GGT, waist circumference, and BMI are themost important

predictors of NAFLD in UKB.

When identifying NAFLD predictors using elastic net, we

used the serum HbA1c and T2D status to represent glucose

metabolism instead of serum glucose levels, because the

glucose levels were not taken after overnight fasting in

UKB, which may bias them. It is suggested that serum

glucose and lipid levels are independent predictors for

NAFLD,17,38 and that GGT is the only liver enzyme that is

an independent predictor for NAFLD.17 However, using

only the anthropometric measures and liver enzymes in

the UKB cohort, our NAFLDS_simple model achieved a
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similar power in predicting NAFLD status as our NAFLDS

model that also utilized the lipid and glucose traits. Thus,

our NAFLDS_simple model emphasizes the importance of

liver enzymes and anthropometric measures in predicting

the NAFLD status.

Since the NAFLDS model showed a high accuracy in pre-

dicting NAFLD cases and healthy control subjects when em-

ploying the cutoff points of �1.5/1.5, we used it to predict

28,396 NAFLD cases and 108,652 healthy individuals at

>90% confidence level in UKB. This sample size increased

the power of our GWAS analysis and resulted in the discov-

ery of 94 independent NAFLD GWAS loci (p < 5E-8, R2 <

0.2), which is 13 times more loci than reported previously

in NAFLD GWASs4 (Table S1). Importantly, we observed

large overlaps between the liver enzyme (ALT and GGT)

GWAS loci and our NAFLDSGWAS loci, in line with the pre-

vious biobank study in theMillion Veteran Program, report-

ing ALTas a noninvasiveNAFLDproxy.39However, NAFLDS

did outperform both liver enzymes in our prediction model

that used the ICD9/10-based NAFLD cases and MRI-based

non-NAFLD control subjects as the ground truth (Figure 1),

which together with the 65%–72%GWAS overlaps between

the liver enzymes and NAFLDS (Table 3) indicate that the

NAFLDS model still captures additional diagnostic and ge-

netic information beyond the liver enzymes. It is also inter-

esting that no more than 32.18% and 6.48% of the HbA1c

and BMI GWAS loci overlapped with the NAFLDS GWAS

loci (Table 3). Taken together, these data suggest that only

part of the genome-wide genetic correlations are shared be-

tween the individual predictor traits and NAFLDS, thus

further suggesting that NAFLDS captures the critical combi-

nation of the composite trait GWAS loci contributing to

NAFLD, while not all liver enzyme, TG, glucose, and BMI

GWAS loci confer the genetic risk of NALFD. This informa-

tion on shared genetic risks and their biological overlap be-

tween NAFLD and other metabolic disorders can ultimately

help develop future genotype-based precision medicine ap-

proaches through better stratification of individuals.40
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Our NAFLDS GWAS results that uniquely share some but

not all GWAS loci with the metabolic and anthropometric

component traits also support the future goals of the

recent nomenclature shift from NAFLD to MAFLD that

aim to better subphenotype the heterogeneous group of

fatty liver individuals with metabolic dysfunction.1 The

shift from NALFD to MAFLD reflects the recognition in

the field of study that more precise genetic, anthropo-

metric, andmetabolic phenotyping approaches are needed

to better assess the complex MAFLD phenotype shaped by

interactions of genetic predisposition with environmental

factors and components of the metabolic syndrome.1

Recent genetic studies with the previously known key

GWAS variants also support the usefulness of the MAFLD

criteria compared to NAFLD criteria in identifying individ-

uals who benefit from genetic testing.1,41,42

Using the effect sizes estimated from the GWAS variants,

we also built and tested a PRS model that predicted the

NAFLD risk in UKB. In the validation set where individuals’

NAFLD case/control status was verified by the ICD codes or

MRI data, the individuals who have a higher NAFLD PRS

score (top 10%) exhibited an OR of 2.1 when compared

to the individuals who have the lowest (bottom 10%)

NAFLD PRS score. The NAFLD individuals also show a

significantly higher NAFLD PRS score compared to the

healthy control subjects (p ¼ 3.69 3 10�15). We recognize

that the use of ICD coding may underestimate the preva-

lence of NAFLD, which perhaps contributes to the rela-

tively low OR in the PRS. Nevertheless, both the GWAS

and PRS analyses demonstrate that the NAFLD status

imputed by our NAFLDS model greatly increased the po-

wer in identifying genetic variants associated with the

risk of NAFLD for future follow-up studies.

It is difficult to distinguish the specific contribution of

NAFLDonCADfromtheother risk factors sharedbyNAFLD

and CAD. For example, obesity is a known risk factor for

bothNAFLDandCAD.Thus, it is important to avoid thepo-

tential horizontal pleiotropy in the MR analysis when

investigating the causal relationships between NAFLD and

CAD. Here, we included BMI as a covariate to identify the

GWAS variants that are associated with NAFLDS/CAD

without being mediated by the obesity status (BMI).

Furthermore, we combined the GWAS variants and tissue-

aware cis-eQTLs to identify the GWAS SNPs that affect

gene expression preferentially in the liver or coronary ar-

teries. These tissue-aware cis-eQTL GWAS variants could

thus possibly exhibit a direct causal tissue-specific role in

the development of NAFLD/CAD. This design that takes

advantage of the transcriptomics data will define IVs well

and thus help mitigate a key current shortcoming of MR

(i.e., inclusion of pleiotropic IVs that affectmultiple pheno-

types outside their effects on exposure inMR). Accordingly,

using the tissue-aware cis-eQTL GWAS SNPs as IVs and

applying MR-PRESSO should reduce the potential pleiot-

ropy and thus improve the robustness of the MR analysis.

Although we used independent samples for training and

validating NAFLDS in the UKB, the FLI and HSI models
Human
were originally trained in other cohorts than UKB.17,26

Thus, there is a possibility that a different population back-

ground or hidden covariates may bias our NAFLDS estima-

tion when compared to FLI and HSI. Another limitation of

our study is that our analyses are limited to individuals of

European ancestry in order to avoid genetic heterogeneity.

Thus, to explore external generalizability beyond UKB,

future studies should extend this approach and its compar-

isons with FLI and HSI to additional cohorts and more

diverse populations as more biobank data emerge. Other

caveats are that the imputation of genetic risk for NAFLD

can reflect liver damage and overall adiposity, rather than

NAFLD per se, and that we cannot rule out some case/con-

trol misclassification. While we recognize these factors as

limitations in any risk scoring system of NAFLD,17–19 the

fact that we observed the previous NAFLD GWAS signals

in our study (Table 2; Table S14–15) suggests that in general

the imputed NAFLD scoring does detect NAFLD loci,

although additional future validations are needed to

further confirm that. We also consider that even though

liver biopsy andMRI still remain the gold standard in diag-

nosing NAFLD, it is still useful to be able to quickly score

the NAFLD risk based on only blood biomarkers in order

to at least detect liver damage related to these common

NAFLD risk factors. Metabolically driven common liver

damage is highly likely related to the development of

NAFLD.43 Finally, to address the caveat that MR cannot

fully distinguish between horizontal pleiotropy and direct

causal effects, we focused on tissue-aware cis-eQTL IV SNPs

with potentially fewer pleiotropic effects, an approach not

used before to address this key MR limitation.

In summary, we used key clinical metabolic measure-

ments to build the NAFLDS model that is easy to employ

and outperforms the existing NAFLD estimation model

in UKB. When some serum traits, such as HbA1c, triglycer-

ides, and cholesterol, are not available, our NAFLDS_sim-

ple model can be used to predict the NAFLD status. Using

the imputed NAFLD status in UKB, we identified 94 inde-

pendent NAFLD GWAS loci, of which 90 have not been

identified before. Moreover, the power boost from the sam-

ple size (28,396 NAFLD cases and 108,652 healthy con-

trols) also helped us successfully build a PRS model that

shows a significant difference between the NAFLD cases

and healthy controls. Furthermore, we combined the

GWAS variants and tissue-aware cis-eQTLs to identify the

GWAS SNPs that affect gene expression preferentially in

the liver or coronary arteries. Using these tissue-aware cis-

eQTLGWAS SNPs as IVs and applyingMR-PRESSO to avoid

the potential pleiotropy, we identified the putative one-

way causal path from NAFLD to CAD. This result was

further supported by the observed causal path from ALT

to CAD using the same tissue-aware IV design in MR.

Our non-invasive NAFLD model in the UKB cohort can

next be implemented to other large biobanks to further

investigate these results and advance our understanding

of genetic predisposition to common metabolically driven

liver damage and ultimately NAFLD.
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