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Abstract

In this paper, we introduce t-revealing codes in the binary Hamming space Fn. Let C ⊆ F
n

be a code and denote by It(C;x) the set of elements of C which are within (Hamming) distance
t from a word x ∈ F

n. A code C is t-revealing if the majority voting on the coordinates of the
words in It(C;x) gives unambiguously x. These codes have applications, for instance, to the
list decoding problem of the Levenshtein’s channel model, where the decoder provides a list
based on several different outputs of the channel with the same input, and to the information
retrieval problem of the Yaakobi-Bruck model of associative memories. We give t-revealing
codes which improve some of the key parameters for these applications compared to earlier
code constructions.

Keywords: Levenshtein’s sequence reconstruction problem, list decoding, information retrieval,
associative memory, majority voting on coordinates, indentifying codes

1 Introduction

Let us first define mathematically the codes we are interested in and then consider the motivations
and applications of them.

Let F be the binary field and denote by F
n the Hamming space, that is, the n-fold Cartesian

product F
n = F × F × · · · × F. As usual, the Hamming distance d(x,y) between two words

x = x1x2 . . . xn and y = y1y2 . . . yn of Fn is the number of coordinate places in which they differ.
The all-zero word is denoted by 0 = 00 . . . 0 and the all-one word by 1 = 11 . . . 1. The support of
a word x is defined as supp(x) = {i | xi 6= 0}. The Hamming weight w(x) of x is the cardinality
of the support of x. For x ∈ F

n we denote the Hamming ball of radius t and centred at x by

Bt(x) = {y ∈ F
n | d(x,y) ≤ t}.

The symmetric difference A △ B of two sets A and B is, as usual, (A \ B) ∪ (B \ A). The word
ei is a word of weight one such that supp(ei) = {i}. The complement of a word x is the word
x̄ = 1+ x. A code is a subset of Fn with at least two elements. Its elements are called codewords.
The minimum distance of a code C is defined as

dmin(C) = min
c1,c2∈C
c1 6=c2

d(c1, c2)

and the covering radius of C as
R(C) = max

x∈Fn

min
c∈C

d(x, c).

For x = x1x2 . . . xn, let the function πi pick the i-th coordinate, that is, πi(x) = xi. For a subset
A ⊆ F

n, we generalize this in the following way by considering the majority voting on the i-th
coordinates of the words in A. If there are more 0’s (resp. 1’s) among the coordinates πi(a), where
a ∈ A, then πi(A) = 0 (resp. πi(A) = 1). If there is an equal amount of 0’s and 1’s, the value
πi(A) is defined to be the symbol ∗.
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Let C be a code and t ≥ 1 an integer. For any x ∈ F
n, we define the set of codewords within

distance t from x as
It(x) = It(C;x) = {c ∈ C | d(x, c) ≤ t}.

We call this the I-set of x.
Let It(x) be non-empty for a word x = x1x2 . . . xn ∈ F

n. We say that the word x is accessible,
if πi(It(x)) = xi for all i = 1, 2, . . . , n. In other words, using the majority voting on the coordinates
of It(x) we get x. Otherwise, we say that x is non-accessible (in particular, if I-set of x is empty).

Next we define a useful function mt(x) on an accessible word x. Let k be the smallest integer
such that if we take any subset U ⊆ It(x) of size |U | ≥ k, then πi(U) = xi for all i = 1, . . . n. In
other words, it is enough to take any k codewords from It(x) in order to find x using the majority
voting on the coordinates of U . The smallest such k is denoted by mt(x) = mt(C;x). We say that
x is revealed from It(x) using any mt(x) (or more) words of It(x).

Example 1. Let the code C = {0000, 0100, 1100, 0110, 0111, 1011}. For the word x = 0100 we
have I1(x) = {0000, 0100, 1100, 0110}. Clearly, now πi(I1(x)) = xi for all i = 1, 2, 3, 4, so x is
accessible. It is easy to check that any subset of three codewords of I1(x) also reveals x using the
majority voting. Hence, m1(x) ≤ 3. Since U = {0100, 1100} gives π1(U) = ∗, we get m1(x) = 3.

If y = 1111, then I1(y) = {0111, 1011}. The word y is non-accessible, since π2(I1(x)) = ∗.

Let N = {0, 1, . . .} be the set of natural numbers. For a word x = x1x2 . . . xn we define a
vector ht(x) = ht(C;x) = (h1, h2, . . . , hn) ∈ N

n where hi is the number of codewords in It(x)
such that their i-th coordinate differs from xi. Hence, x is accessible, if

|It(x)| ≥ 2 max
i=1,...,n

hi + 1 (1)

and, in that case,
mt(x) = 2 max

i=1,...,n
hi + 1. (2)

Definition 2. Let t ≥ 1 and n ≥ 2 be integers. A code C ⊆ F
n is a coordinatewise revealing

code of radius t (a t-revealing code for short) if every word x ∈ F
n is accessible. For such a code,

denote the parameter
µ̂t(C) = max

x∈Fn

mt(C;x).

Furthermore, let µ̂t(n) denote the minimum of µ̂t(C) over all t-revealing codes C in F
n.

Example 3. Let C = F
3 \ {000, 111}. For the word z = 000, we get h1(z) = (1, 1, 1) and

|I1(z)| = 3. Due to (1) and (2) it follows that m1(z) = 3. For y = 001, the vector h1(y) = (1, 1, 0)
and |I1(y)| = 3. Again y is accessible and m1(y) = 3. Similarly, one can check that m1(x) = 3
for all x ∈ F

3. Consequently, C is a 1-revealing code with µ̂1(C) = 3. Later (in Theorem 7) we
will see that µ̂1(3) = 3.

In the sequel, we will need the following observations.

Lemma 4. Let C be a t-revealing code, and let x and y be any distinct words in F
n.

(i) We have
|It(x) ∩ It(y)| ≤ max{mt(x),mt(y)} − 1. (3)

(ii) We also have
|It(x) △ It(y)| ≥ 2. (4)

Proof. (i) Because C is a t-revealing code, the values mt(x) and mt(y) exist. Assume, with-
out loss of generality, that mt(y) ≥ mt(x). Suppose to the contrary that |It(x) ∩ It(y)| ≥
max{mt(x),mt(y)} = mt(y). Consider the codewords in U = It(x)∩ It(y). Since C is t-revealing,
we know that any subset of mt(y) or more codewords of It(y) — in particular, the set U — reveals
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y uniquely. Also these same codewords in U should reveal uniquely x because |U | ≥ mt(x) and
U ⊆ It(x). However, this is a contradiction, since x 6= y.

(ii) Since x 6= y, they differ in at least one coordinate, say, xi 6= yi. By (3), we know that
It(x) △ It(y) is non-empty, i.e., |It(x) △ It(y)| > 0. Suppose that |It(x) △ It(y)| = 1 and,
without loss of generality, there is a codeword c ∈ It(y) \ It(x). Since C is t-revealing and
It(x) = It(x) ∩ It(y), we know that all the codewords in It(x) ∩ It(y) reveal uniquely x. Now
these codewords together with c should reveal uniquely y, because It(y) = {c} ∪ (It(x) ∩ It(y)).
But this is impossible, since in majority voting for xi to change to yi, one needs at least two more
votes — and c can give only one.

It should be noted that the necessary condition of (4) is not sufficient for a code to be t-
revealing. For example, the code C = {0}∪ (F6 \ (B2(0)) is 2-revealing, and hence (4) is satisfied.
However, adding one codeword, namely, c = 100000 to C, the new code C′ is not 2-revealing
(since 0 is not accessible), although clearly the new code C′ still satisfies (4).

Next we consider the applications and the motivations of the codes defined above. The first
application is the list decoding problem of Levenshtein’s channel model [13, 16], which finds its
original motivation in molecular biology and chemistry, where the usual redundancy method is
not feasible, and it is also relevant for recent advanced storage technologies [17]. The second
application is the information retrieval in associative memories [16, 18, 9, 7, 8, 15] and the third
motivation is the identification in sensor networks [11, 2, 3, 6, 5].

1) The list decoding problem for the Levenshtein’s channel model: A codeword x ∈ C is trans-
mitted through N channels where at most t errors can occur in each of them as illustrated in
Figure 1. It is also assumed that t > ⌊(dmin(C)− 1)/2⌋.
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Figure 1: The channel model.

Based on the N different outputs y1, . . . ,yN of the channels, the list decoder DL gives esti-
mations {x1, . . . ,xℓ} (where ℓ ≤ L) on the transmitted word x. In [16, 9], a successful decoder is
considered (successful means that the transmitted word x belongs to the outputted list) and the
maximal length of the list L is considered with respect to the number of channels N . Naturally,
we would like to have as short output list as possible while keeping N small and the cardinality
of the code as large as possible. In [17], it is shown that if we wish to have a unique output (that
is, L = 1), then the number of channels can be inconveniently large — see also Remark 14.

In this paper, we will focus on the case when there are only two channels, that is, N = 2,
and we try to find large codes giving a short output list from the decoder. Suppose that C is a
t-revealing code and N = 2. Next we see that we obtain a successful decoder with L ≤ µ̂t(C)− 1.
Two different words y1 and y2 are received from the channels and the decoder outputs all the
codewords {x1, . . . ,xℓ} of C such that d(yj ,xi) ≤ t for all j = 1, 2 and i = 1, . . . , ℓ (that is, all
those codewords that could have been sent when the two words y1 and y2 were received). In other
words, the list consists of the codewords in It(y1) ∩ It(y2). By (3), the length of this list is at
most µ̂t(C)− 1. The decoder is clearly successful, since x ∈ It(y1)∩ It(y2) due to the fact that at
most t errors occurred in the channels.

2) Information retrieval in an associative memory: In the model of Yaakobi and Bruck [16],
an associative memory is given as a (simple and undirected) graph G = (V,E). A vertex in the
graph corresponds to a stored information unit and if two information units are associated, then
there is an edge between them. Moreover, two vertices are called t-associated, if the graphical
distance (that is, the number of edges) between them is at most t. An unknown information unit
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x ∈ V is retrieved from the associative memory using input clues (provided by an information
seeker) which are t-associated to x and also belong to a reference set C ⊆ V . The reference set
should be such that given enough input clues, the sought information unit x can be unambiguously
found. Naturally, we want the maximum number m̂ of input clues, which are needed to retrieve
any information unit from the memory, to be as small as possible.

In this paper (like in [16, 9, 7]), we concentrate on the associative memory modelled by the
binary hypercube F

n (for other graphs see, for instance, [18, 8, 12, 10]). Here two words (i.e.,
information units) a and b are t-associated if and only if d(a,b) ≤ t. According to the model
above, we wish to find a sought information unit x with the aid of input clues coming from the
code C (the reference set) which are t-associated to the unknown word x. In other words, the input
clues come from the set It(x). If the reference set C is a t-revealing code, then we can uniquely
and efficiently (due to the majority voting) find the information unit by receiving at most µ̂t(C)
input clues. Therefore, the maximum number of needed input clues satisfies m̂ ≤ µ̂t(C). Here it
is natural to have as small code as possible for the reference set.

3) Identification in sensor networks: The motivation behind the identifying codes is locating
objects in a sensor networks [11, 2]. A code C is called t-identifying if

It(C;x) 6= It(C;y)

for all x 6= y. The idea is that given a set It(x) we can uniquely determine x by comparing It(x)
to other sets of It(y). If C is t-revealing, then it is also t-identifying due to (4). The advantage of
using t-revealing codes is that we find x from It(x) just by performing the coordinatewise majority
voting and no comparison to other I-sets (or knowledge of them) is needed.

Earlier in [16, 7, 9] the length L of the output of the list decoder and the maximum number
of input clues m̂ in an associative memory was considered using codes C ⊆ F

n which are based
on limiting the size of the intersections It(x) ∩ It(y) while the codes have the property that
It(x) \ It(y) 6= ∅ for all x 6= y (see, for instance, Theorem 9 in [9]). In this paper, we use the idea
of majority voting on coordinates in designing the codes and not the intersections. But as we saw
in (3), we can still estimate the intersections (needed, for example, in the list decoding problem
as explained above). We will see that the new class of t-revealing codes provides better results for
the length L and for the number of input clues m̂ than the earlier code constructions.

Notice that the t-revealing codes may have It(x)\It(y) = ∅ for distinct words x and y, so they
are not the same codes as above in [9, 16, 7] (or in [4]) — conversely, those codes do not usually
give t-revealing codes.

The structure of the paper is as follows. In Section 2 we provide optimal t-revealing codes
for radii t = 1, t = 2 and t = n − 1. Moreover, we discuss bounds on the cardinality of the
codes and a shortening method. In Section 3, we give constructions on 3-revealing codes based on
error-correcting codes. In section 4, we consider constructions and lower bound for other radii.

2 Linear codes and optimal results

We can often benefit from codes being linear, so let us first recall some basic facts about them
(see, for example, [14, Chapter 1] for more details).

A code C is linear if it is a subspace of Fn. If C has dimension k, then C can be defined using
an (n− k)× n check matrix H where

C = {x ∈ F
n | HxT = 0}

where xT denotes the transpose of x. Let us denote the columns of H as follows

H = (h(1) | h(2) | · · · | h(n)).

The syndrome of a word y = y1y2 . . . yn is defined as s(y) = HyT . Notice that the syndrome s(y)
is obtained also by summing up the columns h(i) where yi = 1. The space F

n can be partitioned
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into cosets x + C, x ∈ F
n, and two cosets x + C and y + C are equal if s(x) = s(y). A word of

minimum weight in a coset is chosen as the coset leader.
If a code C is linear, then it has the dual code C⊥ = {zH | z ∈ F

n−k}. The weight distribution
of a code C is the (n+ 1)-tuple (A0, A1, . . . , An) where Ai is the number of codewords of weight
i in C.

For any subset A ⊆ F
n and a word b ∈ F

n we define d(b, A) = min{d(b, a) | a ∈ A} and
b+ A = {b+ a | a ∈ A}.

Next we will consider useful results regarding linear codes and the codes of type x+C (where
C does not have to be linear).

Theorem 5. (i) Let C ⊆ F
n be code and x ∈ F

n. We have ht(x + C;y) = ht(C;x + y) and
|It(x+C;y)| = |It(C;x+y)| for all y ∈ F

n. If the word x+y is accessible with respect to the
code C, then y is accessible with respect to x+C and, moreover, mt(x+C;y) = mt(C;y+x).

(ii) Let C be a linear t-revealing code. Then s(x) = s(y) implies that mt(x) = mt(y). In
particular, all the words in a coset have the same minimum number of revealing codewords
as the coset leader.

Proof. (i) We will use the observation

It(x+ C;y) = It(C;x+ y) + x. (5)

Let us verify this first. The word a belongs to the set It(x + C;y) if and only if a = x + c for
some c ∈ C and d(x + c,y) ≤ t. This is equivalent to the fact that a = c + x for c ∈ C and
d(c,x + y) ≤ t. This in turn, is equivalent to the fact that a belongs to the set It(C;x + y) + x.

From the observation (5) it immediately follows that |It(x + C;y)| = |It(C;x + y)|. Next
we show that ht(x + C;y) = ht(C;x + y) using (5). Denote ht(C;x + y) = (h1, . . . , hn) and
ht(x+C;y) = (h′

1, . . . , h
′
n). We will show that these two vectors are the same. Consider any fixed

coordinate i. Let πi(x) = xi and πi(y) = yi and thus πi(x+y) = xi+yi. Suppose first that xi = 0.
In the set It(C;x+y) there are hi codewords with the bit 1+xi+yi = 1+yi (the bit had to differ
from xi + yi) in the i-th coordinate. Since xi = 0 the same is true for the set It(C;x+ y) + x. In
the set It(x+C;y) there are h′

i codewords with the bit 1+yi in the corresponding coordinate. Due
to (5), we obtain hi = h′

i. Assume then that xi = 1. In the set It(C;x+y) there are hi codewords
with the bit 1 + xi + yi = yi in the i-th coordinate. Consequently, in the set It(C;x + y) + x

there are hi codewords with 1+ yi in the i-th coordinate. As before, in It(x+C;y) there were h′
i

codewords which have 1 + yi in the i-th coordinate. Again we obtain hi = h′
i by (5). This implies

that ht(C;x + y) = ht(x + C;y). Immediately it follows that if x + y is accessible in C, then y

is accessible in x+ C and mt(x+ C;y) = mt(C;x + y).
(ii) Let now C be a t-revealing code, which is also linear. Let x be the leader of the coset

x + C. Since s(x) = s(y), we know that y ∈ x + C. Therefore, y = x + c for some codeword
c ∈ C. Since C is linear, we know that c + C = C. Using (i) we obtain mt(y) = mt(C;x + c) =
mt(c+ C;x) = mt(C;x) = mt(x) as claimed.

Next we give some constructions to revealing codes. Before that, let us recall a couple of results
concerning the (n − k) × n check matrix H of a linear code C. The covering radius R(C) is the
smallest integer R such that every word in F

n−k can be written as the sum of at most R columns
of the matrix H (see [1, Theorem 2.1.9]). Moreover, the covering radius of C is the largest of the
weights of the coset leaders (see [1, Theorem 2.1.11]). The minimum distance dmin(C) equals d if
and only if every d − 1 columns of H are linearly independent and there exist d columns which
are linearly dependent (see [14, p. 33]).

Theorem 6. There exist codes giving

(i) µ̂1(n) ≤ 3 for all n ≥ 3,

(ii) µ̂2(n) ≤ 3 for all n = 2r − 1− p where r ≥ 3 and 0 ≤ p ≤ 2r−1 − 3.
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(iii) µ̂n−1(n) = 2n − 1 for all n ≥ 2.

Proof. (i) Consider first the radius t = 1. We will show that the linear code C with r × n check
matrix H such that it contains every non-zero column (of F

r) at least 3 times and there are
no zero-columns in H is 1-revealing. Since every word of F

r appears as a column of H , the
covering radius of C equals one and, therefore, the weight of any coset leader is at most one. In
addition, dmin(C) = 2, since H contains no zero-column and there exists two identical columns.
By Theorem 5(ii), it is enough to consider coset leaders when we want to calculate the values
mt(y) for all y ∈ F

n. Suppose first that the weight of the coset leader x equals zero, so in other
words x = 0. Since dmin(C) = 2, we know that I1(0) = {0}. Trivially, h1(0) = (0, 0, . . . , 0), so
maxhi = 0 and thus, by (1) and (2), we get m1(0) = 1. Assume then that the coset leader x has
weight one. Let the syndrome s(x) = s (where s 6= 0). Now the I1(x) = {x + ei | i ∈ I} where
I consists of all of those indices j for which the column h(j) = s. Since H contains as a column
each word of Fr at least three times, we get |I1(x)| ≥ 3. Now the vector h1(x) = (h1, . . . , hn) is
such that hi = 1 for i ∈ I and hi = 0 if i /∈ I. Therefore, by (1) and (2), we obtain m1(x) = 3.
This yields that µ̂1(C) = 3 and µ̂1(n) ≤ 3.

(ii) Let t = 2 and consider the check matrix of a Hamming code Hr of length n = 2r − 1,
that is, H contains all the non-zero columns of Fr exactly once. We have dmin(Hr) = 3 and
R(Hr) = 1. Suppose first that the coset leader equals x = 0. Now I2(x) = {x}, so m2(x) = 1. Let
then the weight of the coset leader be one, say x = ek, and thus, s(x) = h(k). We can partition
the remaining columns h(j) of H , j 6= k, using pairs {h(j),h(j′)} where h(j′) = h(j) + h(k).
Consequently, I2(x) = {x+ ek} ∪ {x+ ej + ej′ | for all the pairs {j, j′}}. Thus |I2(x)| = 2r−1. It
also follows that h2(x) = (1, 1, 1, . . . , 1). This implies that m2(x) = 3. Consequently, µ̂t(n) ≤ 3.

In order to deal with the lengths n − p where 0 < p ≤ 2r−1 − 3 we use a shortening trick,
namely, we use the code

Cp = {c1c2 . . . cn−p | c = c1c2 . . . cn−p0
p ∈ Hr} ⊆ F

n−p

where 0p stands for p consecutive zeros. Now I2(Cp;x) where x = x1x2 . . . xn−p contains exactly
the codewords in I2(Hr;x0

p) which end in p zeros (and these zeros are removed from them).
Notice that a word x0p belongs to the code Hr if and only if x is in Cp. Therefore, if x is a
codeword of Cp, then I2(Cp;x) = {x} and m2(x) = 1. On the other hand, if x is a non-codeword,
then |I2(Cp;x)| ≥ |I2(Hr;x0

p)|−p because for each p last coordinates there exists one codeword in
I2(Hr;x0

p) which has 1 in that position. Due to the fact that p ≤ 2r−1− 3, we get |I2(Cp;x)| ≥ 3
and since the maximum value of a coordinate in h2(Cp;x) equals 1, it follows that m2(x) = 3.

(iii) If there is a (n − 1)-revealing code, then it must be C = F
n. Indeed, suppose that C is

(n− 1)-revealing and, say 0 /∈ C. For x 6= 1, we have Bn−1(1) △ Bn−1(x) = {0, x̄}. This implies
that |In−1(1) △ In−1(x)| ≤ 1, which is a contradiction with (4). It remains to be shown that
C = F

n is actually (n−1)-revealing. Since C = F
n is linear, we only need to consider mn−1(x) for

x = 0. Clearly, |In−1(x)| = 2n−1 and hn−1(x) = (2n−1−1, . . . , 2n−1−1), somn−1(x) = 2n−1.

The previous constructions in (i) and (ii) are optimal according to the next result.

Theorem 7. For t ≥ 1 and n ≥ 3 we have µ̂t(n) ≥ 3.

Proof. Let C be a t-revealing code in F
n, n ≥ 3. We show that µ̂t(C) ≥ 3 from which the claim

follows. If there exists c ∈ C such that It(c) contains at least two codewords, say c and c′, then
they both belong to the set It(c)∩It(c

′) and hence, by (3), we know that mt(c) ≥ 3 or mt(c
′) ≥ 3.

Assume therefore, that for all c ∈ C we have It(c) = {c}. Choose any x ∈ B1(c) with x 6= c.
The words c and x differ in exactly one coordinate, say ci 6= xi. Now ht(x) = (h1, . . . , hn) has
hi ≥ 1 and hence maxj=1,2...,n hj ≥ 1. By (2), we obtain mt(x) ≥ 3. This yields the assertion
µ̂t(C) ≥ 3.

Let us return to the shortening trick in the proof of Theorem 6(ii) and formulate it for arbitrary
t ≥ 1 for later use. Let C ⊆ F

n be t-revealing. We have

It(Cp;x) = {c ∈ F
n−p | c0p ∈ It(C;x0p)}.
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Let ht(C;x0p) = (h1, . . . , hn) and ht(Cp;x) = (h′
1, . . . , h

′
n−p). If there are enough codewords left

in It(Cp;x) after shortening, namely, if

|It(Cp;x)| ≥ mt(C;x0p)

then the requirements (1) and (2) (since hi ≥ h′
i for all i = 1, . . . , n − p) are satisfied for the

shortened code Cp and it is t-revealing. Furthermore, we can estimate

|It(Cp;x)| ≥ |It(C;x0p)| −
n
∑

i=n−p+1

hi.

In summary, we get the following statement.

Theorem 8. Let C ⊆ F
n be a t-revealing code. Then the shortened code Cp is also t-revealing

and µ̂t(C) ≥ µ̂t(Cp) provided that for all x ∈ F
n−p we have

|It(C;x0p)| −
n
∑

i=n−p+1

hi ≥ mt(C;x0p) (6)

where ht(C;x0p) = (h1, . . . , hn).

Let us denote the cardinality of the size of the ball of radius t in F
n by V (n, t).

Theorem 9. Let t ≥ 1.

(i) If a code C ⊆ F
n is such that the intersection of I-sets of any distinct words x and y satisfies

|It(x) ∩ It(y)| ≤ L′, then there we have the upper bound

|C| ≤ L′ 2n

V (n, t)−
(

n−1
t

) . (7)

If C is a t-revealing code, then this bound holds for L′ = µ̂t(C)− 1.

(ii) If C is t-revealing, we have a lower bound

|C| ≥
3 · 2n

V (n, t) + 2
. (8)

Proof. (i) For the upper bound, choose a set S = Bt(0) ∩Bt(e1). One obtains

∑

x∈Fn

|(x + S) ∩ C| = |S||C|.

Since x + S = Bt(x) ∩ Bt(x + e1), and thus, (x + S) ∩ C = It(x) ∩ It(x + e1), we get by the
assumption that |(x+ S) ∩ C| ≤ L′. This implies that 2nL′ ≥ |S||C|. For the claim (7) it suffices
to notice that |S| = V (n, t)−

(

n−1
t

)

. By virtue of (3) we obtain the claim with L′ = µ̂t(C)− 1 for
a t-revealing code.

(ii) Next we will verify the lower bound. We examine the number M of pairs (c,x) ∈ C × F
n

such that d(x, c) ≤ t. Denote Vi = |{x ∈ F
n | |It(x)| = i}| for i = 0, 1, . . . , V (n, t). Since

C is t-revealing, V0 = 0. In addition, V2 = 0. Indeed, suppose that there exists y such that
It(y) = {c, c′}. The codewords c and c′ differ in at least one coordinate, say ci 6= c′i. However,
then πi(It(y)) = ∗, which is not allowed for a t-revealing code. Counting the pairs, we get

|C|V (n, t) = M =

V (n,t)
∑

i=0

iVi ≥ 1 · |C|+ 3 · (2n − |C|),

since each non-codeword z has mt(z) ≥ 3 giving necessarily |It(z)| ≥ 3.

7



Remark 10. Notice that the lower bound (8) can be attained (a small code is what we prefer for
the information retrieval). For example, the infinite family of codes in the proof of Theorem 6(i)
for the lengths n = 3(2r − 1) achieve the bound where r ≥ 1. Indeed, each non-zero column
of H appears exactly three times giving |I1(x)| = 3 for non-codewords and |I1(x)| = 1 for the
codewords.

For t = 2 the above upper bound (7) gives for L′ = 2 that |C| ≤ 2n/n. The codes in Theo-
rem 6(ii) give µ̂2(C) = 3, so these codes satisfy L′ = 2. The ratio between the cardinality of codes
Hr in Theorem 6(ii) and the bound (7) approaches to 1 when n tends to infinity. Large codes is
what we prefer for the Levenshtein’s channel problem.

Remark 11. The result µ̂2(n) = 3 in Theorem 6(ii) gives the bound L = 2 for the length of the
decoder list and the bound m̂ = 3 for the maximal number of input clues in information retrieval.
This improves on the known constructions [9, 7], which provide the bounds L = 4 and m̂ = 5,
respectively.

3 Optimal results for the radius t = 3

In this section, we consider the case of radius t = 3. Let C1 ⊆ F
n and C2 ⊆ F

n be codes (not
necessarily revealing). We will utilize the following additive properties valid for all t ≥ 1 and
x ∈ F

n: if C1 ∩ C2 = ∅, then

ht(C1 ∪C2;x) = ht(C1;x) + ht(C2;x)

and
|It(C1 ∪ C2;x)| = |It(C1;x)|+ |It(C2;x)|.

In Theorem 6(ii), we gave codes with minimum distance three and the radius was two. Recall
that for the Levenshtein’s channel problem, we have t > ⌊(dmin(C) − 1)/2⌋. In the next theorem,
we consider codes in the case where the minimum distance is three and the radius equals three
also. These codes provide µ̂3(n) ≤ 5, which is shown to be optimal in Theorem 13. Moreover, the
cardinality of the codes is large as pointed out in Remark 15.

Theorem 12. We have µ̂3(n) ≤ 5 for n = 22r − 1− p where r ≥ 2 and 0 ≤ p ≤ n/3− 5.

Proof. Let the radius t = 3. Denote by Pr the punctured Preparata code [1, p. 51] of length
n = 22r − 1 where r ≥ 2. It is well-known that the minimum distance dmin(Pr) = 5 and the
covering radius R(Pr) = 3. The code Pr is non-linear. Let us first determine m3(x) for those
words x ∈ F

n that are accessible (not all are). Since the covering radius is three, we know that
d(x,Pr) ≤ 3.

Let first 2 ≤ d(x,Pr) ≤ 3. Since Pr is a nearly perfect code [1, p. 313], we have |I3(Pr;x)| =
n/3. Let us consider h3(x) = (h1, . . . , hn). We will see that hi ≤ 1 for all i = 1, . . . , n. Indeed,
suppose to the contrary that hi ≥ 2 for some i. Consequently, there are (at least) two codewords
c and c′ in I3(Pr;x) such that they differ from x in the coordinate i. But now d(c, c′) ≤ 4 and
this is a contradiction with dmin(Pr) = 5. Moreover, since |I3(Pr);x)| = n/3, in the vector h3(x)
all entries hi are equal to 1 or exactly one is 0 and the others are 1. Therefore, by (1) and (2), we
get m3(x) = 3.

Let then 0 ≤ d(x,Pr) ≤ 1. If x ∈ Pr we obtain h3(x) = (0, . . . , 0) and |I3(x)| = 1 due to the
fact that the minimum distance is five. Thus, m3(x) = 1. If d(x,Pr) = 1, then x is not accessible
(and m3(x) does not exist), since I3(Pr;x) = {c} where x 6= c and h3(x) contains zeros except 1
in the position where x and c differ. Hence the code Pr is not 3-revealing.

As we saw, there are three types of words in F
n with respect to the code Pr. Those words

which have m3(x) = 3 and |I3(x)| = n/3 we call type 3 words. The (code)words with mt(x) = 1
and |I3(x)| = 1 are called type 1 words. The rest of the words (the non-accessible ones) are of
type 0.

In order to find a 3-revealing code we take advantage of the additive properties mentioned above
and consider the code C = Pr ∪ (g+Pr) where g is a word of weight three such that d(g,Pr) = 3
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(for such words, see [14, p. 475]). Due to the fact that dmin(Pr) = 5 we have Pr ∩ (g + Pr) = ∅,
so we can use the additive properties. By [14, p. 475], we know that dmin(C) = 3.

Next we estimatem3(C;y) for y ∈ F
n (as we will see, all words will be accessible with respect to

C) by considering the different types of the words. We will make use of Theorem 5(i) — namely, if
g+y is accessible in Pr, then y is accessible in g+Pr and, moreover,m3(g+Pr;y) = m3(Pr;g+y).
In addition, |I3(g + Pr;y)| = |I3(Pr;g + y)|. If g + y is non-accessible in Pr, then we have
|I3(g + Pr;y)| = |I3(Pr;g + y)| and ht(g + Pr;y) = ht(Pr;g + y). Thus, the words in F

n have
the same three types with respect the code g+ Pr as they had in the code Pr.

If a word y is of type 3 in Pr and also of type 3 in g+ Pr, then by the additive properties we
get |I3(C;y)| = |I3(Pr;y)| + |I3(g + Pr;y)| = 2n/3 and h3(C;y) = h3(Pr;y) + h3(g + Pr;y) =
(h1, . . . , hn), where the maximal hi is equal to 2. Consequently, m3(C;y) = 5.

Suppose next that y is of type 3 in Pr and it is of type 0 or 1 in g + Pr. In this case, we
have |I3(C;y)| = n/3+ 1 and h3(C;y) = (h1, . . . , hn) where hi ≤ 2 for i = 1, . . . , n. Thus, we get
m3(C;x) ≤ 5. The same is true if y is of type 3 in g + Pr it is of type 0 or 1 in Pr.

Now the only possibility left to be studied is when y is of type 0 or 1 in both of the subcodes
of C. This means, by the definition of types 0 and 1, that there would be codewords c ∈ Pr and
g+ c′ ∈ g+Pr such that d(y, c) ≤ 1 and d(y,g+ c′) ≤ 1. But then, by the triangle inequality, we
get d(c,g + c′) ≤ 2, which contradicts the fact that dmin(C) = 3. Therefore, there does not exist
such a possibility for the word y. Consequently, all the words are accessible and C is 3-revealing
with the parameter µ̂3(C) ≤ 5. Hence µ̂3(n) ≤ 5 for n = 22r − 1, r ≥ 2.

In order to get the result for the lengths n− p, where 0 < p ≤ n/3− 5, we use the shortening
of Theorem 8. Notice that there are two classes of word in F

n with respect to C. Those with
|I3(C;y)| = 2n/3 and those with |I3(C;y)| = n/3 + 1. In both cases, m3(C;y) ≤ 5.

We need to show that shortening the code C will still leave enough (that is, at least five)
codewords to I3(Cp;x) for any x ∈ F

n−p. If x is such that the word x0p has |I3(C;x0p)| = 2n/3,
then in the vector h3(x0

p) we have hi ≤ 2 for all i = n− p+ 1, . . . n. On the other hand, if x0p

is such |I3(C; c)| = n/3 + 1, then all hi’s, where i = n− p+ 1, . . . , n, are equal to 1 except maybe
one which is at most two. Since p ≤ n/3 − 5, the condition (6) is satisfied and Cp is 3-revealing
with µ̂3(Cp) ≤ 5.

The result µ̂3(n) ≤ 5 found in the previous theorem is actually optimal for t = 3 as will be
seen next.

Theorem 13. For t ≥ 3 and n ≥ 5 we have µ̂t(n) ≥ 5.

Proof. Let C be a t-revealing code in F
n with t ≥ 3 and n ≥ 5. Take a word y ∈ F

n such that
d(y, c) = 1 for some c ∈ C. Clearly, mt(y) ≥ 3, and if mt(y) > 3 we are done, because mt(y) is
always odd (see (2)). Suppose then that mt(y) = 3. Clearly, |It(y)| ≥ 3. Let us consider three
codewords c, c1, c2 ∈ It(y). If supp(c1) ∩ supp(c2) = ∅, then a word z = y + ei + ej such that
i ∈ supp(c1) and j ∈ supp(c2) has distance at most t to all the three codewords. Consequently,
c, c1, c2 ∈ It(z) and, by (3), mt(z) ≥ 4 and we are done because mt(z) is odd. Suppose then
that supp(c1) ∩ supp(c2) is non-empty and contains, say, the index i. Then z = y + ei gives
c, c1, c2 ∈ It(z) and again mt(z) ≥ 5. In summary, µ̂t(C) ≥ 5, which yields the assertion.

Remark 14. For the radius t = 3, the construction in Theorem 12 gives L = 4 for the length of
the list decoder and m̂ = 5 for the information retrieval. In earlier constructions, the best results
[9] for t = 3 are L = 6 and m̂ = 7. Recall that these results on the list decoding are for the case
when we use only two channels, N = 2. If we would like to find the transmitted word uniquely
[13] (that is, L = 1) we would need as many as N = 6n−9 channels to do that when the minimum
distance is three as for the codes in Theorem 12.

Remark 15. The upper bound of Theorem 9 for the maximal size of intersection L′ = 4 and for
lengths n = 22r − 1 equals

|C| ≤
24

r+1

16r − 3 · 4r + 4
.
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The codes of length n = 22r − 1 in Theorem 12 give L′ = µ̂t(C) − 1 = 4 with the cardinality
24

r−4r+1 (twice the cardinality of the punctured Preparata code 2n−4r+1, see [1, p. 313]). The
ratio between the cardinality of these codes and the upper bound approaches to 1 as r tends to
infinity. Therefore, these codes are good also in this respect for the Levenshtein’s list decoding
problem.

4 Results for other radii

In this section, we show how to get from the results of the previous sections bounds on large values
of the radius t. We also consider 4-revealing codes.

4.1 Large radii

In this section, we will study how to get (n− t− 1)-revealing codes from t-revealing ones.

Theorem 16. Let C ⊆ F
n be such a t-revealing code that each coordinate has 0 in exactly half of

the codewords in any given coordinate. Then C is also (n− t− 1)-revealing with

mn−t−1(x) = |C| − 2|It(x̄)|+mt(x̄)

for all x ∈ F
n.

Proof. The words in F
n can be partitioned into two balls, namely, Bn−t−1(x) and Bt(x̄) for

any x ∈ F
n. Consequently, In−t−1(x) = C \ It(x̄) and hence |In−t−1(x)| = |C| − |It(x̄)|. Let

hn−t−1(x) = (h1, . . . , hn) and ht(x̄) = (h′
1, . . . , h

′
n). There is the relation

hi =
|C|

2
− |It(x̄)|+ h′

i ∀i = 1, . . . , n

due to the fact that there are all in all |C|/2 codewords with coordinates ci 6= xi in C and
|It(x̄)|−h′

i of them are in It(x̄). The condition (1) for the radius n− t−1 is now satisfied. Indeed,
by combining

2 max
j=1,...,n

hj + 1 = |C| − 2|It(x̄)|+ 2 max
j=1,...,n

h′
j + 1

with the inequality |It(x̄)| ≥ 2maxj=1,...,n h
′
j + 1 (which is true because C is t-revealing), we get

|In−t−1(x)| ≥ 2maxj=1,...,n hj + 1. Consequently, mn−t−1(x) = |C| − 2|It(x̄)|+mt(x̄).

Remark 17. If we do not have the property that there are equal number of 0’s and 1’s in each of
the coordinates of C, then a t-revealing code may not be (n − t − 1)-revealing. Indeed, the code
C = {0} ∪ (F6 \ (B2(0)) of length 6 is 2-revealing, but it is not 3-revealing. The cardinality of C
equals 43, so there cannot be equal amount of 0’s and 1’s in any coordinate.

The distance distribution of a code C is the (n+ 1)-tuple (B0, B1, . . . , Bn) where

Bi =
1

|C|
|{(x,y) | x,y ∈ C, d(x,y) = i}|.

The MacWilliams transform of the distance distribution is the (n + 1)-tuple (B⊥
0 , B⊥

1 , . . . , B⊥
n )

with

B⊥
s =

1

|C|

n
∑

i=0

BiKs(i), s = 0, 1, . . . , n, (9)

where the Krawtchouk polynomial of degree s

Ks(x) =
s

∑

j=0

(−1)j
(

x

j

)(

n− x

s− j

)

.
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The dual distance d⊥ of a code is defined as the non-zero index i such that B⊥
i 6= 0 and B⊥

j = 0
for indices 0 < j < i. If the code C is linear, then the MacWilliams transform of the distance
distribution of C gives the distance distribution of the dual code C⊥ (see [1, p. 25] and thus
d⊥ = dmin(C

⊥).
Let us recall a fact related to the dual distance [14, p. 139]: Let d⊥ be the dual distance of a

code C ⊆ F
n (not necessarily linear). Then any set of j ≤ d⊥ − 1 coordinates in C contains each

j-tuple exactly |C|/2j times.
Using the codes from the previous sections, we get the following corollary.

Corollary 18. We have

(i) µ̂n−2(n) ≤ 2n−r − 1 for all n = 3(2r − 1) + s where r ≥ 1 and 0 ≤ s ≤ 3 · 2r − 1

(ii) µ̂n−3(n) ≤ 2n−r − 1 for all n = 2r − 1− p where r ≥ 3 and 0 ≤ p ≤ 2r−1 − 3.

(iii) µ̂n−4(n) ≤ 2n−4r+1 − 2(n/3 + 1) + 5 for all n = 22r − 1, r ≥ 2.

Proof. (i) Linear codes have the property that either all codewords or exactly half of the codewords
have 0 in any given coordinate. Clearly, the latter is true for the codes in the proof of Theorem 6(i)
of radius one. Therefore, we can apply Theorem 16. For these codes we have for codewords
|I1(x)| = 1 and m1(x) = 1 and for non-codewords |I1(x)| ≥ 3 and m1(x) = 3. Now, using
Theorem 16, we get µ̂n−2(C) = maxx∈Fn mn−t−1(x) = |C| − 1 = 2n−r − 1.

(ii) Similarly, as above, we get for t = n− 3 the result when we use the codes in the proof of
Theorem 6(ii) of radius two together with Theorem 16.

(iii) For t = n−4 we use the codes from Theorem 12. Since the dual distance of the punctured
Preparata code Pr is greater than two [14, p. 472], there are, by the fact mentioned above, in the
codewords equal amount of 0’s and 1’s in any of the coordinates. The same is true for the union
Pr ∪ (x+ Pr). Therefore, we can again utilize Theorem 16.

Notice that although results (i) and (ii) seem similar they are not the same. For example,
when n = 10, the first bound is µ̂8(10) ≤ 255 and the second one µ̂7(10) ≤ 63.

Next we will provide a lower bound on µ̂t(n) which is useful when the radius t is large compared
to n.

Theorem 19. We have

µ̂t(n) ≥ max

{

3

V (n, t) + 2
,

1

V (n, n− t− 1)
− 1

}(

V (n, t)−

(

n− 1

t

))

+ 1.

Proof. Let C be a t-revealing code. Besides the lower bound (8) in Theorem 9, we can give another
lower bound on |C|. Due to (4) we know that a t-revealing code is also an t-identifying code. For
the smallest possible size of an t-identifying codes in F

n (denoted by Mt(n)) we get by [5]

Mt(n) ≥
2n

V (n, n− t− 1)
− 1.

Combining this and (8) with the upper bound (7), we obtain the claim.

4.2 Radius t = 4

For the radius t = 4 and codes in F
n, the best known upper bound on the parameters L and m̂

is of order n3 (see [7]). In this section, we show that there are codes giving an upper bound of
(linear) order n.

Let X be a set with v elements. A t-design is a collection of distinct subsets of k elements
(called blocks) of X with the property that any t-subset of X is contained in exactly λ blocks.
Denote the number of blocks by b. Each element of X occurs in r blocks [14, p. 60] and, for a
2-design, there are the relations

bk = vr (10)
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and
λ(v − 1) = r(k − 1). (11)

For a linear code, the distance distribution and the weight distribution coincide [1, p. 25]. The
weight distribution (A0, A1, . . . , An) of a code C is thus linked to the weight distribution of the
dual code (A⊥

0 , A
⊥
1 , . . . , A

⊥
n ) via (9). The number of subscripts i > 0 such that A⊥

i 6= 0 is called
the external distance s′ of a code. Let us recall a fact about designs obtained from codewords [14,
p. 175]: Let C be a code with dmin(C) = d and the external distance s′. Then the codewords of
any fixed weight in a code C form a (d− s′)-design provided that d− s′ ≤ s′ < d.

In the next proof, we will use the following observation. If ht(x) = (h1, . . . , hn) for x ∈ F
n and

a code C ⊆ F
n, then (by the definition of hi)

hi ≤ |It−1(x+ ei)|, i = 1, . . . , n. (12)

Theorem 20. We have µ̂4(n) ≤ (n− 1)/3 + 1 for n = 22r+1 − 1 when r > 2.

Proof. Let us consider the radius t = 4. Denote by Cr a double-error-correcting binary, narrow-
sense and primitive BCH-code [14, p. 202] of length n = 22r+1 − 1, r > 2. The code Cr is
linear, and moreover, R(Cr) = 3 and dmin(Cr) = 5. The code is also strongly uniformly packed [1,
p. 313]— a word at distance two or three from the code contains exactly (n − 1)/6 codewords
within distance three. Clearly, the words at distance less than two from the code have exactly 1
codeword within distance three. We shall also need the weight distribution of the dual code of
Cr (see [14, p. 451]): A⊥

0 = 1, A⊥
22r−2r = (22r+1 − 1)(22r−1 + 2r−1), A⊥

22r = (22r+1 − 1)(22r + 1),

A⊥
22r+2r = (22r+1 − 1)(22r−1 − 2r−1) and other A⊥

i ’s are zeros.
Since the code is linear, it suffices to determine m4(C;x) for coset leaders x. Due to the

covering radius, the weight of a coset leader is at most three. Let the coset leader be 0. We have
I4(0) = {0} because the minimum distance is five. Consequently, m4(0) = 1. Suppose then that
the coset leader x has 1 ≤ w(x) ≤ 3 and h4(x) = (h1, . . . , hn). Utilizing the observation (12) we
can estimate hi ≤ |I3(x+ ei)| and, as discussed above, we obtain

hi ≤ (n− 1)/6.

In order to prove that for a coset leader x, x 6= 0,

m4(x) ≤
n− 1

3
+ 1

it now suffices to show, due to (1) and (2), that

|I4(x)| ≥ (n− 1)/3 + 1. (13)

We divide the investigation according to the weight of the coset leader.
Assume first that w(x) = 1, say x = ei. We will benefit from the fact that all the words of

Cr form a 2-design (since dmin(Cr) = 5 and s′ = 3). The set I4(x) for x = ei consists of the such
codewords of weight five that have 1 in the position i. Consequently, using the relation (10), we
get |I4(x)| = 5 ·A5/n where, due to the weight distribution above of the dual code and (9),

A5 =
1

120

(

82r+1 − 11 · 42r+1 + 13 · 22r+2 − 16
)

.

It is straightforward to check that (13) is satisfied.
Assume then that w(x) = 2 and let supp(x) = {i, j}. The set I4(x) contains such words of

weight six which have i and j in their support (there are also codewords of weight five in the set,
but we do not need to consider them). The words of weight six form also a 2-design. Therefore,
using (10) and (11), we get |I4(x)| ≥ 6 · 5 ·A6/(n(n− 1)) where, due to (9),

A6 =
1

720

(

162r+1 − 17 · 82r+1 + 23 · 42r+2 − 43 · 22r+3 + 96
)

.
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Thus, it is easy to verify that (13) holds.
Finally, we need to consider the case where the coset leader x has weight three. Let supp(x) =

{i, j, k}. Denote by y1 (resp. y2 and y3) the word with supp(y1) = {i, j} (resp. supp(y2) = {i, k}
and supp(y3) = {j, k}). Clearly, each I3(ys) ⊆ I4(x) for s = 1, 2, 3. We show that we can find
for (13) enough distinct words from the sets I3(ys), s = 1, 2, 3. Since w(ys) = 2 for s = 1, 2, 3, we
know that |I3(ys)| = (n− 1)/6. Moreover, since dmin(Cr) = 5, for any two codewords c1 and c2 in
I3(ys) have supp(c1)∩ supp(c2) = ∅. Clearly, 0 ∈ I3(ys), s = 1, 2, 3. We consider those codewords
in I3(y1) whose k-th coordinate equals zero. Besides 0, there are no such codewords in I3(y2) or
in I3(y3). Consequently, the set I3(y1) give at least (n − 1)/6 − 2 codewords to I4(x) which are
not in I3(ys), s = 2, 3, and the k-th coordinate equals zero. Analogously, we can reason for the
sets I3(ys), s = 2, 3. Therefore, we have (including now 0) that

|I4(x)| ≥ 3 · ((n− 1)/6− 2) + 1.

The proof of the assertion is now completed by noticing that again (1) is satisfied.

Acknowledgement: The author would like to thank the referee for useful comments.
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