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Humans can detect multiple objects in briefly presented
natural visual scenes, but the mechanisms through which
the objects are segmented from the background and
consciously accessed remain open. By asking participants
to report how many humans natural photos presented
for 50 ms contain, we show that up to three items can
be rapidly enumerated from natural scenes without
compromising speed or accuracy. In contrast to standard
parallel and serial models of object selection, our results
revealed that the participants were fastest in
enumerating two objects; even enumerating one single
item required additional processing time. Also
enumeration accuracy slightly increased in the subitizing
range as number increased. Our results suggest that the
visual system is tuned to process multiple items, which
may underlie spatial and numerical cognition, and be
beneficial in real-world situations that often require
dealing with more than one object at a time.

Introduction

In everyday life humans operate in situations that
require them to process multiple items. Can the brain
process multiple stimuli simultaneously, or is informa-

tion about different objects integrated serially (e.g.,
Cavanagh & Alvarez, 2005; Wolfe, Oliva, Horowitz,
Butcher, & Bombas, 2002)? Since the 19th century,
researchers have probed this question by asking
participants to report the number of visually presented
objects as fast as possible (Jevons, 1871). The results
have revealed a process termed subitizing through
which humans can enumerate small sets of objects (up
to three to four) fast and extremely accurately without
counting (Kaufman, Lord, Reese, & Volkman, 1949;
Piazza, Fumarola, Chinello, & Melcher, 2011; Revkin,
Piazza, Izard, Cohen, & Dehaene, 2008). Subitizing is
assumed to reflect a fundamental capacity-limited
process that enables humans to deal with multiple
objects in the world (Cavanagh & Alvarez, 2005;
Cowan, 2001; Pylyshyn, 2001). This ability has also
been proposed to play a central role in the development
of numerical cognition (Feigenson, Dehaene, & Spelke,
2004). Previous enumeration studies have used simple
geometric shapes presented on a uniform background
as stimuli, and one of the aims of the present study was
to verify that objects that are embedded in real-word
contexts can be efficiently enumerated through subi-
tizing. The second aim was to examine how efficiently
humans process real-world scenes that contain different

Citation: Railo, H., Karhu, V.-M., Mast, J., Pesonen, H., & Koivisto, M. (2016). Rapid and accurate processing of multiple objects in
briefly presented scenes. Journal of Vision, 16(3):8, 1–11, doi:10.1167/16.3.8.

Journal of Vision (2016) 16(3):8, 1–11 1

doi: 10 .1167 /16 .3 .8 ISSN 1534-7362Received June 4, 2015; published February 5, 2016

This work is licensed under a Creative Commons Attribution 4.0 International License.
Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934914/ on 09/22/2016

mailto:hmrail@utu.fi
mailto:hmrail@utu.fi
mailto:vemakar@utu.fi
mailto:vemakar@utu.fi
mailto:henri.pesonen@utu.fi
mailto:henri.pesonen@utu.fi
mailto:mikoivi@utu.fi
mailto:mikoivi@utu.fi
https://creativecommons.org/licenses/by/4.0/


numbers of target objects. How fast are multiple
objects segmented from the background? Does an
increase in the number of objects to be processed
always increase processing times?

The phenomenon of subitizing suggests that hu-
mans can process a small number of visual items
without eliciting additional costs on information
processing. This is revealed through a characteristic
two-segment performance curve when enumeration
performance is plotted as a function of number of
items: For the first few items, referred to as the
subitizing range, enumeration performance remains
approximately constant, after which reaction times
(RTs) increase and accuracies decrease (Trick &
Pylyshyn, 1994). Although earlier theories assumed
that subitizing reflects parallel, preattentive visual
processing (Trick & Pylyshyn, 1994), later studies have
demonstrated that it is dependent on visual attention
(Railo, Koivisto, Revonsuo, & Hannula, 2008; Vetter,
Butterworth, & Bahrami, 2008). When the items to be
enumerated cannot easily be resolved from other items
or the background in enumeration studies, subitizing
performance suffers (Trick & Pylyshyn, 1994; Watson,
Maylor, Allen, & Bruce, 2007), suggesting that items
in real-word scenes may be more challenging to
enumerate than simple geometric shapes. Subitizing
and similar results in multiple object-tracking para-
digms (Alvarez & Cavanagh, 2005; Pylyshyn & Storm,
1988) have led researchers to propose that selective
visual attention can select multiple objects simulta-
neously (Cavanagh & Alvarez, 2005; Huang &
Pashler, 2007). Also serial attention switching has
been proposed to contribute to processing multiple
objects (Oksama & Hyönä, 2008).

Humans can rapidly analyze the gist of briefly
presented natural scenes despite the apparent com-
plexity of the task (Fei-Fei, Iyer, Koch, & Perona,
2007). For instance, participants can rapidly classify
natural images according to whether they contain
targets from prespecified categories or not (Thorpe,
Fize, & Marlot, 1996), even when attention is allocated
to another task (Cohen, Alvarez, & Nakayama, 2011;
Li, Van Rullen, Koch, & Perona, 2002). However,
when the scene to be categorized contains four
foreground objects, categorization performance suffers
under dual-task conditions, suggesting that processing
complex scenes that contain multiple objects requires
serial attentional processing (Walker, Stafford, &
Davis, 2008). Yet, participants can report if one animal
is present in one of two scenes as fast as they report the
presence of an animal in a single image (Fei-Fei,
VanRullen, Koch, & Perona, 2005; Rousselet, Fabre-
Thorpe, & Thorpe, 2002), provided that the two scenes
are presented sufficiently far away from each other to
minimize interference (VanRullen, Reddy, & Fei-Fei,
2005). Other studies have reported that behavioral

performance (RTs and accuracy) suffers if the search
for a target object has to be performed simultaneously
on multiple scenes (Rousselet, Thorpe, & Fabre-
Thorpe, 2004a, 2004b). As stated, this decrease in
performance is partly explained by interstimulus
spacing (VanRullen et al., 2005, but see Fei-Fei et al.,
2005), but it could also be due to the fact that
processing multiple different scenes is extremely de-
manding and artificial (Rousselet et al., 2004b). In real
life, humans are typically required to resolve objects
embedded in a single scene. VanRullen and Koch
(2003) showed that participants correctly reported two
to three items from briefly presented scenes each of
which contained 10 different objects. However, the
result leaves open the question whether processing
multiple objects from natural scenes is associated with
costs in processing time relative to a single stimulus
condition (e.g., due to serial shifts of attention).

To directly test how behavioral performance changes
as the number of objects to be processed increases, and
whether subitizing generalizes to real-world scenes, we
asked participants to enumerate how many humans
natural photos contain. As shown in Figure 1, a
condition where the background was replaced with a
uniform color was used as a baseline enumeration
condition. As this resembles typical subitizing studies,
the uniform background condition was assumed to
yield the characteristic two-segment performance curve
where enumeration performance remains roughly
constant for small numbers of objects. A similar
performance curve should be observed in the full scene
condition if a small number of objects can be efficiently
detected and enumerated also from naturalistic images.
If subitizing does not generalize to naturalistic scenes—
for example, because detecting multiple humans from
natural scenes requires serial shifts of attention—
enumeration performance should decrease as the
function of number already with small number of
humans.

Methods

Participants

After pilot testing (three participants), we set out to
test 30 participants in order to have sufficient statistical
power to detect relatively small variations in the RTs in
the subitizing range (e.g., Railo, 2014). Thirty-three
undergraduate students (25 females, 18–36 years old,
median age 22) took part in the experiment, and
received study credits for participation. The partici-
pants reported normal or corrected-to-normal vision.
Informed written consent was obtained before the
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experiment, and the study was conducted in accordance
with the Declaration of Helsinki.

Stimuli and procedure

Participants were presented with color images that
contained one to six humans in various real-world
settings, either indoors or outdoors. We used humans
as target items as they are an important visual object
category in real-world settings (Fei-Fei et al., 2007),
and familiar to all participants. The target stimuli were
acquired by photographing and from the Internet. The
stimulus set contained 168 photos in total. Each
number condition (1–6) contained 28 images. In the
photos, humans were typically distributed around the
image, they never overlapped with each other, and at
least their head and shoulders were visible. Because the
stimuli depicted real-world settings, they sometimes
contained also other objects than humans (e.g., chairs,
cars). To construct control images that mimic tradi-
tional subitizing studies, the background was replaced
with a uniform gray color (;68 cd/m2). Thus, the
control condition included exactly the same items as the
full scene condition, but with uniform backgrounds
(Figure 1).

Low-level statistical properties of the images were
equated with Matlab 7.9.0 (The MathWorks, Inc.,
Natick, MA) using the SHINE toolbox by matching
luminance histograms (histMatch function) and Four-
ier amplitude spectra (specMatch function, which
matches spatial frequency, orientation, amplitude and
phase; Willenbockel et al. 2010). This matching was
performed in an iterative manner (10 repetitions) to
jointly match both luminance histograms and Fourier
amplitude spectra (Willenbockel et al., 2010). The RGB
layers of the images were matched separately, and the
processed layers were recombined to produce color
images. This ensures that changes in enumeration

performance between different number conditions (in
the full scene condition) are likely not due to low-level
image properties but are related to the top-down effects
of enumeration. The images with uniform backgrounds
were constructed after matching the low-level proper-
ties. Mean luminance of the full scene stimuli was ;40
cd/m2.

Each trial began with the presentation of a fixation
point on a light gray background (;110 cd/m2) for 1 s,
after which a target image (9003 600 pixels, ;238) was
displayed for 50 ms. The stimuli were presented on a
21-in. CRT-monitor set at 60 Hz (1024 3 768
resolution), with stimulus presentation and data
collection controlled by E-Prime 1.2 software (Psy-
chology Software Tools, Pittsburgh, PA). The partic-
ipants reported the number of humans as fast as
possible by speaking the number word to a microphone
(AKG D40S, AKG Acoustics, Vienna, Austria). RTs
were measured using a voice key (Psychology Software
Tools, model 200A). After this the participant logged
the response by pressing the corresponding number
key.

The full scene and uniform background conditions
were completed in different blocks (84 stimuli each)
that contained different images (presentation order
counterbalanced). Each participant saw each stimulus
once (eliminating stimulus-specific learning effects),
and across participants each stimulus appeared equally
often in the full scene and uniform background
conditions. To control for possible differences in
pronouncing different number words, a condition
where participants named number symbols (1–6)
presented in the center of a monitor in randomized
order was included to the experiment (speeded
responses; 15 trials/number). This number-naming
control condition was always conducted last. Each
participant completed 10 practice trials before the
enumeration and number-naming conditions (the

Figure 1. Examples of the stimuli used in the experiment. The number of humans in the photos varied between one and six, and in the

baseline condition the background was replaced with a uniform gray color. Low-level properties (luminance histograms and Fourier

amplitude spectra: spatial frequency, orientation, amplitude, and phase) of the images were equated to minimize the impact of low-

level stimulus confounds on performance differences between number conditions (Willenbockel et al., 2010).
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images presented during the practice trials were not
presented during the actual experiment).

Statistical analysis

Data were analyzed in R statistical software (version
3.1.2; R Development Core Team, 2014). Before
statistical analysis of RTs, median RTs in the number-
naming control condition (shown in Table 1 with 95%
confidence intervals [CIs] based on 1,000 bootstrap
samples) were subtracted from the single-trial RTs in
the enumeration conditions. This resulting variable is
below referred to as the enumeration time as it is not
confounded by RT differences in pronouncing different
number words. Enumeration times (correct responses
within 150–3000 ms from stimulus onset) were analyzed
using linear mixed-effects models. The advantage of
mixed-effects models is that it enables the examination
of individual differences (e.g., in the subitizing slope) in
addition to group-level effects. The model was fit
(maximized log-likelihood) using the nlme package
(Pinhero, Bates, DebRoy, Sarkar, & R Core Team,
2014; for an introduction to mixed-effects models, see
Bayeen, Davidson, & Bates, 2008). In the mixed-effect
models, the number of items (1–6), background type
(full scene vs. uniform background), and their interac-
tion were added as fixed-effects factors. To model the
breakpoint in enumeration performance, the data was
fitted with two linear segments, the first segment for the
subitizing range and the second segment for higher
numbers. Participants were defined as random effects
so that each participant’s data were fitted with
individual intercepts and slopes, separately for each
linear segment. The model is presented formally in
detail in the Appendix. The use of participant-wise
random effects was useful due to the variation between
participants’ enumeration performance. To find the
upper bound of the subitizing range, we fitted three
alternative models where the length of the first segment
ranged numbers 1–2, 1–3, or 1–4. In order to test
whether the enumeration data contains a breakpoint in
performance, also a simple linear model that only
consisted of one segment was estimated. Model fits
were evaluated using the Akaike Information Criterion,

which weighs the goodness of fit by the complexity of
the model. Different models were compared using
likelihood-ratio tests. Due to right-skewed RT distri-
butions the mixed-model analysis was also performed
on log-transformed data, but this did not significantly
change the results. We report the results of the tests
performed on untransformed data to make the
interpretation of the results easier.

Enumeration accuracies were analyzed using mixed-
effects logit models (Jaeger, 2008) with binomial
probability distributions and logit link function, using
the R package lme4 (Bates, Maechler, Bolker, &
Walker, 2014). The fixed- and random-effects terms of
the full model correspond to the linear mixed-effects
model presented above (and in the Appendix). As with
RT analyses, two-segment models were used to model
the breakpoint in enumeration accuracies.

Datasets and the analysis script can be downloaded
at the Open Science Framework (https://osf.io/rtdfe/).

Results

Enumeration times

As shown in Figure 2, enumeration time data
revealed the characteristic subitizing-counting break-
point in both full scene and uniform background
conditions. A two-segment model where the length of
the first segment spanned numbers 1–3 yielded the best

Response word Median RT (ms) 95% CI

One 307.8 [296.5, 318.3]

Two 305.3 [295.1, 314.1]

Three 310.3 [301.1, 320.3]

Four 335.8 [320.9, 356.0]

Five 334.2 [311.8, 353.8]

Six 328.9 [315.6, 343.5]

Table 1. RTs in the number-naming control condition.

Figure 2. Enumeration times as a function of number and

background condition. The boxplots show the observed data

and the lines represent the fitted linear mixed-effects model.

Blue color (solid line) denotes the full scene condition and gray

(dashed line) the uniform background condition.

Journal of Vision (2016) 16(3):8, 1–11 Railo et al. 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934914/ on 09/22/2016

https://osf.io/rtdfe/


fit (comparison against corresponding one-segment
model: L.Ratio ¼ 819.5, p , 0.0001). Below, the first
segment is referred to as the subitizing range and the
second segment as the counting range. Enumeration
times remained constant in the subitizing range (b¼
8.13, t ¼ 1.36, p ¼ 0.17), and there was no interaction
between number (1–3) and condition (b¼�13.37, t¼
�1.51, p¼ 0.13). Next, the full model was simplified by
removing nonsignificant fixed-effect regressors and
unnecessary random-effect terms. This pruned model is
shown in Figure 2 (df ¼ 4191). The average speed of
enumerating a single item in the uniform background
condition (i.e., intercept of the first segment) was 212
ms (CI of the intercept ¼ [177.5, 247.3], t ¼ 11.93, p ,
0.0001). This effect was adjusted by the random-effect
term to take into account participant-wise variation in
enumeration speed (SD ¼ 98.05 ms, CI of the SD ¼
[75.31, 127.64] ms). As the number of objects did not
statistically significantly modulate enumeration times in
the subitizing range, the intercept reflects the estimated
enumeration time for each number in the subitizing
range. This effect was consistent across participants, as
including participant-wise random variation in the
slope of the first segment into the model did not
increase the fit of the model (and was therefore
excluded from the model). Outside the subitizing range,
enumeration of four items on uniform background
took on average 139.96 ms (intercept of the second
segment; CI ¼ [109.9, 169.3]) longer than enumerating
items on uniform background in the subitizing range (t
¼ 9.15, p , 0.0001; random-effect variation: SD¼70.22
ms, CI ¼ [49.71, 99.18] ms). Enumeration times also
increased as number increased in the counting range (b

¼ 226.56, CI ¼ [180.6, 272.5], t¼ 9.67, p , 0.0001). In
contrast to the flat slope in subitizing range, there was
substantial variation between participants in the
counting range intercept (SD¼ 70.2, CI ¼ [49.6, 99.4]
ms) and slope (SD ¼ 129.84, CI ¼ [99.01, 170.16] ms).
When the images contained the natural background,
enumeration times were delayed by 126.19 ms on
average (CI¼ [89.8, 162.6], t¼6.80, p , 0.0001) in both
subitizing and counting ranges (participant-wise ran-
dom variation: SD¼98.19 ms, CI¼ [74.34, 128.65] ms).
An interaction between background condition and the
intercept of the second segment showed that when the
images contained a natural background, enumeration
times in the counting range increased an additional 75
ms, when compared to the subitizing range (CI¼ [50.7,
99.9], t¼ 6.00, p , 0.0001).

The above results suggest that enumeration times
remain constant in the subitizing range. A closer look
at the enumeration times in the subitizing range (Figure
3A) showed that two items were enumerated faster
(269.59 ms, SE¼ 21.36) than one item (288.75 ms, SE¼
19.79; mean difference¼ 19.2 ms, t ¼ 2.6, df ¼ 32, p ¼
0.014; due to the lack of subitizing range3background
condition interaction, the full scene and uniform
background conditions were pooled for this analysis).
As shown in Figure 3B, this effect was observed in 23
out of 33 participants. A similar effect has been
previously reported and called the two-item advantage
(Railo, 2014). To further examine this effect, enumer-
ation times in the one- and two-item conditions were
estimated by linear mixed-effects models. In order to
control for possible confounding factors, the RT of the
preceding trial was brought into the model as a

Figure 3. (A) Kernel density estimates (calculated using function density in R; bandwidth¼ 25 ms) of enumeration time distributions

for numbers 1–3 (averaged across full scene and uniform background conditions). A small proportion of enumeration times are

negative because enumeration time was calculated by subtracting the number-naming RT from single-trial enumeration RTs (note

that the shape of the distribution is not affected by this transformation, only its position changes). (B) Two-item advantage (mean

two-item enumeration time subtracted from mean one-item enumeration time) plotted as a function of participant.
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predictor, in addition to number of items (1 vs. 2) and
condition (number 3 condition interaction did not
reach statistical significance [p¼ 0.49], and was thus left
out of the model). Previously, the RTs in the preceding
trials have been shown to influence RTs (Maljkovic &
Nakayama, 1994). It is important to control for this in
the present context as it could be argued that the
preceding trial influences the participants’ expectations
about the number of stimuli presented next. As over
80% of the trials contained at least two items in the
present study, preceding trials could influence, or even

produce the two-stream advantage. The results (df ¼
1751) showed that across participants enumerating

two-items was 16.2 ms faster than enumerating one

item (CI¼ [29.4, 3.01], t¼�2.40, p¼ 0.016), even when

the influence of the previous trial RT was controlled for

(b ¼ .085, CI ¼ [0.06–0.10], t¼ 8.6, p , 0.0001).

Participant-wise random intercepts were included in the

model (SD ¼ 100.1 ms, CI ¼ [77.8, 128.8] ms) but

adding random slopes did not improve the fit of the

model (p¼ 0.2). As before, the effect of background

Figure 4. (A) Mean enumeration accuracy as a function of number and background condition. Error bars represent the 95% CIs (based

on 1,000 bootstrap samples). No error bar is shown for the one-item uniform background condition because enumeration was always

accurate. (B) Results of the mixed logit model. The narrow, light-colored lines depict single participants’ results, and the thicker, more

distinct lines show the group results. (C) Difference in enumeration accuracy in the full scene one versus two-item conditions as a

function of participant. Positive values denote that enumeration accuracy was higher in the one-item condition. (D) Difference in

enumeration accuracy in the full scene two- versus three-item conditions as a function of participant. Positive values denote that

enumeration accuracy was higher in the two-item condition. Similar data is not presented for the uniform background condition

because there were very few incorrect answers.

Fixed effects
Random effects

OR 95% CI Z value SD

Intercept (subitizing) 473.2 [232.0, 965.0] 16.9 2.6

Bgr 0.02 [0.01, 0.04] �9.5 2.4

Nbr (subitizing) 3 Bgr 1.6 [1.3, 1.9] 4.9 1.2

Intercept (counting) 0.03 [0.01, 0.05] �15.6 1.9

Nbr (counting) 0.3 [0.02, 0.06] �13.2 1.3

Table 2. Results of the mixed-effects logit model (df ¼ 5416). Notes: OR ¼ odds ratio; Bgr ¼ background condition; Nbr ¼ number.
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condition was statistically significant (b ¼ 139.5, CI ¼
[126.0–153.0], t ¼ 20.3, p , 0.0001).

Enumeration accuracies

As shown in Figure 4A, enumeration was accurate
within the subitizing range, and decreased in the
counting range. As with enumeration times, a two-
segment model where the first segment ranged numbers
1–3 fit the data best (comparison against corresponding
one-segment model: L.Ratio¼ 103.6, p , 0.0001). The
best fitting two-segment model was pruned by remov-
ing nonsignificant terms. The results are presented in
Table 2, and the model is visualized in Figure 4B. All
effects are highly statistically significant (p , 0.0001).
The model revealed an interaction between number and
background condition in the subitizing range: Whereas
accuracy remained almost perfect in the uniform
background condition, accuracy slightly increased as
number increased in the full scene condition. In the
counting range, enumeration accuracies decreased in
general relative to the subitizing range (intercept of the
counting range), and the probability of correct response
decreased as number increased (main effect of number
in counting range). Enumeration was more error prone
in the full background than in the uniform background
condition.

Figure 4C and D present differences in enumeration
accuracy between numbers 1 versus 2 and 2 versus 3 in
the full-scene condition (observed data). The partici-
pants who displayed a two-item advantage in RTs in
the full-scene condition also showed a marginally
statistically significant tendency to enumerate two items
more accurately than one item in the whole scene
condition (Pearson’s r¼�0.34, p ¼ 0.055).

Discussion

We found that enumeration of items presented in
their natural backgrounds follows a similar two-
segment function as enumeration of items in uniform
background: Enumeration performance remained ap-
proximately constant for up to three items (subitizing
range), while the enumeration of larger numbers was
associated with increasing costs (counting range). Thus,
the results show that up to three visual items can be
enumerated through subitizing when the items are
embedded in real-world contexts. Importantly, the
subitizing range and slope was similar in the natural
scene condition when compared to enumerating the
same objects on a uniform background. However,
when the items were embedded in background,
enumeration times were delayed by ;125 ms in the

subitizing range. This delay is likely related to parsing
out the humans from the background. The constant
delay suggests that small numbers of humans were
segregated from the background and detected without
additional processing costs. If detecting the targets
from the background would have required serial
attention, the delay should have increased as the
number of objects increased. Similarly, using natural-
istic stimuli, Wolfe et al. (2002) showed that increasing
background complexity produces a strong additive
change to visual search RTs. Previous findings using
artificial stimuli also show that figure–ground segmen-
tation can take place with minimum attention (Kimchi
& Peterson, 2008). However, our results do not imply
that figure–ground segregation takes place without any
attention. In the counting range, the presence of a
background increased processing times 75 ms more
than in the subitizing range. This suggests that figure–
ground segmentation is dependent on similar capacity
limitations as enumeration.

Because the low-level information of the stimuli were
matched in the present study, it is very unlikely that the
participants could have determined the number of
humans solely based on low-level visual information.
However, the detection of target objects could be
mediated by feature detectors that are tuned to learned
features of intermediate complexity such as faces
(Evans & Treisman, 2005; Ullman, Vidal-Naquet, &
Sali, 2002). Future research should examine whether
the present results generalize to situations where
participants enumerate other objects than humans. Fei-
Fei et al. (2007), whose results suggest that humans
show a preference for perceiving animate objects (such
as humans), hypothesize that ‘‘there might also be
efficient computational mechanisms for the visual
system to process this information rapidly and accu-
rately’’ (p. 24). Thus, the category of items that are
enumerated might influence the results. Finally, it
should also be noted that the capacity to detect (and
enumerate) objects also depends on how well the
stimuli stand out from the background (Wolfe et al.,
2002).

Against serial and parallel multifocal models of
multiple object processing (Cavanagh & Alvarez, 2005;
Huang & Pashler, 2007; Oksama & Hyönä, 2008), the
present results show that participants are, on average,
fastest in enumerating two objects—enumerating a
single object required additional processing time.
Similarly, enumeration became less error prone as
number increased in the subitizing range, suggesting
that at group level, the participants were tuned to
process multiple items. This effect was only observed in
the full-scene condition, perhaps because enumeration
accuracy was at ceiling in the uniform background
condition. Both effects showed individual variation.
The correlation between the two-item advantage and a
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corresponding difference in enumeration accuracies
suggests that the two effects may be related, and that
they do not reflect speed–accuracy trade-off.

The two-item advantage may partly be explained by
the assumption that two items can be independently
represented in the two hemispheres (Alvarez &
Cavanagh, 2005; Alvarez, Gill, & Cavanagh, 2012) as
the two-item advantage is more pronounced when
using bilateral than unilateral stimuli (Railo, 2014), and
in the present study the objects were typically uniformly
distributed in both hemifields. The two-item advantage
and superior accuracy for enumerating multiple items
in the subitizing range may also be specifically related
to the way objects are treated by attentional mecha-
nisms in subitizing. Vuilleumier and Rafal (1999)
showed that when hemispatial neglect patients localized
or enumerated one versus two visual targets, contra-
lateral extinction was greatly reduced in the enumera-
tion condition. The authors hypothesized ‘‘that
enumeration allowed linkage rather than competition
between bilateral stimuli,’’ enabling the patients to see
one group of two stimuli rather than two separate
stimuli (Vuilleumier & Rafal, 1999, p. 784). Subitizing
(Mandler & Shebo, 1982) and object representations in
general (Alvarez, 2011) have been suggested to
represent multiple objects as one integrated ensemble to
facilitate processing. This suggests that the attentional
requirements in subitizing come from constructing an
integrated conscious percept of individual objects.
Because the enumeration task typically requires par-
ticipants to process multiple items, top-down atten-
tional predictions may expect multiple items to be
presented (e.g., Panichello, Cheung, & Bar, 2012).
These top-down predictions may facilitate the pro-
cessing of multiple item displays, but impede the
processing of singular items due to a mismatch between
top-down predictions and bottom-up visual informa-
tion (Railo, 2014).

The observed advantage concerning processing
multiple items is consistent with the proposal that the
representation of small numbers of objects is hardwired
into humans (and animals; Hauser & Carey, 2003), and
comprises one core system on which the development
of numerical cognition is founded on (Spelke, 2011;
Spelke & Kinzler, 2007). One may also speculate that
the ability to simultaneously and preconceptually
individuate two items may serve as the basis for
understanding spatial relations (e.g., whether an object
is on top of another object; Pylyshyn, 2001), and
thereby underlie inherent spatial intuitions (Dehaene,
Izard, Pica, & Spelke, 2006). The ability to simulta-
neously detect multiple objects could also mediate the
ability of humans to grasp what is happening in
complex visual scenes from a single glance. For
example, Hafri, Papfragou, and Trueswell (2013)
showed that participants can recognize what is

happening in briefly presented natural images depicting
various interactions between two humans. However,
further studies are essential to verify and interpret the
two-item advantage and the increase in enumeration
accuracy in the subitizing range. A central open
question is whether the observed results generalize to
other tasks than enumeration. Is it observed in tasks
that require participants to make decisions about
integrated collections of items rather than individual
items, is it produced by top-down expectations (Railo,
2014), or could it reflect a more permanent organiza-
tion of mental representations (Mandler, 2013)?

In summary, the main finding of the present study is
that multiple objects can be segregated from the ground
and up to three objects can be simultaneously bound
into an integrated percept when viewing naturalistic
stimuli. Moreover, the visual system appears to be
tuned to processing multiple items, which may underlie
spatial and numerical cognition, and be beneficial in
various real-world situations that often require per-
ceiving multiple objects.

Keywords: subitizing, scene perception, natural scene
categorization, number sense, visual attention, figure–
ground segmentation
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Appendix

Data was analyzed using a mixed-effects regression
models that consisted of two linear segments. The
largest form of the model that we consider is:

Yij ¼ b0 þ b1x1ij þ b2x2ij þ b3x3ij þ b4x4ij

þ b5x1ijx4ij þ b6x2ijx4ij þ b7x3ijx4ij þ bi0
þ bi1x1ij þ bi2x2ij þ bi3x3ij þ bi4x4ij

þ bi5x1ijx4ij þ bi6x2ijx4ij þ bi7x3ijx4ij þ �ij ð1Þ

After removing unnecessary fixed-effect and ran-
dom-effect terms the linear mixed-effects model used to
estimate RTs is simplified to:

Yij ¼ b0 þ b2x2ij þ b3x3ij þ b4x4ij þ b6x2ijx4ij þ bi0
þ bi2x2ij þ bi3x3ij þ bi4x4ij þ �ij

ð2Þ
Mixed-effects logit models were used to analyze

enumeration accuracies. Below, Yij refers to the
probability of correct response. The simplified form of
the mixed-effects logit is:

logitðYijÞ ¼ b0 þ b2x2ij þ b3x3ij þ b4x4ij þ b5x1ijx4ij

þ bi0 þ bi2x2ij þ bi3x3ij þ bi4x4ij

þ bi5x1ijx4ij þ �ij
ð3Þ

where

�Yij: the jth observation of ith participant
�x1ij: the number of people in an image �1
�x2ij: dichotomous variable denoting that the number

of people in an image is equal to or larger than T,
i.e., the starting point of the second segment
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�x3ij: the number of people in an image in addition to T
�x4ij: a dichotomous variable denoting that the image

contains a background
�b0. . .b7: the fixed-effects coefficients:
�b0: the mean of the dependent variable in an image

with one person with a uniform background
�b1: change when adding one more person in an

image with a uniform background
�b2: change when there is at least T people in an

image with a uniform background
�b3: change when adding one more person in an

image with a uniform background when there is
at least T people in the image

�b4: change when the image contains full back
ground

�b5: change when adding one more person in full
background image

�b6: change in the mean of the dependent variable
when there is at least T people in an image with
a full background

�b7: change when adding one more person in an
image with a full background when there is at
least T people in the image

�bi0. . .bi7: random-effect coefficient for ith participant
��ij is the error for observation j of participant i
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