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C A N C E R

Longitudinal single-cell RNA-seq analysis  
reveals stress-promoted chemoresistance in  
metastatic ovarian cancer
Kaiyang Zhang1, Erdogan Pekcan Erkan1, Sanaz Jamalzadeh1, Jun Dai1, Noora Andersson1, 
Katja Kaipio2, Tarja Lamminen2, Naziha Mansuri2, Kaisa Huhtinen2, Olli Carpén1,2,3, 
Sakari Hietanen4, Jaana Oikkonen1, Johanna Hynninen4, Anni Virtanen5,6, Antti Häkkinen1, 
Sampsa Hautaniemi1*, Anna Vähärautio1*

Chemotherapy resistance is a critical contributor to cancer mortality and thus an urgent unmet challenge in oncology. 
To characterize chemotherapy resistance processes in high-grade serous ovarian cancer, we prospectively col-
lected tissue samples before and after chemotherapy and analyzed their transcriptomic profiles at a single-cell 
resolution. After removing patient-specific signals by a novel analysis approach, PRIMUS, we found a consistent 
increase in stress-associated cell state during chemotherapy, which was validated by RNA in situ hybridization 
and bulk RNA sequencing. The stress-associated state exists before chemotherapy, is subclonally enriched during 
the treatment, and associates with poor progression-free survival. Co-occurrence with an inflammatory cancer–
associated fibroblast subtype in tumors implies that chemotherapy is associated with stress response in both 
cancer cells and stroma, driving a paracrine feed-forward loop. In summary, we have found a resistant state that 
integrates stromal signaling and subclonal evolution and offers targets to overcome chemotherapy resistance.

INTRODUCTION
Platinum-based chemotherapy is the most widely prescribed drug 
in metastatic cancer treatment (1). It is curative in testicular cancers 
and effective in other cancers, such as in high-grade serous ovarian 
cancer (HGSOC) where the introduction of platinum-based combi-
nation therapy improved the 10-year survival rate by more than 
10% and doubled the number of complete responses (1, 2). However, 
most patients with HGSOC develop platinum resistance leading to 
almost invariably fatal refractory disease and only 43% 5-year 
survival (3). HGSOC is a copy number–driven cancer that has 
exceptionally high intratumor heterogeneity and almost 100% 
prevalence of TP53 mutations (4, 5), which impedes overcoming 
platinum resistance.

Patients with platinum-sensitive HGSOC with homologous 
recombination–deficient (HRD) tumors benefit from poly(adenosine 
diphosphate–ribose) polymerase (PARP) inhibitors (6). However, 
approximately half of the patients with HGSOC do not have HRD 
tumors and face very limited treatment options at the chemotherapy-
resistant stage. On cellular level, clinically observed chemotherapy 
resistance is a continuum from a Darwinian selection process of 
intrinsically resistant cell populations to an adaptive induction of 
a fitness phenotype (7, 8). Most studies of drug resistance in the 
clinical setting have so far focused on genetic changes, such as MET 
amplification with kinase inhibitors (9), BRCA reversal mutations 

with chemotherapy (10), or genomic signatures in a heteroge-
neously treated patient cohort (11). The number and complexity of 
resistance mechanisms to chemotherapy surpass those of targeted 
therapies (12), which warrant homogeneously treated patient co-
horts that allow high-resolution analysis of cancer cells before and 
after chemotherapy.

Chemotherapy affects transcriptional programs of cancer cells, 
which provides an opportunity to comprehensively decipher the 
most relevant chemotherapy-induced processes using single-cell 
RNA sequencing (scRNA-seq) data. Data from scRNA-seq also 
enable addressing the interplay between cancer cells and tumor 
microenvironment (TME). scRNA-seq and genomic analysis per-
formed before and after treatment in paired samples from four 
patients with metastatic breast cancer revealed that while chemo-
therapy selected preexisting genetic abnormalities, it also induced 
adaptive transcriptional changes related to epithelial-to-mesenchymal 
transition (EMT), AKT1 signaling, and hypoxia (13). In paired 
samples from four patients with non–small cell lung cancer, the 
surviving cells underwent a primitive state change to alveolar cells in 
residual disease (14). While these studies demonstrate the importance 
of paired samples, they each had cancer cells containing pair-
wise specimens from only four patients and, more importantly, lim-
ited clinical data from the patients, such as the patient outcome 
after therapy or survival times, which hinders making clinically 
relevant conclusions from the data.

Here, we characterized transcriptional patterns of chemotherapy 
resistance in HGSOC using patient-derived prospective tissue 
sample pairs before and after treatment at single-cell resolution. Our 
cohort consists of scRNA-seq data from treatment-naïve and post–
neoadjuvant chemotherapy (post-NACT) pairs from 11 homogeneously 
treated patients with HGSOC with full clinical information. To vali-
date our findings, we used RNA in situ hybridization (RNA-ISH) 
data of 10 treatment-naïve versus post-NACT sample pairs, 49 bulk 
RNA-seq samples including 18 treatment-naïve versus post-NACT 

1Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, 
University of Helsinki, Helsinki, Finland. 2Cancer Research Unit, Institute of Biomedicine 
and FICAN West Cancer Centre, University of Turku, Turku, Finland. 3Department of 
Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, 
Finland. 4Department of Obstetrics and Gynecology, University of Turku and Turku 
University Hospital, Turku, Finland. 5Finnish Cancer Registry, Helsinki, Finland. 6De-
partment of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki 
University Hospital, Helsinki, Finland.
*Corresponding author. Email: sampsa.hautaniemi@helsinki.fi (S.H.); anna.vaharautio@
helsinki.fi (A.Vä.)

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at T
urku U

niversity on M
ay 03, 2022

mailto:sampsa.hautaniemi@helsinki.fi
mailto:anna.vaharautio@helsinki.fi
mailto:anna.vaharautio@helsinki.fi


Zhang et al., Sci. Adv. 8, eabm1831 (2022)     23 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 18

pairs, and 8 treatment-naïve versus relapse pairs in the HERCULES 
cohort (http://project-hercules.eu/) and bulk RNA-seq data of 271 
treatment-naïve samples in The Cancer Genome Atlas (TCGA) co-
hort (5). Our unbiased analysis reveals how chemotherapy modulates 
cancer cell states by both subclonal selection and microenvironment-​
boosted transcriptional induction across the homogeneously treated 
sample cohort. Our results define a cell state that allows biomarker-​
based prediction and targeting of chemoresistance.

RESULTS
Obtaining scRNA-seq data from HGSOC patient samples 
before and after chemotherapy
We collected prospective tissue samples from 11 patients with 
HGSOC before and after chemotherapy and measured transcriptomes 
of 93,650 cells using scRNA-seq (Fig. 1A and see Materials and 

Methods). All patients in the study were treated with NACT, i.e., 
diagnostic laparoscopy followed by three cycles of platinum-taxane, 
interval debulking surgery (IDS), and adjuvant chemotherapy, and 
four patients further received bevacizumab maintenance therapy. 
NACT is typically recommended for patients who are inoperable at 
diagnosis and often have poor prognosis. Accordingly, in our cohort, 
the median platinum-free interval (PFI; Fig. 1A), which measures 
the time from treatment end to relapse, is only 4.2 months. Our 
sample cohort with metastatic tumors from poorly responsive 
patients represents many understudied aspects of HGSOC as de-
scribed in Materials and Methods. Further clinical information of 
the cohort is given in Table 1.

After quality control (see Materials and Methods and fig. S1, 
A to D), we obtained a total of 51,786 cells, including 8806 malignant 
epithelial (tumor), 8045 stromal, and 34,935 immune cells for the 
subsequent analyses. We identified epithelial, stromal, and immune 

Cell type Epithelial (EOC)
Stroma
Immune

Treatment phase Treatment-naïve
Post-NACT

Patient code EOC1005 EOC136
EOC227

EOC153

EOC372 EOC443
EOC3 EOC349

EOC733
EOC540

EOC87

A

B

NACT
3 cycles

Adjuvant CT
Median 4.5 cycles (0 to 6 cycles)

Follow-up

Enzymatic
dissociation

Single cells

n cells

m
 genes

Expression matrix

Primary laparoscopy
Treatment-naïve

Interval debulking surgery
Post-NACT

Diagnosis

PFI
Median 4.2 months (0.5 to 17 months)

Surgery
Single-cell

RNA sequencing

CT for
first relapse

Metastatic
tumor tissue

Fig. 1. Overview of experimental and sequencing workflow. (A) Diagram showing the sample collection and processing. We collected prospective tumor samples 
from 11 patients with HGSOC before and after NACT. The median PFI in the cohort was 4.2 months. scRNA-seq was performed on dissociated solid tumor specimens using 
the 10x Genomics Chromium platform. (B) Uniform manifold approximation and projection (UMAP) plot of all cells (n = 51,786) passing the quality control, colored by cell 
type, patient code, and treatment phase. EOC, epithelial ovarian carcinoma.
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cells based on graph-based clustering (15) and acknowledged 
markers (fig. S1B). In contrast to stromal and immune cells, where 
cells from different patients grouped together, cancer cells exhibited 
a patient-specific expression pattern (Fig. 1B), similar to previous 
studies (14, 16, 17).

PRIMUS identifies phenotypic groups from heterogenous 
scRNA-seq datasets
The observed strong interpatient heterogeneity in cancer cells from 
genetically divergent cancer samples impedes the direct compari-
son of transcriptomes across patients. To address this challenge, we 
developed PRIMUS (Poisson scRNA integration of mixed unknown 
signals), a holistic clustering approach that identifies phenotypic 
cell groups from the scRNA-seq data while accounting for patient-
specific components and technical noise (Fig. 2A). Specifically, as 
input, PRIMUS takes scRNA-seq datasets from multiple patients, a 
design matrix encoding the different nuisance factors, such as 
patient labels, technical factors (e.g., scRNA-seq quality control 
metrics), and a vector of size factors. PRIMUS then uses a bilinear 
Poisson regression model to simultaneously factorize the expression 
data into the defined nuisance factors, undefined cellular pheno-
types, and their corresponding transcriptomic profiles (see Materials 
and Methods and the Supplementary Materials). As a statistical model, 
PRIMUS also allows the selection of an optimal number of clusters 
based on Bayesian information criterion (BIC).

We compared the performance of PRIMUS with existing inte-
gration methods (15, 18–23) on simulated data and multistudy 
pancreatic datasets (fig. S2). We simulated datasets containing five 
cell groups from six samples with different genetic backgrounds 
and sample-specific effects using splatPop (24, 25) under three 
scenarios (table S1): (i) All six samples contain the five cell groups; 
(ii) each sample only contains a subset of cell groups, three pairs 
of samples had no cell groups in common, and there was one 
sample-specific cell group; and (iii) the same setting with scenario ii 
but with unbalanced cell numbers in each sample (from 20 to 2000). 
For all simulated scenarios and for the pancreatic datasets, 
PRIMUS was able to accurately cluster cells based on latent cell 
groups across different samples (fig. S2, A to H). It showed similarly 
good performance as other existing methods in scenario i, where all 
samples have the same cell group composition, and performed 
better than other methods in scenarios ii and iii as well as the real 
pancreatic datasets, which present sample-specific cell groups/
types, and some samples do not have any cell groups/types in com-
mon (fig. S2I).

Our results from simulated and pancreatic datasets show that 
PRIMUS can accurately cluster cells by phenotypic groups, account-
ing for data source–specific effects from distinct samples. Unlike 
existing methods, PRIMUS is robust to heterogeneous cell compo-
sitions and unbalanced number of cells in different sources, and it 
also preserves data source–specific cell groups if such are present. 
Therefore, PRIMUS is a well-justified choice for clustering datasets 
with potentially unbalanced presentation of phenotypic groups, 
such as cancer cell states within heterogeneous tumor specimens.

Identification and characterization of  
cancer cell states in HGSOC
By using PRIMUS to control the effect of patient-specific variability 
and technical confounders, such as the percentage of unique molecular 
identifier (UMI) counts originating from mitochondrial genes, we 

identified 12 cancer cell clusters (fig. S3A), including three patient-
specific clusters (C3, C9, and C10) and nine shared clusters across 
multiple patients (Fig. 2, B and C). The proportion and number 
of cells in each cluster from each patient are presented in fig. S3 
(B and C, respectively).

To characterize the identified cancer cell clusters, we first identi-
fied 4742 significantly differentially expressed genes (DEGs) between 
at least one pair of the 12 clusters using a likelihood-ratio test (LRT) 
[false discovery rate (FDR) < 0.01; see Materials and Methods]. To 
construct well-annotated gene coexpression signatures, we built a 
gene network using the DEGs integrated to a gene annotation data-
base (26) and identified 10 distinct gene signatures after filtering 
(see Materials and Methods, Fig. 2C, and fig. S3D). Four of 12 clus-
ters (C1, C2, C6, and C12) had no overrepresented gene signatures, 
suggesting that their DEGs were incoherent, with only limited 
coexpression and/or poorly annotated, and were thus excluded from 
further analysis. The remaining eight clusters were characterized by 
the 10 distinct gene signatures (Fig. 2C and fig. S3E).

Pathway analysis showed that the 10 signatures were associated 
with diverse biological processes (Fig. 2D). These include key pro-
cesses previously identified in HGSOC tumors, such as differentia-
tion in cluster C4, proliferation and DNA repair in cluster C5, and 
EMT identified in the patient-specific cluster C3 (5, 27). We also 
identified a major histocompatibility complex (MHC) class II antigen 
presentation signature with high HLA-DPA1, HLA-DQA1, and 
HLA-DRA expression in the patient-specific cluster C10. Although 
MHC class II expression is classically considered a feature of profes-
sional antigen presenting immune cells, it was recently identified in 
single HGSOC and normal fallopian tube epithelial cells by Izar et al. 
(28) and Hu et  al. (27). Aforementioned studies also identified 
signatures associated with stress response but excluded them from 
further analysis as likely artefactual. In our dataset, stress-associated 
signature, overexpressed by cluster C7, not only consisted of stress-
responsive immediate early genes (IEGs) (e.g., CEBPB, FOS, and 
JUN) but also contained proinflammatory cytokines and receptors 
[e.g., IL6, TNF, and CXCR4], core transcriptomic regulators of 
EMT (e.g., SNAI1 and SNAI2), and stemness (HES1 and ID2), as 
well as prosurvival (e.g., GADD45B, GADD45G, and MCL1) and 
antiproliferative (CDKN1A) genes. Notably, many genes in this 
signature, such as IL6, TNF, CEBPD, ATF3, NFKBIA, BCL6, GADD45B, 
GADD45G, MCL1, and CDKN1A, are targets of the transcription 
factor nuclear factor B (NF-B). In addition to the cluster-specific 
signatures described above, we identified three metabolism-associated 
signatures that were shared by several clusters, representing tri-
carboxylic acid cycle (TCA), proteasomal degradation, and RNA 
processing (Table 2).

Chemotherapy affects the prevalence of proliferative 
and stress-associated cancer cell populations
To test the effect of chemotherapy on the identified 12 cancer cell 
clusters, we examined the fractional changes of the five clusters that 
contained cells from multiple patients during chemotherapy. Here, 
we observed significant differences only in the fractions of the 
populations expressing proliferative DNA repair signature (C5, 
P = 0.014) and the stress-associated signature (C7, P = 0.002) between 
treatment-naïve and post-NACT samples (Fig. 3A).

The significant decline of C5 cells, from an average of 14% in 
treatment-naïve samples to an average of 3% in post-NACT samples, 
implies that chemotherapy either kills most of the proliferative cells 
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A

B

D

C

Fig. 2. Identification of 12 subpopulations of HGSOC cancer cells characterized by 10 gene signatures. (A) Schematic of the PRIMUS model. PRIMUS models the 
observed single-cell expression profiles (Y) as a mixture of latent phenotypic cluster profiles and nuisance profiles. Given Y, the known nuisance factors D, known size 
factors G, and the number of latent phenotypic clusters k, PRIMUS estimates the latent nuisance profiles X, latent phenotypic cluster profiles Z, and the latent cluster 
memberships C using an expectation-maximization (EM) algorithm. (B) UMAP plot of cancer cells after removing the nuisance signals, colored by patient and labeled by 
the identified clusters. (C) Heatmap of the expression of the 10 distinct gene signatures in the 12 identified cell clusters. Rows correspond to genes and columns to cells. 
(D) Heatmap shows the top 10 pathways enriched in each gene signature. TGF-, transforming growth factor–; AP1, activating protein 1; TNF, tumor necrosis factor; 
rRNA, ribosomal RNA; KEGG, Kyoto Encyclopedia of Genes and Genomes; PID, the Pathway Interaction Database.
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or induces cell cycle arrest. An interesting exception to this was 
patient EOC87 whose fraction of proliferative cells increased from 
7 to 11% during chemotherapy. The patient showed no histopatho-
logic response to chemotherapy in omentum and poor prognosis 
with an overall survival (OS) of only 9 months. This poor prognosis 
was unexpected since she had a somatic, heterogeneous BRCA2 
frameshift deletion (c.1338delG), which is classified in ClinVar (29) 
as likely pathogenic and thus should be indicative of good response 
to platinum and PARP inhibitors.

The cluster (C7) represented by stress-associated signature was 
enriched from an average of 3% in treatment-naïve samples to an 
average of 17% in post-NACT samples, indicating that this cell state 
was induced and/or more likely to survive through chemotherapy. 
We further computed a stress score using stress-associated signa-
ture (35 genes) for cancer cell–specific expression deconvoluted 
from bulk RNA-seq data of 18 treatment-naïve versus post-NACT 
pairs and 8 treatment-naïve versus relapse pairs. Consistently, 
post-NACT (P = 0.0034) and relapse (P = 0.0078) samples showed 
significantly higher stress scores in comparison to treatment-naïve 
samples (Fig. 3B). Patient EOC87 with a BRCA2 frameshift deletion 
and progressive disease after NACT had the highest stress-associated 
cluster fraction in the treatment-naïve samples (7%), which may 
partly explain her poor response to chemotherapy.

Validation of the stress signature with RNA-ISH
To validate the stress-associated signature with an independent 
measurement technology, we quantified the expression of 10 stress 
signature genes in 10 treatment-naïve and post-NACT HGSOC 
sample pairs with RNA-ISH experiments (see Fig. 3C for represent
ative images). We used canonical correlation analysis (CCA) (see 
Materials and Methods) to define a stress score that is an aggregate 

of the RNA-ISH expression levels of the 10 genes to quantify the 
stress status of each sample.

The RNA-ISH stress score was significantly correlated (R = 0.81, 
permutation test, P < 10−5) with the scRNA-seq stress score in the 
matched samples (Fig. 3D). Moreover, the post-NACT samples had 
significantly higher RNA-ISH stress scores in comparison with the 
treatment-naïve samples (Fig. 3E; permutation test, P = 0.00124), 
confirming the increase in the stress-associated signature after 
chemotherapy.

Stress-associated state is subclonally enriched  
during chemotherapy
To assess the effect of subclonal variation on the level of the 
stress-associated state, we used scRNA-seq data estimated copy 
number alteration (CNA) profiles to infer the subclonal structure 
of each patient (30). The subclonal CNA profiles inferred from 
scRNA-seq data had good concordance with subclonal CNA profiles 
obtained from the bulk whole-genome sequencing data from the 
same patients (Spearman’s correlation coefficient of 0.44 to 0.81; 
fig. S4A). Figure 4 (A and B) shows the inferred CNA subclonal 
structure of two representative patients: patient EOC3 with pro-
gressive disease and a PFI of only 14 days and patient EOC136 with 
complete response and a long PFI of 520 days. Both received stan-
dard NACT, had carcinosis after IDS, and neither participated in 
clinical trials nor received bevacizumab maintenance treatment. 
The subclones in EOC3 had generally higher stress scores than 
EOC136 in treatment-naïve samples, whereas the subclonal dis-
tances were longer for EOC3, indicating that, unexpectedly, the 
poor-response patient had lower level of genetic heterogeneity. In 
both patients, the subclones with higher stress scores in treatment- 
naïve samples were expanded more than low-stress subclones after 

Table 2. Annotation of tumor cell clusters.  

Cell cluster Characteristic gene signature Representative pathways Marker genes

C3 EMT-associated (43 genes) TGF- signaling pathway,  
focal adhesion

SMAD3, COL1A2, TNC

C4 Differentiated (40 genes) O-linked glycosylation of mucins MUC4, MUC16, SLPI

C5 Proliferative DNA repair (106 genes)
Cell cycle, DNA repair, Homology directed 

repair (HDR) through homologous 
recombination, Fanconi anemia pathway

PCNA, CHEK1, HMGB2, BRCA2, FANCI, 
POLD1

C7 Stress-associated (35 genes) IL6-mediated signaling events, TNF signaling 
pathway, cellular responses to stress

JUN, FOS, IL6, TNF, CXCR4, SNAI1, VIM, 
GADD45B, MCL1

C9 Cytokine and apoptosis (11 genes) IL10 signaling, apoptosis modulation  
and signaling

CXCL1, CCL20, IL1R2, BIRC3,  
CDKN2A, BIK

C10 Antigen presentation (82 genes) Antigen processing and presentation, MHC 
class II antigen presentation HLA-DPA1, HLA-DQA1, HLA-DRA

C3, C4 Interferon signaling (11 genes) Interferon signaling STAT2, IFI27, IFIT1, OAS1, ISG15

C3, C11 RNA processing (20 genes) rRNA processing, apoptotic cleavage of 
cellular proteins

DCAF13, PNO1, BMS1, ACIN1, TJP1, 
ROCK1

C5, C8 Proteasomal degradation (39 genes) Proteasome degradation, proteasome 
complex PSMA4, PSMB5, PSMB6, RPN2

C5, C8, C10 TCA cycle (20 genes) Citrate cycle (TCA cycle), pyruvate 
metabolism HACD3, NDUFB5, ECI2 D
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chemotherapy (Fig. 4, A and B). The inferred CNA subclonality 
trees for all the 11 patients are shown in fig. S4B. Each patient had 
four to eight subclones, of which 12.5 to 100% were shared between 
each treatment-naïve and post-NACT sample pair. The four patients 
(EOC349, EOC540, EOC733, and EOC87) with all subclones 
shared between treatment-naïve and post-NACT samples had a 
median PFI of 1.99 months, indicating the limited efficacy of chemo-
therapy on these patients.

The inferred subclones showed significant differences in their 
stress scores in most patients (fig. S4B), which implies that the 

stress-associated state is at least partially driven by heritable differ-
ences across the subclones. Across the 11 patients studied, the 
subclones with the highest stress scores in treatment-naïve sam-
ples were significantly more expanded during chemotherapy when 
compared with the lowest-stress subclones (Fig.  4C). While the 
proliferation scores of the highest stress subclones remained similar, 
the proliferation scores of the lowest stress subclones dropped 
significantly after chemotherapy (Fig. 4D). This suggests that the 
lower ability to maintain or recover proliferation following chemo-
therapy contributes to the loss of stress-lowest subclones during 

BA

C D

E

Fig. 3. Stress-associated transcriptional profile is enriched after chemotherapy. (A) Boxplots showing the fractional changes of the five tumor clusters containing 
cells from multiple patients, between the treatment-naïve (blue) and post-NACT (yellow) samples of each patient (paired Wilcoxon rank-sum test). Horizontal bars show 
median values, box edges represent the interquartile range, and each dot represents a sample. (B) Boxplots comparing the stress scores in treatment-naïve (blue) versus 
post-NACT (yellow) samples (left; paired Wilcoxon rank-sum test, P = 0.0034), and treatment-naïve (blue) versus relapse (purple) samples (right; paired Wilcoxon rank-sum 
test, P = 0.0078) using bulk RNA-seq data from the HERCULES cohort. Horizontal bars show median values, box edges represent the interquartile range, and each dot 
represents a sample. (C) Representative RNA-ISH images showing the changes of NR4A1, FOS, and JUN from the treatment-naïve to post-NACT sample of patient EOC87. 
Scale bars, 20 m. (D) Scatter plot showing the correlation (R = 0.81, permutation test, P < 10 × 10−5) between stress scores quantified using RNA-ISH and scRNA-seq 
experiments. Each dot represents a sample. (E) Boxplots comparing the RNA-ISH stress scores in treatment-naïve (blue) versus post-NACT (yellow) samples (permutation 
test, P = 0.00124). Each dot represents a sample.
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chemotherapy. In summary, the preexisting stress-associated state 
offers a selective advantage to cancer cells during chemotherapy, 
explained by more inert proliferation when compared to stress-low 
subclones.

Stress-associated transcriptional profile predicts poor 
prognosis in HGSOC
To investigate whether the stress-related transcriptional profile 
also promotes chemoresistance in treatment-naïve tumors on the 
patient level, we used TCGA deconvoluted bulk RNA-seq and clinical 
data from 271 patients (5, 31). Of these, 86 patients were identified 
as stress-high and 144 as stress-low based on their stress scores (fig. 
S5A). We confirmed the high/low stress state using reverse-phase 

protein array data, which showed that the levels of phosphorylated 
c-Jun (CJUN_pS73, P = 0.0035) and its upstream kinase, phospho–
c-Jun N-terminal kinase (JNK) (JNK_pT183Y185, P = 0.00077) and 
phosphorylated p38- (P38_pT180Y182, P = 0.017), were signifi-
cantly higher in the stress-high tumors compared to stress-low 
tumors (fig. S5B).

Kaplan-Meier survival analysis indicated that patients with stress-
high tumors at diagnosis have significantly shorter progression-free 
survival (PFS) time (log-rank test, P = 0.0037; Fig. 5A). The median 
PFSs in stress-high and stress-low groups were 14.9 and 21.2 months, 
respectively. HRD is a known prognostic factor for HGSOC (32). 
Thus, we tested whether the stress-associated state can be explained 
by COSMIC Signature 3 (COSMIC_Sig3), which is associated with 

A B

C D

Fig. 4. Inferred CNA and subclonal analysis reveals enrichment of the stress state during chemotherapy. (A) Inferred clonality tree (left), subclonal stress score 
(middle), and subclonal enrichment during NACT (right) of a representative patient (EOC3) with progressive disease and short PFI (PFI = 14 days). Only subclones that 
existed in the treatment-naïve samples are included in the subclonal stress score and subclonal enrichment analysis. The subclonal enrichment is measured by the ratio 
of the relative abundance of post-NACT cells against the relative abundance of treatment-naïve cells. PARPi, PARP inhibitor. (B) Inferred clonality tree (left), subclonal 
stress score (middle), and subclonal enrichment during NACT (right) of a representative patient (EOC136) with progressive disease and long PFI (PFI = 520 days). (C) Boxplot 
showing the enrichment of the stress-highest (red) and stress-lowest (blue) CNA subclones during NACT. Only subclones existing in treatment naïve samples (paired 
Wilcoxon rank-sum test, P = 0.032) were included. Each dot represents a CNA subclone. (D) Boxplots showing the proliferation score of the stress-highest (left; paired 
Wilcoxon rank-sum test, P = 0.031) and stress-lowest (right; paired Wilcoxon rank-sum test, P = 0.3) CNA subclones before and after chemotherapy. Each dot represents a 
CNA subclone.
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HRD (33). As shown in fig. S5C, COSMIC_Sig3 was not found en-
riched in stress-high or stress-low patients (Fisher’s exact test, 
P = 0.31). Furthermore, multivariate Cox regression analysis showed 
that the stress score was significantly associated with short PFS 
(P = 0.005; Fig. 5B) independently of the effect of COSMIC_Sig3 
status, age, or tumor purity. Thus, these results demonstrate that 
the stress-related transcriptional profile preexists in the treatment- 
naive tumors, and it is an independent predictor for poorly re-
sponding patients with HGSOC.

Inflammatory stroma correlates with  
stress-associated cancer cells
Increased expression of proinflammatory cytokines, such as IL6 
and TNF, in the stress-associated cancer cell population suggests 
that these cells could have a substantial contribution to paracrine 
signaling. Therefore, we set out to analyze whether stress-associated 
state in cancer cells was reflected in differences of TME composi-
tion and potential interactions therein.

We identified 10 immune and 5 stromal cell types based on the 
expression of canonical markers (Fig. 6, A and B): B cells, two types 
of dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, 
mast cells, natural killer (NK) cells, plasmacytoid DCs, plasma cells, 
T cells, endothelial cells, mesothelial cells, and three types of cancer-
associated fibroblasts (CAFs; Fig. 6C). While none of the major 
immune cell types showed substantial proportional differences 
between stress-high and stress-low samples (fig. S6A), we set out to 
analyze cell state differences of the most prevalent immune cell types. 
Projection of T cells into a reference atlas (fig. S6, B and C) (34) 
suggested a decrease in CD8+ effector memory T cells and an increase 
of “precursor exhausted” T cells in stress-high samples (fig. S6D). 
In addition, macrophages in stress-high samples exhibited signifi-
cantly higher expression of immunosuppressive features (C1QA, 
C1QB, C1QC, APOE, and TREM2) (fig. S6E) ((14, 35), wherein TREM2 

is functionally associated with T cell exhaustion (36). Together, 
the analyses suggest that although the cell type prevalence in im-
mune TME is not connected with stress-associated cancer cell state 
per se, the stress-high samples show a shift toward compromised 
tumor immunity.

In line with studies from other solid cancers, HGSOC tumors 
contain specialized CAF subpopulations with distinct functional 
markers: CAF-1–expressing matrix metalloproteinases (MMPs), 
CAF-2–expressing inflammatory CAF (iCAF) markers IL6, CXCL12, 
and LIF (37), and CAF-3–expressing markers of myofibroblast 
identity (Fig. 6C). Trajectory analysis to explore the relations be-
tween stromal cell types shows that iCAF and CAF-1 populations 
form separate branches that are joined via CAF-3 and mesothelial 
cells (Fig. 6D). Among the stromal cell populations, only iCAFs 
were significantly enriched in stress-high tumors (Fig. 6E), and their 
markers were also strongly associated with cancer stress scores in 
bulk RNA-seq data (Fig. 6F). Ligand-receptor analysis to probe 
for potential interactions revealed that, in particular, TNF and its 
downstream effector IL6 from stress-high cancer cells have a strong 
regulatory potential to induce the inflammatory phenotype of CAFs 
(Fig. 6G and fig. S6F). This indicates that in NACT-treated ovarian 
cancer, TNF/IL6 drives the iCAF phenotype rather than IL1B, 
which has a leading role in promoting the iCAF phenotype in 
pancreatic cancer (38). In response, iCAFs produce a wide array of 
ligands with rich regulatory potential to activate stress-associated 
signature within cancer cells, including both IL6 and TNF to 
promote a paracrine feed-forward loop (Fig. 6H and fig. S6G). Our 
results suggest iCAFs as the main cell type expressing IL6, CXCL12, 
and LIF in the tumor milieu, wherein these ligands promote immu-
nosuppressive changes, such as macrophage polarization, toward 
the M2 phenotype (39).

In summary, we found that stress-associated cancer cells strongly 
associate with presence of iCAFs within the TME and a shift toward 

BA

Fig. 5. Stress-associated transcriptional profile predicts poor survival in HGSOC. (A) Stress-high and stress-low Kaplan-Meier curves on PFS for stress-high and stress-
low patients (log-rank test, P = 0.0037) from the TCGA cohort. The number of patients at risk is listed below the survival curves for each time point. (B) Forest plot showing 
hazard ratios, their confidence intervals, and P values based on a multivariate Cox proportional hazards regression model testing whether PFS relates to COSMIC Signature 
3 status, age at diagnosis, tumor purity, and stress score. **: 0.001-0.01.
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immunocompromised states within macrophages and CD8+ T cells. The 
proinflammatory signaling molecules expressed by stress-associated 
cancer cells and iCAFs have the potential to promote paracrine 
feed-forward loops that can further induce these cell states. Target-
ing this signaling could be important, especially when chemo-
therapy is combined with immunotherapy, wherein ligands from 
iCAFs and stress-associated cancer cells may limit the chemotherapy-
induced boost in the antitumor immune response. Our results of 
stress-associated cancer cells converge subclonal enrichment of 
cell state with feed-forward, immune suppressive paracrine signal-
ing and offer both biomarkers and targets for novel combinatorial 
treatments.

DISCUSSION
Approximately half of the patients with HGSOC do not have HRD 
tumors and lack durable responses to either chemotherapy or PARP 
inhibitors, leading to short survival. To address this unmet clinical 
need, we characterized nongenetic mechanisms of chemoresistance 
in a poorly responding patient cohort. Our novel single-cell tran-
scriptomics analysis approach on 22 paired treatment-naïve and 
post-NACT HGSOC specimens from 11 patients revealed a consistent 
increase in a stress-associated state upon treatment. This finding is 
in line with a smaller study performed with NanoString (40).

We independently validated the expression of the core stress 
response genes by RNA-ISH of matched nondissociated tissue 

B

C D E F

A

G H

Fig. 6. Interactions between inflammatory stroma and stress-associated cancer cells. (A) UMAP plot of stromal and immune cells, colored by cell type. (B) Dot plot 
showing the relative expression of acknowledged stromal and immune cell subtype markers. The color intensity scale reflects the average gene expression, and the size 
scale indicates the percentage of cells expressing the gene within that cell type. (C) Dot plot showing the expression of selected marker genes of CAF subtypes. ECM, 
extracellular matrix. (D) UMAP plot of stromal cells, colored by cell type. The trajectory learned by Monocle3 is displayed. (E) Boxplots showing the fractional differences 
(Wilcoxon rank-sum test) of identified stromal subtypes between stress-high (red) and stress-low (blue) tumors. Each dot represents a tumor sample. All differences with 
FDR-adjusted P < 0.05 are indicated. (F) Scatter plot showing the correlation between the tumor compartment stress score and the stromal compartment CAF-2 scores in 
HERCULES cohort. Each dot represents a sample, colored by treatment phase. (G) Heatmaps and dot plots showing the activity (left), expression (middle), and regulatory 
potential (right) of the prioritized ligands in stressed cancer cells that drive the phenotype of the inflammatory stroma (CAF-2). (H) Heatmaps and dot plots showing the activity 
(left), expression (middle), and regulatory potential (right) of the prioritized ligands in inflammatory stroma (CAF-2) that drive the stress signature in the stressed cancer cells.
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sections, hence confirming that the signal we detect is not a dissoci-
ation artifact as seen in previous scRNA-seq studies (27, 41). The 
stress-associated state distills core acute stress response by IEGs 
with inflammatory prosurvival signaling by NF-B targets, as well 
as key regulators of EMT and stemness to protect cancer cells from 
chemotherapy. These cells resist apoptosis (BCL6) and can boost 
DNA repair via increased ATF3, which stabilizes the major DNA 
damage kinase ataxia telangiectasia mutated (42).

Our results showed that the proportion of proliferative cell 
population in treatment-naïve samples decreased from an average 
of 14% to an average of 3% in the post-NACT samples. Thus, we 
demonstrate that even in our poorly responding patient cohort, 
where the median PFI was 4.2 months and only three patients 
achieved response evaluation criteria in solid tumors (RECIST) com-
plete response, chemotherapy has a fundamental impact on the pheno-
type of cancer cells. This implies that the chemoresistance mechanisms 
driving poor clinical response are not related to platinum uptake or 
efflux but rather to preexisting and induced cellular states.

We showed that chemotherapy reduces the low-stress subclones 
efficiently, at least partially due to the significantly reduced prolifera-
tion levels of low-stress subclones, leaving behind a higher propor-
tion of the cells in subclones with initially increased transcriptomic 
stress response. The subclonal differences between treatment-naïve 
and post-NACT samples are not deterministic but rather slightly 
bias the cells toward the stress-associated state, analogous to what 
was shown for the cellular states of untreated glioblastoma speci-
mens on the subclonal level (16). A previous analysis of paired 
pre- and post-NACT samples of triple-negative breast cancer found 
subclonal evolution to shape the genetic composition of tumors but 
failed to detect any shared definitive expression patterns to be 
subclonally enriched during chemotherapy (13). Thus, our results 
provide the first evidence of parallel subclonal selection of a defined 
transcriptional phenotype during chemotherapy in human tumors. 
Both the subclonal and patient level analyses strongly suggest that 
the preexisting stress-associated state primes the cancer cells to 
endure chemoresistance.

We did not detect recurrent genomic changes that would explain 
the subclonal differences in the stress-associated state, suggesting 
that they are either highly multigenic or based on epigenetic fea-
tures or genomic aberrations other than CNAs. It remains to be 
assessed whether subclonal differences directly affect the level of 
intrinsic stress based on, for instance, metabolic features or rather 
modify the level of response to potential environmental stressors, 
such as hypoxia, lack of nutrition, or excess inflammatory signaling 
from their microenvironment.

Tumor stroma has been suggested to play a key role in chemo-
resistance of many cancers, including HGSOC, and increased tumor-
stroma proportion at initial diagnosis of HGSOC associates with 
chemoresistance (43, 44). Here, we found that, specifically, the IL6 
high iCAFs co-occur with the stress-associated cancer cells, com-
plementing a recent spatial transcriptomics study of pancreatic 
ductal adenocarcinoma (45). A chemoresistant role for TME-derived 
interleukin-6 (IL6) is further supported by findings where increased 
IL6 in peritoneal fluid (46), ascites (40), or blood plasma (47) asso-
ciate with worse prognosis of patients with HGSOC. Ligand-receptor 
analysis suggests that paracrine signaling is amplifying the stress 
response by a feed-forward loop in both cancer cells and iCAFs. 
This paracrine signaling is highly boosted by systemic platinum-taxane 
chemotherapy that not only causes extreme genotoxic and mitotic 

stress in cancer cells but also induces stress response in the non-
proliferating stroma (43).

The stress-induced adaptation pattern we observed may offer 
avenues for therapeutic intervention. As direct targeting of the 
core immediate-early genes by mitogen-activated protein kinase/
extracellular signal–regulated kinase pathway inhibitors is unlikely 
to work (48), targeting the inflammatory paracrine signaling may 
provide the most promising approach for combinatorial therapies. 
The nonproliferating TME is not under selective evolutionary pres-
sure, reducing the risk of treatment resistance. Among the current 
treatment regimens, the antiangiogenic bevacizumab may hold 
promise for the IL6-expressing stress-high tumors, as increased 
plasma levels of IL6 are indicative of bevacizumab sensitivity in 
HGSOC (47). Furthermore, antibodies against IL6, TNF, LIF, CXCL12, 
or their receptors, some of which are already in clinical use to treat 
inflammatory diseases, have shown initially promising results in 
preclinical models when combined with platinum chemotherapy 
(49–52). In addition, the regulators up- and downstream of IL6, 
namely, STAT3 and Toll-like receptors, respectively, have been 
successfully targeted in resistant cancer models (53, 54). Targeting 
these inflammatory cytokines has also shown promising results in 
combination with immunotherapies [e.g., in ovarian cancer models 
(55, 56)] This implies that the stress response may provide cancer 
cells with resistance against a wide array of treatments, from chemo-
therapy to targeted therapies and immunotherapies, and thus provide 
targets for a generalized strategy to oppose resistance in cancer.

We have identified a stress-associated state that distills acute 
stress response with paracrine inflammatory signaling to provide 
cancer cells with adaptation, promoting chemoresistance on both 
subclone and patient level. Overall, our results support a combina-
tion of induced and selective processes to explain chemotherapy-
induced transcriptomic changes as suggested in (13), modified by 
both subtle genetic differences and changes in the TME signals. 
Furthermore, the identification of stress signature opens avenues 
for combinatorial drug testing in preclinical models that maintain 
both subclonal heterogeneity and paracrine tumor-stromal signaling. 
As many drugs targeting inflammatory effectors are already in clinical 
use for other indications, they may offer a realistic option for safe com-
binatorial therapies with a wide array of currently used oncological 
drugs to restrain the broadly adaptive stress response of tumors.

MATERIALS AND METHODS
Human participants
All patients participating in the study provided written informed 
consent. The study and the use of all clinical materials have been 
approved by the Ethics Committee of the Hospital District of Southwest 
Finland (ETMK) under decision number EMTK: 145/1801/2015.

The clinical specimens used in the study represent several under-
studied aspects of HGSOC that are poorly represented in existing 
cohorts of clinical specimens, such as TCGA (5). Contrary to TCGA 
data, all our paired samples were collected from intra-abdominal, 
peritoneal, and omental metastases, thus representing cancer cell 
populations with proven metastatic potential. The material was 
from solid tumors, containing potentially chemoprotective stromal 
TME, which is missing from the more broadly available ascites 
samples. Our cohort also included low purity tumors that may 
represent a distinct, poor prognosis phenotype of HGSOC, which 
are missing from most genomic analyses.
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scRNA-seq sample preparation
Prospective HGSOC tumor specimens were collected from 11 patients 
at the time of laparoscopy and IDS. Detailed clinical information is 
shown in Table 1. Immediately after surgery, the specimens were 
incubated overnight in a mixture of collagenase and hyaluronidase 
(Department of Pathology, University of Turku) to obtain single-cell 
suspensions. For samples specified in Table 1, single-cell suspen-
sions were frozen in STEM-CELLBANKER DMSO-FREE solution 
(#11897F, AMSBIO) and thawed in culture medium immediately 
before processing for scRNA-seq. The viability of the frozen single-
cell suspensions ranged from 65 to 94% after thawing, with a median 
of 80%. scRNA-seq libraries were prepared with the Chromium 
Single-Cell 3′ Reagent Kit v. 2.0 (10x Genomics) and sequenced on 
Illumina HiSeq 4000 (Jussi Taipale Lab, Karolinska Institute, 
Sweden), HiSeq 2500, and NovaSeq 6000 instruments (Sequencing 
Unit of the Institute for Molecular Medicine Finland, Finland).

Preprocessing scRNA-seq data
The Cell Ranger software suite (version 3.1.0) was used to perform 
sample demultiplexing, alignment, barcode processing, and UMI 
quantification. The reference index was built upon the GRCh38.d1.
vd1 reference genome with GENCODE v25 annotation. We applied 
a three-step filtering approach to filter out low-quality cells. In 
the first steps, we excluded cells expressing any combinations of 
PAX8, DCN, and PTPRC to remove potential doublets and re-
moved cells with above 15% UMI counts originating from mito-
chondrial genes. Then, we used the shared nearest neighbor 
(SNN) modularity optimization–based clustering from Seurat v3 
(15) for initial clustering. Three major cell types were revealed on 
the basis of acknowledged markers: epithelial cancer cells (WFDC2, 
PAX8, and EPCAM), stromal cells (COL1A2, FGFR1, and DCN), 
and immune cells (CD79A, FCER1G, and PTPRC).

In the second filtering step, we quantified the quality measures 
of each cell using Seurat v3 (15). We estimated the cutoffs for each 
quality measure in each cell type based on its bimodal distribution 
(fig. S1B) and then used four criteria for quality control: (i) the 
number of reads above 8192 for cancer cell, 4096 for stromal cells, 
and 2896 for immune cells; (ii) the number of UMI counts above 
4075 for cancer cells, 2048 for stromal cells, and 1024 for immune 
cells; (iii) the number of detected genes above 1552 for cancer cells, 
1024 for stromal cells, and 512 for immune cells; and (iv) the 
percentage of UMI counts originating from mitochondrial genes 
below 12 for cancer cells and 7.5 for stromal and immune cells. 
Third, we filtered out epithelial cells with inferred CNA profiles that 
clustered together with stromal cells.

Modeling and clustering scRNA-seq data of cancer  
cells using PRIMUS
PRIMUS models the observed single-cell expression profiles as a 
mixture of latent phenotypic transcriptional profiles and nuisance 
expression profiles following a Poisson distribution

	​​ Y​ j,i ​​ ~ Poisson ((​∑ l=1​ r  ​​(​X​ j,l​​ ​D​ l,i​​ ) + ​∑ c=1​ k  ​​(​Z​ j,c​​ ​C​ c,i​​ ) ) ​G​ i​​)​	 (1)

where l = 1,2, …, r runs over the r nuisance factors and c = 1,2, …, k 
runs over k latent phenotypic clusters. Yj,i denotes the observed 
UMI counts of gene j in the ith cell, Xj,l denotes the expression 
profile centroid of gene j specific to nuisance factor l, Dl,i denotes 
the design coefficient of the lth nuisance factor in the ith cell, Zj,c denotes 

the cluster c expression profile centroid at gene j, Cc,i ∈ {0,1} is an 
indicator of whether the ith cell belongs to the cluster c, and Gi is a 
cell-specific scaling factor.

A linear model, such as in Eq. 1, is appropriate when the action 
of nuisance signals and the biological phenotypic signals can be 
considered additive. This occurs when the processes are parallel or 
their action is nonoverlapping, e.g., when specific pathways (or the 
genes within) are controlled by the patient-specific component and 
others are controlled by the cell state. The use of a stochastic model 
permits natural variation between cells.

We highlight that while the underlying components are Poissonian, 
the observed counts Yj,i is a mixture of Poisson-distributed factors 
with unequal rates, as specific in Eq. 1, which results in an over
dispersed data distribution. The Poisson model is also well suited 
for capturing random RNA dropout (57, 58), which is commonly 
observed in scRNA-seq data (59).

Given the observations Yj,i, known nuisances Dl, i, known scaling 
factors Gi, and the number of latent clusters k, we can estimate the 
latent nuisance expression centroids Xj,l, latent expression centroids 
Zj,c, and the latent cluster memberships Cc,i using an expectation-
maximization (EM) algorithm (60). The EM algorithm is con-
structed on the latent variables ZXj,l,i ∼ Poisson(Xj,lDl,iGi) and ZZj,c,i ∼ 
Poisson(Zj,cCc,iGi), which are the nuisance and cleaned contribu-
tions to the expression, respectively. The parameter set  = (Xj,l, Zj,c, Cc,i) 
was estimated in two stages: First, the expression centroids Xj,l 
and Zj,c can be estimated given Yj,i, Dl,i, Cc,i, and  Gi; second, the 
cluster membership Cc,i can be updated given Yj,i, Xj,l, Dl,i, Zj,c, and 
Gi. Given Yj,i, Dl,i, Gi, and the estimated Xj,l, we further computed ​​​ ~ Z ​​ j,i​​​, 
the denoised expression of gene j in the ith cell by solving ​​Y​ j,i​​ ~ 
Poisson ((​∑ l=1​ r  ​​(​X​ j,l​​ ​D​ l,i​​ ) + ​​ ~ Z ​​ j,i​​ ) ​G​ i​​)​ for ​​​ ~ Z ​​ j,i​​​. See the Supplementary Ma-
terials for details.

To select the optimal k, we fitted PRIMUS for k = 1,2, …,25 with 
10 different random initial parameter sets for each k, and k = 12 was 
selected on the basis of BIC (fig. S2A). We then ran the EM procedure 
with 200 random initializations for k = 12, the maximum likelihood 
estimates of Xj,l and Zj,c, and Cc,i and ​​​ ~ Z ​​ j,i​​​ were used for downstream 
analysis. The model selection process also acts as a regularizer for 
penalizing clusters that are solely correlating with the modeled 
nuisance factors. This tends to make the method to favor solutions 
where the effect of the confounding factors is completely eliminated 
in case of overlap.

Simulation of scRNA-seq datasets
We simulated scRNA-seq datasets using the splatPop model from 
the R package splatter (24, 25). Provided with genotype information 
for a population, splatPop models expression quantitative trait loci 
(eQTL) effects and simulates gene counts for single cells for indi-
viduals in the population. Following the suggested pipeline (https://
bioconductor.org/packages/release/bioc/vignettes/splatter/inst/
doc/splatPop.html), we used the mockVCF function to generate 
mock variant call format (vcf) files for 20,000 single-nucleotide 
polymorphisms in six samples, the mockBulkeQTL function to 
generated mock eQTL mapping results for 5000 genes, and the 
mockBulkMatrix function to generate mock bulk expression data of 
5000 genes for a population with 100 samples, with the default 
parameters. We next estimated the simulation parameters for the 
eQTL population simulation from the generated mock eQTL 
mapping results and bulk expression data using the splatPopEstimate 
function. Last, we used the splatPopSimulate function to simulate 
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scRNA-seq count data using the mock vcf files and the estimated 
parameters for six samples and five cell groups under three scenarios 
(table S1): (i) All six samples contain the five cell groups (3000 cells 
and 5000 genes); (ii) each sample only contains a subset of cell 
groups, three pairs of samples had no cell types in common, and 
there was one sample-specific cell group (1400 cells and 5000 
genes); (iii) the same setting with scenario ii but with unbalanced cell 
numbers in each sample (from 20 to 2000). We simulated 20 
random datasets from each scenario for benchmarking.

Human pancreatic datasets
We obtained five human pancreatic datasets and the corresponding 
cell type annotations from https://github.com/JinmiaoChenLab/
Batch-effect-removal-benchmarking/tree/master/Data/dataset4 
(61). This dataset contains 14,767 cells in total with 15,558 genes for 
15 different cell types and 45 samples from five studies (62–66). The 
sample labels were collected from GSE84133 (62), GSE85241 (63), 
E-MTAB-5061 (64), GSE83139 (65), and GSE81608 (66), respec-
tively. We randomly sampled 80% of the cells 20 times and as-
sessed the cell type identification performance of PRIMUS and 
other methods on the subsampled datasets.

Comparison of PRIMUS to other methods
We compared PRIMUS to five commonly used single-cell data 
integration methods [Seurat v3 (15), Harmony (19), LIGER (18), 
mnnCorrect (23), and fastMNN (23)] and three bulk data integra-
tion methods [ComBat (21), ComBat-seq (22), and limma (20)].
PRIMUS
PRIMUS takes the raw count matrix, design of nuisance factors, 
and scaling factors as inputs. For the simulated datasets, the nui-
sance factors were the sample labels, and the scaling factors were 
estimated using the logNormCounts function from scater R package 
(version 1.20.0) (67) following the splatPop (24, 25) simulation 
tutorial. For the pancreatic datasets, the nuisance factors were the 
sample labels, and the scaling factors were estimated using the 
prism-gain function from the PRISM package (31). The number of 
clusters k was set to the same as the number of cell groups/types, 
and the maximum number of iterations for EM procedure was 
set to 200.
Seurat v3
We ran Seurat v3.2.3 (15) as described in Seurat’s integration tuto-
rial (https://satijalab.org/seurat/articles/integration_introduction.html) 
for the pancreatic datasets and simulation scenarios i and ii data-
sets. Sample_6 in scenario iii contained only 20 cells, and sample 
ICRH76 from the pancreatic datasets contains only 19 cells, which 
were too few for Seurat v3 to perform integration, so Seurat v3 was 
not run on datasets from scenario iii and the pancreatic datasets. 
We performed clustering on the first 30 principal components 
(PCs) for the integrated pancreatic datasets and on the first 20 PCs 
for the integrated simulated datasets, using the FindNeighbors and 
FindClusters functions.
Harmony
We ran Harmony (19) according to its online tutorial (https://
github.com/immunogenomics/harmony). We ran Harmony with 
default parameters on the first 30 PCs for the pancreatic datasets 
and the first 20 PCs for the simulated datasets and obtained the 
corrected PC embeddings. We used FindNeighbors and FindClusters 
functions from Seurat v3 (15) to run clustering on Harmony-
corrected PC embeddings.

LIGER
We ran LIGER (rliger package, version 1.0.0) (18) with the default 
parameters (k = 20,  = 5) as suggested in the integration tutorial (http://
htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/
master/vignettes/Integrating_multi_scRNA_data.html). We set k = 10 for 
the pancreatic datasets as the smallest sample contains only 19 cells.
mnnCorrect and fastMNN
We followed the tutorial (http://bioconductor.org/packages/devel/bioc/
vignettes/batchelor/inst/doc/correction.html) to run the mnnCorrect 
and the fastMNN functions from the batchelor package (version 1.8.0) 
(23). We used the top 5000 and top 1000 highly variable genes (HVGs) 
for correction for the pancreatic datasets and the simulated data-
sets, respectively. All other parameters were kept as default values.
ComBat and ComBat-seq
ComBat (21) was initially designed to remove batch effects in 
microarray data, and ComBat-seq (22) is an extension of ComBat 
to address batch effects in bulk RNA-seq data. We ran ComBat 
and ComBat-seq using the implementation in the R package sva 
(version 3.40.0) (68) with default parameters.
limma
We followed the user guide https://www.bioconductor.org/packages/
devel/bioc/vignettes/limma/inst/doc/usersguide.pdf to run limma 
(version 3.50.0) (20). As limma expects normalized and log-transformed 
data as input, we first normalized the raw counts using the “LogNormalize” 
method from the NormalizeData function in Seurat v3 (15) and ran 
limma with the normalized data using the removeBatchEffect with 
default parameters. 

For mnnCorrect, fastMNN, ComBat, ComBat-seq, and limma, 
which do not have recommended clustering approaches in their on-
line tutorials, we applied the Louvain clustering (69) implemented in 
LIGER (18) on their integration outputs. For all methods except for 
PRIMUS, the clustering was run with the resolution parameter 
ranging from 0.01 to 5, and the outputs with the number of clusters 
the same as the number of cell groups/types were used.

We computed the adjusted rand index (ARI) (70) to compare the 
cell group/type labels with the computed cluster labels for the sim-
ulated and pancreatic datasets. We used the adjustedRandIndex from 
the mclust R package (version 5.4.7) (71) to compute ARI.

Differential expression analysis for cancer cells
We used an LRT to perform the differential expression (DE) analysis 
controlling for the nuisance factors. Let Yj, i denote the observed UMI 
count of gene j in the ith cell, ​​​ j,i​​ =  (​∑ l=1​ r  ​​(​X​ j,l​​ ​D​ l,i​​ ) + ​∑ c=1​ k  ​​(​Z​ j,c​​ ​C​ c,i​​ ) ) ​G​ i​​​ 
denotes the predicted mean expression rate of gene j for the ith cell 
based on the estimated model parameters Xj,l, Zj,c, and Cc,i. The DE 
between group g1 and group g2 for the gene j can be assessed by 
testing the alternative hypothesis HA : Zj,g1 ≠ Zj,g2 against the null 
hypothesis H0 : Zj,g1 = Zj,g2. For the former, the likelihood is that 
attained at the maximum-likelihood estimate (MLE) ​​​  ​​ j,i​​​, while for 
the latter, the model is refitted giving ​​​_ ​​ j,i​​​, the MLE under H0. The 
logarithmic LRT statistic for gene j is

	​​ LRT​ j​​  = ​   ∑ 
i∈​I​ 1​​∪​I​ 2​​

​​​(​Y​ j,i​​ log ​​̂  ​​ j,i​​ − ​​̂  ​​ j,i​​ ) − ​  ∑ 
i∈​I​ 1​​∪​I​ 2​​

​​​(​Y​ j,i​​ log ​​_ ​​ j,i​​ − ​​_ ​​ j,i​​)​	

where I1and I2 denote the indices for the samples in g1and g2, respec-
tively. A P value for the gene j to be differentially expressed between 
group g1 and group g2 can be computed as the probability to the right 
of the −2LRTj for the chi-squared distribution with degrees of free-
dom is equal to the difference in number of parameters, i.e., 1.
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Identification of coexpressed gene communities
Coexpressed gene communities were identified as follows: (i) We 
conducted DE analysis between each pair of cell clusters, resulting 
in 66 comparisons. The top 1000 most significant LRT genes with 
an FDR of <0.01 were selected in each comparison, and this resulted 
in a total of 4742 genes; (ii) the Pearson correlations between these 
4742 genes were computed using the LRTs from all 66 comparisons. 
Correlations with  > 0.8 and P < 0.01 were used to build a gene net-
work; (iii) we detected 916 communities in the network using the 
Walktrap community finding algorithm with step equals to 3 (72), 
and the 10 communities consisting of more than 30 genes were re-
tained for further analysis; (iv) let V be the genes in a community, cj 
be the coreness of gene j, and nmax be the number of genes with the 
maximum coreness (maxj ∈ Vcj, degeneracy) in that community. If 
nmax > 30, then the genes with cj = maxj ∈ Vcj were retained; other-
wise, we retained the top 30 genes ranked by coreness; (v) gene set 
overrepresentation analysis was performed for the remaining genes in 
each community using the ConsensusPathDB (26). We further reduced 
the redundancy of each gene community with number of genes above 
20 by applying the following filters: (i) Only genes overlapped with 
significantly overrepresented gene sets (FDR < 0.05, size <500) were 
kept; and (ii) biclustering was applied on the binary matrix of the 
presence/absence of each gene in each significantly overrepresented 
gene set using the R package blockcluster (version 4.4.3) (73), and 
the gene clusters that have less than 3% presence in any of the gene 
set clusters were excluded. After filtering, the numbers of genes 
per community were between 11 and 106. The genes in each com-
munity are listed in table S2.

Quantification of stress scores and proliferation scores 
from RNA-seq data
We defined the stress score as the gene set enrichment score of our 
identified stress-associated gene signature in individual cells and sam-
ples, which was computed using Single sample Gene Set Enrichment 
analysis (ssGSEA) (74). Samples with permutation test P value be-
low 0.05 by permutation test  were considered stress-high, while 
samples with P value above 0.5 were considered stress-low.

Similarly, we quantified the proliferation score as the gene set 
enrichment score of the proliferative DNA repair gene signature in 
individual cells and samples using ssGSEA (74).

RNA-ISH and imaging
RNA-ISH was performed on fresh 3-m formalin-fixed paraffin-
embedded tissue sections using the RNAscope Multiplex Fluorescent 
Reagent Kit version 2 for target detection (#323100, Advanced Cell 
Diagnostics) according to the manual. Briefly, tissue sections were 
baked for 1 hour at 60°C, then deparaffinized, and treated with 
hydrogen peroxide for 10 min at room temperature. Target retrieval 
was performed for 15 min at 98°C, followed by protease plus treat-
ment for 15 min at 40°C. All RNAscope probes (tables S3 and S4) 
were hybridized for 2 hours at 40°C, followed by signal amplifica-
tion, and development of horseradish peroxidase channels was per-
formed according to the manual. TSA Plus fluorophores fluorescein 
(1:750 dilution), Cyanine 3 (1:1500 dilution), and Cyanine 5 (1:3000 
dilution) (NEL744001KT, PerkinElmer) were used for signal detection. 
The sections were counterstained with 4′,6-diamidino-2-phenylindole 
(DAPI) and mounted with the ProLong Gold Antifade Mountant 
(P36930, Invitrogen). Images were generated using 3DHISTECH 
Pannoramic 250 Flash II digital slide scanner at the Genome Biology 

Unit supported by HiLIFE and the Faculty of Medicine, University of 
Helsinki, and Biocenter Finland. All samples were scanned using 
×40 magnification with extended focus and seven focus levels.

Quantitative analysis of whole-slide RNA-ISH images
We used CaseViewer (version 2.3.0, 3DHISTECH Ltd.) to read the 
MRXS immunofluorescence image and to separate its different 
channels into the DAPI staining, and fluorescein (FITC 38 HE), 
Cyanine 3 (TRITC 48 HE) and Cyanine 5 (Cy5) channels for gene 
expression quantification. CellProfiler (version 3.1.8) (75) was used 
for segmentation in the DAPI staining. The nondefault parameters 
that were determined experimentally were as follows: A typical di-
ameter of 18 to 56 pixels, thresholding using adaptive Otsu’s method, 
clumped object detection and splitting using shape, and low-resolution 
speedups were disabled. The segmented objects were classified into 
cancer, immune, and stromal cells using the DAPI staining and its 
segmentation. For this, we extracted the area, the mean nucleus stain 
intensity, and the eccentricity of each segmented object. Subse-
quently, we trained a supervised quadratic classifier using different 
training sets of cells with the properties mentioned above and de-
sired cell types. Since the cancer and immune cell morphology and 
intensity change from primary to interval samples and there are 
also some stromal cells hard to distinguish from small cancer cells, 
we trained multiple classifiers to obtain the highest classification 
accuracy per image. The classification results were visually as-
sessed by a pathologist. Afterward, the classifier was used to pre-
dict the cell types using the computed features in untrained images. 
The quadratic classifier was implemented in MATLAB (version 
R2019b) and was trained with uniform class priors. We extracted 
spatial probability maps for each cell type from the quadratic clas-
sifier, which were then low pass–filtered in logarithmic space 
(probability product space) using a disk kernel of 100-pixel radius 
(cf. cell radius of ~20). This propagates the probability of classifi-
cation to neighboring cells in the regions with large classification 
uncertainty, but for a cell exhibiting strong features of a particular 
type, its class will be unaffected.

Since some RNA signals are localized in the cytoplasm of the 
cells, we have expanded the segments of corresponding tumor, im-
mune, and stromal nuclei to include the cellular cytoplasm. This expan-
sion was performed by dilating the segments in the unlabeled space 
with a disk kernel with a radius size of 20, 5, and 5 pixels for the tumor, 
immune, and stromal classes, respectively. Ties were broken to the 
nearest segment. The parameters were tuned experimentally to ac-
count for the different sizes between the different cell types.

We reduced the cross-channel fluorescence bleed of Cy5, FITC, 
and TRITC staining by finding a suitable basis for the intensity data 
near the principal axes using power iteration. The fluorescence 
intensity signal was quantified using the negative response of a 
Laplacian of Gaussian filter with standard deviation of unity. The 
value was tuned manually, and the kernel width roughly corresponds 
to the diameter of an observed RNA spot in our images. This proce-
dure filters out background variations and cellular autofluorescence, 
leaving intensity blobs of the specified size.

Quantification of stress score from RNA-ISH data
To quantify the stress score using expression levels of the 10 stress-
associated genes measured with RNA-ISH experiment, we performed 
the CCA between the RNA-ISH expression levels and the combina-
tion of treatment phase information and the scRNA-seq–derived 
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stress score. The resulting first canonical component of the RNA-
ISH quantifications, which is a linear combination of the expres-
sion levels of the 10 genes, was defined as the “RNA-ISH stress 
score.” The coefficients for each gene in the first canonical compo-
nent of the RNA-ISH data are given in table S5.

To assess the significance of the correlation between the RNA-
ISH and scRNA-seq stress scores and the difference between the 
treatment-naïve/post-NACT pairs in RNA-ISH stress scores, each 
of which is expected to have nonzero correlation by construction, 
the data were permuted 105 times, and the analysis was applied on 
the permuted datasets to obtain empirical P values.

Inference of CNA and clonal structure
The CNAs and subclones were inferred using inferCNV (version 1.4.0) 
(30) with the following parameters: “cutoff=0.1, denoise=TRUE, 
HMM=TRUE, hclust_method=‘ward.D2’, tumor_subcluster_
partition_method=‘random_trees’, tumor_subcluster_pval=0.05, num_
threads = 10.” We randomly sampled up to 150 stromal cells from 
each patient to serve as reference. We filtered out the subclones with 
less than five cells. The phylogenetic trees were generated using 
UPhyloplot2 (76).

TME cell type annotation
Clustering of stromal and immune cells was performed using Seurat v3 
(15). We selected the top 3000 HVGs using the FindVariableFeatures 
function with the method “vst.” The expression of those HVGs was 
centered and scaled using the ScaleData function with default pa-
rameters. We performed PC analysis on the scaled data, and the 
SNN modularity optimization–based clustering was conducted 
using the first 50 PCs with a resolution parameter of 3. Next, we 
performed cell type annotation using Scibet (77), a supervised cell 
type annotation tool, which can accurately predict cell identities 
regardless of technical factors or batch effect (77), as follows: (i) 
First, we predicted the cell type for each stromal and immune cell 
with a trained model provided by Scibet, which includes 30 major 
human cell types from 42 scRNA-seq datasets as the reference. (ii) 
Second, for each cell type identified in step i, we used the cells from 
the clusters, of which more than 75% cells belong to that cell type, to 
build a new reference set. (iii) Third, we annotated the remaining cells 
using SciBet with the reference set built in step ii. The cell type name 
was corrected manually in accordance with known gene markers: 
B cells (CD79A+ and MS4A1+), DC-1 (CLEC10A+, FCER1A+, and 
CD1C+), DC-2 (LAMP+), ILCs (TNFRSF18+ and TNFRSF25+), 
macrophages (FCER1G+), mast cells (TPSAB1+), NK cells (KLRB1+ 
and KLRD1+), plasmacytoid DCs (GZMB+), plasma cells (MZB1+), 
T cells (CD3D+), endothelial cells (PECAM1+ and THBD+), and 
mesothelial cells (KRT8+ and KRT19+). We identified CAFs as cell 
clusters that are positive for FAP and negative for cytokeratins 
(KRT8, KRT18, and KRT19). CAF subtypes were annotated on the 
basis of the markers: CAF-1 (MMP1+ and MMP9+), CAF-2 (LIF+, 
IL6+, CXCL12+, and CFD+), and CAF-3 (ACTA2+ and MYL9+).

Trajectory analysis of stromal cells
To explore the relations of the identified stromal cell types, we 
constructed the cell trajectories using Monocle3 (version 1.0.0) (78). 
We removed the sample-specific variations and the effect of the 
percentage of the UMI counts originating from mitochondrial 
genes using PRIMUS before applying Monocle3. The denoised 
counts were log-transformed and projected into the first 30 PCs. 

We then computed the uniform manifold approximation and 
projection (UMAP) using the reduce_dimension function from 
Monocle3 with cosine distance, and the minimum distance was set 
to 0.3. We clustered the cells using the cluster_cells function with 
default parameters. Last, Monocle3 learned the trajectory graph 
using the learn_graph function with default parameters.

DE analysis for TME cells
The identification of CAF subtype marker genes and the DE 
analysis between stress-high and stress-low samples for TME cells 
were conducted using the Seurat v3 (15) function FindMarkers 
using the negbinom test with the UMI counts, patient labels, library 
preparation method, and sequencing instruments as the latent 
variables.

NicheNet analysis
NicheNet (79) was used to explore the cell to cell interactions be-
tween stressed cancer cells and iCAFs. We first calculated two sets 
of DEGs: CAF-2 versus CAF-1 and CAF-2 [DEG set1; log2 fold 
change (log2FC) > 0.25, adjusted P < 0.01, expressed in at least 25% 
of iCAFs] and stressed cancer cells versus other cancer cells (DEG 
set2; log2FC  >  1, adjusted P < 0.01, expressed in at least 25% of 
stressed cancer cells). To identify which ligands produced by stressed 
cancer cells are driving the phenotype of CAF-2, we used the top 
200 up-regulated genes in DEG set1 based on adjusted P value as 
gene set of interest. All genes expressed in at least 25% of CAF-2 
were used as a background gene set. We required the potential 
ligands to be higher expressed in stressed cancer cells compared 
to other cancer cells (DEG set2) to narrow down the number of 
ligands to be evaluated. Similarly, we also identified the potential 
ligands produced by CAF-2 that are active in driving the stress sig-
nature in stressed cancer cells. The 35 genes in the stress signature 
were defined as the gene set of interest, and the background gene set 
included all genes expressed in at least 25% of stressed cancer cells. 
The potential ligands were higher expressed in CAF-2 compared to 
other CAFs (DEG set1). The lists of the DEG sets used in this 
analysis are provided in data S1 and S2.

Bulk tumor expression data
We acquired 18 treatment-naïve versus post-NACT sample pairs and 
8 primary-relapse sample pairs from 23 patients in the HERCULES 
cohort (http://project-hercules.eu/). The sample collection, data 
quality control, alignment, and quantification were performed as 
we have previously described (31).

TCGA RNA-seq data of ovarian serous cystadenocarcinoma 
(OV, illuminahiseq_rnaseqv2-RSEM_genes_normalized) was down-
loaded from the Broad Firehose (https://gdac.broadinstitute.org/), 
along with the clinical annotations. The primary tumors from 271 
patients with advanced HGSOC (grade: G2 to G4, stage: IIIA to IV) 
and with PFS data available were included in our analysis. The 
proportions of tumor, stromal, and immune components and the 
cell type–specific expression profiles for HERCULES and TCGA 
samples were estimated using PRISM (31).

TCGA reverse phase protein array data
The reverse phase protein array data (replicates-based normalization) 
for TCGA ovarian serous cystadenocarcinoma samples (TCGA-OV-L4) 
was downloaded from the Cancer Proteomics Atlas (https://tcpaportal.
org/tcpa/download.html).
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
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