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Abstract

Motivation: Prognostic models are widely used in clinical decision-making, such as risk stratification

and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall

healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their

performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate

Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic

Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data.

Results: We make available an open-source implementation of the top-performing model, ePCR,

along with an extended toolbox for its further re-use and development, and demonstrate how to best

apply the implemented model to real-world data cohorts of advanced prostate cancer patients.

Availability and implementation: The open-source R-package ePCR and its reference documenta-

tion are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/

package¼ePCR. R-vignette provides step-by-step examples for the ePCR usage.

Contact: teanai@utu.fi or teelaa@utu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

There is increasing interest in open sharing of clinical trial and patient

registry data for improving clinical study designs as well as patient

management and outcomes (Bertagnolli et al., 2017; Laajala et al.,

2017). Application of prognostic models to integrated patient data

with increased sample size has the potential to provide novel insights

into disease pathophysiology and to identify clinical variables associ-

ated with patient outcomes that have been missed by earlier single-

cohort investigations. These insights and factors have the potential to

improve future clinical trial designs, for instance, by homogenizing

risk groups, thus addressing trial questions of treatment efficacy or

predictive markers more efficiently (Khozin et al., 2017).

In the recent DREAM 9.5 Prostate Cancer Challenge (PCC-

DREAM), over 50 international teams participated to develop prog-

nostic models for overall survival (OS) of mCRPC patients using

data from four phase III clinical trials, containing >2000 advanced

mCRPC patients treated with docetaxel (Guinney et al., 2017). Our

top-ranked model was based on an ensemble of penalized Cox

regressions (ePCR), and it significantly outperformed the other sub-

mitted models and a previous state-of-the-art model (Halabi et al.,

2014). The ePCR model makes use of inter-variable interactions and

advanced multi-variable machine learning to identify marker combi-

nations with greatest predictive power for the patients’ treatment

outcome.
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In this Application Note, we make available an open-source

CRAN-package of the ePCR methodology. The model was original-

ly developed for the clinical trials in PCC-DREAM Challenge. Here,

we provide novel extensions of the ePCR model and demonstrate

how to best apply the model to more heterogeneous, real-world

prostate cancer patient registry cohorts. In addition to testing the

real-world performance of ePCR, we also investigate the modelling

and data processing options that affect its prognostic accuracy in

such real-world data. Our results show how the inherent differences

between clinical trial data and real-world patient registry data

should be taken into account when using prognostic models in clin-

ical decision making.

2 Implementation of the ePCR package

The original ePCR model was developed using the clinical trial data-

sets from the PCC-DREAM Challenge, hosted by Project Data

Sphere (PDS, https://www.projectdatasphere.org/), a broad-access

research platform that collects and curates patient-level data from

completed, phase III cancer clinical trials. The original model

included 101 clinical variables, such as demographics, lab values

and lesion measures. Compared to the LASSO-regularized reference

model that modelled eight clinical variables only (Halabi et al.,

2014), the ePCR model learning is based on a more comprehensive

model optimization, which also selects correlated groups of predic-

tors and their interactions. The ePCR methodology makes use of an

ensemble structure, in which each patient cohort and their combina-

tions were modelled as separate components to account for stratifi-

cation factors due to intrinsic characteristics specific to each clinical

dataset (Guinney et al., 2017). This ensemble approach is also useful

when modelling multiple real-world patient cohorts, each including

potentially different sets of clinical variables (e.g. completely missing

variables that cannot be imputed).

The CRAN-package implements both the original ePCR model,

estimated based on clinical trial datasets used in the PCC-DREAM

Challenge, as well as two new models, based on the Finnish real-world

prostate cancer patient cohorts presented in this report (see Section 3).

The implementation enables the user to freely adjust various modeling

parameters, including the type of missing value imputation method

(median or k-NN imputation), L1/L2 regularization parameter opti-

mization (a parameter to weight the L1 and L2 penalties), performance

metrics [time-integrated area under curve (iAUC) or concordance-

index], and the specific use of cross-validation and other modeling

schema supporting the model estimation (see Appendix 2 of R-vignette

for functionality comparison against the code provided in Guinney

et al., 2017). Various diagnostic visualization options are also provided

to investigate data clustering (PCA plots), model fitting (box plots),

patient outcomes (Kaplan-Meier plots) and time-dependent prediction

accuracy (iAUC plots). The package also contains benchmarking

data simulated based on the real-world registry data, which have

been made available to test the open-source implementation (see

Supplementary Data for details).

3 Application to a real-world patient cohort

As an application use case, we investigated how to best use the

ePCR model trained on the clinical trial data from the PCC-

DREAM Challenge for prognostic modelling of survival of CRPC

patients using independent, real-world hospital registry data (see

Supplementary Data). This investigation was inspired by recent

work by Seyednasrollah et al. (2017), where the authors made use of

our original, PCC-DREAM Challenge winning model for prognostic

prediction of mCRPC patients treated with docetaxel in the same

hospital registry data. We used these published results as a baseline,

and carried out further analyses to investigate which modelling

options and patient selection criteria could enhance prediction ac-

curacy for OS. These follow-up analyses revealed marked improve-

ments in the ePCR model performance (Fig. 1A, left panel), which

may partly be due to the differences in the number of patients

selected based on the medication information only (Fig. 1D, n¼180

vs. n¼289).

Notably, a reduced model with 60 variables (out of the 101 in

the original ePCR model) led to improved predictive accuracy in this

real-world cohort, compared to the Seyednasrollah et al. (2017) ver-

sion of ePCR model (81 variables) and the Halabi et al. model with

8 variables (Fig. 1C). We obtained further improvements by using

all the available baseline clinical data, instead of limiting to 4 weeks

prior to treatment (as was done in Seyednasrollah et al., 2017), and

by using the k-nearest neighbor (k-NN) imputation, instead of
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Fig. 1. (A) Predictive accuracy evaluated in terms of integrated area under

curve (iAUC) over 6–30 months follow-up period with various modelling

options. The DREAM clinical trial estimated models were applied separately

to two real-world CRPC patient cohorts, selected by medication information

only (left barplot, n¼ 180) or based on the full medical records (right barplot,

n¼587). Model type: H, Halabi et al. (2014); S, ePCR model with 81 variables

used in Seyednasrollah et al. (2017); F, full ePCR model with all the 101 varia-

bles available in the real-world cohort; R, reduced ePCR model including

those 60 variables that were available for at least 60% of patients in the cohort

selected by medical records. Imputation: M, median imputation; K, k-nearest

neighbor imputation (k¼ 10). Time limit: X, 4 week time limit for the baseline

measurements before the docetaxel treatment (left) or castration resistance

(right). The two horizontal dotted lines indicate the ePCR model accuracy

reported in Seyednasrollah et al. (2017) (iAUC¼ 0.724), and the best accuracy

obtained in the PCC-DREAM Challenge clinical trial data (Guinney et al., 2017)

(iAUC¼0.791). The bar colors correspond to those of panel B. The rightmost

bars use either the full model (blue) or the reduced model (black), with k-NN

imputation and no time limit, which were selected in the same real-word pa-

tient data, so these results may be overly-optimistic. (B) Examples of the

ePCR models’ accuracy for predicting OS at various follow-up time points

when applied to the patient cohort selected by full medical records (n¼587).

The colors correspond to those of panel A. (C) The number and overlap

of variables in different models (see Supplementary Table S1 for the

variable labels). (D) The number and overlap of patients in different patient

cohorts (n)
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median imputation (as was done in Seyednasrollah et al., 2017).

Since the relatively small patient cohort selected using medication

information (n¼180) may lead to over-optimistic results, we

repeated the same analyses in a larger CRPC patient cohort

(n¼587), which resulted in more consistent iAUC levels (Fig. 1A,

right panel). Strikingly, the model that performed best in the smaller

cohort was found to be sub-optimal in this larger patient cohort

across various follow-up periods (Fig. 1B).

Although these optimized results in the real-world patient

data are already close to those obtained in the PCC-DREAM

Challenge external validation trials (ENTHUSE M1 placebo arm,

iAUC¼0.768), there is still room for improvement, as compared to

the best performance obtained in the Challenge scoring cohort

(ENTHUSE 33 trial docetaxel arm, iAUC¼0.791; Fig. 1A, the top

dotted line). For instance, the model-based imputation developed

for the clinical trial datasets did not perform well in this real-world

patient data, suggesting that better approaches to deal with larger

blocks of missing values in registry data are required. For instance,

aspartate aminotransferase (AST) was found as an important, novel

factor in the PCC-DREAM clinical trial datasets (Guinney et al.,

2017), but since it is rarely measured in laboratory tests in Finland,

AST levels could not be accurately imputed or used in these real-

world cohorts.

4 Conclusion

The ePCR methodology and its applications provide clinical

researchers and practitioners with practical means and guidelines on

how to best apply the prognostic model to real-world prostate can-

cer patient cohorts. We also encourage the community to test the

ePCR model in other types of cancer cohorts to extend its real-world

performance evaluation beyond the advanced PC. Although the

ePCR model was originally developed for clinical trial data from

docetaxel-treated mCRPC patients, the current results demonstrate

its applicability also to more heterogeneous hospital registry cohorts

of advanced prostate cancer patients (Fig. 1). Docetaxel has been the

first line chemotherapy in Finland since 2004 for non-metastatic

CRPC, and since 2015 for primary metastatic prostate cancer.

While the specific focus here was on Finnish prostate cancer

patients, the implementation should prove useful more globally and

in other cancers, and the results additionally provide guidance for

other similar projects that aim to develop predictive models based

on hospital registry data. We are happy to help researchers to guar-

antee the best use of the ePCR model. Even though the open-source

implementation is available for anyone to apply or modify, it should

be in our common interests to optimize modeling options to obtain

the best possible results, especially as the findings may affect the

management of patients with lethal cancers. It will also be important

to further develop the model in larger representative cohorts, once

available, to learn how to make the best use of real-world hospital

registry data for improved prognostic modelling.
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