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Abstract

In many optics applications it is important to use well-polarized light. However, there are situa-
tions in which randomly polarized light has distinct advantages. We demonstrate two approaches
by which a polarized light beam can be totally depolarized, each using a simple setup and inexpen-
sive components. The first method, designed for narrow spectrum light, works by combining the
horizontal polarization component of the beam with the delayed vertical component. The second
method, which is most suitable for broad spectrum light, uses birefringent quartz plates. In both
approaches, the polarization state is characterized by Stokes parameters measured using a rotating
quarter-wave plate and fixed polarizer. We measure the coherence function of the electric fields
and determine the minimum delay or quartz plate thickness required for decoherence. Coherences
are modelled by Gaussian or Lorentzian functions and compared with the spectral properties of

the light sources.



I. INTRODUCTION

The polarization state of light is important in many applications. Well controlled lin-
early or circularly polarized light can be used to probe materials and chemical compounds.*
However, there are also applications where we require randomly polarized light. For exam-
ple, the efficiency of gratings used in monochromators depends strongly on polarization.? In
optical single mode fibers, which can maintain polarization for many kilometres, the state of
polarization fluctuates randomly due to changes in temperature and external stress. If light
is transmitted through a fiber to a polarization-sensitive optical element, significant noise
in intensity can be observed.® By depolarising the light, these kinds of phenomena can be

avoided.

There are many types of depolarizer designs. The oldest one is the Lyot depolarizer.*
It consists of two wave plates (with thickness ratio 2:1) bonded together and positioned
such that their optical axes are oriented 45° apart. The depolarization is based on the
group-delay time difference between the polarization modes. Unfortunately, the output is
a periodic function of wavelength, so the plate thicknesses must be carefully optimized in
each application. The Lyot depolarizer is not practical for depolarising narrow spectrum
light because the wave plates must be very thick. Another design is the wedge depolarizer,
where two crystal quartz wedges, one of which is twice as thick as the other, are stacked but
slightly separated.® The output is pseudo-random in polarization: the transmitted beam is

not unpolarized, but the polarization varies spatially within the beam.

Quite a different approach is based on the path separation of horizontal and vertical
polarization components of the beam. One component is delayed by a long optical fiber
and then both components are merged using a beam splitter.® This design, used in many
commercial depolarizer devices, works well with sources of very narrow bandwidth since a
long path difference is easily realized in fibers. The output beam is also truly random in
polarization. We use this setup, but without optical fibers, in our first approach. Our second
approach is designed for sources of wide spectrum. It uses the birefringence of thick quartz
plates to create a compact apparatus with no need for long path differences.” The output
beam is not pseudo-random, as it is in the case of Lyot or wedge depolarizers, but it is truly

randomly polarized.



II. STOKES PARAMETERS

The Stokes parameters are widely used to characterize the polarization state of an optical
beam, mainly because they can determined using directly measurable quantities.®? In the
case of monochromatic light, these parameters describe the orientation and ellipticity angles
of the polarization ellipse. They can also characterize the polarization state of partially and
totally unpolarized light.

We choose a Cartesian coordinate system (x,y, z) where x and y are perpendicular to
the direction of light propagation z. Then we have (generally complex) orthogonal electric

field components E,(z,t) and E,(z,t), where ¢ represents time. The Stokes parameters are

defined as'®

So = (| E.*) + (|1E]*),
S1 = (|E.*) — (|E,*),
Sy = 2Re(ELE,) = (EXE, + E,EY),
Sy = 2Im(E:E,) = (B, E; — E:E,),

where the symbol * indicates the complex conjugate and the brackets ( ) time averaging

over a long period

() = Jim / F(t)dt. (5)

T—o00

The parameter Sy describes the total intensity, S; reflects a tendency for the polarization
to be either horizontal or vertical, Sy a tendency to be diagonal (linearly polarized at 45°)
or antidiagonal (linearly polarized at —45°), and S3 a tendency to right or left circular
polarization. The parameters S, and S3 are coherences which express how well correlated
the electric field components are. When we normalize all Stokes parameters to the total
intensity Sy, the first parameter is always equal to 1 and the rest have values in the range

(—1,1). The degree of polarization is
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So

For completely polarized light DOP = 1, but for partially polarized light 0 < DOP < 1. If
light is totally unpolarized, DOP = 0, i.e., S; = Sy = S35 = 0.
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III. DEPOLARIZING LIGHT

Let us first consider the special case of elliptically polarized monochromatic light of the

x and y components

E.(z,t) = Eo, expli(kz — wt + 0,)], (7)
E,(z,t) = Egyexpli(kz — wt + 0,)], (8)

where Ey, and Ej, are the field amplitudes, w is the angular frequency, k = 2w/ the wave
number, and 0, and J, are constant phases. In order to depolarize the light beam the Stokes
parameters S;, So and S; must vanish. The parameter S; can be easily set to zero by
adjusting the field amplitudes Fy, = Ey, = Ej by, for example, rotating the polarization
plane with a half-wave plate. The remaining parameters are now Sy = 2E3 cos(d, — d,,) and
Sy = 2FE? sin(d, — d,). Clearly, the parameters S, and S3 can never be simultaneously zero.
Furthermore, the sum of these coherence terms (normalized by Sp) satisfy the condition
S5+ 53 =1.

If the light is not monochromatic but a superposition of many different frequency compo-
nents F,; and £, ;, which don’t necessarily have the same phase difference at all frequencies,
we have new possibilities to adjust the coherence related parameters Sy and Ss. First, as-
sume again that the input beam is divided into horizontal and vertical components with
equal amplitudes, i.e., Eyy; = Eoy; = Eoy, so S1 = 0. Next set 6,; = d,; = &; so that each
frequency component is initially diagonally polarized. Finally, introduce the same constant
time delay 7 in all vertical components by allowing the vertically polarized part of the beam
to travel along a longer path than the horizontal component. Then we have new vertical

components
;jl(z,t) = E, (2, t+7) = Eg exp{ilkiz—wi(t+7)+8]} = Eoexp{ilkiz—wit+d—wiT]}, (9)

Clearly, each vertical component has an additional phase, the last term in the argument of
the exponent function, which depends on the frequency of that component. In practice this
means that after recombination the polarization states of all frequency components have a
tendency to be different when the time delay increases.

It should be noticed that now the coherence (Ej(z,t)E,(2,t)) = (E;(z,t)E,(2,t + 7))

has actually the form of the autocorrelation (E*(z,t)E(z,t + 7)) because in this case the
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only difference between horizontal and vertical components is the temporal variable. The
autocorrelation is, on the other hand, directly linked to the degree of the first-order coherence

of light!!
J0(r) — BB )
(EOEW)

when we omit the z coordinate. We can do this since all fields are studied in the same

(10)

position in space. In general, the coherence varies between 0 and 1. If light is monochromatic,
coherence or autocorrelation is always 1, but if there are several frequency components, the
coherence can be less than 1 depending on the phase conditions.

When we calculate the coherence (E*(t)E(t + 7)), where the electric field is a super-
position E(t) = >, Ejexp(—iwt), the cross-terms (I # m) are of the form (exp[i(w; —
wm)t] exp(—iw;T)), which all vanish (see Appendix). The remaining terms are of the form
(exp(—iw;T)), which do not vanish but their value depends on the frequency and delay.
However, with certain combinations of the amplitudes E; the autocorrelation approaches
zero for long delays. In general though, the coherence or autocorrelation is rather difficult to
calculate starting directly from the (discrete or continuous) superposition of waves. Instead,
we can utilize the Wiener-Khinchin theorem, which states that the autocorrelation of the

electric field E(t) and the power spectrum of the intensity S(w) are a Fourier transform

pair11713
(E*(t)E(t+71)) = F{S(w)} = % /OO S(w)e ™ dw, (11)
Sw)=F YE*®OEt+71)} = /OO (E*(t)E(t + T)e™dr. (12)

If we know the power spectrum of the light, we can immediately calculate the autocorrelation
of the electric field. In most cases, we can assume that the power spectrum has either
Gaussian or Lorentzian form. The Gaussian spectrum is given by

(w — wp)?

Sa(w) = See 202 | (13)

where S is the scaling factor, wy the central frequency and o determines the full width at
half maximum FWHM = 20./21n(2) of the spectrum. By taking the Fourier transform of

this spectrum we get the corresponding first-order coherence

g (r) = e e 30, (14)



It is obvious that without any time delay we have | gg)(O)\ = 1 but in the limit 7 — oo
| g(Gl)(T)| — 0, i.e., the autocorrelation of the fields and the Stokes parameters Sy and S;
vanish. When we recombine the horizontal and the delayed vertical components into one
beam we finally create a totally unpolarized light beam. The calculation proceeds similarly

for the Lorentzian, given by

S1w) = Som (”a{”_ e (15)

where 27 is the FW HM of the spectrum. We obtain
g(Ll)(T) = ¢mworeTl (16)

In this case, too, the autocorrelation vanishes in the limit of long delays.

IV. POLARIZATION STATE ANALYSIS

The classical measurement of the Stokes parameters is carried out by directing the beam
through a fixed quarter-wave plate and a rotatable linear polarizer (or rotatable half-wave
plate and fixed polarizer) in four different combinations. Here we use another approach in

which a rotatable quarter-wave plate is followed by a fixed (transmission axis in the vertical

HWP PBS BS / PBS QWP Polarizer

He-Ne laser
horizontal
|: " component D
Detector
rotating fixed

r—| === I I

' . |

translational | vertical |
stage | component I

FIG. 1. Experimental setup for a He-Ne laser source. The half-wave plate (HWP) creates diagonal
polarization and the polarizing beam splitter (PBS) divides the beam into horizontal and vertical
components. The vertical component is delayed and finally both components are merged in the
beam splitter (BS). The output beam is analyzed by the rotating quarter-wave plate (QWP) and

the fixed polarizer.



direction) linear polarizer (see Fig.1).!4!5 The intensity of the optical beam, after passing
through the quarter-wave plate and polarizer, is a function of the rotation angle  (the fast

axis angle measured from the vertical):
1) = % A+ Bsin(20) + C cos(48) + D sin(49)] . (17)
The coefficients A, B, C' and D are related to the Stokes parameters as follows:
So=A—-C, Sy =2C, S =2D, S3 =B. (18)

The coefficients in Eq. (17) can be determined using Fourier analysis but we fit the intensity
function 1(#) directly to the measured values for # in the range 0 to 180° in steps of 10°.
This method has several advantages over the classical one. In the classical method the
transmission axis of the polarizer must be carefully aligned to the required angles (0°, 45°
and 90°); the absorption of the quarter wave plate easily introduces errors; and because
there are only 4 measurements, it is more difficult to achieve good accuracy. By using a

rotating quarter-wave plate, these difficulties can be mostly avoided.

V. EXPERIMENTS
A. Narrow-band source: a He-Ne laser

In our first experiment, we measured the autocorrelation of a He-Ne laser as a function of
the delay 7. The laser (Uniphase 1507P) has an output power of 0.5 mW and a polarization
ratio 500:1. A half-wave plate is used to balance the horizontal and vertical intensities in
order to fulfill the condition S; = 0. The vertical component of the light beam is delayed
by two mirrors which are assembled on a movable plate (see Fig. 1). The plate is slid over
the surface of the optical table while abutting a long guiding slab oriented parallel to the
direction of travel. This allows us to change the delay without changing the direction of
the beam (if a long optical rail is available, it could also be used). We can adjust the path
difference in the range of 20 to 1000 mm corresponding to a delay of 0.13 to 3.33 ns.

The apparatus shown in Fig. 1 must be aligned so that both beams overlap as much
as possible after the second beam splitter. Interferometric accuracy in the alignment is
not needed, as long as both beams hit the surface of the detector. Any intensity detector

can be used but it must be linear. A detector of large active area facilitates adjustments;
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FIG. 2. He-Ne laser source: intensity as a function of the rotation angle of the quarter-wave plate
with path differences of 0 mm (circles), 70 mm (triangles) and 300 mm (squares). The lines are

fits to Eq. (17).

our detector (Thorlabs photodiode S120VC) has a diameter of 9 mm. The polarization is
measured using the method described above. The intensity as a function of the rotation
angle of the quarter wave plate is shown in Fig. 2 for several path differences. For clarity,
all intensities are scaled to have the maximum value of 1. The case of zero path difference
is measured by blocking the vertical component. Clearly, intensity modulation decreases as

the path difference increases and the light beam becomes more depolarized.

The first-order coherence as a function of the delay is presented in Fig. 3. At zero delay,
we use the degree of polarization instead of the coherence since we have only the horizontal
component, as mentioned above. The measured values are best fitted by the Lorentzian
coherence of Eq. (16) with v = 1.019 GHz (wy = 4.74 THz corresponding to the wavelength
of 632.2 nm)*®. This corresponds to a full width at half maximum value FWHM = 2.04
GHz. We did not measure the actual power spectrum of the He-Ne laser output because it
is a rather challenging task and requires expensive equipment that is typically not available

in student labs.

The spectral distribution of He-Ne laser light is governed both by the atomic (fluores-
cence) line shape of the active medium and by the longitudinal cavity modes.'*!"Inhomogeneous
Doppler broadening, arising from the random thermal motion of neon atoms, yields a Gaus-
sian line shape with FW HM of about 2 GHz, the same magnitude as we found but with

a different line shape. However, in practice the situation is more complex, due to mode



competition and other mechanisms. Using the Gaussian model (Egn. 14) to fit our data,
we get almost the same result FWHM = 2.00 GHz. Finally, from Fig. 3 we can see that
a time delay of about 1 ns is needed to have very low coherence (DOP = 0.029), i.e., the
path length difference should be more than 30 cm for creating unpolarized light.
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FIG. 3. He-Ne laser source: First-order coherence as a function of the time delay (circles), and

numerically fitted Lorentzian (thin line) and Gaussian (dashed line) model.

The measured coherence, especially when it is close to zero, is sensitive to the balance
between horizontal and vertical polarization components, which should be always checked
when the path length is changed. An additional source of error is that most polarizing beam
splitters create a highly polarized transmitted beam, but the reflected beam is less highly
polarized, with an extinction ratio as low as 20:1. If necessary, an additional polarizer can be
added to the path of the vertical component in order to eliminate any horizontal component

from the delayed portion of the beam.

B. Broad-band source: a light emitting diode

When the spectral distribution is very narrow, the delay between the horizontal and
vertical polarization components can be created as in the previous case of He-Ne laser source.
If the spectral distribution is wide, the necessary minimum path difference is very short and
the setup described in Fig. 1 can be somewhat cumbersome. As an example we use a light
emitting diode (LED) followed by an interference band-pass filter and a polarizer (see Fig.

4). Instead of using a physical path length difference between the horizontal and vertical
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FIG. 4. Experimental setup for a LED source. Light from the light emitting diode (LED) is
collimated by a lens and passed through a narrow band interference filter. The polarizer creates
diagonal polarization. The horizontal and vertical components of the beam undergo different delay
times in the set of birefringent quartz plates. The output polarization is analyzed as in the previous

case.

components of the beam, we guide the beam through a set of quartz plates. Quartz is a
birefringent material with two refractive indexes, the ordinary (fast) n, and extraordinary
(slow) ne, and n, < n.. When a linearly polarized light beam passes through a quartz plate
whose fast (or slow) axis is at a 45° angle relative to the direction of the polarization, the
time delay between the horizontal and vertical components after the plate is

z [ 0.0091

At = Al — Afy— —— — — —
c/ne  ¢/n, c

l, (19)

where [ is the thickness of the plate, ¢ the velocity of light, and the refractive indexes
are n, = 1.5425 and n, = 1.5516 at a wavelength of 635 nm.'® We use a red LED and
an interference filter with the central wavelength 635 nm and bandwidth 10 nm (Thorlabs
FL635-10), so that we can use the same quarter-wave plate as in the previous example to
analyze polarization (see Fig. 4). Our set of quartz plates has thicknesses of 2, 5 and 10
mm (Newlight Photonics QAR25 200/500-A and QAT12100-A) and we use them in various
combinations to obtain time delays up to 0.5 ps. If multi-order wave plates are available,
they can also be used.

The intensity as a function of the rotation angle of the quarter wave plate is shown in
Fig. 5 with several quartz plate thicknesses. As expected, the intensity modulation decreases
with increasing plate thickness. The first-order coherence (Eq. 10) as a function of the time
delay is displayed in Fig. 6. In this case, Gaussian type coherence of Eq. (14) describes
the experimental results reasonably well with ¢ = 2.322 THz, or FWHM = 5.47 THz.
Since the spectrum of this source is rather wide, the quarter-wave plate is not ideal and this

produces some inaccuracy in polarization state analysis. For example, DOP is clearly less
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FIG. 5. LED source: intensity as a function of the rotation angle of the quarter-wave plate with
the total quartz plate thickness of 0 mm (circles), 5 mm (triangles) and 12 mm (squares). The

lines are fits to Eq. (17).

than 1 when there are no quartz plates (the data point corresponding to zero time in Fig.
6).

We also measure the spectrum of the LED output before and after the interference filter
(Thorlabs Spectrometer CCS100) (see Fig. 7). The filtered output is not exactly Gaussian
but the numerical fit of the spectrum (Eq. 13) gives o = 2.328 THz, very close to the
value found in the coherence analysis. Based on the measurements shown in Fig. 6, we can
conclude that the light beam is highly depolarized (DOP = 0.019) when the total thickness

of the quartz plates is about 12 mm.

C. Concluding remarks

The experimental setup in Fig. 4 not only has pedagogical interest but it is also an
essential part of some novel approaches used in quantum optics. In studies of open quantum
systems we are interested in effects due to the interaction of the environment on quantum
systems, in order to find ways to decrease or even eliminate such effects when looking for
practical implementations of quantum computing and secure data protocols. In laboratory
experiments used to explore these phenomena, however, it is rather difficult to control in-
teractions between a quantum system and its environment, and so more feasible models or
simulations are needed. In the simplest quantum system, we use the polarization degree of

freedom (DOF) of single photons as a model of a qubit, and normally ignore the frequency
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FIG. 6. LED source: First-order coherence as a function of the time delay (circles) and numerically
fitted Gaussian model (thin line). The experimental data points correspond to the quartz plate

thicknesses of 0, 2, 5, 7, 10, 12 and 15 mm.
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FIG. 7. Spectrum of the LED source before (thin line) and after the interference filter (thick line),

and the fitted Gaussian profile (dashed line).

DOF because we are not interested in it. However, this latter DOF' (the spectral property
of the photons), which can be rather easily controlled in practical single photon sources,
can play the role of the environment. In a birefringent quartz plate this ”co-moving” (in
the sense that it travels with photons) environment is coupled to the polarization, i.e., the
horizontal and vertical polarization components of the photon experience different phase
shifts. The thickness of the plate determines the interaction time between the photon and
the environment.”!”. As a result, the originally pure polarization state of the photon qubit
experiences decoherence and the quantum state is not pure but more or less mixed, just

as the degree of polarization decreases in the classical picture of light. In more complex
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quantum systems, as two entangled photon qubits, the dynamics of decoherence is more

complicated and it has no more classical counterpart.

Appendix A: Wiener-Khinchin theorem

Let us assume that the electric field is given (we omit the z-coordinate) by the superpo-
sition
E(t) =Y Ee ™" (A1)
!
When we calculate the autocorrelation function (E*(t)E(t + 7)), we obtain terms

1 [T A N B
— / Bt e im0 gt — BB, e = / il —m)t gy (A2)
T 0 T 0

In the case of different frequencies (I # m) we can use the Euler’s formula e = cos(x) +
isin(x) in the integral. Then we have the real part

1 sinf(w; — w)T]
T w—-w,

1 (T
BB / cos[(wi — wp)t]dt = EyEpein (A3)
0

Since the value of sin function is restricted, these terms vanish in the limit T — oo. The

imaginary part is

P B ionr =1 [ cos[(w; — wim)T] 1
EE,, e T — — Wy )t|dt = B E,,e """ — — )
1 e T/o sin[(w; — wi )] 1 Ee T { T P
(Ad)
The value inside the braces is restricted, and so these terms also vanish in the limit T — oc.
With equal frequencies (I = m), Eq. (A2) has the form
2 7zw17_ / dt = E2 7zwl*r (A5)

which does not vanish. The intensity of the component at the frequency w; is [; = E?. If
there are very many frequency components in the superposition of Eq. (A1), the summation
can be replaced by integration over the frequency w, and [; — 5=S5(w)dw where S(w) is the

spectral density. Finally we can write

(B (0)E(t + 7)) = ;ﬁ / " (W) du. (AG)

The right hand side of Eq. (A6) is the Fourier transform .#{S(w)} of the spectral density.

* tom.kuuselaQutu.fi
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