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S. Junttila a,b,*, T. Hölttä b, E. Puttonen c, M. Katoh d, M. Vastaranta a, H. Kaartinen c,e, 
M. Holopainen b, H. Hyyppä f 
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A B S T R A C T   

During the past decades, extreme events have become more prevalent and last longer, and as a result drought- 
induced plant mortality has increased globally. Timely information on plant water dynamics is essential for 
understanding and anticipating drought-induced plant mortality. Leaf water potential (ΨL), which is usually 
measured destructively, is the most common metric that has been used for decades for measuring water stress. 
Remote sensing methods have been developed to obtain information on water dynamics from trees and forested 
landscapes. However, the spatial and temporal resolutions of the existing methods have limited our under
standing of the water dynamics and diurnal variation of ΨL within single trees. Thus, we investigated the 
capability of terrestrial laser scanning (TLS) intensity in observing diurnal variation in ΨL during a 50-h moni
toring period. We aimed to improve the understanding on how large a part of the diurnal variation in ΨL can be 
captured using TLS intensity observations. We found that TLS intensity at the 905 nm wavelength measured from 
a static position was able to explain 77% of the variation in ΨL for three trees of two tree species with a root mean 
square error of 0.141 MPa. Based on our experiment with three trees, a time series of TLS intensity measurements 
can be used in detecting changes in ΨL, and thus it is worthwhile to expand the investigations to cover a wider 
range of tree species and forests and further increase our understanding of plant water dynamics at wider spatial 
and temporal scales.   

1. Introduction 

Global warming is altering global hydrological cycles, which results 
in intensified and prolonged droughts causing forest mortality (McDo
well and Allen, 2015; Trenberth, 2011). In addition to dry areas 
becoming dryer, more intense precipitation events occur due to the 
increased water holding capacity of the warmer air. Altered precipita
tion patterns and increased evaporation lead to increased drought fre
quency and severity (Dai, 2013). Water availability has been identified 
as one of the most significant factors determining the global sensitivity 
of vegetation productivity to climate variability (Seddon et al., 2016). 
Major shifts in vegetation patterns may therefore be expected during the 
following decades, affecting food security and terrestrial carbon uptake 

(Beer et al., 2010; Wheeler and von Braun, 2013). Understanding the 
effects of altered water availability requires accurate modelling of plant 
hydraulics at several scales. The development of such models requires 
rigorous parameterization and careful testing against observations; 
multi-scale observations of plant water relations are therefore urgently 
needed (Konings et al., 2019). A wider availability of plant water mea
surements would also improve our ability to understand and anticipate 
drought-induced mortality in plants (Martinez-Vilalta et al., 2019). 

Various methods based on remote sensing or in-situ measurements 
can be used to measure plant and leaf water status. In-situ measurements 
are either destructive, such as leaf sampling to measure leaf water 
content or leaf water potential (ΨL), or indirect such as the measurement 
of subtle changes in xylem or stem diameter with linear transducers (De 
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Swaef et al., 2015) that have been shown to correlate with ΨL (Cochard 
et al., 2002; Dietrich et al., 2018). Stem or leaf water potential can also 
be measured non-destructively using psychrometers, which utilize a pair 
of thermocouples to generate wet bulb depression (Guo et al., 2020; 
Savage et al., 1983). Leaf water potential is one of the most common 
metrics used in plant physiology and ecology to measure plant water 
status, as it describes the sensitivity of plant metabolic and transport 
processes to decreasing soil water availability and atmospheric evapo
rative demand. It is still mostly measured manually using a Scholander 
pressure chamber (Scholander et al., 1965), which is laborious to use, 
requires access to the canopy, and provides only a single reading of the 
canopy water status in time and space. Also, ΨL heterogeneity within the 
tree canopy due to variation in illumination may decrease measurement 
accuracy. To further understand the movement of water within the soil- 
plant-atmosphere continuum and how the water relations of trees and 
forests are affected by environmental conditions, non-destructive and 
reproducible measurement methods capable of providing extensive 
spatiotemporal information on ΨL are urgently needed. Measuring the 
variation in stem or xylem diameter may provide an assessment of the 
plant water content and ΨL of trees (Dietrich et al., 2018) but cannot 
capture variation in leaf water content within tree canopies and de
mands a great deal of infrastructure for measuring many trees 
simultaneously. 

Remote sensing methods can be used to estimate leaf water content, 
from which ΨL is estimable, as these two are closely related (Cohen 
et al., 2005; Cotrozzi et al., 2017; Penuelas et al., 1997). Leaf water 
potential can be divided into three components according to Eq. (1), 
where Ψπ is the osmotic potential (affected by sugars and other dissolved 
solutes), ΨP is the pressure potential that is tightly linked to relative 
water content, and Ψg is the gravitational potential that affects tall trees 
(> 30 m) in particular. Osmotic potential changes at shorter time in
tervals due to changes in solute and water content and at longer time 
intervals due to drought or cold acclimation driven by active osmoreg
ulation. Gravitational potential is constant at a given location in a tree 
canopy, and thus ΨL is mainly controlled by changes in the relative 
water content of leaves at short time intervals such as days (Kubiske and 
Abrams, 1991; Olsson and Milthorpe, 1983). Thus, measuring the 
change in leaf water content may be used as a proxy for estimating ΨL. 

ΨL = Ψπ +ΨP +Ψg (1) 

Leaf water potential varies during the course of a day and also 
seasonally. When day temperatures are high during summer, ΨL may 
vary from near 0 before sunrise to ~ − 3 MPa at midday when water 
availability in the soil is not limited (Klepper, 1968; Syvertsen and Levy, 
1982). Leaf water potential has also shown vertical variation, for 
example for peach trees (Prunus sp.) with heights of less than 5 m 
(Olsson and Milthorpe, 1983) and Norway spruce (Picea abies (L.) H. 
Karst.) trees less than 10 m in height (Hellkvist et al., 1974). Lower 
water potentials were detected higher in the canopy, likely due to the 
increased transpiration and longer transport distance to the upper parts 
of the crown (Olsson and Milthorpe, 1983). 

Passive remote sensing has been used to measure the variation in leaf 
water content of individual leaves at close range and of canopies using 
airborne sensors (Colombo et al., 2008; Danson et al., 1992; Penuelas 
et al., 1997). The estimation of leaf water content using spectral infor
mation is often based on the sensitivity of the shortwave infrared (SWIR) 
region (1200–2200 nm) to leaf water content (Ceccato et al., 2001). The 
near-infrared (NIR) region (700–1000 nm) is also sensitive to leaf water 
content (Penuelas et al., 1997). These methods are, however, dependent 
on solar illumination and therefore cannot be used at very low sun an
gles or during night-time to capture the entire diurnal cycle of plant 
water dynamics. These methods additionally lack the capability to 
measure the within-tree variation of leaf water content. 

The estimation of ΨL has been studied using leaf spectroscopy during 
the last decade, but mainly focusing on grapevines (Vitis vinifera L.) (Bei 
et al., 2011; Rallo et al., 2014; Santos and Kaye, 2009). Cotrozzi et al. 

(2017) studied the estimation of predawn ΨL using spectroscopic mea
surements from oak tree leaves (Quercus oleoides Schltdl. & Cham.) and 
detected drought-induced changes in predawn ΨL. They found that the 
most significant spectral features for estimating predawn ΨL were in the 
1400–1470 nm, 1655–1675 nm, 1840–1950 nm, and 2125–2400 nm 
regions. Rallo et al. (2014) found that vegetation indices combining 
bands in the NIR (710–760 nm) and SWIR (1550–1650 nm) regions 
provided the most accurate estimates of ΨL. However, such methods are 
based on single-leaf measurements, which presents a serious issue, since 
they are prone to error due to the low number of samples and require 
access to the canopy. Other remote sensing methods used to estimate ΨL 
include thermal remote sensing (Baluja et al., 2012). Cohen et al. (2005) 
used a thermal camera to assess the ΨL of cotton plants (Gossypium 
arboreum L.) and found a strong correlation (coefficient of determination 
(R2) = 0.79) between leaf temperature and ΨL using a wet reference 
target. Leaf temperature increased with decreasing ΨL. However, 
methods based on thermal imaging are dependent on sunlight and are 
thus unsuitable for capturing diurnal variation in ΨL. 

Terrestrial laser scanning (TLS), is a measurement method that can 
accurately capture the three-dimensional (3D) structure of trees (Dassot 
et al., 2011; Krooks et al., 2014). A single TLS scan, which typically takes 
3–10 min, produces a point cloud of the surroundings ranging from a few 
metres to tens of metres. It is repeatable and allows the measurement of 
multiple tree canopies in high detail. TLS has been widely used to esti
mate various variables in forests, e.g. forest structural attributes, leaf 
area index, wood quality, and biomass and to quantify dead wood pools 
(Antonarakis et al., 2010; Kankare et al., 2013; Liang et al., 2014; 
Pyörälä et al., 2018; Yrttimaa et al., 2019). 

In addition to the 3D structure, TLS measures the strength of the 
backscattered light at the used wavelength, which in the literature is 
commonly referred to as intensity (Kaasalainen et al., 2011). Intensity 
data from TLS may provide additional information on target properties 
due to its relationship with reflectance at the narrow band of the laser 
light (Kaasalainen et al., 2009). Terrestrial laser scanning utilizes an 
active and controlled source of light that is independent of external 
illumination, reducing the factors that affect the measured spectra and 
allowing for measurements at any time of day. Dual-wavelength TLS 
(DW-TLS) and hyperspectral TLS instruments can measure multiple 
wavelengths, enabling the calculation of spectral ratios similar to pas
sive multispectral imaging. Spectral ratios of TLS intensity can help 
reduce the leaf structural and incidence angle effects on the measured 
reflectance (Junttila et al., 2019; Junttila et al., 2016; Nevalainen et al., 
2014). 

A single intensity measurement consists of the backscattered light 
under the footprint of the laser, which typically varies around 4–10 mm 
in a forest environment depending on the distance of the target. 
Terrestrial laser scanning intensity measurements are complicated by 
target geometry, which influences the intensity-distance relationship. 
Terrestrial laser scanning intensity can be described using the radar 
equation, which states that transmitted power (Pt), aperture area (D), 
optical efficiency (Q), laser-beam divergence (β), atmospheric trans
mission losses (T), range (R), and backscattering target cross-section (σ) 
all affect the received power (Pr): 

Pr =
PtDQ
4πβ2 T2 σ

R4 (2)  

where σ comprises target reflectance, geometry, and illuminated area. 
The power of R is, however, influenced by target size. Planar targets that 
cover the entire laser footprint cause a stronger backscatter, which di
minishes less with distance than linear or blob-like targets due to 
spherical losses (Wagner et al., 2006). This is an issue with coniferous 
species, as the needles do not cover even the small footprint of TLS, 
causing complications in the distance calibration of intensity data 
(Junttila et al., 2019; Korpela, 2017). Generally, deciduous species do 
not suffer from the same problem, because leaves fill the laser footprint, 
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but on the other hand incidence angle effect complicates the interpre
tation of TLS intensity measurements. 

A clear linkage between leaf water content, measured as equivalent 
water thickness (EWT), and TLS intensity has been shown in several 
studies (Elsherif et al., 2019a; Gaulton et al., 2013; Junttila et al., 2018; 
Junttila et al., 2016). Reflectance at the 1550 nm wavelength, which is 
often utilized in TLS sensors, increases as the leaf water content de
creases (Junttila et al., 2016; Rallo et al., 2014). Another wavelength, 
such as 808 nm or 905 nm, is often employed for accounting leaf 
structural effects on the measured intensity at 1550 nm, as they are 
assumed to be less sensitive to leaf water content (Elsherif et al., 2018; 
Junttila et al., 2018). A nearly linear relationship was found between 
EWT and a normalized difference index (NDI) calculated from TLS in
tensity at the 1550 nm and 690 nm wavelengths in a drying experiment 
in a laboratory environment with five species (Junttila et al., 2016). A 
combination of the 905 nm and 1550 nm wavelengths showed better 
accuracy than the 690 nm and 1550 nm wavelengths at predicting EWT 
in a greenhouse experiment with Norway spruce seedlings (Junttila 
et al., 2018). Field experiments with DW-TLS have shown promising 
results for estimating EWT in deciduous species but also low prediction 
accuracy for coniferous species due to complications arising from dis
tance calibration issues explained above (Elsherif et al., 2019b; Junttila 
et al., 2019). Elsherif et al. (2019a) investigated the detection of changes 
in EWT during and after an intense drought event using two observation 
points in time and DW-TLS data at the 808 nm and 1550 nm wave
lengths. However, there is still limited understanding on the capability 
of TLS intensity in characterizing short-term changes in leaf water 
content that are related to the diurnal cycle of ΨL. Research on moni
toring leaf water content changes using TLS has been limited to date. 

To increase our understanding of water dynamics and the diurnal 
variation of ΨL within single trees and to overcome the temporal and 
spatial limitations of passive remote sensing methods and issues arising 
from the TLS intensity distance calibration of coniferous species, we 
collected a time series of 15 TLS scans at the 905 nm and 1550 nm 
wavelengths in the field. We studied and scanned three trees of two 
species with a nearly constant measurement geometry to determine the 
diurnal variation of ΨL during a 50-h time period coupled with 
destructive leaf measurements and radial stem diameter measurements. 
As we cannot measure pressure directly, ΨL estimation is based on the 
well-established theory that a change in leaf water content is the main 
driver of change in ΨL during short time intervals such as days. Our main 
research question was to investigate how large a part of the diurnal 
variation in ΨL may be captured using TLS intensity observations based 
on the known correlation between leaf water content, ΨL, and TLS in
tensity at the 905 nm and 1550 nm wavelengths. Based on existing 
knowledge, we hypothesized that a correlation exists between the 
measured intensity and ΨL. This research contributes to increasing the 
understanding of tree water dynamics and to the development of novel 
methods to measure and monitor it. 

2. Material and methods 

We measured two Scots pines (Pinus sylvestris L.) and one silver birch 
(Betula pendula Roth) (Table 1) during a 50-h monitoring period from 
the 29th to the 31st of July 2019 at the Station for Measuring Ecosystem- 
Atmosphere Relations (SMEAR II) at Hyytiälä Forest Research Station in 
Juupajoki, Finland (61◦46′ N, 24◦17′ E, 170 m a.s.l.) (Table 1). The 
investigated trees were growing in a 57-year-old Scots pine stand with 
combinations of silver birch, Norway spruce (Picea abies (L.) Karst.), 

rowan (Sorbus aucuparia L.), European aspen (Populus tremula L.), and 
common juniper (Juniperus communis L.). The trees were located around 
a multi-storey measurement tower enabling the collection of observa
tions from the tree crowns during the investigation period. 

Radial stem variation of the trees was measured with point den
drometers, i.e. linear variable displacement transducers (model AX/5.0/ 
S, Solartron Inc. West Sussex, U.K.) at a height of 1.5 m. The den
drometers measured the radial variation of the stem and xylem sepa
rately. The xylem diameter changes due to reversible changes in xylem 
content, while the stem diameter changes due to both reversible changes 
in stem water content and due to irreversible cell enlargement associ
ated with cambial growth (Chan et al., 2016; Dietrich et al., 2018). As 
the investigation period was late summer, the cell enlargement phase in 
the cambial growth of the stem had nearly ceased (see Chan et al., 2016 
for the phenology of growth at the site). The radial stem measurements 
were recorded continuously at a one-minute time resolution. 

Environmental variables, such as temperature, relative humidity, 
wind speed, wind direction, and the amount of incoming thermal radi
ation, were measured from a measurement tower located ca. 50 m from 
the measurement site (Fig. 1). The measurements were conducted at 
one-minute intervals. No precipitation occurred during the investigation 
period and neither were any dew events observed at the time of the 
measurements. Soil water potential was simultaneously measured with 
tensiometers (EQ2 Equitensiometer, Delta-T) combined to pressure 
transducers (TR2000A, Trans Instruments) at the depths of 5 and 15 cm 
at 15-min intervals. The data described here are openly accessible from 
the SMEAR station database (https://avaa.tdata.fi/web/smart/smear). 

2.1. Leaf water potential measurements 

Leaf water potential was measured at 9 time intervals during the 
monitoring period (Appendix 1). The top of the tree canopies was 
divided into three height bins for ΨL measurements to ensure a reliable 
reference for entire tree canopies: the top 2 m, 2–4 m from the top, and 
4–6 m from the top. The ΨL samples were collected immediately after 
the TLS measurements. Each sample consisted of four needles or leaves 
that were collected in air tight plastic bags that were filled with moist 
air, stored in a dark and cool bag, and carried immediately to the nearby 
laboratory, where ΨL was measured using a Scholander pressure 
chamber (PMS-1000; PMS Instruments, Albany, OR, USA). Each ΨL 
measurement was the mean of the four samples. The ΨL samples were 
collected in approximately five minutes and the measurement of ΨL took 
approximately 15 min for all the samples of a single canopy. 

As a dependency between canopy water status and radial stem 
diameter variation is known to occur (Dietrich et al., 2018), we created 

Table 1 
Diameters at breast height (DBH) and heights of the investigated trees.   

Scots pine 1 Scots pine 2 Silver birch 

DBH (cm) 22.5 19.8 20.1 
Height (m) 18.9 19.5 20.6  

Fig. 1. Variation of temperature and relative humidity during the monitoring 
period. The measurements were started at 13:00 on the 29th of July and ended 
at 15:00 on the 31st of July 2019. 
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linear regression models between ΨL and the radial stem diameter 
variation for each tree to increase the number of ΨL data points. Using 
these models, we predicted ΨL for each 15 time points of the TLS data. 
Because a lag occurs in the change in radial stem diameter after a change 
in ΨL, we used a lag in creating the regression models (Sevanto et al., 
2002). The predicted ΨL is abbreviated as ΨP-L in the text. 

2.2. TLS measurements 

The TLS measurements were started at 13:00 on the 29th of July 
2019 and ended at 15:00 in the afternoon two days later. During this 
monitoring period, the trees were scanned 15 times using two scanners 
utilizing wavelengths at 905 nm and 1550 nm (see Appendix 1 for ac
curate timings). Each tree was measured with a single TLS scan subse
quently with both scanners from a fixed position with clear visibility to 
the tree crown to avoid occlusion caused by other trees. Each tree had 
their own scanning position and the distance to the trees varied from 11 
m to 13 m. The time difference between the consecutive two scans was 
approximately 15 min and one round of TLS scans (all three trees) took 
about one hour. The scanners used were a FARO X330 (FARO Europe 
GmbH & Co. KG, Korntal-Münchingen, Germany), which operates at 
1550 nm, and a Trimble TX5 (Trimble Inc., Sunnyvale, CA, USA) oper
ating at the 905 nm wavelength. These scanners have similar technical 
specifications: a beam divergence of 0.19 mrad, a max scan rate of 976 
kHz, and intensity recording to a digital number (− 2048 to 2033). The 
beam diameter at output differs slightly, with FARO X330 having a beam 
diameter of 2.25 mm and the Trimble TX5 a beam diameter of 3 mm. 
Both scanners utilize phase shifting range measurements. The scanners 
have the same boxing; thus, the viewing angle is the same between the 
scanners. Both scanner resolutions were set to 0.5, resulting in a vertical 
spacing of 3.07 mm at a 10-m distance; the quality parameter was set to 
2× (i.e. two measurements were made for each point and the resulting 
value was the mean of the two). We placed 11 target spheres (each with 
a diameter of 145 mm) around the measurement tower for further scan 
registration. A Lambertian Spectralon reflectance panel (Labsphere, 
North Sutton, NH, USA) with a nominal reflectance of 40% was used as a 
reference target at a constant distance to normalize the laser intensity of 
each scan. 

2.3. Point cloud processing 

The point clouds from each measurement location were co-registered 
to a common arbitrary coordination system using the external sphere 
targets as reference points. The registration was performed in FARO 
Scene point cloud processing software. Each tree was then manually 
delineated from the individual point clouds using the CloudCompare 
software package (version 2.10) (Dewez et al., 2016). The calibration of 
intensity was conducted to reduce variation caused by factors such as 
temperature and distance. The intensity correction workflow followed 
the procedure presented in Junttila et al. (2019), which included dis
tance and logarithmic corrections and the normalization of intensity 
with a reflectance panel with known reflectance. The intensity measured 
from the reference panel showed a standard deviation between 10 and 
13 in raw intensity values. The distance correction was performed using 
a 10th degree polynomial function that was modelled with empirical 
data concerning the intensity and distance of the scanner (see Appendix 
1 for model parameters). The raw intensity scale of the scanner was 
found to be logarithmic. Thus, a linearization of the intensity scale was 
necessary using empirical relationships between reflectance and raw 
intensity. Further details are provided in Junttila et al. (2019). 

2.4. Point cloud segmentation 

Each tree canopy was segmented from the point clouds to mainly 
include needle or leaf points into the analysis. Segmentation was based 
on a minimum height that was determined visually. The minimum 

heights that were used to segment the canopies were 9.9 m, 11.5 m, and 
10 m, for pine 1, pine 2, and birch, respectively. We included all the 
points from the canopy into the analysis to avoid interfering with the 
intensity data distribution at the tree level and to ensure consistency of 
the data between subsequent measurements of the time series. Thus, no 
classification to branch and needle or leaf points was carried out. Based 
on a mean of a random sample of 15,000 points, the birch leaf points 
showed a calibrated intensity of 0.56 (905 nm) and 0.18 (1550 nm), 
while branch points had an intensity of 0.48 (905 nm) and 0.28 (1550 
nm). The pine needle points had an intensity of 0.31 (905 nm) and 0.12 
(1550 nm), and the stem points intensity of 0.45 (905 nm) and 0.37 
(1550 nm). The number of points in the resulting point clouds that were 
used in the analysis varied between 220,000 and 450,000 between the 
trees and observation times. 

2.5. Explanatory intensity metrics 

A variety of intensity metrics was calculated for each segmented 
point cloud (Table 2). These metrics describe the distribution of in
tensity values within a given point cloud at different wavelengths. The 
metrics were calculated for the 905 and 1550 nm wavelengths sepa
rately. As the calculation of NDI for single 3D points was complicated 
due to slight movements of the branches between consecutive scans, NDI 
was calculated based on the distribution of intensity values in the can
opy. The calculation of NDI was performed using percentiles (10th, 
20th, 30th… 90th) and means of the 905 nm and 1550 nm wavelengths 
(Eq. (3)). All the intensity metrics are shown in Table 2. 

NDI =
I905 − I1550

I905 + I1550
(3)  

2.6. Statistical analysis 

Student’s two-sided t-tests were used to assess the difference in ΨL at 
different heights. Linear regression modelling was used to assess the re
lationships between the intensity metrics and ΨL. We used reduced major 
axis regression (model 2 regression), because both variables contain 
measurement error (Davis and Sampson, 1986). Regression models were 
created using both the measured and predicted ΨL as dependent vari
ables. Normality of the data was tested using the Shapiro-Wilkinson test 
(Hanusz and Tarasińska, 2015). The coefficient of determination (R2) and 
root-mean-square-error (RMSE) were calculated to assess the estimation 
accuracy of the intensity variables. All of the statistical analyses were 
carried out within the R package (R Core Team, 2015). 

Table 2 
Description of the calculated intensity metrics. In the table, i denotes the 
wavelength followed by the name of the metric. For example “1550_mean” 
means average intensity at the 1550 nm wavelength. Respectively, normalized 
difference index (NDI) metrics are followed by the percentile used in the 
calculation of NDI. For example, “NDI_p20” means the metric has been calcu
lated using the 20th percentile of the 905 nm and 1550 nm wavelengths).  

Metric Description 

i_mean Average intensity 
i_std Standard deviation of intensity 
i_p10, i_p20, … 

i_p90 
Multiple-of-10 percentiles (10th through 90th) of the 
intensity distribution 

i_max Maximum intensity 
i_min Minimum intensity 
i_kur Kurtosis of the intensity distribution (Davies and Goldsmith, 

1976) 
i_ske Skewness of the intensity distribution (Davies and Goldsmith, 

1976) 
i_entropy Shannon diversity index (entropy) of the intensity 

distribution (Shannon, 2001) 
i_range Difference between maximum and minimum intensity 
i_D05, i_D25, i_D50, 

i_D75 
Density variables: the 95th percentile divided by the 5th, 
25th, 50th, and 75th percentiles, respectively.  
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3. Results 

3.1. Variation in leaf water potential based on the Scholander pressure 
chamber 

The lowest ΨL values were observed on the day the measurements 
were begun (Fig. 2). Fig. 2 shows a minor decreasing trend in ΨL higher 
in the tree for the silver birch, but no significant differences in ΨL be
tween the different height layers during the monitoring period. Soil 
water potential varied between − 0.05 and − 0.08 MPa at the 15-cm 
depth and between − 0.15 MPa and − 0.21 MPa at the 5-cm depth. 

3.2. Leaf water potential prediction based on stem diameter 
measurements 

A strong linear relationship was observed between ΨL and stem 

diameter variation for each tree (Fig. 3). The strongest relationship was 
found using a 90-min time lag between the ΨL and stem diameter 
measurement. 

3.3. Assessing the relationships between leaf water potential and intensity 
metrics 

The intensity metrics explained a significant proportion of the vari
ation in ΨL (Fig. 4). The best-predicting TLS intensity variables 
explained 70%, 71%, and 77% of the variation in ΨL in pine 1, pine 2, 
and the birch, respectively (Table 3). Generally, the strongest predictors 
were mainly distribution features of the 905 nm wavelength, but the 
distribution of 1550 nm showed similar explanatory power for pine 1. 
The D25 intensity feature of the 905 nm wavelength explained 77% of 
the variation in ΨL with observations from all of the trees in the pre
diction model. However, the distribution of intensity metrics using 

Fig. 2. Variation in leaf water potential (ΨL) at different heights during the monitoring period (n = 4 for each point, average standard deviation was 0.16 MPa). H1 
denotes the top 2 m of height, H2 the top 2–4 m of height, and H3 the top 4–6 m of height. The measurements were started at 13:00 on the 29th of July and ended at 
15:00 on the 31st of July 2019. 

Fig. 3. The relationship between leaf water potential (ΨL) and stem diameter variation. The error bars represent the standard deviation of the ΨL measurements from 
different heights (each point is a mean of 12 observations). Coefficient of determination (R2) and root-mean-square-error (RMSE) for the prediction models are 
also presented. 
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observations from all trees in the same model were not normally 
distributed, which is against the assumptions of linear regression, likely 
causing overestimation of the relationship. This was due to the uneven 
distribution of tree species in the samples. 

3.4. Assessing the relationships between predicted leaf water potential and 
intensity metrics 

When we predicted ΨL for all the 15 observation points in time (See 
3.2) and used ΨP-L as a dependent variable in our linear regression 
models, we obtained similar results as those presented in 3.3. On 
average, the 905 nm wavelength features were able to explain a larger 
proportion of the variation in predicted ΨL than the 1550 nm and NDI 
features with the exception of pine 1 (Table 4, Fig. 5). For the birch, the 
lowest part of the 905 nm intensity distribution was most sensitive to 
variation in ΨL with the 905_min, 905_p05, and 905_p10 features among 
the strongest predictors. Whereas the strongest predictors for the pines 
varied around the mean of the intensity distribution (i.e., p30, p40, p50, 
p60 features). Again we note that the intensity variables of all the trees 
pooled together were not normally distributed according to the Shapiro- 
Wilkinson test due to the different numbers of pines and birch in the 
data. 

4. Discussion 

The main aim of this study was to investigate how much of the 
diurnal variation in ΨL within Scots pine and silver birch trees can be 
explained using TLS intensity measurements. Our results showed that 
TLS intensity at both 905 nm and 1550 nm wavelengths increased due to 
decreased leaf water content, and that a time series of TLS intensity 
measurements can capture from 70% to 77% of the variation in 
measured ΨL for individual trees. Our destructive ΨL measurements 
were complemented with estimated ΨL values that were based on stem 
diameter change measurements and existing knowledge on the time lag 
between the change in ΨL and stem diameter (Lintunen et al., 2020). The 
time lag of 90 min that we used is in line with earlier results (Sevanto 
et al., 2002). 

TLS intensity showed a relatively strong relationship with ΨL (R2 of 
0.56–0.77) for individual trees, especially at the 905 nm wavelength 
(See Table 3). This result is partly contrary to previous research, since 
the 1550 nm wavelength has been shown to be generally more sensitive 
to leaf water content than the 905 nm wavelength (Ceccato et al., 2001). 
Although the 905 nm wavelength can exhibit changes due to leaf water 
content (Penuelas et al., 1997), other factors may have contributed to 
the behaviour of the 905 nm wavelength in this study. 

The amount of water in leaves is linked to their leaf area (Juneau and 

Fig. 4. The relationship and coefficient of determination (R2) between leaf water potential (ΨL) and intensity metrics for all trees and for each tree separately. The 
error bars represent the standard deviation of measured ΨL at different heights (each point is a mean of four observations). Descriptions of the predictors 905_D25, 
905_p20, 905_p60, and 905_min is provided in Table 2. 

Table 3 
The five strongest predictors, coefficient of determination (R2), and root-mean-square-error (RMSE, MPa) for the linear regression models explaining leaf water po
tential (ΨL) using intensity metrics for each tree and all trees together. In these prediction models, ΨL and TLS intensity were measured at nine observation points in 
time. A description of the predictors is provided in Table 2.  

Pine 1 Pine 2 Birch 

Predictor R2 RMSE Predictor R2 RMSE Predictor R2 RMSE 

905_p20 0.70 0.111 905_p60 0.71 0.089 905_min 0.77 0.089 
1550_p60 0.65 0.119 905_p50 0.71 0.089 1550_min 0.70 0.102 
905_p30 0.65 0.120 905_p40 0.71 0.089 905_p05 0.65 0.109 
1550_p70 0.62 0.124 905_mean 0.66 0.097 905_p10 0.60 0.117 
1550_p80 0.56 0.134 905_p70 0.66 0.097 905_D25 0.53 0.128   

All trees 

Predictor R2 RMSE 

905_D25 0.77 0.141 
905_D05 0.58 0.189 
905_std 0.58 0.190 
905_D50 0.55 0.196 
905_p95 0.54 0.199  
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Tarasoff, 2012), thus, variation in the size of needles or leaves could have 
resulted in variation in TLS intensity. Another possible factor that could 
have co-occurred with changes in leaf water content is variation in leaf 
angle distribution. Reduced amount of water within leaves also affects 
their mass, which can affect the angle of leaves and needles relative to the 
branches holding them. In addition, diurnal branch movement has been 
detected using TLS and it could also affect the TLS intensity distribution of 
tree canopies within diurnal time scales (Puttonen et al., 2016). Since 
leaves tend to strongly reflect near-infrared light, where the 905 nm 
wavelength is situated, we could anticipate that any changes in the di
mensions or angles of leaves would affect the 905 nm wavelength more 
than the 1550 nm wavelength. On the other hand, the TLS intensity dif
ference between foliage and stem returns is greater for the 1550 nm 
wavelength, which is largely affected by water content (Ceccato et al., 
2001; Feret et al., 2019). The stem points showed a two-fold higher 
reflectance compared to foliage points for the 1550 nm wavelength 
(average TLS intensity of needles 0.12 vs. 0.37 for the stem), but little 
difference was found between the two for the 905 nm wavelength 
(average TLS intensity of needles 0.31 vs. 0.45 for the stem). Thus, any 
change in the distribution of stem and foliage points within a sample 
caused, for example by altered leaf angle distribution, would be seen as a 
greater change in the TLS intensity distribution of the 1550 nm wave
length than the 905 nm wavelength. Therefore, without measurements of 

the aforementioned factors, it is difficult to state if the relationships be
tween TLS intensity and ΨL are found solely on changes in leaf water 
content, but further studies should address the interaction of TLS in
tensity and diurnal variation of canopy properties more in-depth. How
ever, based on the observed relationship between ΨL and TLS intensity in 
the field, TLS intensity measurements seemed relatively insensitive to the 
constantly varying illumination conditions which, based on previous 
research, hinder the use of passive remote sensing methods for many 
forest monitoring applications (Cheng et al., 2014; Nichol et al., 2006). 

When estimating ΨL, we observed differences in the performance of 
the intensity metrics between the tree species. For Scots pines, the in
tensity metrics that were strongest predictors in explaining variation in 
ΨL were found around the middle of the intensity distribution at both the 
905 nm and 1550 nm wavelengths varying between the 20th and the 
60th percentile of the distribution. For silver birch, the intensity metrics 
that were strongest predictors in explaining variation in ΨL were in the 
lowest part of the intensity distribution of both the 905 nm and 1550 nm 
wavelengths, the 905 nm wavelength showing distinctly better perfor
mance. The differences in the intensity metrics explaining the variation 
in ΨL between trees are likely due to the varying structure of the tree 
crowns, difference in leaf shape (coniferous vs. deciduous), and differ
ences in the numbers of needle/leaf and stem/branch points in the 
segmented point clouds. 

Table 4 
The five strongest predictors, coefficient of determination (R2), and root-mean-square-error (RMSE, MPa) for the linear regression models explaining predicted leaf 
water potential (ΨP-L) using intensity metrics for each tree and all trees together. In these prediction models, ΨL is estimated for 15 observation points in time and the 
TLS intensities are measured from the respective time points. A description of the predictors is provided in Table 2. Note that predictor 905_D25 is transformed using a 
logarithm (log(905_D25)).  

Pine 1 Pine 2 Birch 

Predictor R2 RMSE Predictor R2 RMSE Predictor R2 RMSE 

1550_p50 0.56 0.170 905_p40 0.58 0.139 905_min 0.74 0.109 
905_D75 0.53 0.175 905_entropy 0.58 0.139 905_p05 0.64 0.127 
1550_p40 0.53 0.176 905_mean 0.56 0.142 905_entropy 0.63 0.131 
1550_p30 0.50 0.182 905_p30 0.56 0.143 905_p10 0.62 0.132 
1550_p60 0.49 0.182 1550_D50 0.53 0.146 905_p20 0.50 0.151   

All trees 

Predictor R2 RMSE 

log(905_D25) 0.70 0.180 
905_D50 0.49 0.236 
905_D05 0.47 0.241 
905_std 0.47 0.242 
NDI_p90 0.46 0.244  

Fig. 5. The relationship and coefficient of determination (R2) between predicted leaf water potential (ΨP-L) and laser intensity metrics for all trees and for each tree 
separately. A description of predictors 905_D25, 1550_p50, 905_p40, 905_min is provided in Table 2. The prefix log indicates that the predictor has been transformed 
using the logarithm function. 
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Our preliminary tests indicated that filtering of stray points and 
detailed segmentation of the point clouds caused the relationship be
tween intensity and ΨL to substantially decrease, which was likely due to 
the effect of these procedures on the intensity distribution. Therefore, 
we suggest that caution should be used when filtering, segmenting, and 
classifying point clouds as these procedures can have a significant 
impact on the TLS intensity distribution, especially when using a time 
series of intensity observations from the same target, as we did in this 
study. This has not been reported before. Thus, further studies should 
investigate the link between the stability of intensity distributions and 
different point cloud modifications. 

We used a simple segmentation of the canopy and did not separate 
leaf and stem points in this study. We also did not filter stray or “ghost” 
points that commonly result from the laser hitting the edges of a target 
(Eitel et al., 2010). Although the leaf material classification could be 
expected to improve the estimation accuracy of ΨL, the correlation be
tween TLS intensity metrics and ΨL was already strong using the 
methods applied in this study. However, for operational applications 
that could be used to predict ΨL over time for a large number of trees in 
forests, robust methods for separating leaf points would be required. Our 
results are likely influenced by the large amount of intensity observa
tions from each tree canopy, which results in a more stable intensity 
distribution than that achievable for individual branches or leaves. The 
trees were also scanned each time from the same position, which in 
principle should result in a nearly equal number of stem and leaf points 
in the point clouds. 

Earlier studies have found that NDI metrics have been stronger pre
dictors for EWT than single-wavelength metrics, because another wave
length has been able to normalize a part of the variation in TLS intensity 
caused by varying incidence angle and leaf structure (Elsherif et al., 
2019b; Junttila et al., 2019; Junttila et al., 2018). In this study, the NDI 
metrics did not provide any improvement compared to single-wavelength 
metrics in estimating ΨL, which may be caused by differences in the 
design of this and other experiments. The main differences compared to 
previous studies were: 1) the utilization of a dense time series to monitor 
diurnal variation in leaf water status instead of single observations of 
different leaves or trees with varying leaf water content, 2) the non- 
destructive nature of the research design (i.e. same trees were 
measured multiple times), and 3) the estimation of ΨL instead of EWT. 
Thus, direct comparisons to previous studies should not be made. The 
reason why the NDI metrics did not perform as well as single-wavelength 
metrics in the estimation of ΨL was likely firstly caused by the nearly 
constant leaf/needle structure during the monitoring period, which re
duces the need for leaf structural normalization with NDI metrics (Junt
tila et al., 2018). Another likely reason is that within the tree canopies the 
incidence angle of leaves and needles should stay relatively constant at 
the canopy-level, and therefore the single wavelength intensity features 
are less influenced by the incidence angle. Single-wavelength metrics 
have also been strong predictors of EWT for single species in a drying 
experiment (Junttila et al., 2016). Structural differences in foliage have a 
greater effect on intensity if a larger number of trees are monitored 
simultaneously. Secondly, despite the wind speed was low during the 
monitoring period, slight movements of the leaves and branches occurred 
between the subsequent scans at the 905 nm and 1550 nm wavelengths, 
which may affect the stability of the NDI metrics through the time series. 
Thirdly, we used TLS intensity to measure the change in leaf water con
tent and to derive ΨL instead of direct EWT estimation. 

However, in our controlled experiment, TLS intensity proved able to 
explain 61–78% of the within-tree and between-tree variation in ΨL. The 
best-performing intensity features were mainly density features of the 
905 nm wavelength (905_D25, 905_D05, 905_D50) that describe the 
variation in TLS intensity within a tree canopy. In other words, the 
changes in the shape of the intensity distribution due to varying ΨL have 
been similar between trees and tree species, encouraging further studies 
towards developing a general model that could estimate ΨL using TLS 
intensity measurements. The finding that density features outperformed 

other TLS intensity features can be partly explained by the ability of 
density features in normalizing TLS intensity differences between trees 
arising from calibration issues, because the density features are not 
sensitive to the absolute position of the TLS intensity distribution. We 
should note that the numbers of trees and samples were rather limited in 
our study for evaluating the capability of TLS intensity time series in 
estimating ΨL for trees of varying ages, species, and structures growing 
in various ecoregions, but based on our results, a clear correlation ap
pears to occur between TLS intensity and ΨL. 

Non-destructive measurements of ΨL using TLS intensity at larger 
scales could be feasible in the future if technical challenges can be 
overcome, which would enable tree stress detection and the investiga
tion of canopy water dynamics at larger scales. Despite the fairly strong 
agreement between ΨL and TLS intensity, the best performing intensity 
features varied among the three measured trees in our study, which a 
sign of mild inconsistency of the TLS intensity distributions between the 
trees. Terrestrial laser scanning intensity measurements require cali
bration (Kaasalainen et al., 2011; Kaasalainen et al., 2009), but the lack 
of reliable calibration methods hinders the use of TLS intensity infor
mation on a larger scale. Firstly, the main challenges remain in the 
distance and incidence angle calibrations of TLS intensity, which require 
development to allow more robust measurements in varying forest 
conditions. Current calibration methods are unable to account for the 
differences in backscattered reflectance that are caused by small targets 
that do not cover the laser footprint entirely. This should be especially 
considered when measuring coniferous species with needles, which tend 
to be smaller than the laser footprint, because the relationship between 
laser intensity and distance is determined by the target size and a smaller 
amount of backscattered light is received small targets (Korpela, 2017). 
Secondly, accurate classification of foliage from woody material is 
required for assessing the canopy reflectance directly instead of using 
TLS intensity value distribution features that include woody material. A 
rigorous intensity calibration method would pave the way towards ap
plications in tree and plant stress detection using also laser scanning 
from moving platforms such as airborne or mobile laser scanning that 
would enable large-scale monitoring of ΨL using diurnal measurements, 
which are currently challenging. However, based on the results of this 
study and earlier work (Junttila et al., 2019), static TLS intensity mea
surements from tree crowns may reveal changes caused by e.g. altered 
water content despite the challenges in the calibration. 

The theoretical background of the link between relative water content 
and ΨL is strong, but there are also certain limitations to the capability of 
leaf water content in explaining ΨL variation. The used estimation 
approach is based on the relationship between ΨL and relative water 
content. However, relative water content is not the only variable affecting 
ΨL and osmotic potential may also affect ΨL, especially at longer time 
intervals or during extreme events such as drought (Bartlett et al., 2012; 
Nobel, 1999). Therefore, for longer time intervals (for example, month, 
season, year), the estimation accuracy of ΨL using TLS intensity is likely 
constrained by the influence of changes in osmotic potential. 

We investigated the capability of TLS intensity in capturing the 
diurnal variation of ΨL. Earlier studies that have utilized TLS intensity in 
plant water status estimation have concentrated on estimating EWT, 
which may vary greatly within tree canopies and is strongly related to 
leaf mass per area (LMA). Leaf mass per area varies greatly between 
species and within species depending on environmental conditions such 
as light and temperature (Poorter et al., 2009). Therefore, EWT is less 
useful in understanding plant water status compared to ΨL (Elsherif 
et al., 2019b; Junttila et al., 2019). Although intensity metrics explained 
a large part of the variation in ΨL in our controlled experiment including 
three trees, there is still limited knowledge on how consistent the rela
tion between ΨL and intensity metrics is within and between the tree 
communities. Theoretically, TLS can measure tens of tree canopies with 
a single easy-to-repeat scan and the ability of estimating the ΨL of these 
canopies would enable the measurement of ΨL at unprecedented spatial 
and temporal scales, which may help us further understand the 

S. Junttila et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 255 (2021) 112274

9

movement of water within the soil-plant-atmosphere continuum and the 
effect of a warmer and drier climate on our ecosystems. 
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Appendix 1 

In this appendix we present the detailed schedule of the TLS and ΨL measurements and the model parameters that were used to correct for the 
logarithmic behaviour of the TLS intensity.  

Table 1 
The starting time for each round of TLS scans and whether leaf water potential was measured or not.  

Scan number Time Date ΨL was measured 

1 13:00 29.7.2019 yes 
2 15:20 29.7.2019 yes 
3 18:35 29.7.2019 yes 
4 21:30 29.7.2019 yes 
5 06:12 30.7.2019 no 
6 8:22 30.7.2019 yes 
7 12:37 30.7.2019 yes 
8 15:05 30.7.2019 yes 
9 18:04 30.7.2019 no 
10 19:09 30.7.2019 yes 
11 21:37 30.7.2019 no 
12 05:51 31.7.2019 yes 
13 09:45 31.7.2019 no 
14 12:22 31.7.2019 no 
15 14:04 31.7.2019 no   

Table 2 
The polynomial model parameters used for distance correction of TLS intensity.  

Trimble TX5 

Intercept a1 a2 a3 a4 a5 a6 
1826.5 − 142.5 126.0 0.3037 − 75.7555 65.4323 − 1.75 
a7 a8 a9 a10    
− 19.41 8.4852 26.2545 − 21.18      

FARO X330 
Intercept a1 a2 a3 a4 a5 a6 
1550.813 − 214.561 167.473 − 58.98 − 54.93 121.396 − 112.53 
a7 a8 a9 a10    
51.282 1.697 − 32.113 25.183     
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vegetation leaf water content using reflectance in the optical domain. Remote Sens. 
Environ. https://doi.org/10.1016/s0034-4257(01)00191-2. 
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