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RESEARCH PAPER

Exon-level estimates improve the detection of differentially expressed genes in 
RNA-seq studies
Arfa Mehmooda,b, Asta Laiho a, and Laura L. Eloa,b

aTurku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; bInstitute of Biomedicine, University of Turku, Turku, 
Finland

ABSTRACT
Detection of differentially expressed genes (DEGs) between different biological conditions is a key data 
analysis step of most RNA-sequencing studies. Conventionally, computational tools have used gene- 
level read counts as input to test for differential gene expression between sample condition groups. 
Recently, it has been suggested that statistical testing could be performed with increased power at 
a lower feature level prior to aggregating the results to the gene level. In this study, we systematically 
compared the performance of calling the DEGs when using read count data at different levels (gene, 
transcript, and exon) as input, in the context of two publicly available data sets. Additionally, we tested 
two different methods for aggregating the lower feature-level p-values to gene-level: Lancaster and 
empirical Brown’s method. Our results show that detection of DEGs is improved compared to the 
conventional gene-level approach regardless of the lower feature-level used for statistical testing. The 
overall best balance between accuracy and false discovery rate was obtained using the exon-level 
approach with empirical Brown’s aggregation method, which we provide as a freely available 
Bioconductor package EBSEA (https://bioconductor.org/packages/release/bioc/html/EBSEA.html).
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Introduction

RNA-sequencing (RNA-seq) technology is widely used in basic 
and applied research to study the transcriptome by enabling the 
quantification of all expressed genes in given samples simulta-
neously[1]. A typical goal in RNA-seq studies is to identify differ-
entially expressed genes (DEGs) between sample groups 
representing, for example, different cell types, perturbations, or 
states, in order to understand the underlying biological mechan-
isms [2].

The computational methodologies to analyse RNA-seq 
data are still in the process of refinement. The conven-
tional RNA-seq data analysis pipeline includes three main 
steps: 1) read alignment to the reference genome, 2) gene 
expression level quantification and 3) detection of DEGs. 
After read alignment, the expression level quantification is 
typically achieved using counting schemes that summarize 
the read counts across the exons for each gene, using exon 
intersection or exon-union methods. In the exon-union 
approach, reads from all exons across the different iso-
forms are summed, whereas in the exon-intersection, only 
the reads from constitutive exons – exons which are con-
sistently conserved after splicing – are considered [2]. 
These gene-level read counts are then used as input for 
differential expression testing with methods such as 
DESeq2 [3], limma [4], edgeR [5], or ROTS [6] (see [7] 
for a comprehensive overview of differential expression 
testing methods).

Recently, we and others have demonstrated the benefits of 
using exon-level read counts or transcript abundances over 
the gene-level read counts for identifying DEGs [9–12]. The 
suggested benefits of this alternate approach include increased 
power in statistical testing and diminished bias caused by the 
complex alternatively splicing events. With the conventional 
gene-level approach, it is difficult to detect differential gene 
expression reliably when the difference in the total read 
counts of a gene is small between the sample groups. In this 
case, the statistical power can be increased if a larger number 
of measurement points are available in the statistical testing, 
such as read counts across multiple exons. Due to the alter-
native splicing, it is also possible that the differential gene 
expression remains undetected if the expressional differences 
heavily vary across the different parts of the gene. This can be 
a significant limitation in the accurate detection of DEGs with 
the conventional gene-level read count-based approach as 
with many organisms, a large proportion of the genes undergo 
alternative splicing – for example, around 95% [13] in human.

Instead of using the gene-level summary counts, the initial 
statistical testing can be alternatively performed at a lower 
feature-level, prior to aggregating the result in the gene-level. 
Here, we tested how the usage of exon-level read counts, 
transcript-level read counts, or transcript compatibility counts 
(TCCs) compares with the conventional gene-level approach 
in two publicly available RNA-seq datasets. MicroArray 
Quality Control (MAQC) benchmark dataset [14] contains 
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one brain sample and one universal human reference sample 
and was chosen as it had corresponding quantitative real-time 
polymerase chain reaction (qRT-PCR) validation data avail-
able for a large number of genes (840). Additionally, we 
selected a relatively deeply sequenced prostate cancer dataset 
[15] (>60 million reads per sample) that contains 14 tumours 
and 14 normal samples. For aggregating the lower feature- 
level p-values, two different methods were considered: 
Lancaster method [16] and empirical Brown’s method (ebm) 
[17]. Lancaster method performed superior to Fisher [18] and 
Sidak methods [19] in the aggregation of transcript-level 
p-values in a recent study [12], but (like Fisher and Sidak) it 
assumes independence of the observations and thus does not 
take into consideration the typical situation where there are 
several transcripts or exons that are associated with the same 
gene. Therefore, we also included ebm that allows considering 
dependence between features.

Results

An overview of our comparison approach is shown in Fig. 1, 
summarizing the preprocessing steps to produce the count 
matrices at different feature levels and illustrating the differ-
ence in the statistical testing procedure based on the conven-
tional and the proposed alternative approaches.

With the combination of Kallisto [20], Subread [21], and 
R/Bioconductor package tximport [22], it is possible to pro-
duce read counts for all the four different feature levels (gene, 
transcript, TCC, and exon). Additionally, the popular conven-
tional analysis approach combining Star [23] alignments with 
Subread summarization to produce exon and gene-level read 
counts was run to see how these results compare with those 
based on Kallisto alignments.

Prior to statistical testing, the data at each feature-level 
were filtered and harmonized across the datasets in order 
to generate comparable results. In addition to removing 

Figure 1. Schematic illustration of the different analysis steps. The two public datasets (MAQC and prostate cancer dataset) were preprocessed with either Kallisto- or 
Star-based workflow to produce gene-, transcript-, transcript compatibility- and exon-level read count data. After feature-harmonization across the datasets and 
expression-based filtering, statistical testing was performed at the gene-level or alternatively at the lower feature-levels in which case p-values were then aggregated 
to gene-level using two alternative approaches (Lancaster or empirical Brown’s method).
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very lowly expressed genes, genes with only one exon were 
filtered from all feature-level datasets as the results for 
them will not differ between the feature levels. The 
Ensembl annotation used contained 65,217 genes, of 
which 13,064 remained in the MAQC dataset and 13,998 
in the full prostate cancer dataset after the harmonization 
and filtering.

Statistical testing at the different feature levels can be 
performed with any method available for RNA-seq data – 
here we used the popular DESeq2 R/Bioconductor package 
[3]. Transcript, TCC, and exon-level p-values were then 
aggregated to gene-level using Lancaster and empirical 
Brown’s method. The mean of normalized counts from the 
DESeq2 output was used as weights for the Lancaster method 
according to a previous example [12].

Accuracy in MAQC dataset

We investigated the accuracy of the different analysis schemes 
by calculating the partial Area Under the Curve (pAUC) for 
each scheme based on the qRT-PCR validation data available 
for the MAQC RNA-seq dataset. The pAUC for specificity 
above 0.8 was calculated at various log2-fold change cut-offs 
for the qRT-PCR data from 0.5 to 5, corresponding to 79–631 
validated DEGs. The 97 genes with log2-fold change less than 
0.2 in qRT-PCR were considered as true negatives. The results 
are summarized in Fig. 2, showing that all approaches using 
exon-, TCC- or transcript-based features outperformed the 
conventional gene-level analysis approach. Exon-based analy-
sis approach with ebm for p-value aggregation had the best 
overall performance. Interestingly, with the Lancaster aggre-
gation method, the exon-based approach performed worse 

than the other candidate approaches, indicating the impor-
tance of considering exon-dependence when working with 
exon-level read counts. The second best pAUC was reached 
with the TCC-based approach with ebm aggregation, and also, 
in this case, the result was much worse with Lancaster aggre-
gation. Transcript-based approaches had mediocre perfor-
mance, and with them, the difference between the 
aggregation methods was negligible. The Star-based analysis 
schemes at the exon-level provided very similar results with 
the corresponding Kallisto-based schemes. In contrast, the 
gene-level result was clearly worse with Star compared to 
the corresponding Kallisto-based result (Fig. 2).

Number of DEGs and false discovery rate in prostate 
cancer dataset

In the prostate cancer dataset, we studied the number of 
DEGs and false discovery rate (FDR) by means of investigat-
ing the number of DEGs in real and mock comparisons. In 
the real between-group comparisons, seven samples were 
randomly selected 10 times (without replacement) from both 
sample groups (tumour and normal). With Kallisto-based 
analysis schemes, the median number of DEGs in these subset 
comparisons ranged from 2660 (gene-level approach) to 7468 
(exon-based approach with Lancaster aggregation) (Fig. 3A), 
whereas the full dataset resulted in 5127–9880 DEGs depend-
ing on the analysis scheme. More DEGs were generally 
detected with all the alternative approaches compared to the 
gene-level approach regardless of the choice of the aggrega-
tion method. Lancaster aggregation method provided more 
DEGs compared to the ebm at all feature levels, although the 
difference was subtler at the transcript-level.
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Figure 2. Partial area under the curve (pAUC) values at a specificity 0.8 at varying qRT-PCR cut-offs in the MAQC dataset, ranging from 0.5 to 5 with an increment of 
0.1 across different analysis schemes.
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To estimate the number of false positives (FPs), we per-
formed a mock within-group analysis by sampling seven sam-
ples 10 times (without replacement) from the normal sample 
group into two groups. The genes found as differentially 
expressed in this within-group comparison were marked as 
FPs. FDR was then calculated by scaling the number of FPs 
(median number of genes detected in the 10 subset compari-
sons) by the number of DEGs found in the corresponding 
between-group comparison (Fig. 3B). Overall, the different 
analysis schemes showed low FDR, with the highest median 
FDR (0.06) observed for the exon-based analysis scheme with 
the Lancaster aggregation method, followed by the TCC-based 
scheme with Lancaster aggregation (FDR 0.01).

Star-based analysis schemes consistently provided a little 
fewer DEGs than the corresponding Kallisto-based analysis 
schemes, while FDRs remained similar (Fig. 3).

Example genes in prostate cancer dataset

The exon-based approach with ebm for p-value aggregation 
provided a large number of DEGs with reasonable FDR. Fig. 4 
illustrates two representative examples of genes that were 
detected with this approach but missed by approaches based 
on other feature levels. Here, an expression level (normalized 
read count) and fold-change are visualized for each gene at 
the exon-level (A, E), transcript-level (B, F), TCC-level (C, G), 
and gene-level (D, H), along with the aggregated and feature- 
level statistical significance levels.

The first gene (ENSG00000122641, Fig. 4A-D) has seven 
expressed exons, five of which are significantly up-regulated. 
Although consistent up-regulation is evident at the exon-level, 
the difference in total counts at the transcript, TCC, or gene- 
level is not large enough to yield significant FDR for the gene 
with the analysis schemes based on these feature levels.

The second gene (ENSG00000204681, Fig. 4E-H) has 47 
expressed exons, out of which 27 are significantly up- 
regulated. At the transcript, TCC, and gene-level, the partial 
up- and down-regulation cancel out one another, and the 
gene thus remains undetected.

In addition to illustrating how analysis of the data at 
a lower resolution signal level can improve the results, the 
examples shown also highlight the importance of visualizing 

the behaviour of the result genes at the exon-level in order to 
interpret the behaviour of the gene in a comprehensive way.

Discussion

We investigated the accuracy and robustness of detecting the 
DEGs in RNA-seq studies using both the conventional 
approach based on the utilization of gene-level read counts 
and the alternative approach where the initial statistical test-
ing is performed at a lower feature-level (transcript, transcript 
compatibility, exon), prior to aggregating the result to the 
gene-level. Two different aggregation methods were used: 
Lancaster and empirical Brown’s method (ebm), the latter 
being able to consider feature-dependence.

Earlier studies indicating the benefit of the alternative 
lower feature-level-based approaches over the conventional 
gene-level approach include the work by Liu et al. [24], 
where utilization of probe-level data improved the detection 
of DEGs in the context of microarrays [24]. With RNA-seq 
data, Laiho et al. [9] used the exon-level data and Yi et al. [11] 
transcript and TCC-level data to increase the accuracy and 
sensitivity of the differential gene detection. However, our 
study is, to our knowledge, the first one systematically com-
paring the use of several different feature levels and, in this 
context, investigating the effect of taking the dependence of 
features into consideration in statistical testing.

Kallisto has recently become a popular tool in RNA-seq 
data analysis and, with some auxiliary tools, allows the gen-
eration of count data matrices at all four feature levels, mak-
ing it a convenient preprocessing tool for our study (Fig. 1). 
In addition, we generated exon- and gene-level count matrices 
based on Star alignments, representing the more traditional 
data preprocessing workflow. Our results suggested that the 
analysis schemes based on preprocessing with Kallisto gener-
ally performed slightly better compared to the analysis 
schemes based on Star alignments (Figs. 2 & 3). However, 
with the exon-based schemes, the difference was very small. 
Thus, for those looking for a simple analysis workflow, we 
recommend using the Star-based workflow at the exon-level.

Assessment of pAUC based on the MAQC RNA-seq 
dataset with complementary qRT-PCR validation data 
showed that the exon-based analysis scheme with ebm 
aggregation outperformed the other analysis schemes (Fig. 

Figure 3. (A) Number of differentially expressed genes (DEGs) across different analysis schemes in the subset (7vs7) and the full prostate cancer dataset (14vs14) 
comparisons. (B) The false discovery rates across the analysis schemes based on mock comparisons.
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2). The same approach also showed good performance in 
the prostate cancer dataset, where it enabled the detection 
of a relatively high number of DEGs while showing low 
FDR (Fig. 3). Also, the TCC- and transcript-based analysis 
schemes improved the results over the conventional gene- 

level approach in both datasets. Thus, our results clearly 
show how the statistical power in detecting differential gene 
expression is increased due to the availability of several 
measurements per gene, consistent with the earlier stu-
dies [9,12].

Figure 4. Visualization of two example genes that were detected significant (FDR < 0.05) between the tumour and normal samples in the full prostate cancer dataset 
by the Kallisto-based exon-level analysis scheme (with ebm aggregation) but not with the other feature-level analysis schemes. The genes are visualized in (A, E) at 
the exon-level, (C, G) at the TCC-level, and (B, F) at the transcript-level and (D, H) at the gene-level. The upper panel shows the log2 fold-change of each feature, 
asterisk indicating the p-value level (* p < 0.05, ** p < 0.01, *** p < 0.001). Ensembl gene identifiers and FDR are marked in the figure title. The lower panel shows 
the mean and the standard error of the normalized feature counts.
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Ebm aggregation provided a significant improvement to 
the results with the exon-based and TCC-based analysis 
schemes, while with the transcript-based schemes, the differ-
ence in the results between the two tested aggregation meth-
ods was negligible. This is likely to be explained by the ability 
of ebm to consider the dependence of features (several exons 
or transcripts associated with the same gene), most pro-
nounced at the exon-level. The benefit of prohibiting the 
inflation of aggregated p-values by considering the feature 
dependence is also supported by the observation that with 
the exon-based analysis approach, the false discovery rate 
clearly elevated with the Lancaster method that ignores the 
feature dependence (Fig. 3). The fact that the transcript-based 
approach performed worse than exon- and TCC-based 
approaches indicates that estimating the transcript abundance 
still remains a challenging task. The downside with the TCCs, 
on the other hand, is that they are less intuitive to interpret 
biologically as different TCCs from the same gene do not have 
established annotations but are produced based on the data 
for each study. In fact, TCCs have originally been introduced 
to estimate the alternative splicing isoform frequencies and 
are calculated in the so-called equivalence classes, which con-
sist of the reads that are compatible with the same set of 
transcripts [20].

Visualization of selected example genes illustrated how 
differential gene expression could be missed by the conven-
tional gene-level analysis approach when the difference in 
total read counts is small or parts of the gene are regulated 
to different directions (Fig. 4) – a situation that easily arises in 
the context of alternative splicing. The visualizations also 
highlight the importance of inspecting the exon-level expres-
sion in order to validate and interpret the gene-level result. 
Thus, we provide an easy to use implementation of the super-
ior differential gene expression analysis scheme (exon-based 
analysis with ebm aggregation) as a freely available EBSEA 
(Exon-Based Analysis for Expression) R/Bioconductor pack-
age (https://bioconductor.org/packages/release/bioc/html/ 
EBSEA.html), coupled with exon-level expression 
visualization.

Methods

Datasets

The accuracy of the detected DEGs with the compared ana-
lysis schemes was accessed using RNA-seq data from the 
Microarray Quality Control (MAQC) project [14]. This 
experiment consists of two samples; one from Ambion’s 
human brain and another from Stratagene’s human universal 
reference RNA. The raw data are available at NCBI Short- 
Read Archive (SRA) under the accession number SRA010153. 
The corresponding qRT-PCR measurements for 840 genes, 
used as ground truth in our study, are available in Gene 
Expression Omnibus (GEO) under the accession number 
GSE5350. The second dataset referred to as the prostate 
cancer dataset, comes from a prostate cancer study [15] that 
contains RNA-seq data on tumour and normal samples (14 in 
each group) and is available from ArrayExpress under the 
accession number E-MAT-567.

Data processing

The overview of the data processing workflow is described in 
Fig. 1. The raw RNA-seq data were processed in four alter-
native ways based on alignments or pseudo alignments from 
Kallisto tool [20] (v0.44.0) to produce the count data matrices 
at the different feature levels (gene, transcript, TCC, exon). In 
addition, gene and exon-level count matrices were also pro-
duced based on the alignments from Star aligner [23] 
(v2.6.1b). The human Ensembl-derived GRCh38 (release 80) 
genome and transcriptome annotation were used as 
a reference in the analysis. In the Kallisto-based workflows, 
the tool was run in quant mode to produce the transcript 
counts and in pseudo mode to produce the TCCs. R/ 
Bioconductor package tximport [22] was used to produce 
the gene-level count matrix based on the transcript-level 
counts and description of gene models. With tximport, the 
gene-level counts are produced by summing the associated 
transcript counts. To obtain the TCC matrix from the result 
files from Kallisto, we used a script create_kallisto_ec_count_-
matrix.py from https://github.com/Oshlack/ec-dtu-paper 
/blob/master/create_kallisto_ec_count_matrix.py. The TCCs 
that mapped to different genes were removed before statistical 
testing. In order to generate the exon-level count matrix, 
Kallisto genomic alignment bam files were summarized with 
the Subread tool [21] (v.1.6.2). For this, gtf files containing the 
information on gene structure were flattened to remove the 
overlapping parts in the genes similar to a previous exam-
ple [25].

With Star, the gene and exon-level count matrices were 
generated by summarizing the Star alignments with Subread 
to gene-level and separately to exon-level, using the exon- 
union approach.

Further analysis was performed using the R statistical lan-
guage [26] (v 3.6.1) and the corresponding Bioconductor 
module [27] (v 3.10).

The data were normalized with relative log expression 
(RLE) method [3,28], and the datasets from different analysis 
schemes were filtered and harmonized to make them compar-
able. Filtering was performed by first removing features with 
normalized expression value less than one from each feature- 
level dataset (6 in total, see Fig. 1). After this, all genes with 
only one remaining exon at the exon-level were removed from 
all feature levels. Such genes were then removed from all 
feature-level datasets were, at any level, all the associated 
features had been removed.

Statistical analysis

The statistical testing for all feature-level raw count matrices 
was performed using the DESeq2 (v1.26.0) [3] R/ 
Bioconductor package. The feature-level p-values p1; . . . ; pK 
were aggregated to gene-level using Lancaster [16] and 
empirical Brown’s methods (ebm) [17].

The Lancaster’s method is a generalization of the Fisher’s 
method, which is a commonly used method to aggregate 
p-values from K independent statistical tests. The test statistic 
of the Fisher’s method is
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TFisher ¼
XK

i¼1
� 2 log pið Þ

which follows a chi-square distribution with 2 K degrees of free-
dom under the null hypothesis. The Lancaster’s method gener-
alizes the Fisher’s method by introducing weights w1, . . . , wK to 
the p-values, assuming their independence. The test statistic 
becomes

TLancaster ¼
Xi¼1

K
Φ� 1

wi
pið Þ

which follows a chi-squared distribution with 
PK

i¼1
wi degrees of 

freedom under the null hypothesis, where Φ� 1
wi 

is the inverse 
cumulative distribution function of the chi-square distribution 
with wi degrees of freedom. In this study, the normalized mean 
counts were used as weights. The Fisher’s method is a special case 
of the Lancaster’s method when all the weights are set to 2 [12,29].

The empirical Brown’s method is an empirical adaptation 
of the Brown’s method [30], which is an extension of Fisher’s 
method to the case when the p-values are not independent 
[18]. Brown developed an approximation to the Fisher test’s 
null distribution when the p-values are derived from data 
from a multivariate normal distribution with a specified cov-
ariance matrix. It allows to consider the dependence of 
k p-values by using a rescaled chi-square distribution:

TBrowncχ2
2f 

where the constant c is a scale factor and f is the rescaled 
number of degrees of freedom. Brown showed that the covar-
iance could be calculated by numerical integration. However, 
numerical integration is slow due to computational complexity 
and is not suitable for large datasets. Ebm is a non-parametric, 
empirical version of the Brown’s method, which approximates 
the covariance empirically directly from the data:

Finally, the p-values provided by the Lancaster’s method 
and ebm were corrected for multiple testing using the 
Benjamin Hochberg method. DEGs were called at gene-level 
FDR threshold of 0.05.

Evaluation

The accuracy of the analysis workflows based on different 
feature levels and alignment strategies was evaluated based 
on the MAQC dataset that had qRT-PCT measurements 
available for 840 genes in addition to the RNA-seq results. 
pAUC for specificity above 0.8 was calculated using the pROC 
package (v 3.10) [31].

For the prostate cancer dataset, FDR was estimated by 
comparing the number of DEGs found in the within- 
group mock comparisons to those detected in the real 
between-group analysis. For the mock comparisons, 
seven samples from the normal sample group were ran-
domly sampled without replacement 10 times, and the 
DEGs were called for each subset comparison. FDR was 
then calculated by dividing the median number of these 
false-positive findings to the number of detections in the 
between-group analysis.
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