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Abstract

The concept of identifying codes in a graph was introduced by Kar-
povsky, Chakrabarty and Levitin in 1998. These codes have been studied
in several types of graphs such as hypercubes, trees, the square grid, the
triangular grid, cycles and paths. In this paper, we determine the optimal
cardinalities of identifying codes in cycles and paths in the remaining open
cases.

Running title: Identification in cycles and paths

1 Introduction

Let G = (V,E) be a simple connected and undirected finite graph with V as
the set of vertices and E as the set of edges. Let u and v be vertices in V . If
u and v are adjacent to each other, then the edge between u and v is denoted
by uv. The distance d(u, v) denotes the number of edges in any shortest path
between u and v. We say that u r-covers v if the distance d(u, v) is at most r.
The ball of radius r centered at u is defined as

Br(u) = {x ∈ V | d(u, x) ≤ r}.

A nonempty subset of V is called a code, and its elements are called code-
words. Let C ⊆ V be a code and u be a vertex in V . An I-set of the vertex u
with respect to the code C is defined as

Ir(C; u) = Ir(u) = Br(u) ∩ C.

We say that a code T ⊆ V is a transversal of G if for each edge e = uv ∈ E the
vertex u or the vertex v belongs to T . A transversal is also sometimes called a
vertex cover [10, p. 102] or an edge-covering set [11] of G.
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Definition 1.1. Let r be a positive integer. A code C ⊆ V is said to be
r-identifying in G if for all u, v ∈ V the set Ir(C;u) is nonempty and

Ir(C; u) 6= Ir(C; v).

Let X and Y be subsets of V . The symmetric difference of X and Y is
X4Y = (X \Y )∪ (Y \X). We say that the vertices u and v are r-separated by
a code C ⊆ V if the symmetric difference Ir(C;u)4 Ir(C; v) is nonempty. The
definition of r-identifying codes can now be reformulated as follows: C ⊆ V is
an r-identifying code in G if and only if for all u, v ∈ V the vertex u is r-covered
by a codeword of C and

Ir(C; u)4 Ir(C; v) 6= ∅.

The smallest cardinality of an r-identifying code in G is denoted by Mr(G).
An r-identifying code attaining the smallest cardinality is called optimal.

Codes which identify vertices in a graph were introduced by Karpovsky,
Chakrabarty and Levitin in [5] for fault diagnosis in multiprocessor systems. For
an application to sensor networks see [7]. Identifying codes in many different
kinds of underlying graphs have been examined (see [6]). Among them are cycles
and paths [1, 3, 8, 11]; see also [2, 4, 9].

Let n be an integer such that n ≥ 3. A cycle Cn = (Vn, En) is a graph such
that the set of vertices Vn = {vi | i ∈ Zn} and the set of edges

En = {vivi+1 | i = 0, 1, . . . , n− 2} ∪ {vn−1v0}.

The exact values of M1(Cn) and M2(Cn) have been presented in [3] and [8],
respectively. For general r, the following results are known:

• If n is even and n ≥ 2r + 4, then Mr(Cn) = n/2. Moreover, we have
Mr(C2r+2) = 2r + 1. [1]

• If n = 2r + 3, then Mr(Cn) = b2n/3c [3].

• If n is odd, 3r + 2 ≤ n ≤ 8r + 1, n 6= 4r + 3 and gcd(2r + 1, n) = 1, then
Mr(Cn) = (n + 1)/2. Moreover, we have Mr(C4r+3) = 2r + 3. [3]

• If n is odd, n ≥ 3r + 2 and gcd(2r + 1, n) > 1, then by [3]

Mr(Cn) = gcd(2r + 1, n)
⌈

n

2 gcd(2r + 1, n)

⌉
.

• Assume that n is odd, n ≥ 3r+2 and gcd(2r+1, n) = 1. If n = 2m(2r+1)
+ 1 or n = (2m + 1)(2r + 1) + 2r for m ≥ 1, then Mr(Cn) = (n + 1)/2 + 1,
else Mr(Cn) = (n + 1)/2 [11].

In conclusion, what remains to be shown is the exact values of Mr(Cn) when n
is odd and 2r + 5 ≤ n ≤ 3r + 1. (Notice that there are no r-identifying codes in
Cn when n ≤ 2r + 1.) These remaining cases are solved in Section 2.

Let n be a positive integer. For n ≥ 3, a path Pn = (Vn, E′
n) is a graph

such that the set of vertices Vn is the same as with the cycles and the set of
edges E′

n = En \ {vn−1v0}. Furthermore, we define the path P1 = (V1, E
′
1),

where E′
1 = ∅, and the path P2 = (V2, E

′
2), where E′

2 = {v1v2}. The exact
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values of M1(Pn) and M2(Pn) have been presented, respectively, in [1] and [8].
An infinite family of optimal r-identifying codes have been introduced in [1,
Theorem 5] giving the following values: Mr(P2k(2r+1)+1) = k(2r+1)+1, where
k is a non-negative integer and r ≥ 2. In Section 3, we solve the exact values of
Mr(Pn) for general r.

2 Identifying codes in cycles

Let r be a positive integer. In this section, we first study r-identifying codes in
cycles Cn = (Vn, En), where n is an odd integer and 2r+5 ≤ n ≤ 3r+1. We end
the section by a short discussion of identification, where modified balls are used
instead of (the usual balls) Br(x) (x ∈ Vn). Throughout the section, the indices
of the vertices vi of Cn are calculated modulo n. Let t be a positive integer.
For the following considerations, we define a graph C′(n,t) = (Vn, Fn), where
Fn = {vivi+t | i ∈ Zn}. Notice that if C is an r-identifying code of Cn, then C
is also a transversal of C′(n,2r+1) since the adjacent vertices vi and vi+1 (i ∈ Zn)
have to be r-separated by C. We also define Qt(i) = {vi, vi+1, . . . , vi+t−1}.

The following lower bound on identifying codes in cycles Cn have been pre-
sented in [3, Theorem 1].

Theorem 2.1. Let r be a positive integer and n ≥ 2r + 2. Then

Mr(Cn) ≥ gcd(2r + 1, n)
⌈

n

2 gcd(2r + 1, n)

⌉
.

Let n be an odd integer such that 2r+5 ≤ n ≤ 3r+1. Then n can be written
as follows: n = 2r + 1 + p, where p is an even integer such that 4 ≤ p ≤ r.
The following lemma provides a new way to characterize r-identifying codes in
cycles with small order compared to r. Notice that in the following lemma for
all i ∈ Zn we have Vn \ Br(vi) = Qp(i + r + 1), i.e. that the set Qp(i + r + 1)
denotes the complement of the ball Br(vi).

Lemma 2.2. Let r be a positive integer and n = 2r + 1 + p, where p is an
even integer such that 4 ≤ p ≤ r. Let T be a transversal of C′(n,2r+1). If u and
v are vertices of Cn such that d(u, v) ≤ p, then u and v are r-separated by T .
Moreover, the transversal T is an r-identifying code in Cn if and only if there
does not exist i, j ∈ Zn such that

Qp(i) ∩Qp(j) = ∅ and T ∩ (Qp(i) ∪Qp(j)) = ∅. (1)

Proof. Let u and v be vertices of Cn such that d(u, v) = d ≤ p. Without loss of
generality, we may assume that u = vk and v = vk+d for some k ∈ Zn. Clearly,
vk−r ∈ Br(u) \ Br(v) and vk+r+1 ∈ Br(v) \ Br(u). Since T is a transversal
of C′(n,2r+1), then vk−r ∈ T or vk+r+1 ∈ T . Hence, the vertices u and v are
r-separated by T .

Assume first that the transversal T is an r-identifying code in Cn. Assume
to the contrary that there exist i, j ∈ Zn such that Qp(i) ∩ Qp(j) = ∅ and
T ∩ (Qp(i) ∪ Qp(j)) = ∅. Since Br(vi−r−1)4Br(vj−r−1) = Qp(i) ∪ Qp(j),
then Ir(T ; vi−r−1)4 Ir(T ; vj−r−1) = ∅ (a contradiction). Recall from the pre-
vious that Qp(i) and Qp(j) denote the complement of the balls Br(vi−r−1) and
Br(vj−r−1), respectively. Therefore, the condition (1) holds.
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Assume then that the condition (1) holds. Let u = vi (i ∈ Zn). Let us
then show that vi is r-covered by a vertex of T . Assume to the contrary that
Ir(T ; vi) = ∅. Now T ∩ (Qp(i−p)∪Qp(i)) ⊆ Ir(T ; vi) and Qp(i−p)∩Qp(i) = ∅
(a contradiction). Hence, we have Ir(T ; u) 6= ∅. In addition, the first part of
the proof shows that vertices u, v ∈ Vn such that d(u, v) ≤ p are r-separated by
T . Let then u ∈ Vn and v ∈ Vn be vertices such that d(u, v) > p. Now we have
Br(u)4Br(v) = Qp(i) ∪ Qp(j) for some i, j ∈ Zn. Since Qp(i) ∩ Qp(j) = ∅,
we obtain by the condition (1) that Ir(T ;u)4 Ir(T ; v) 6= ∅. Thus, T is an
r-identifying code in Cn.

The following theorem provides exact values for Mr(Cn) when 2r + 5 ≤ n ≤
3r + 1 and gcd(2r + 1, n) = 1.

Theorem 2.3. Let r be a positive integer and n = 2r+1+p, where p is an even
integer such that 4 ≤ p ≤ r. Assume that gcd(2r + 1, n) = 1. If n = 2mp + 1
or n = (2m + 1)p + p − 1 with m ≥ 2, then Mr(Cn) = (n + 1)/2 + 1, else
Mr(Cn) = (n + 1)/2.

Proof. Recall first that Mr(Cn) ≥ (n + 1)/2, by Theorem 2.1. Since gcd(2r +
1, n) = 1, the graph C′(n,2r+1) is actually a cycle with n vertices. It is also easy
to see that C′(n,2r+1) = C′(n,p). As is stated earlier, in order for a code to be
r-identifying in Cn, it has to contain a transversal of C′(n,p). Clearly, a code

T = {vip | 0 ≤ i ≤ n− 1, i is even}
is a transversal of C′(n,p). Furthermore, T is up to rotations the only transversal
of C′(n,p) with size (n + 1)/2.

Assume first that n ≤ 4p − 1. Let us then show that there does not exist
i, j ∈ Zn such that Qp(i) ∩ Qp(j) = ∅ and T ∩ (Qp(i) ∪ Qp(j)) = ∅. Assume
to the contrary that such i and j exist. Since T ∩ Qp(i) = ∅ and T is a
transversal of C′(n,p), the sets Qp(i − p) ⊆ T and Qp(i + p) ⊆ T . The fact that
n ≥ |Qp(i−p)∪Qp(i)∪Qp(i+p)∪Qp(j)| = 4p implies a contradiction. Therefore,
by Lemma 2.2, T is an r-identifying code in Cn. Hence, Mr(Cn) = (n + 1)/2
when n ≤ 4p−1. Notice that the cases n = 2mp or n = (2m+1)p are impossible
since n is odd. Now the rest of the proof divides into the following four cases.

1) Assume then that n = 2mp + x with m ≥ 2 and 2 ≤ x ≤ p − 1. Let
us then show that T ∩ Qp(i) 6= ∅ for any i ∈ Zn. Assume to the contrary
that k ∈ Zn is such that T ∩ Qp(k) = ∅. Since vk /∈ T and vk+1 /∈ T , then
vk+p ∈ T and vk+p+1 ∈ T . If the vertex vk+p is such that vk+p+ip 6= v0 for any
i = 0, 1, . . . , 2m, then vk+p+2mp = vk+p−x ∈ T (a contradiction). Otherwise,
the vertex vk+p+1 is such that vk+p+1+ip 6= v0 for any i = 0, 1, . . . , 2m. Then
vk+p+1+2mp = vk+p+1−x ∈ T (a contradiction). Thus, there does not exist
k ∈ Zn such that T ∩ Qp(k) = ∅. Hence, by Lemma 2.2, T is an r-identifying
code in Cn and Mr(Cn) = (n + 1)/2.

2) Assume now that n = (2m + 1)p + x, where m ≥ 2 and 1 ≤ x ≤ p − 2.
Since n = (2m + 2)p − (p − x), we can write n = (2m + 2)p − x′, where
2 ≤ x′ ≤ p − 1. In what follows, we show that T ∩ Qp(i) 6= ∅ for any i ∈ Zn.
Assume to the contrary that k ∈ Zn is such that T ∩Qp(k) = ∅. Then, clearly,
vk−1 ∈ T and vk−2 ∈ T . If the vertex vk−1 is such that vk−1+ip 6= v0 for
any i = 0, 1, . . . , 2m + 2, then vk−1+(2m+2)p = vk−1+x′ ∈ T (a contradiction).
Otherwise, the vertex vk−2 is such that vk−2+ip 6= v0 for any i = 0, 1, . . . , 2m+2.
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Then vk−2+(2m+2)p = vk−2+x′ ∈ T (a contradiction). Hence, by Lemma 2.2, T
is an r-identifying code in Cn and Mr(Cn) = (n + 1)/2.

3) Consider then the case n = 2mp + 1 with m ≥ 2. It is easy to conclude
that

T = {v0} ∪
m⋃

i=1

Qp((2i− 1)p + 1).

Therefore, Vn \ T =
⋃m−1

i=0 Qp(2ip + 1). Thus, by Lemma 2.2, the transversal
T is not an r-identifying code in Cn. Since T is the unique transversal of C′(n,p)

with size (n + 1)/2 and every r-identifying code of Cn is also a transversal of
C′(n,p), we have Mr(Cn) ≥ (n + 1)/2 + 1.

Define first sets Ak = {vk+1, vk+2, . . . , vk+p−2, vk+p, vk+2p−1}, where k is an
integer such that 0 ≤ k ≤ 2(m− 1)p. Define then a code

C1 = {v0, v2mp} ∪
m−1⋃

i=0

A2ip.

It is straightforward to verify that C1 is a transversal of C′(n,p) and that T ∩
Qp(i) 6= ∅ for any i ∈ Zn. Hence, C1 is an r-identifying code in Cn. Since
|C1| = (n + 1)/2 + 1, we have Mr(Cn) = (n + 1)/2 + 1.

4) Finally, assume that n = (2m + 1)p + p − 1 with m ≥ 2. Now T =⋃m
i=0 Qp(2ip) and Vn \ T =

⋃m−1
i=0 Qp((2i + 1)p) ∪ Qp−1((2m + 1)p). Then,

using similar arguments as in the previous case, we have Mr(Cn) ≥ (n + 1)/2 +
1. Define first sets Bk = {vk+p−3, vk+p, vk+p+1, . . . , vk+2p−4, vk+2p−2, vk+2p−1},
where k is an integer such that 0 ≤ k ≤ 2(m − 1)p. Define also a set B′ =
{v(2m+1)p−3, v(2m+1)p, v(2m+1)p+1, . . . , v(2m+1)p+p−2}. Define then a code

C2 = {v0} ∪B′ ∪
m−1⋃

i=0

B2ip.

It is straightforward to verify that C2 is a transversal of C′(n,p) and that the set
C2 ∩ Qp(i) is nonempty for any i ∈ Zn. Hence, C2 is an r-identifying code in
Cn. Since |C2| = (n + 1)/2 + 1, we have Mr(Cn) = (n + 1)/2 + 1.

The following theorem provides exact values for Mr(Cn) when 2r + 5 ≤ n ≤
3r + 1 and gcd(2r + 1, n) > 1. The proof of the theorem is similar to the one of
in [3, Theorem 9].

Theorem 2.4. Let r be a positive integer and n = 2r + 1 + p, where p is an
even integer such that 4 ≤ p ≤ r. If gcd(2r + 1, n) > 1, then

Mr(Cn) = gcd(2r + 1, n)
⌈

n

2 gcd(2r + 1, n)

⌉
.

Proof. Let d = gcd(2r + 1, n) = gcd(p, n) and n′ = n/d. Notice that n′ is odd
and d ≥ 3 since 2 - n. Recall that C′(n,2r+1) = C′(n,p). The graph C′(n,p) consists
of the disjoint union of d cycles on n′ vertices. For all j ∈ Zd define the sets

Tj = {vj+kp | 0 ≤ k ≤ n′ − 1, k is even}
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and
T ′j = {vj} ∪ {vj+kp | 0 ≤ k ≤ n′ − 1, k is odd}.

Since n′ is odd, we have |Tj | = |T ′j | = dn′/2e. Now define

T = T0 ∪ T ′1 ∪
d−1⋃

j=2

Tj .

Since each Tj and T ′j is a transversal of one of the disjoint subcycles of C′(n,p),
which together form the whole C′(n,p), the set T is a transversal of C′(n,p). Further-
more, the number of vertices in T is equal to gcd(2r+1, n) dn/(2 gcd(2r + 1, n))e.

Let us then show that there does not exist i ∈ Zn such that T ∩Qp(i) = ∅.
Notice that d ≤ p. Hence, there exists k ∈ Zn′ such that {vkp, vkp+1} ⊆ Qp(i) or
{vkp+1, vkp+2} ⊆ Qp(i). Thus, by the construction of T , we have T ∩Qp(i) 6= ∅
for any i ∈ Zn. Therefore, by Lemma 2.2, T is an r-identifying code in Cn.
Thus, the claim follows.

One fact that follows from the result of Theorem 2.1 is that an r-identifying
code in a cycle Cn always has the size at least n/2 no matter what n or r are.
A natural question is whether there exist identifying codes with less than n/2
codewords, when we change the ball slightly; we retain the assumptions that
the new ball B′

s(x) has the same size (equal to s) and shape for all x ∈ Zn.
It is essential to notice that now we have to be more careful with the defi-

nition of an I-set; namely, Is(x) = {c ∈ C | x ∈ B′
s(c)}. Indeed, the fact that

x ∈ B′
s(c) if and only if c ∈ B′

s(x) need not to be true anymore.
Since the size of the new ball is s, the bound [5, Theorem 2] implies that

any identifying code has then at least 2n/(s + 1) codewords in a cycle Cn. Can
this be reached for some s > 1 and n with 2n/(s + 1) < n/2? The answer is
positive as pointed out in the next example.

It is easy to see that then the parameters are related as s2 + s ≤ 2n (to
attain the bound [5, Theorem 2] there must be |C| vertices covered by a single
codeword and all the others must be covered by exactly two codewords of C),
and to obtain the best ratio of |C|/n, we could try s2 + s = 2n.

Example 2.5. Let us consider the cycle C15. Indeed, choose B′
5(x) = {x−2, x−

1, x, x+1, x+5} for any x ∈ Z15. Notice that this new ball is very similar to the
usual ball B2(x), only one element is different. By selecting C = {2, 5, 8, 11, 14}
it is easy to verify that this code is identifying with respect to the new ball. It
clearly attains the bound [5, Theorem 2] and has the ratio |C|/n = 1/3 which is
strictly less than 1/2 (the best ratio that can be obtained by usual r-identifying
codes).

Another example can be found in the cycle C28. Let B′
7(x) = {x, x +

2, x + 7, x + 14, x + 15, x + 17, x + 21} for every x ∈ Z28. Now the code
C = {0, 10, 11, 16, 19, 22, 27} forms an identifying code attaining the bound [5,
Theorem 2] and gives the ratio |C|/n = 1/4 < 1/2.

3 Identifying codes in paths

In this section, we study r-identifying codes in paths Pn = (Vn, E′
n). For

the following considerations, we define a graph P ′(n,t) = (Vn, F ′n), where t is
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a positive integer and F ′n = {vivi+t | 0 ≤ i ≤ n − t − 1}. Define also sets
A1(n) = {vr+1, vr+2, . . . , v2r} and A2(n) = {vn−2r−1, vn−2r, . . . , vn−r−2}.

The following lemma characterizes identifying codes in paths.

Lemma 3.1. Let r be a positive integer and n ≥ 2r + 1. A code C ⊆ Vn is
r-identifying in Pn if and only if the following conditions hold:

(i) All vertices of Vn are r-covered by a codeword of C.

(ii) The code C is a transversal of P ′(n,2r+1).

(iii) The sets A1(n) and A2(n) are subsets of C.

Proof. Assume first that C is an r-identifying code in Pn. By the definition,
each vertex of Vn is r-covered by a codeword of C. For i = r, r+1, . . . , n−r−2,
the vertices vi ∈ Vn and vi+1 ∈ Vn are r-separated by C. Therefore, C is a
transversal of P ′(n,2r+1). For i = 0, 1, . . . , r − 1, we have Br(vi)4Br(vi+1) =
{vi+r+1}. Hence, A1(n) is a subset of C. It can be proved similarly that
A2(n) ⊆ C.

Assume then that C is a code satisfying the conditions (i), (ii) and (iii). Let
u and v be vertices of Vn. In order to prove that C is an r-identifying code in Pn,
it is enough to show that the vertices u and v are r-separated by C. Without loss
of generality, we may assume that Br(u) ∩ Br(v) is nonempty and that u = vi

and v = vj with i < j. If 0 ≤ i ≤ r − 1, then the codeword vi+r+1 belongs to
Br(vi)4Br(vj). If n − r ≤ j ≤ n − 1, then the codeword vj−r−1 belongs to
Br(vi)4Br(vj). Therefore, we may assume that r ≤ i < j ≤ n − r − 1. Now
the vertices vi−r and vi+r+1 belong to Br(vi)4Br(vj). Since C is a transversal
of P ′(n,2r+1), then vi−r ∈ C or vi+r+1 ∈ C. Thus, u and v are r-separated by
C.

For any path Pn = (Vn, E′
n), define the following subsets of Vn:

K1(Pn) = {vi | 0 ≤ i ≤ n− 1, i is even}

and
K2(Pn) = {vi | 0 ≤ i ≤ n− 1, i is odd}.

The following lemma provides a lower bound on the size of a transversal of Pn.
The lemma is easy to prove.

Lemma 3.2. Let n be a positive integer. If T is a transversal of Pn, then

|T | ≥
⌊n

2

⌋
.

Moreover, if n is odd, then the unique transversal of Pn attaining the lower
bound is K2(Pn).

The following theorem provides exact values for Mr(Pn) when n ≥ 4r + 3.

Theorem 3.3. Let r be a positive integer and n = q(2r + 1) + p, where q ≥ 2
and 1 ≤ p ≤ 2r + 1. Then we have the following results:

(i) Assume that q is even. If 1 ≤ p ≤ r + 1, then Mr(Pn) = q(2r + 1)/2 + p,
else Mr(Pn) = q(2r + 1)/2 + p− 1.
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(ii) Assume that q is odd. If 1 ≤ p ≤ 2r, then Mr(Pn) = (q + 1)(2r + 1)/2,
else Mr(Pn) = (q + 1)(2r + 1)/2 + 1.

Proof. Let C be an r-identifying code in Pn. For a lower bound on |C|, we first
consider more closely the graph P ′(n,2r+1). Rename the vertices of Vn as follows:

w
(j)
k = vj+k(2r+1),

where j and k are non-negative integers such that 0 ≤ j ≤ 2r and 0 ≤ j +
k(2r + 1) ≤ n− 1. For j = 0, 1, . . . , p− 1, define

Wj(n) = {w(j)
k | 0 ≤ k ≤ q} \ (A1(n) ∪A2(n))

and, for j = p, p + 1, . . . , 2r, define

Wj(n) = {w(j)
k | 0 ≤ k ≤ q − 1} \ (A1(n) ∪A2(n)).

Let j be an integer such that 0 ≤ j ≤ 2r. Define then a graph Sj(n) =
(Wj(n),Hj(n)), where the set of edges

Hj(n) = {uv ∈ F ′n | u ∈ Wj(n), v ∈ Wj(n)}.

In other words, Sj(n) is an induced subgraph of P ′(n,2r+1) determined by the

vertex set Wj(n). Since only the first or the last vertex of {w(j)
k | 0 ≤ k ≤ q}

or {w(j)
k | 0 ≤ k ≤ q − 1} can belong to A1(n) ∪ A2(n), the induced subgraph

Sj(n) is actually a path.
By Lemma 3.1, the r-identifying code C is a transversal of P ′(n,2r+1). There-

fore, C ∩Wj(n) is a transversal of Sj(n). Since Sj(n) is a path, we have that
|C ∩Wj(n)| ≥ b|Wj(n)|/2c by Lemma 3.2. Since the pairwise intersections of
the vertex sets Wj(n) are empty, we have

|C| ≥ |A1(n)|+ |A2(n)|+
2r∑

i=0

⌊ |Wi(n)|
2

⌋
= 2r +

2r∑

i=0

⌊ |Wi(n)|
2

⌋
. (2)

Thus, in order to provide a lower bound on Mr(Pn), we need to calculate the
number of vertices in the sets Wj(n).

Let n = q(2r + 1) + p, where q ≥ 2 and 1 ≤ p ≤ 2r + 1. Now we have the
following two cases to consider.

1) Assume first that 1 ≤ p ≤ r + 1. By straightforward calculations, we now
have the following results:

(a) For i = 0, . . . , p−1, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q } and |Wi(n)| = q+1.

(b) For i = p, . . . , r, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q−2} and |Wi(n)| = q − 1.

(c) For i = r+1, . . . , p+r−1, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−2} and |Wi(n)| =

q − 2.

(d) For i = p + r, . . . , 2r, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−1} and |Wi(n)| =

q − 1.
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A1 A2

S0

S4

v0

PSfrag replacements
A1(n)

A2(n)

S0(n)

S4(n)

v0

Figure 1: The code D1 illustrated when r = 3, q = 6, p = 2 and n = 44. The
black dots represent the codewords of D1.

Notice that the cases (b) and (d) are empty when p = r + 1 and the case (c) is
empty when p = 1. These facts do not affect the calculations of the equation
(2). Notice also that Lemma 3.2 still applies when q is equal to 2 or 3, even
though the lengths of the paths Sj(n) are equal to 0 or 1.

Assume then that q is even. By the equation (2) and the previous calcula-
tions, we have |C| ≥ q(2r+1)/2+p−1. Assume that C attains this lower bound.
Then the sets C ∩Wi(n) are uniquely determined in the cases (a), (b) and (d),
by Lemma 3.2. Therefore, since Wi(n) ∩ Br(v0) = ∅ in the case (c), the vertex
v0 ∈ Vn cannot be r-covered by a codeword of C. Hence, |C| ≥ q(2r + 1)/2 + p.

Let us then construct an r-identifying code in Pn attaining the lower bound.
Define

D1 = A1(n) ∪A2(n) ∪K1(S0(n)) ∪
2r⋃

i=1

K2(Si(n)).

The code D1 is illustrated in Figure 1 when n = 44 and r = 3. Clearly,
the code D1 satisfies the conditions (ii) and (iii) of Lemma 3.1. Therefore, it
is enough to show that each vertex of Vn is r-covered by a codeword of D1.
By the definitions of K1(S0(n)), K2(Sr+1(n)) and K2(S1(n)), we know that
k(4r +2) ∈ D1, k(4r +2)+ r +1 ∈ D1 and k(4r +2)+2r +2 ∈ D1, respectively,
when k is an integer such that 1 ≤ k ≤ q/2− 1. Thus, each vertex vi ∈ Vn with
3r+2 ≤ i ≤ (q−2)(2r+1)+3r+2 is r-covered by a codeword. Since A1(n) and
A2(n) are subsets of D1, we also obtain that vi ∈ Vn is r-covered by a codeword
when 0 ≤ i ≤ 3r or n− 3r − 1 ≤ i ≤ n− 1, respectively. Hence, we have shown
that all the vertices of Vn except v3r+1 are r-covered by a codeword of D1. Thus,
since v3r+1 is r-covered by v2r+2 ∈ K2(S1(n)) ⊆ D1, the condition (i) of Lemma
3.1 is satisfied. Hence, D1 is an r-identifying code in Pn. Moreover, D1 attains
the lower bound. Hence, we have Mr(Pn) = q(2r + 1)/2 + p.

Assume now that q is odd. By the equation (2) and the previous results, we
have |C| ≥ (q +1)(2r+1)/2. The code D1 again satisfies the conditions (ii) and
(iii) of Lemma 3.1. By considering the set of codewords K1(S0(n)), K2(S1(n))
and K2(Sr+1(n)) as in the previous case, it can be shown that each vertex of Vn

is r-covered by a codeword of D1. Thus, D1 is an r-identifying code in Pn and it
attains the obtained lower bound. Hence, we have Mr(Pn) = (q + 1)(2r + 1)/2.

2) Assume then that r + 2 ≤ p ≤ 2r + 1. By straightforward calculations,
we have the following results:

(a) For i = 0, . . . , p−r−2, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q−1} and |Wi(n)| = q.

(b) For i = p − r − 1, . . . , r, we have Wi(n) = {w(i)
0 , . . . , w

(i)
q } and |Wi(n)| =

q + 1.

(c) For i = r+1, . . . , p−1, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q } and |Wi(n)| = q.

(d) For i = p, . . . , 2r, we have Wi(n) = {w(i)
1 , . . . , w

(i)
q−2} and |Wi(n)| = q − 2.
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The fact that the case (d) is empty when p = 2r+1 does not affect the calculation
of the equation (2).

Assume first that q is even. By the equation (2) and the previous results,
we have |C| ≥ q(2r + 1)/2 + p− 1. Define

D2 = A1(n) ∪A2(n) ∪
p−r−2⋃

i=0

K1(Si(n)) ∪
p−1⋃

i=p−r−1

K2(Si(n)) ∪
2r⋃

i=p

K1(Si(n)).

Clearly, the condition (ii) and (iii) of Lemma 3.1 are satisfied by D2. Since
K1(S0(n)), K2(Sp−r−1(n)) and K2(Sr+1(n)) are subsets of D2, it can be shown
using similar arguments as before that Ir(D1; vi) 6= ∅ for each i = 0, 1, . . . , n−1.
Thus, D2 is an r-identifying code and it attains the obtained lower bound.
Hence, we have Mr(Pn) = q(2r + 1)/2 + p− 1.

Assume then that q is odd. Now we have |C| ≥ (q + 1)(2r + 1)/2. Further,
assume that r + 2 ≤ p ≤ 2r. Define

D3 = A1(n) ∪A2(n) ∪
p−r−2⋃

i=0

K2(Si(n)) ∪K1(Sp−r−1(n)) ∪
2r⋃

i=p−r

K2(Si(n)).

Clearly, the conditions (ii) and (iii) of Lemma 3.1 are satisfied by D3. Since
K2(S0(n)), K1(Sp−r−1(n)) and K2(Sp−r(n)) are subsets of D3, it can be shown
that Ir(D1; vi) 6= ∅ for each i = 0, 1, . . . , n−1. Thus, D3 is an r-identifying code
attaining the lower bound. Therefore, we have Mr(Pn) = (q + 1)(2r + 1)/2.

Finally, let q be odd and p = 2r + 1. Assume that the r-identifying code C
attains the previously obtained lower bound, i.e. |C| = (q + 1)(2r + 1)/2. Then
the sets C ∩Wi(n) are uniquely determined in the cases (a) and (c), by Lemma
3.2. Since p = 2r + 1, the only graph contained in the case (b) is Sr(n) and the
case (d) is empty. Hence, the only case that may contribute a codeword of C to
the balls Br(v0) and Br(vn−1) is the case (b). Since C attains the lower bound,
we have |C ∩Wr(n)| = |Wr(n)|/2. Therefore, at least one of the sets Ir(C; v0)
or Ir(C; vn−1) is empty. Thus, |C| ≥ (q + 1)(2r + 1)/2 + 1. Define then

D4 = A1(n) ∪A2(n) ∪K1(S0(n)) ∪
2r⋃

i=1

K2(Si(n)).

Clearly, the conditions (ii) and (iii) of Lemma 3.1 are satisfied by D4. Since
K1(S0(n)), K2(S1(n)) and K2(Sr+1(n)) are subsets of D4, it can be shown that
Ir(D1; vi) 6= ∅ for each i = 0, 1, . . . , n − 1. Thus, D4 is an r-identifying code
in Pn and it attains the obtained lower bound. Hence, we have Mr(Pn) =
(q + 1)(2r + 1)/2 + 1.

Consider the r-identifying codes in Pn with n ≤ 4r+2. Trivially, Mr(P1) = 1
for any positive integer r. If 2 ≤ n ≤ 2r, then there are no r-identifying
codes in Pn. The following theorem provides exact values for Mr(Pn) when
2r + 1 ≤ n ≤ 4r + 2.

Theorem 3.4. Let r be a positive integer. Then we have Mr(P2r+1) = 2r and
Mr(P4r+2) = 2r + 2. If 2r + 2 ≤ n ≤ 4r + 1, then Mr(Pn) = 2r + 1.
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Proof. Let C be an r-identifying code in Pn. Assume first that n = 2r + 1. By
Lemma 3.1, we have A1(n) ∪ A2(n) ⊆ C. Since A1(n) ∪ A2(n) = Vn \ {vr},
then |C| ≥ 2r. Furthermore, it is easy to conclude that the set A1(n) ∪ A2(n)
is actually an r-identifying code in Pn. Therefore, we have Mr(P2r+1) = 2r.

Let then n = 2r + 1 + p, where 1 ≤ p ≤ r. Now we have

A1(n) ∪A2(n) = {vp, vp+1, . . . , v2r}.
Hence, |A1(n) ∪ A2(n)| = 2r − p + 1. The set of edges of P ′(n,2r+1) is equal to
F ′n = {v0v2r+1, v1v2r+2, . . . , vp−1v2r+p}. Therefore, by Lemmas 3.1 and 3.2, we
have

|C| ≥ |A1(n) ∪A2(n)|+ |F ′n| = 2r + 1.

By Lemma 3.1, the code A1(n) ∪ A2(n) ∪ {v0, v1, . . . , vp−1} is r-identifying in
Pn attaining the lower bound. Thus, we have Mr(Pn) = 2r + 1.

Let now n = 3r + 1 + p, where 1 ≤ p ≤ r. We have

A1(n) ∪A2(n) = {vr+1, vr+2, . . . , v2r+p−1}.
Therefore, |A1(n)∪A2(n)| = r + p− 1. For i = p− 1, p, . . . , r, we know that the
edges vivi+2r+1 are such that vi /∈ A1(n) and vi+2r+1 /∈ A2(n). Hence, by similar
arguments as before, we have |C| ≥ |A1(n) ∪A2(n)|+ (r − p + 2) = 2r + 1. By
Lemma 3.1, the set A1(n) ∪A2(n) ∪ {vp, vp+1, . . . , vr, v2r+p} is an r-identifying
code in Pn attaining the obtained lower bound. Thus, we have Mr(Pn) = 2r+1.

Finally, assume that n = 4r + 2. We have

A1(n) ∪A2(n) = {vr+1, vr+2, . . . , v3r}.
Notice that the sets Br(v0)∩ (A1(n)∪A2(n)) and Br(v4r+1)∩ (A1(n)∪A2(n))
are empty. Hence, we have |C| ≥ |A1(n) ∪ A2(n)| + 2 = 2r + 2. On the other
hand, the set {vr, v3r+1}∪A1(n)∪A2(n) is an r-identifying code in Pn attaining
the lower bound. Thus, we have Mr(P4r+2) = 2r + 2.

It is obvious that a cycle Cn and a path Pn are closely related to each other.
Indeed, the path Pn only misses the edge vn−1v0. Therefore, a natural question
arising is whether there is a link between an r-identifying code in Cn and Pn.
The following theorem concentrates on this question.

Theorem 3.5. Let n ≥ 4r + 2. We have Mr(Pn) ≥ Mr(Cn)− 1.

Proof. Let C be an r-identifying code in a path Pn of the optimal size Mr(Pn).
Join the ends v0 and vn−1 of the path with an edge forming a cycle Cn. Now
consider the code C in the cycle; we obtain Ir(x) 6= Ir(y) for any x 6= y except
x = v0 and y = vn−1. Indeed, any two vertices x, y ∈ {vr, . . . , vn−r−1} have
distinct I-sets; their balls are not affected by the new edge. Any vertex x =
vi ∈ {v0, . . . , vr−1} is also distinguished from any y = vj as long as i < j and
j 6= n − 1 since Ir(y) contains a codeword not belonging to Ir(x). Therefore,
by symmetry, Ir(x) = Ir(y) implies that x = v0 and y = vn−1. These can be
distinguished by adding (if necessary) one more codeword to vr or vn−1−r giving
an r-identifying code of size at most Mr(Pn) + 1 in a cycle.

The bound of the previous theorem can be met (infinitely many times) with
equality when n is odd and gcd(2r + 1, n) = 2r + 1. However, we usually have
Mr(Pn) > Mr(Cn)− 1.
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