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A B S T R A C T   

Brain activities can be evaluated by using Electroencephalogram (EEG) signals. One of the primary reasons for 
traffic accidents is driver fatigue, which can be identified by using EEG signals. This work aims to achieve a 
highly accurate and straightforward process to detect driving fatigue by using EEG signals. Two main problems, 
which are feature generation and feature selection, are defined to achieve this aim. This work solves these 
problems by using two different approaches. Deep networks are efficient feature generators and extract features 
in low, medium, and high levels. These features can be generated by using multileveled or multilayered feature 
extraction. Therefore, we proposed a multileveled feature generator that uses a one-dimensional binary pattern 
(BP) and statistical features together, and levels are created using a one-dimensional discrete wavelet transform 
(1D-DWT). A five-level fused feature extractor is presented by using BP, statistical features of 1D-DWT together. 
Moreover, a 2-layered feature selection method is proposed using ReliefF and iterative neighborhood component 
analysis (RFINCA) to solve the feature selection problem. The goals of the RFINCA are to choose the optimal 
number of features automatically and use the effectiveness of ReliefF and neighborhood component analysis 
(NCA) together. A driving fatigue EEG dataset was used as a testbed to denote the effectiveness of eighteen 
conventional classifiers. According to the experimental results, a highly accurate EEG classification approach is 
presented. The proposed method also reached 100.0% classification accuracy by using a k-nearest neighborhood 
classifier.   

1. Introduction 

Driving fatigue is one of the essential factors for driving performance 
since it is a reason for a significant part of traffic accidents [1–3]. Driving 
fatigue is defined as the transition between sleepiness and wakefulness, 
and it reduces the desire to fulfill the driving task [4,5]. Driving is a 
combination of visual and engine coordination and requires constant 
attention [6]. Driving over a specific hour during a long road can cause 
fatigue [7,8]. Driver fatigue during driving can create several problems, 
including fatal accidents [9]. Usually, sleepiness is one of the most basic 
indicators of driving fatigue [10,11]. 

The driving fatigue situation can be defined in many ways such as 
deviation from the road lane without signaling and slow reaction time 
[12,13]. The driver’s face identification achieves the closure of the 
driver’s eyelids and the tendency of the face to sleep, and there are many 
studies based on this approach in the literature. Furthermore, 

Electroencephalogram (EEG) signals are used to detect depression, ep-
ilepsy, and fatigue as well. Together with EEG in fatigue detection, 
electrocardiogram (ECG) for heart rate and electrooculogram (EOG) for 
eye movements are used [13–16]. However, EEG is the most commonly 
used signal because it contains direct brain activity and has been used 
effectively in the sense of cognitive processes. The signals such as EOG, 
ECG, EEG utilized for accurate and robust detection of fatigue while 
driving can reach more stable results compared to the vision-based 
methods [17]. 

1.1. Motivation 

Fatigue is the act of extreme sleepiness, exhaustion, or weariness 
resulting from physical or mental action or disease. Driving is one of the 
most critical applications and requires extreme attention and concen-
tration. Fatigue is the driving effect felt by a driver. Fatigue occurs with 
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factors such as driving for a long time without rest, illness, and stress. 
Driver fatigue can induce almost 75 percent of traffic accidents. 
Therefore, controlling driver fatigue is an important parameter to 
reduce accidents. Driver fatigue detection is the most popular research 
area for signal processing and machine learning since this technology 
can be adapted to smart vehicles. Therefore, we proposed a novel driver 
fatigue detection approach using hybrid feature extraction and an iter-
ative hybrid feature selection. Our primary motivation is to achieve a 
perfect classification rate for driver fatigue detection by utilizing basic 
methods together. Injuries have induced so many deaths for the elder 
and the young, and it is time someone emerged and took the right steps 
to save deaths by reducing injuries. There are several types of research 
on the detection of driver fatigue. Some of the studies on driver fatigue 
detection in the literature are shown in Table 1. 

As seen in Table 1, these methods used many EEG channels and did 
not achieve 100.0% classification accuracy for driver fatigue detection. 
Moreover single-channel EEG is used for driving fatigue detection [1], 
sleep staging [22,23] and epileptic seizure detection [24]. We aimed to 

improve the performance of fatigue detection by using single-channel 
EEG signals in this work. 

1.2. Proposed approach 

Detection of driver fatigue can be achieved using EEG signals. 
Nevertheless, the use of EEG signals for robust driver fatigue detection 
creates numerous complications. An appropriate combination of the 
dimension reduction and feature extraction methods must be used to 
eliminate these complexities and improve the efficiency of classification. 
Besides, a suitable classifier should be employed to boost the perfor-
mance of the classification. The brain signals are multi-dimensional, and 
machine learning methods for driver fatigue detection cannot be easily 
implemented. Hence, this study aims to develop a system with the right 
combination of feature extraction, feature selection, and machine 
learning methods to detect driver fatigue using single-channel EEG 
signals. EEG signals have been widely used to interpret brain activities, 
and one of these activities is driving fatigue detection. There are several 
research and studies for EEG-based driver fatigue detection in the 
literature. To accurately detect fatigue using EEG signals is one of the 
most critical problems of EEG signal processing. A novel EEG signal 
processing framework is presented to solve this problem. In this 
framework, multilevel feature extraction and a novel hybrid feature 
selection method (RFINCA) [25,26] are proposed to create EEG signal 
classification for fatigue detection. The main purpose of the presented 
multileveled feature extraction approach is to extract low, middle, and 
high-level features. For this purpose, we used textural and statistical 
features together. By using four-level 1D-DWT [27,28] with Symlets 4 
filter, both feature extraction and multilevel pre-processing are 
employed because 1D-DWT is generally used for noise reduction and 
signal decomposition. To select meaningful features, RFINCA is utilized, 
and the selected features are classified using shallow classifiers. 

1.3. Contributions 

Main contributions of this work are given as follows:  

• As it can be seen from Table 1, the state-of-the-art methods have 
utilized different feature generation, feature selection and classifi-
cation methods to achieve high performance for the EEG-based 
driver fatigue detection. Binary pattern (BP) and statistical feature 
generation functions are utilized for feature extraction. Our main 
aim is to use the effectiveness of both textural and statistical features 
together. Discrete wavelet transform (DWT) is one of the useful 
signal decomposition methods for biomedical signals. The Symlet-4 
is a mother wavelet filter and is mainly used for both noise reduc-
tion and decomposition. Therefore, DWT is utilized as a signal 
decomposition technique like convolution and pooling in the con-
volutional neural networks to generate levels. The presented multi-
level feature generation framework can extract discriminative 
features in high, medium, and low levels with a low time complexity. 
Therefore, the proposed feature generation method is lightweight 
and improves the feature generation capability of the hand-crafted 
feature extraction functions.  

• A hybrid iterative feature selection technique (RFINCA) is proposed 
to automatically select the optimum number of features. By using 
RFINCA, the most informative/meaningful features are selected 
automatically, and the effectiveness of the neighborhood component 
analysis (NCA) and ReliefF are used together.  

• The proposed BP, statistical features, and RFINCA based EEG-based 
driver fatigue detection approach achieved 100% classification ac-
curacy using a k-nearest neighbor (k-NN) classifier with a single- 
channel EEG. The presented multilevel fused feature generator and 
RFINCA feature selector-based approach have a general success since 
it achieved high classification performance with 18 classifiers. 

Table 1 
Previously presented works related to machine learning-based fatigue detection.  

References Year Method Evaluation 
Criteria 

Channel Accuracy 
results 

Chen et al. 
method 
[2] 

2019 Wavelet 
packet 
transform, 
Phase Lag 
Index 

Accuracy, 
sensitivity, 
precision, 
false alarm 
rate 

14 
channels 

94.4% 

Wei et al. 
method 
[18] 

2012 Grey 
Relational 
Analysis, 
Kernel 
Principle 
Component 
Analysis 

Accuracy 16 
channels 

92.3% 

Gao et al. 
method 
[5] 

2019 Relative 
wavelet 
entropy 
complex 
network 

Area under 
receiver 
operating 
characteristic 
curve 

32 
channels 

over 95% 

Chai et al. 
method 
[8] 

2017 Bayesian 
neural 
network, 
independent- 
component 
analysis 

Area under 
receiver 
operating 
characteristic 
curve, 
sensitivity, 
accuracy, 
specificity 

32 
channels 

88.2% 

Chaudhuri 
and 
Routray 
method 
[19] 

2020 Chaotic 
entropy 

Accuracy 19 
channels 

86.84% 
(10 fold 
cross 
validation) 

Chai et al. 
method 
[20] 

2017 Deep belief 
networks 

Area under 
receiver 
operating 
characteristic 
curve, 
accuracy, 
specificity, 
sensitivity 

32 
channels 

90.6% 

Zhao et al. 
method 
[21] 

2011 Kernel 
principal 
component 
analysis, 
wavelet 
packet 
energy, 
support 
vector 
machines 

Accuracy, 
specificity, 
sensitivity 

30 
channels 

98.8 

Zheng et al. 
method 
[13] 

2018 Residual 
learning 

Accuracy 16 
channels 

98.62%  
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2. The proposed driving fatigue detection approach 

A multilevel learning framework is proposed for driver fatigue 
detection with a high accuracy rate using EEG signals in this work. The 
presented EEG signal processing framework has four main steps: signal 
decomposition, textural, and statistical feature extraction from each 
level of DWT decomposition, RFINCA based feature selection, and 
classification. The graphical representation of the presented framework 
is demonstrated in Fig. 1. 

Fig. 1 shows that EEG signal decomposition levels are created using 
multilevel 1D-DWT (sym4 filter). In the signal decomposition phase, 
four low pass and four high pass filters are generated. Then, BP and 
statistical features are extracted from the raw EEG signals and four low 
pass filtered sub-bands of the original EEG signal. RFINCA selects the 
most meaningful features, and the selected features are employed as an 
input of the classifiers. 

2.1. Signal decomposition using one-dimensional discrete wavelet 
transform 

The first stage of the presented multilevel feature generation and 
RFINCA based driver fatigue detection framework is the signal decom-
position. Mostly, deep learning methods employ multilayered architec-
ture to generate low, medium, high-level features, and they have 
achieved high success rates for many problems. Our objective is to create 
a lightweight and highly accurate EEG signal classification framework. 
This model is inspired from deep learning methods, which have high 
computational costs. Multilevel 1D-DWT [29] is used as a pooling 
method to obtain a low-cost approach. Four level 1D-DWT has been 
widely used for noise reduction and decomposition of biomedical signals 
[22,30,31]. Therefore, we used 1D-DWT method for signal 
decomposition. 

Step 0: Load the raw EEG signal. 
Step 1: Apply four leveled 1D-DWT with sym4 filter to raw EEG 

signal. 

[Low1,High1] = DWT(signal, sym4) (1)  

[Low2,High2] = DWT(Low2, sym4) (2)  

[Low3,High3] = DWT(Low3, sym4) (3)  

[Low4,High4] = DWT(Low4, sym4) (4)  

where Lowi and Highi are ith degree low and high pass filter coefficients 
of the 1D-DWT, DWT(.) is a 1D-DWT function [32]. 

2.2. Feature extraction 

In this step, textural and statistical features are extracted from the 
raw EEG signal and each level of the decomposed EEG signal sub-bands. 
BP is used to generate textural features, and seven statistical features are 
extracted by using the statistics of raw EEG and each sub-band. The used 
feature generation methods are explained below. 

2.2.1. Binary pattern 
BP is one of the most used textural feature extractors and is widely 

used for image and signal processing. It was first presented as an image 
feature extraction, and the main purpose of the local binary pattern 
(LBP) is to extract local features from neighborhood values (3 × 3 sized 
blocks). One dimensional version of the LBP (BP) uses nine-sized over-
lapping block and signum function together [33] to achieve a 
histogram-based feature extraction. The philosophy of BP is to generate 
meaningful global features by using local features. In this view, the 
philosophy of BP is similar to metaheuristic optimization methods. It has 
many advantages, which are given as follows [34,35].  

• It extracts meaningful textural features.  
• It is a lightweight feature extractor (computational cost is low).  
• It has both image (LBP) and signal (BP) versions.  
• Since the application of BP is easy, it is employed to solve many 

knowledge extraction problems as an image and signal processing 
technique. 

Because of these superiorities, many LBP or BP-like feature extractor 
(microstructure) have been presented [36]. The procedure of BP is listed 
in Algorithm 1. 

Algorithm 1. Pseudocode of the one-dimensional binary pattern. 

Algorithm 1 clearly demonstrates that BP extracts 256 features, and 
the feature extraction process of the BP is independent of the length of 
the signal. Hence, it is one of the most useful feature extraction 
techniques. 

2.2.2. Statistical feature extraction 
The second feature generator uses seven statistical moments of the 

Fig. 1. Schematic demonstration of the developed multilevel hybrid feature extraction and RFINCA based driver fatigue detection framework.  
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raw EEG and decomposed EEG signal sub-bands. The mathematical 
descriptions of these moments are given below [37]. 

f (1) =

∑J

i=1
data(i)

J
(5)  

f (2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑J

i=1
[data(i) − f (1) ]2

J

√
√
√
√
√

(6)  

f (3) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑J

i=1
data(i)2

J

√
√
√
√
√

(7)  

f (4) =
|data(i) − f (1)|

J
(8)  

f (5) =
J

(J − 1)(J − 2)(J − 3)
∑J

i=1

(
data(i) − f (1)

f (2)

)4

−
3(J − 1)2

(J − 2)(J − 3)
(9)  

f (6) =
J

(J − 1)(J − 2)
∑J

i=1

(
data(i) − f (1)

f (2)

)3

(10)  

f (7) = dataS
(⌈J2⌉) (11) 

In Eqs. (5)–(11), seven statistical moments for feature extraction are 
mathematically defined and dataS is the sorted data. Eqs. (5)–(11) are 
applied to raw EEG signal and low pass filter coefficients of the 
decomposed EEG signal to extract statistical features. This process is 
called SFE(.), and it extracts seven features from each EEG signal. 

2.2.2.1. Feature extraction steps. In the proposed feature generation 
process, BP and the statistical feature extraction process are applied to 

the raw EEG signal and four low pass sub-bands of the decomposed EEG 
signal. The steps of this process are presented below. 

Step 2: Extract features using BP and SFE functions. 

feat1 = conc(BP(signal), SFE(signal)) (12)  

feat2 = conc(BP(Low1), SFE(Low1)) (13)  

feat3 = conc(BP(Low2), SFE(Low2)) (14)  

feat4 = conc(BP(Low3), SFE(Low3)) (15)  

feat5 = conc(BP(Low4), SFE(Low4)) (16) 

As seen in Eqs. (12)–(16), five-level feature generation is processed 
in this phase. feati defines ith level features, and conc() represents the 
concatenation function. 256 and seven features are extracted by using 
BP and SFE, respectively. Therefore, 263 features are totally extracted at 
each level. 

Step 3: Concatenate features of each level and obtain the final 
feature vector (feat) with a size of 1315. 

feat = conc(feat1, feat2, feat3, feat4, feat5) (17) 

Step 4: Normalize feat using Eq. (18). 

X =
feat − min(feat)

max(feat) − min(feat)
(18)  

where X is normalized features in the range of [0,1], we used normali-
zation to select the most discriminative features since RFINCA uses 
distance-based feature selectors. 

2.3. Feature selection 

One of the most critical problems of feature selection is to find the 
optimal number of features. Therefore, researchers have tried to find the 
optimal number of features using trial and error methods. We proposed 
RFINCA to solve this problem automatically. In the feature extraction 
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phase, 1315 features are generated from an EEG signal. A novel iterative 
and hybrid feature selection technique is presented to choose significant 
k features from the extracted 1315 features. This feature selection uses 
ReliefF and NCA together [25,26]. ReliefF is a distance-based feature 
selection technique that calculates a weight for each feature using 
Manhattan distance and generates both negative and positive weights. 
NCA is one of the mostly used feature selection techniques and a 
weight-based feature selection algorithm to generate positive weights. 
Both ReliefF and NCA have bigger weights to define more distinctive 
features, smaller weights to represent less valuable features. Moreover, 
negative weighted features crated by ReliefF represent redundant fea-
tures. Therefore, ReliefF is firstly applied to normalized features, and 
ReliefF weights are calculated to eliminate redundant (negative 
weighted) features. After eliminating the redundant features, NCA is 
applied to selected features by ReliefF to determine the range of the 
number of features. In this work, the initial and end values of the pre-
sented iterative feature selector are chosen as 40 and 1000 respectively. 
These features are utilized as an input to the k-NN classifier [38], which 
is an effective and fast classifier to calculate the error rates. Then, fea-
tures with a minimum error are selected. Graphical demonstration of the 
RFINCA is given in Fig. 2. 

Steps of the presented RFINCA are listed below. 
Step 4: Apply ReliefF to normalized features (X) with a size of 1315 

and calculate 1315 ReliefF features. 

wR = ReliefF(X, target) (19)  

Where wR is weights of the ReliefF with a size of 1315. 
Step 5: Select positive weighted features using wR. 

featR(k) = X(i), wR(i) > 0 k = k + 1 (20)  

where featR is selected features by using ReliefF with the size of k. 
Step 6: Calculate NCA weights using featR and NCA function. 

wN = NCA(featR, target) (21)  

where wN is NCA weights. 
Step 7: Sort wN by descending. 

[
wNsorted indice

]
= sort(wN) (22)  

where wN
sorted sorted weights, and indice is indices of these weights. 

Step 8: Calculate errors by using a k-NN classifier with 10-fold cross- 
validation (CV). The procedure of the error calculation is given in Al-
gorithm 2. 

Algorithm 2. Error calculation for features. 

Step 9: Find the minimum error. 

[errsorted ind] = min(err) (23)  

where ind is indices of the minimum error. 
Step 10: Select final features (featf ). 

featf (i) = featR(indice(i) ), i = {1, 2,…, 39 + ind} (24) 

The proposed RFINCA selects 55 features from the extracted 1315 
features. ReliefF selects 839 features, and 55 of them are the most 
effective. 

2.4. Classification 

The selected 55 features are utilized by different classifiers to show 
the success of the proposed framework. Eighteen classifiers are used to 
test the proposed BP, statistical features, and RFINCA feature selector- 
based driver fatigue detection approach with 10-fold cross-validation. 
The used classifiers are categorized into seven groups, and their 
parameter settings were given below. 

2.4.1. Artificial neural networks 
In this group, we used backpropagation ANN. It has been mostly used 

in classification tasks. Hyperparameters of the used ANN are given as 
follows. It has one hidden layer, with 130 neurons. It is a back-
propagation network, and the scaled conjugate gradient training 
method is used to calculate optimal weights [39]. 

2.4.2. Logistic regression 
Logistic regression is a binary classifier, and it is a nonparametric 

classifier [40]. 

2.4.3. Linear discriminant 
LD is one of the most straightforward and linear classifiers in the 

literature, and it is a nonparametric classifier [41]. 

Fig. 2. Flow diagram of the proposed RFINCA.  
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2.4.4. Decision tree 
In this category, two classifiers are used in MATLAB Classification 

Learner (CL). These are called Fine Tree and Medium Tree. Hyper-
parameters of these models are given as follows. Both Fine Tree and 
Medium Tree use Gini’s diversity index. Maximum split numbers of Fine 
Tree and Medium Tree are selected as 100 and 20, respectively [42]. 

2.4.5. Support vector machine 
SVM is one of the widely used conventional classifiers. It is an 

optimization-based classifier and uses numerous kernel functions. 
Therefore, it has several variations. In this work, we used linear, 
quadratic, cubic, and Gaussian kernels. These are called Fine Gaussian 
SVM, Quadratic SVM, Linear SVM, Cubic SVM in the MATLAB CL. 
Default settings of the models were used [43,44]. 

2.4.6. k-Nearest neighbor 
k-NN is a distance-based classifier, where k represents a variable. 

Various k variables and distance metrics can be utilized in this category. 
We used five types of k-NN classifiers. These are called Cubic k-NN, Fine 
k-NN, Medium k-NN, Cosine K-NN, and Weighted k-NN. City block 
(Manhattan) distance metric was used in the Fine k-NN, Medium k-NN, 
and Weighted k-NN. Minkowski distance was used in Cubic K-NN, and 
Cosine distance was used in Cosine k-NN. k values were selected as 2, 10, 
1, 1, and 2 for Weighted k-NN, Medium k-NN, Fine k-NN, Cubic k-NN, 
and Cosine K-NN, respectively. The squared inverse was chosen as dis-
tance weight for Weighted k-NN, and Equal was selected for others [38, 
45]. 

2.4.7. Ensemble 
Four ensemble classifiers were used namely Bagged Tree, Boosted 

Tree, Subspace k-NN, and Subspace Discriminant in MATLAB CL. The 
number of learners and learning rates of all of them was set as 30 and 0.1 
[46]. 

Step 11: Classify the selected features by using the chosen classifier 
with a 10-fold CV. 

2.5. Overview of the proposed framework 

Steps of the presented hybrid feature extraction and RFINCA feature 
selection-based driver fatigue detection approach was given in the 
previous sections. This method has a multilevel architecture, and tran-
sitions of the proposed multileveled fatigue driving detection approach 
are demonstrated in Table 2. 

Table 2 distinctly illustrates the transitions of the presented driver 
fatigue detection method. By using Table 2, the time complexity of the 
presented method can easily be calculated. The complexity of the pre-
sented multilevel feature generation method was found as O(nlogn), and 
the time complexity of the other phases was calculated as O(n). RFINCA 
feature selector has more complexity. It uses an iterative feature selec-
tion. A range was used to reduce the time complexity of the RFINCA. The 
optimal number of features is determined by using iterative feature 

selection. Shallow classifiers are utilized in the classification phase. 
Therefore, the time complexity of the classification phase is low. The 
time complexity of each phase is shown below to better express the 
presented model. 

Feature extraction : O(nlogn)

Feature selection : O(n2 + Rn2) = O(Rn2)

Table 2 
Transitions of the presented perceptual hash.  

Section Process Size Objective 

Level creation 

Raw EEG signal L  Load signal 
Apply 1D-DWT to raw 
EEG signal and obtain 
Low1 sub-band.  

L
2  

Preprocessing and 
construction 
multileveled method. 

Apply 1D-DWT to raw 
Low1 signal and 
obtain Low2 sub-band.  

L
4  

Apply 1D-DWT to raw 
Low2 signal and 
obtain Low3 sub-band.  

L
8  

Apply 1D-DWT to raw 
Low3 signal and 
obtain Low4 sub-band.  

L
16  

Feature extraction 

Extract textural and 
statistical features 
from the Raw EEG 
signal. 

263 

Low, medium and 
high level feature 
extraction. 

Extract textural and 
statistical features 
from Low1 signal.  

263 

Extract textural and 
statistical features 
from Low2 signal.  

263 

Extract textural and 
statistical features 
from Low3 signal.  

263 

Extract textural and 
statistical features 
from Low4 signal.  

263 

Concatenate extracted 
features 

1315 

Normalize features 1315 

Feature selection 
with the 
proposed 
RFINCA 

Generate weights of 
ReliefF 

1315 

Selection of most 
distinctive features. 

Eliminate redundant 
ones 839 

Calculate weights of 
NCA 839 

Select optimum 
features 

55 

Classification Classify selected 55 
features 

18 
classifiers 

Classification  
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Classification : O(kd)

where R defines the range, k is the number of features, d represents the 
dimension of the used dataset. Both ReliefF and NCA use a nested loop to 
generate optimal weights of the features. Therefore, the time complex-
ities of both feature selectors are the same, and they are calculated as 
O(n2). However, the feature selection process of the NCA is used itera-
tively. The time complexity of INCA is found as O(Rn2). Moreover, the 
pseudocode of the proposed approach is given in Algorithm 3 to sum-
marize the presented model compactly. 

Algorithm 3. The presented multilevel feature generation and hybrid 
feature selection-based EEG driver fatigue detection model. 

3. Results and discussion 

3.1. Dataset 

A publicly available EEG dataset1 is utilized in this study. A brain cap 
with 32-electrode was used to collect the EEG signals. Therefore, the 
used dataset contains EEG signals with 32-channels. The EEG signals 
were collected by using a driving simulator and a brain cap. Subjects did 
not use stimulants such as alcohol, tea, or energy drinks prior to the 
experiment. The experiment was carried out using a vehicle driving 
simulator. The age range of the subjects was determined as 17–25, and 
the EEG signal was collected from 16 healthy subjects. These are eight 
males and eight females. EEG signal collection took 5 min for each 
subject, and these signals were segmented. After the experiment, 480 
fatigue and 480 rest EEG signals were collected [47]. 

3.2. Experimental setup 

A publicly available driving fatigue EEG dataset was downloaded, 
which was explained in Section 3.1 for testing our proposed method. To 
realize the presented fused feature generator and RFINCA feature 
selector-based driving fatigue detection approach, MATLAB2018a was 
used on a laptop computer. This laptop computer has simple configu-
rations, which are 8 GB RAM and i5 8th generation CPU (1.8 GHz). Any 
parallel programming and GPU core were not used to implement the 
experiments. In the classification phase, MATLAB classification learner 
and ANN toolboxes were used. There are 480 instances for fatigue and 
480 instances for the rest. Since the number of instances are limited, 10- 
fold cross-validation is utilized in the classification phase. 

3.3. Experimental results 

In this section, the presented multilevel hybrid feature extraction and 
RFINCA feature selection-based driver fatigue detection approach are 
evaluated using the classifiers’ performance metrics. These performance 
metrics are geometric mean (gm), sensitivity (sen), accuracy (acc), 
specificity (spe). These performance evaluation metrics have been 
widely used for classification methods, and mathematical equations of 
these performance metrics are given in Eqs. (25)–(28) [48–50]. 

Acc =
ntp+ ntn

ntp+ ntn+ nfp+ nfn
(25)  

Sen =
ntp

ntp+ nfn
(26)  

Spe =
ntn

nfp+ ntn
(27)  

Gm =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sen x Spe

√
(28)  

where ntp, ntn, nfp, and nfn describe the number of true positives, true 
negatives, false positives, and false negatives, we used 18 classifiers in 7 
categories. The obtained results are listed in Table 3. 

As seen from Table 3, the Fine k-NN classifier reached 100.0% 
classification accuracy, and the most successful category is k-NN 
because all classifiers of k-NN achieved higher than 90% classification 
accuracy and geometric mean. 

3.4. Discussions 

In this study, a novel EEG signal classification framework for driver 
fatigue detection is presented. A multilevel feature extraction BP and 
statistical feature-based multilevel feature extraction process was used 
to generate low, middle, and high-level features. In order to automati-
cally select meaningful features, the RFINCA method was presented. By 
using RFINCA, 55 features were selected. These features were utilized as 
the input of the 18 classifiers in 7 categories. The best classifier was 
found as a Fine k-NN classifier, and it reached 100.0% classification 
accuracy. The best category is the k-NN because all classifiers in this 
category achieved higher than 90.0% classification accuracy. ANN also 
achieved 98.85%, 98.96%, 98.75%, and 98.85% accuracy, sensitivity, 
specificity, and geometric mean, respectively. The worst classifier is LR, 
and the geometric mean of it 71.23%. 

To demonstrate the success of the presented hybrid feature extrac-
tion and RFINCA feature selection-based driver fatigue detection 
framework, the success rates of state-of-the-art fatigue detection 
methods and proposed method are listed in Table 4. Table 4 clearly 
demonstrates that the presented method reaches higher classification 
rates by using eight classifiers than the best of other methods. By using 
the Fine k-NN classifier, we reached 4.69% higher classification accu-
racy than the best of other methods. The statistical attributes of the 
selected 55 features by RFINCA are shown in Fig. 3 by using boxplot 
analysis to prove this high classification success. 

Fig. 3 shows the obtained high classification rates, and the selected 
55 features by RFINCA are separable because they have distinctive 
statistical characteristics. Advantages of the proposed hybrid feature 
extraction and RFINCA feature selection-based driver fatigue detection 
framework are given as follows:  

• Statistical and texture-based feature extraction methods are used 
together, and high classification accuracies were obtained by using 
these features and RFINCA feature selection approaches.  

• By using the proposed hybrid feature extraction method, low level, 
middle level, and high-level features are extracted with low 
computational complexity (O(nlogn)). 

• The number of features is parametrically selected by the feature se-
lection methods (ReliefF and NCA-based feature selection). The 
proposed RFINCA based feature selection method uses the advan-
tages of these two feature selection algorithms, and the number of 
most discriminative features are automatically selected.  

• 18 classifiers in seven categories were used to test the performance of 
the proposed hybrid feature extraction and RFINCA feature 
selection-based fatigue detection framework. By using these classi-
fiers, a comprehensive benchmark was obtained.  

• The proposed hybrid feature extraction and RFINCA feature 
selection-based driver fatigue detection approach reached higher 
classification rates than other methods using eight classifiers (See 
Table 4). These results distinctly indicate that the performance of the 
proposed framework is very efficient.  

• Excellent classification performance (100.0%) was achieved by using 
the proposed framework for driver fatigue detection (see Tables 3 
and 4). 

1 https://data.mendeley.com/datasets/dpgvc22rth/1. 
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• This method is simple and can be easily implemented in smart 
vehicles. 

The disadvantage of the presented model is the high time complexity 
of the RFINCA feature selector. Although it is a very effective feature 
selector, it has a high execution time. In the near future, lightweight and 
effective feature selectors like RFINCA can be used. 

4. Conclusion and future directions 

This paper proposes two effective methods as a feature generator and 
a feature selector. In feature generation, two lightweight and straight-
forward feature generation functions are employed to use effectiveness 

of them. These functions are BP and statistical feature generation. As 
mentioned before, DWT is one of the significant transformations for 
signal decomposition. Thus, DWT is selected to create levels; BP and 
seven statistical moments are utilized for a fused and multilevel feature 
generation. The biggest problem for the feature selection is to select the 

Table 3 
Classification performances (%) of the proposed hybrid feature extraction and 
RFINCA feature selection-based fatigue detection method.  

Category Classifier Acc Sen Spe Gm 

ANN ANN 98.85 98.96 98.75 98.85 
LR LR 71.35 75.41 67.29 71.23 
LD LD 72.08 75.42 68.75 72.01 

Tree 
Fine Tree 90.42 90.63 90.21 90.42 
Medium Tree 84.17 81.25 87.08 84.11 

SVM 

Linear SVM 73.85 78.75 68.96 73.69 
Quadratic SVM 87.50 88.75 86.25 87.49 
Cubic SVM 90.10 90.42 89.79 90.10 
Fine Gaussian SVM 98.02 97.92 98.13 98.02 

k-NN 

Fine k-NN 100.0 100.0 100.0 100.0 
Medium k-NN 99.38 98.96 99.79 99.37 
Cubic k-NN 91.04 92.71 89.38 91.03 
Cosine k-NN 94.06 94.79 93.33 94.06 
Weighted k-NN 99.79 99.58 100.0 99.79 

Ensemble 

Boosted Tree 98.12 98.33 97.92 98.12 
Bagged Tree 98.33 98.54 98.13 98.33 
Subspace Discriminant 72.92 74.16 71.67 72.90 
Subspace k-NN 99.48 98.96 100.0 99.48  

Table 4 
Classification accuracies (%) of the previously presented methods and the pro-
posed hybrid feature extraction and RFINCA feature selection-based fatigue 
detection method.  

Method Dataset Split ratio Classification 
accuracy 

Wang et al. method [51] Collected 
data 

30-fold cross 
validation 

90.70% 

Li et al. method [18] Collected 
data [52] 

Unspecified 91.50% 

Luo et al. method [1] 
(Single-channel) 

Collected 
data 

80:20 95.37% 

Hu method [53] 
(Single-channel) 

Collected 
data 

Leave-one-out 
cross-validation 

96.60% 

Li et al. method [54] 
(Single-channel) 

Collected 
data 

67 training 98.86% 
33 testing 

Our method + ANN 
(Single-channel) 

Qiu dataset 
[47] 

10-fold cross- 
validation 

98.85% 

Our method + Fine 
Gaussian SVM 

98.02% 

Our method + Fine k-NN 100.0% 
Our method + medium k- 

NN 
99.38% 

Our method + Weighted 
k-NN 99.79% 

Our method + Boosted 
Tree 98.12% 

Our method + Bagged 
Tree 

98.33% 

Our method + Subspace 
k-NN 

99.48%  
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most informative and discriminative features automatically. RFINCA is 
proposed to solve this problem and use the superiorities of both NCA and 
ReliefF together. The presented fused and multileveled feature generator 
and RFINCA feature selector were tested on a publicly available fatigue 
driving EEG dataset. Our feature generator extracts 1315 features, and 
RFINCA selects 55 most valuable of them. These features are utilized as 
the inputs of 18 shallow classifiers. 10-fold cross-validation was chosen 
as a validation and test strategy. 100.0% classification accuracy was 
obtained by using the Fine k-NN classifier, which is also utilized as an 
error calculator of RFINCA (See Table 3). Comparisons clearly showed 
that the proposed feature extraction and RFINCA feature selection 
method had achieved excellent performance since we reached higher 
success rates than the state-of-the-art methods using 8 classifiers (See 
Table 4). The effectiveness of the extracted and selected features was 
also presented (See Fig. 3). These results obviously demonstrated the 
success of our cognitive strategy for EEG based driver fatigue detection 
approach. 

In future works, an automated and intelligent driver assistant system 

can be developed for driver fatigue detection by using the presented 
hybrid feature extraction and RFINCA feature selection framework. 
RFINCA is a significant feature selector, and it can be used in other fields 
as well. Our main intention is to propose a real-time driving fatigue 
detection model using EEG signals. Our intended real-time EEG-based 
driver fatigue detection strategy is summarized as follows. According to 
this work, the gathered EEG signals can be received every minute, and 
these EEG signals can be used as the input of the proposed framework. In 
the training phase, the best feature combination can easily be deter-
mined by using RFINCA. Therefore, RFINCA can only be used in the 
training phase. By using the proposed fused feature generator, features 
of the EEG signals can be extracted, and the best combination (the 
determined feature index by RFINCA) can be selected, and these features 
can be classified by using any shallow/conventional classifier to detect 
driver fatigue. Furthermore, we can use the matching method by using a 
trained dataset instead of a classification. Our future direction about the 
real-time application is shown in Fig. 4. 

Fig. 3. Graphical demonstration of the selected 55 features statistical attributes according to class by using boxplot analysis.  
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