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Quasi-non-uniform gradient-level exchange-correlation approximation for metals and alloys
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The flexibility of the common generalized gradient approximation for the exchange-correlation energy is
investigated by monitoring the equilibrium volume of transition metals. It is shown that no universal gradient-
level approximation yielding consistent errors for all metals exists. Based on an element-specific optimization,
the concept of quasi-non-uniform gradient-level approximation is introduced. The strength of the scheme is
demonstrated on several transition-metal alloys.
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Density functional theory (DFT)1 has become a funda-
mental first-principles research tool within modern materials
science. The great breakthrough during the last 30–40 years
should primarily be attributed to the local density formalism,2

where the many-body interactions are efficiently incorporated
within an effective one-electron local potential.

The first description of the unknown exchange-correlation
potential was provided by the local density approximation
(LDA), assuming uniform electron density on the scale of the
exchange-correlation hole. This seemingly rough approxima-
tion turned out to be unexpectedly accurate in total energy
calculations, which in fact made the early DFT success
possible. Attempts to go beyond LDA within the framework
of the local density formalism have led to the elaboration
of the density gradient corrected functionals. Accordingly,
two major gradient-level density functional (GDF) families
emerged. The generalized gradient approximation (GGA)3–6

aimed to stabilize the diverging term from the second-
order gradient expansion,2 and gave a proper description of
many important solids, such as the ferromagnetic iron. The
subsystem functional approach (SFA)7 originated from the
nearsightedness principle8 and incorporates inhomogeneous
electron density effects through well-adapted model systems.
The simplest SFA was put forward within the Airy gas
approximation,9 which was later further developed into various
gradient-level approximations.10–12 For both GDF families,
LDA represents the lowest order approximation and thus the
correct limit in systems with densities showing negligible
inhomogeneities.

A GDF exchange-correlation energy depends on the elec-
tron density n and its gradient ∇n, viz.,

EGDF
xc [n] =

∫
d3rfxc(rs,s), (1)

with rs = [3/(4πn)]1/3 and s = |∇n|/[2n(3π2n)1/3].
The exchange-correlation energy density fxc(rs,s) is
commonly expressed with the help of the enhancement
function Fxc(rs,s) over the exchange energy density of the
uniform electron gas, εLDA

x (n). For slowly varying electron

density (s → 0), Fxc(rs,s) → F LDA
xc (rs) = 1 +

εLDA
c (n)/εLDA

x (n), where εLDA
c (n) is the LDA correlation.

The explicit form of Fxc(rs,s) contains all information
about the actual approximation. A detailed comparison of
different enhancement functions from the GGA and SFA
families13 shows that the behavior of Fxc(rs,s) in the rapidly
varying density regime (corresponding to s � 0.5 for rs � 4
and s � 0.2 for rs � 4) determines the performance of
the approximation for a particular inhomogeneous electron
system.

In this Rapid Communication, first we investigate the
flexibility of the GDFs by monitoring their behavior for bulk
transition metals. Based on the SFA concept, next we introduce
a quasi-non-uniform gradient-level approximation (QNA) that
performs equally well for monoatomic systems and multi-
component solid solutions. For the sake of transparency, we
limit the present assessment to two familiar GGA exchange-
correlation density functionals, namely the Perdew-Burke-
Ernzerhof (PBE)4 and the revised PBE (PBEsol)6 functionals.
Nevertheless, the main conclusion and the emerging QNA can
easily be extended to any GDF type of description.

The PBE and PBEsol approximations are based on similar
enhancement functions. The prior was designed to provide
accurate atomic energies whereas the latter was optimized for
bulk and surface systems by restoring the original gradient
expansion behavior for the exchange part and adjusting the
correlation term using the jellium surface exchange-correlation
energies obtained at meta-GGA level.14 The parameters
controlling these effects are μ and β and their values for
PBE and PBEsol are (μ,β)PBE = (0.219515,0.066725) and
(μ,β)PBEsol = (0.123457,0.046000), respectively. The large
(44% and 31%) difference between the two sets of parameters
indicates that the atomic and bulk regimes require rather
different enhancement functions. The LDA functional is
recovered for (μ,β)LDA = (0,0).

We demonstrate the performance of different GDFs by
calculating the equilibrium volumes of seven transition metals
(V, Fe, Cu, Nb, Pd, W, Au) and four alloys (V-W, V-Fe,
CuAu, and Cu3Au). The electronic structure and total energy
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TABLE I. Equilibrium Wigner-Seitz radii (in bohrs) at static
conditions (0 K) for a selected set of transition metals. Experimental
values are those from Ref. 23 (Cu, Pd), Ref. 24 (Fe), and Ref. 25
(Au, W). For Nb and V, the experimental values were obtained by
extrapolating the room-temperature data (Ref. 26) to 0 K using the
experimental thermal expansion coefficients (Ref. 27) and the Debye
temperature (Ref. 28). The numbers in parentheses are the relative
errors (in %). Further systems can be found in Ref. 22.

Element wPBE wPBEsol w(expt)

V 2.789 (−0.6) 2.752 (−1.9) 2.805
Fe 2.641 (−0.8) 2.600 (−2.3) 2.661
Cu 2.687 (+1.0) 2.638 (−0.9) 2.661
Nb 3.080 (+0.5) 3.040 (−0.8) 3.066
Pd 2.923 (+2.0) 2.873 (+0.2) 2.866
W 2.970 (+1.0) 2.942 (+0.1) 2.940
Au 3.084 (+2.7) 3.028 (+0.9) 3.002

calculations were performed using the exact muffin-tin orbitals
method.15–17 The Kohn-Sham equations were solved within
the scalar relativistic approximation; the Green’s function
was calculated for 16 complex energy points distributed
exponentially on a semicircular contour including the valence
states and employing the double Taylor expansion approach.18

The basis set included s, p, d, and f orbitals and the core states
were recalculated after each iteration. We used 285, 240, 288,
and 455 inequivalent �k points in the irreducible wedge of the
body centered cubic (bcc), face centered cubic (fcc), L10, and
L12 Brillouin zones, respectively. The random alloys (V-W,
V-Fe) were treated by the coherent potential approximation.19

The equilibrium Wigner-Seitz radii (w) were extracted
from the equation of state described by a Morse function20

fitted to the total energies calculated for 17 different volumes
around the equilibrium. All self-consistent calculations were
carried out within the LDA and the gradient terms were
included in the total energy within the perturbative approach.21

The average error (∼7 × 10−4 bohrs in w) due to the
above approximation is below the numerical accuracy of our
calculations.22

According to Table I, neither PBE nor PBEsol yields sys-
tematic errors for the Wigner-Seitz radius of transition metals.
Both of them underestimate the equilibrium volume of 3d met-
als (except PBE for Cu) but overestimate those of the 5d met-
als. As a consequence, the PBE/PBEsol over-binding remains
nearly the same when going from pure Fe to Fe-V solid solu-
tions and then to pure V (Fig. 1, upper panel). However, for the
V-W binary alloy, the inconsistent errors for V and W result in
a significantly larger theoretical (PBE/PBEsol) volume versus
composition slope than the measured one (Fig. 1, lower panel).

Many of the recent density functionals have been adjusted
to model systems9–11 or to metal surfaces.6,11 Following the
same idea, we investigate whether it is possible to adjust a GDF
so that it produces systematic errors for the bulk properties of
metals. To this end, we consider the parameters μ and β from
the PBE/PBEsol scheme and compute the equilibrium volume
of the selected monoatomic metals as a function of these
“variables” for 0.075 � μ � 0.364 and 0.015 � β � 0.108.
In Fig. 2, we show w(μ,β) for V, Fe, and Au relative to the
corresponding experimental values (Table I). We find that the
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FIG. 1. (Color online) Equilibrium Wigner-Seitz radii for Fe-V
and V-W binary alloys. The present theoretical results (PBE/PBEsol:
dashed lines; QNA, βPBEsol: squares; QNA, βPBEsol: plus symbols) are
compared to Vegard’s law (dashed-dotted line) and experimental data
(open and filled circles) (Refs. 29–31).

errors in the theoretical w change smoothly from negative to
positive values as a function of μ but are nonmonotonic in
terms of β. As a consequence, changing βPBE to βPBEsol, for
instance, results in a minor effect on the theoretical volume of
V or Fe. Another interesting feature is the positive β versus
μ slope of the isoerror contour lines for β � βPBE/PBEsol.
Hence, larger μ requires larger β to preserve the error in the
equilibrium volume. This is a manifestation of the often quoted
“error cancellation” between exchange and correlation terms
in solids.

We find that for each element infinitely many pairs of
{μ,β} yield vanishing error in the equilibrium volume. These
combinations form a continuous line in the {μ,β} space
(marked by 0.000 in Fig. 2). The particular values μopt

corresponding to βopt = βPBE and βopt = βPBEsol are listed
in Table II. We immediately observe that these “optimal”
{μ,β}opt parameters are element specific. For instance, V and
Fe require μopt ∼ 0.26–0.27, whereas for the 5d elements μopt

drops below ∼0.13. These demonstrate that it is not possible
to define a unique pair of “optimal” {μ,β} parameters. In
other words, at least within the PBE/PBEsol constraint, it is
not possible to find a GDF that performs equally well for all
metals.
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FIG. 2. (Color online) Contours of relative errors in the Wigner-Seitz radius of V, Fe, and Au. Specific sets of parameters corresponding
to PBE, PBEsol, {μ,β}opt with β = βPBE and β = βPBEsol are shown by symbols. The dotted grid represents those {μ,β} pairs for which the
calculations were performed. At every grid point, the equilibrium volume was derived from the total energy versus volume curves obtained
using the particular {μ,β} parameters.

In an attempt to find the “best” {μ,β} combination that
leads to the smallest error in the equilibrium volume for
the present set of monoatomic solids, we minimized the
cost function C(μ,β) ≡ ∑

i[wi(μ,β)/wi(expt) − 1]2 (i runs
over the seven selected solids). Extending the search to 0 �
μ � 0.400 and 0 � β � 0.260 resulted in μg−opt = 0.151990
and βg−opt = 0.230019 corresponding to Cg−opt = 0.0004. In
terms of the cost function, the above “globally” optimized
pair of parameters represents marginal improvement over
C(PBE) = 0.0015 and C(PBEsol) = 0.0011.

In order to reveal the origin of the difference between
the results obtained with PBE/PBEsol and those using
{μ,β}opt (leading to vanishing errors in w), we monitor
the ratio between the corresponding enhancement functions
F

opt
xc (rs,s)/F PBE

xc (rs,s). Figure 3 displays the above ratio within
the (001) plane of bcc V and fcc Au. We notice that for
both systems F

opt
xc (rs,s) and F PBE

xc (rs,s) are close to each
other around the cell boundary but show large (positive

TABLE II. Special values for μopt corresponding to βopt = βPBE

and βopt = βPBEsol for the seven selected metals.

Element βPBE βPBEsol

V 0.2722 0.2646
Fe 0.2718 0.2570
Cu 0.1732 0.1587
Nb 0.1874 0.1750
Pd 0.1284 0.1124
W 0.1317 0.1185
Au 0.1080 0.0900

for V and negative for Au) deviations for points inside
the atoms. That is, the interstitial region corresponds to
nearly LDA regime, whereas the valence-core overlap region
is where the details of the GDF become important. This
observation is in line with those discussed by Fuchs et al.32 and
Csonka et al.33

We conclude that for metals the primary error of a GDF is
of local nature: The truly gradient-sensitive region is always
localized around the atomic sites and the region in between
the sites is less sensitive to the details of the density functional
approximation. This finding opens the door to a new SFA.
According to that, for a solid the optimal subsystems are
the individual (element specific) valence-core overlap regions
which are connected by the nearly homogeneous valence
electron sea. For multicomponent alloys, a possible realization
of such quasi-non-uniform gradient-level approximation is the
superposition of the component-optimized gradient-level func-
tionals. Mathematically, a QNA functional may be expressed
as

EQNA
xc [n] =

∑
q

∫
�q

d3rεLDA
x (n)F

optq
xc (rs,s), (2)

where F
optq
xc is the PBE/PBEsol enhancement function based

on {μ,β}optq optimized for the alloy component q. Around
each atomic site q, the integration domain is within �q .
These are space-filling cells defined so that the gradient of the
density vanishes on the boundary of each polyhedra. Since for
any {μ,β}optq , F

optq
xc (rs,s) reduces to F LDA

xc (rs) for s → 0, the
kernel of the functional from (2) is continuous at the polyhedra
boundaries.
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FIG. 3. (Color online) Contour plot of the F opt
xc (rs,s)/F PBE

xc (rs,s)
ratio within the (001) plane of the bcc V and fcc Au. The atoms are
located at the origin (x = y = 0), and the plots include points inside
the sphere circumscribed to the Wigner-Seitz cells. The cross section
between the cell boundary and the (001) plane is marked by thin solid
lines.

We demonstrate the above QNA scheme in the case of
bcc V-Fe and V-W solid solutions and CuAu and Cu3Au

intermetallic compounds adopting the L10 and L12 struc-
tures, respectively. Using {μ,β}opt obtained34 for bcc V, Fe,
and W, we computed the equilibrium Wigner-Seitz radii
of V-Fe and V-W binary alloys as a function of chemical
composition. A nearly perfect agreement between the QNA
results (denoted by QNA, βPBEsol in Fig. 1) and the mea-
sured equilibrium radii is found. For CuAu and Cu3Au, the
PBE/PBEsol errors in w relative to the experimental values35

are 1.6%/0.3% and 1.1%/0.7%, respectively. Using QNA
with {μ,β}opt optimized for fcc Cu and Au, the above errors
drop below 0.1%. Thus, the proposed component-optimized
approximation (2) performs well for both random and ordered
alloys.

In the above tests, we approximated �q by the usual
Wigner-Seitz cell. To illustrate the size of the error introduced
by this simplification, in Fig. 1 we also show the results
produced by another optimal functional (QNA, βPBE). The
excellent agreement between the two set of results demon-
strates that QNA is not sensitive to the details of the functional
around the cell boundary.

It has been found that although for each elemental metallic
solid there are several optimal GDFs that give vanishing errors
in the theoretical equilibrium volume, no globally accurate
GDF exists. Starting from the concept of subsystem functional
approach, we have introduced a quasi-non-uniform gradient-
level approximation based on the component-optimized GDFs.
The so constructed QNA has been shown to perform equally
well for monoatomic and multicomponent metallic systems.
The proposed scheme can easily be implemented in any
density functional method, including pseudopotential methods
via properly designed pseudopotentials. Finally we should
mention that QNA can be turned fully ab initio by using, in-
stead the experimental information, data provided by accurate
many-body solvers.
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Foundation are acknowledged.

*henrik.levamaki@utu.fi
†levente@kth.se
1P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
3J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986); J. P.
Perdew, ibid. 33, 8822 (1986).

4J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

5Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
6J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E.
Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett.
100, 136406 (2008).

7R. Armiento and A. E. Mattsson, Phys. Rev. B 66, 165117 (2002).
8W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
9W. Kohn and A. E. Mattsson, Phys. Rev. Lett. 81, 3487 (1998).

10L. Vitos, B. Johansson, J. Kollár, and H. L. Skriver, Phys. Rev. B
62, 10046 (2000); Phys. Rev. A 61, 052511 (2000).

11R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
12L. A. Constantin, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. B 80,

035125 (2009).
13L. Delczeg, E. K. Delczeg-Czirjak, B. Johansson, and L. Vitos, J.

Phys.: Condens. Matter 23, 045006 (2011).
14J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys.

Rev. Lett. 91, 146401 (2003).

201104-4

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.33.8800
http://dx.doi.org/10.1103/PhysRevB.33.8822
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.80.890
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.66.165117
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.81.3487
http://dx.doi.org/10.1103/PhysRevB.62.10046
http://dx.doi.org/10.1103/PhysRevB.62.10046
http://dx.doi.org/10.1103/PhysRevA.61.052511
http://dx.doi.org/10.1103/PhysRevB.72.085108
http://dx.doi.org/10.1103/PhysRevB.80.035125
http://dx.doi.org/10.1103/PhysRevB.80.035125
http://dx.doi.org/10.1088/0953-8984/23/4/045006
http://dx.doi.org/10.1088/0953-8984/23/4/045006
http://dx.doi.org/10.1103/PhysRevLett.91.146401
http://dx.doi.org/10.1103/PhysRevLett.91.146401


RAPID COMMUNICATIONS

QUASI-NON-UNIFORM GRADIENT-LEVEL EXCHANGE- . . . PHYSICAL REVIEW B 86, 201104(R) (2012)

15O. K. Andersen, O. Jepsen, and G. Krier, in Lectures on Methods of
Electronic Structure Calculations, ed. V. Kumar, O. K. Andersen,
and A. Mookerjee (World Scientific Publishing Co., Singapore,
1994), p. 63.

16L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Comput. Mater.
Sci. 18, 24 (2000).

17L. Vitos, Phys. Rev. B 64, 014107 (2001); L. Vitos, I. A. Abrikosov,
and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001).

18A. E. Kissavos, L. Vitos, and I. A. Abrikosov, Phys. Rev. B 75,
115117 (2007).

19P. Soven, Phys. Rev. 156, 809 (1967); B. L. Györffy, Phys. Rev. B
5, 2382 (1972).

20V. L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Rev. B 37, 790
(1988).

21M. Asato, A. Settels, T. Hoshino, T. Asada, S. Blügel, R. Zeller,
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