Submitted 24 September 2021
Accepted 26 January 2022
Published 2 March 2022

Corresponding author
Indrikis A. Krams,
indrikis.krams@ut.ee

Academic editor
Clint Kelly

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.12953

() Copyright
2022 Krama et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Physiological stress and higher
reproductive success in bumblebees are
both associated with intensive agriculture

Tatjana Krama', Ronalds Krams'?, Maris Munkevics®,

Jonathan Willow?, Sergejs Popovs’, Didzis Elferts’, Linda Dobkevica®,
Patricija Raibarte®, Markus Rantala®, Jorge Contreras-Garduio” and
Indrikis A. Krams">°

! Daugavpils University, Daugavpils, Latvia

2 Estonian University of Life Sciences, Tartu, Estonia

3 University of Latvia, Riga, Latvia

4 University of Turku, Turku, Finland

5 Universidad Nacional Auténoma de México, Morelia, Mexico
6 University of Tartu, Tartu, Estonia

ABSTRACT

Free-living organisms face multiple stressors in their habitats, and habitat quality
often affects development and life history traits. Increasing pressures of agricultural
intensification have been shown to influence diversity and abundance of insect
pollinators, and it may affect their elemental composition as well. We compared
reproductive success, body concentration of carbon (C) and nitrogen (N), and C/N
ratio, each considered as indicators of stress, in the buff-tailed bumblebee (Bombus
terrestris). Bumblebee hives were placed in oilseed rape fields and semi-natural old
apple orchards. Flowering season in oilseed rape fields was longer than that in apple
orchards. Reproductive output was significantly higher in oilseed rape fields than in
apple orchards, while the C/N ratio of queens and workers, an indicator of
physiological stress, was lower in apple orchards, where bumblebees had significantly
higher body N concentration. We concluded that a more productive habitat, oilseed
rape fields, offers bumblebees more opportunities to increase their fitness than a
more natural habitat, old apple orchards, which was achieved at the expense of
physiological stress, evidenced as a significantly higher C/N ratio observed in
bumblebees inhabiting oilseed rape fields.

Subjects Biochemistry, Ecology, Entomology, Zoology
Keywords Bumblebees, Pollinators, Agricultural landscape, Ecological stoichiometry, Reproductive
stress, The carbon-to-nitrogen ratio

INTRODUCTION

While pollination is one of the most important ecosystem services for ensuring crop
productivity, both agricultural intensification and agricultural land expansion have
negatively affected pollinator species and community diversity (Kremen, Williams ¢
Thorp, 2002; Garibaldi et al., 2013; Lever et al., 2014). This is an important economic
argument for conservation of local pollinators and their habitats (Goulson, 2012).
However, despite the numerous conservation measures in place, insect pollinators remain
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under constant stress, especially in areas of high-intensity agriculture, as a result of
continuous changes in the landscape and microclimate, invasive pests and diseases,
decreases in the amount of floral resources, and the detrimental effects of pesticides
(Goulson et al., 2015; Crall et al., 2018). Moreover, recent studies have demonstrated that
minor variations in vegetation traits significantly affect habitat quality, pollinator
immunity, stress resistance and abundance (Riddell ¢ Mallon, 2006; Bartual et al., 2019,
Jachuta, Denisow ¢ Wrzesien, 2021).

It is known that body elemental composition responds to environmental stress (Sterner
¢ Elser, 2002; Hawlena ¢ Schmitz, 2010a; Huang, Wang ¢ Ren, 2019). Body carbon (C)
and body nitrogen (N) concentrations follow to changes in environmental quality (De
Senerpont Domis et al., 2014; Janssens, Op de Beeck ¢ Stoks, 2017), environmental stability
(Janssens, Van Dievel & Stoks, 2015a; Schmitz, Rosenblatt & Smylie, 2016; Zhang et al.,
2016), individual development-associated stress (Trakimas et al., 2019; Krams et al., 2020),
and the risk of predation (Janssens, Van Dievel ¢» Stoks, 2015b; Van Dievel, Janssens ¢
Stoks, 2016; Krams et al., 2016; Zhang et al., 2016; Krams et al., 2021a). Stress is supposed to
increase glucocorticosteroid release, which heightens the intensity of metabolism (Slos ¢
Stoks, 2008; Hawlena ¢ Schmitz, 2010a, 2010b; Krams et al., 2013a, 2013b). This typically
leads to higher consumption of carbohydrates (Hawlena ¢ Schmitz, 2010a; Rinehart ¢
Hawlena, 2020), the increased concentration of body C, reduced concentration of body N,
and a higher C/N ratio (Sterner ¢ Elser, 2002; Hawlena ¢ Schmitz, 2010a, 2010b; Trakimas
et al., 2019; Van Dievel, Janssens & Stoks, 2020).

In pollinator research, ecological stoichiometry has been used to study relationships
between the chemical content and quality of bee food, and the consequences these may
cause on the individual development of bees and the diversity of local pollinator
communities (Filipiak ¢» Weiner, 2017; Filipiak et al., 2017). The maintenance of
stoichiometric balance is important because inconsistency between the chemical
composition of an organism’s tissues and that of its food sources strongly affects the
organism’s life history traits, including fitness (Filipiak, 2018; Filipiak, Woyciechowski &
Czarnoleski, 2021). This suggests that the availability of suitable food and its elemental
composition may influence the stoichiometric balance of individual pollinators
(Simanonok ¢ Burkle, 2020). The stoichiometric phenotype of pollinators has been shown
to affect plant-herbivore interactions, the diversity of local communities, and the quality of
pollination services performed (Filipiak ¢» Weiner, 2017; Kimper et al., 2017).

The concentration of body C and N in bumblebees has been studied to understand
the variation of C and N among social castes and sexes of the buff-tailed bumblebee
(Bombus terrestris) in an agricultural landscape (Krams et al., 2021b). To understand the
suitability of ecological stoichiometry based on variations of body C and N and the
C/N ratio as indicators of bumblebee stress, comparative research should be done to
compare the body C and N of bumblebees in habitats resembling natural ones and areas of
high-intensity agriculture. A recent study shows that close proximity to forests favors
bumblebee abundance and diversity because forests support wild pollinators also in nearby
agricultural landscapes (Sober et al., 2020). Due to the presence of several layers of
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vegetation in apple orchards, we considered this to be a more natural habitat than oilseed
rape fields.

In this study, we investigated whether habitat affects ecological stoichiometry in the
bodies of B. terrestris adults. We predicted that B. terrestris individuals living in more
natural habitats such as old apple orchards grown with no pesticides used should have
higher body N concentrations, lower body C concentrations, and lower C/N ratios than
B. terrestris individuals inhabiting intensive agricultural landscapes such as oilseed rape
fields. Apple orchards consist of trees, and habitats containing more trees can be
considered as habitats supporting higher biodiversity and abundance of wild bumblebees
(Martinez-Sastre, Miniarro & Garcia, 2020; Sober et al., 2020). A previous study (Krams
et al., 2021b) showed that body N concentration and body C/N ratio depend on B. terrestris
caste, sex and queen age, while body C concentration does not significantly differ between
bumblebee types (castes, ages and between young and ovipositing queens). Based on
these results (Krams et al., 2021b), we predicted that workers and young queens might have
higher N concentrations and lower C/N ratios than ovipositing queens and males.
However, the flowering period of oilseed rape is estimated to reach 1 month (d’Andrimont
et al., 2020) or longer in northern conditions as are present in Latvia, whereas apple trees
bloom for only up to 10 days (Tromp, 1976). This suggests that bumblebee colonies can
have access to larger amounts of food resources in oilseed rape fields than in apple
orchards.

MATERIALS AND METHODS

Study sites and insects

The study was carried out using commercially grown B. terrestris (Biobest Group NV,
Westerlo, Belgium). At the beginning of May 2020, we placed B. terrestris hives in two
contrasting habitats in southeast Latvia near Kraslava: oilseed rape fields and apple
orchards. We had a total of 50 hives across 28 oilseed rape fields and 22 hives across 11
apple orchards. At each study site, we placed one to three colonies, each protected
against ant and rodent attacks by attaching sticky tape around the lower parts of each hive.
We weighed each hive and removed the plastic container with a feeding solution
attached to each hive by the producer. We regularly observed each colony to make sure the
colonies were in good condition.

The apple orchards were located on private properties, and their size ranged from 2 to 4
ha. The orchards were partially surrounded by semi-natural forest vegetation in the form
of mixed-species unmanaged patches of alders, oaks, pines, spruces, and hedgerows.
The apple orchards represented old, semi-natural ecosystems with low commercial value.
The average age of apple trees was 44.24 + 6.12 years. The ground level was covered by
blackcurrant (Ribes nigrum), redcurrant (Ribes rubrum) and gooseberry (Ribes
divaricatum) bushes and grasses typical for local meadows, and cut for hay twice during
spring-summer.

The nearest oilseed rape fields were located 3-6 km away from the apple orchards.
The fields were c. 20-50 ha in size and were located in a mosaic of landscape as described
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earlier (Krams et al., 2021b). We chose our study sites so that bumblebee hives were located
between fields of spring- and winter oilseed rape.

We collected hives for their content analyses at the beginning of July just as they reached
generative offspring production phase. The collection was done similarly as described
in our earlier work (Krams et al., 2021b). Prior to collection we closed exit holes of the hive
for 7-9 h and hives were stored in a freezer at -84 °C (Angelantoni Lifescience, Massa
Martana, Italy).

Nest variables

For each nest, we checked for the presence of ovipositing queens, and recorded the total
number of hatched and unhatched cells. Since all hives contained males and young queens,
all pupae were assumed to be next-generation offspring, and were thus included as a
measure of reproductive success. The number of worker- and queen cells reflect
reproductive effort, and since reproduction is costly, these numbers can be used to estimate
the levels of reproduction-associated stress.

Bumblebee body mass, body C and N concentration

We dried the bumblebees at 65 °C for 72 h, and weighed individual insects using a Precisa
semi-micro balance (ES 225SM-DR; Precisa Gravimetrics AG, Dietikon, Switzerland) to
obtain their dry mass. Pollen was removed from the body or workers before we dried and
weighed bumblebees. Individual bumblebees were homogenized and we obtained their
whole body C and N mass percentage using the element analyzer EuroVector EA3000
(Eurovector Srl, Pavia, Italy) (Krams et al., 2020, 2021a). Samples of C and N
concentrations were measured for each bumblebee. We had 50 ovipositing queen samples
(22 collected from apple orchards, 28 from oilseed rape fields), 52 young queen samples
(27 from apple orchards, 25 from oilseed rape fields), 63 worker samples (28 from
apple orchards, 35 from oilseed rape fields), and 55 male samples (29 from apple orchards,
26 from oilseed rape fields).

Statistics

We used the Gamma (with log link) generalized linear mixed-effects models (GLMMs)
using habitat, bumblebee sex and interaction between habitat and sex as independent
variables, and body mass, body C, and C/N ratio as dependent variables as those variables
showed problems with heterogeneity. Linear mixed-effects models (LMEs) with the same
independent variables were used for body N concentration. In all four models, Site identity
(ID) and Hive ID were used as nested random factors.

A Poisson (with log link) GLMM was used to assess the effect of habitat (independent
variable) on the number of intact worker cocoons, eclosed worker cocoons, total number of
worker cocoons, intact queen cocoons, eclosed queen cocoons, total number of queen
cocoons, number of pollen cells and number of wax cells (dependent variables). As the
models showed overdispersion, Hive ID was added as the observation-level random effects,
in addition to Site ID that was also set as a random factor in all eight Poisson GLMMs.
We performed post-hoc comparison between bumblebee types (workers, young queens,
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ovipositing queens, males) using pairwise Tukey-adjusted comparison of estimated
marginal means from the model. Overall significance of each factor and their interaction
was expressed as analysis of deviance tables (Type II Wald chi-square tests) for Gamma
and Poisson GLMM, and analysis of variance table with Satterthwaite’s method for LME.
For the Gamma and Poisson GLMM, post-hoc test comparisons were evaluated using z-
value, but t-value for LME. All analyses were performed in R v4.0.4 (R Core Team, 2021)
libraries Ime4 (Bates et al., 2015) for GLMM and LME models, ImerTest (Kuznetsova,
Brockhoff & Christensen, 2017) for obtaining p-values of models, and emmeans (Lenth,
Buerkner ¢ Herve, 2021) for post-hoc tests. The significance threshold for all tests was set
at p = 0.05.

RESULTS

Body mass

The body mass was significantly affected by bumblebee types (X*(3) = 693.27, p < 0.0001;
Fig. 1). However, body mass was not affected by habitat (x*;) = 1.42, p = 0.23) nor habitat-
bumblebee type interaction (x’3) = 4.35, p = 0.23).

Regarding specimens collected from apple orchards, ovipositing queens were
significantly heavier than workers (mass ratio = 4.89 (SE = 0.499), z = 15.549, p < 0.0001),
males (mass ratio = 2.45 (SE = 0.246), z = 8.952, p < 0.0001), and young queens (mass
ratio = 1.44 (SE = 0.147), z = 3.544, p = 0.0203). Young queens were significantly heavier
than workers (mass ratio = 3.40 (SE = 0.297), z = 14.015, p < 0.0001), and males (mass
ratio = 1.71 (SE = 0.144), z = 6.336, p < 0.0001). Males were significantly heavier than
workers (mass ratio = 1.99 (SE = 0.164), z = 8.384, p < 0.0001).

Regarding specimens collected from oilseed rape fields, ovipositing queens were also
significantly heavier than workers (mass ratio = 4.34 (SE = 0.357), z = 17.829, p < 0.0001),
males (mass ratio = 2.75 (SE = 0.240), z = 11.592, p < 0.0001), and young queens (mass
ratio = 1.49 (SE = 0.134), z = 4.494, p = 0.0004). Young queens were significantly heavier
than workers (mass ratio = 2.90 (SE = 0.237), z = 13.053, p < 0.0001), and males (mass
ratio = 1.84 (SE = 0.166), z = 6.766, p < 0.0001). Males were also significantly heavier than
workers (mass ratio = 1.58 (SE = 0.126), z = 5.702, p < 0.0001).

Body carbon
We observed significant differences in body C concentration between bumblebee types
(X3 = 94.15, p < 0.0001; Fig. 2) and habitats (x°(;y = 41.75, p < 0.0001; Fig. 2), while
interaction of habitat and bumblebee type was not statistically significant (x*(s) = 7.44,
p = 0.0651).

Regarding specimens collected from apple orchards, ovipositing queens had higher
body C concentration than males (concentration ratio = 1.04 (SE = 0.008), z = 4.702,
p = 0.0002), and workers (concentration ratio = 1.05 (SE = 0.010), z = 4.774, p < 0.0001).
Young queens also had higher body C concentration than workers (concentration
ratio = 1.04 (SE = 0.009), z = 4.955, p < 0.0005), and males (concentration ratio = 1.03
(SE = 0.007), z = 4.741, p < 0.0001). Meanwhile body C concentration in specimens from
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Figure 1 Dry body mass of bumblebee males, young queens, ovipositing queens and workers. Box
plots showing dry body mass of males, young queens, ovipositing queens and workers of Bombus ter-
restris collected from apple orchards and oilseed rape fields.

Full-size ] DOTI: 10.7717/peer;.12953/fig-1

apple orchards did not differ significantly between males and workers, and between young
and ovipositing queens.

Regarding specimens collected from oilseed rape fields, ovipositing queens had higher
body C concentration than males (concentration ratio = 1.04 (SE = 0.008), z = 4.883,
p < 0.0001), and workers (concentration ratio = 1.07 (SE = 0.001), z = 7.795, p < 0.0001).
Young queens had higher body C concentration than workers (concentration ratio = 1.05
(SE = 0.009), z = 5.659, p < 0.0001). In addition, males had higher body C concentration
that workers (concentration ratio = 1.03 (SE = 0.008), z = 3.676, p = 0.0127), but body C
concentration was not significantly different between queen age groups, and between
young queens and males.

Specimens collected from apple orchards had significantly higher body C concentration,
within all bumblebee types compared to specimens collected from oilseed rape fields (all
ps < 0.0001).

Body nitrogen
We observed significant differences in body N concentration between bumblebee types
(F(s. 19048) = 31.12, p < 0.0001; Fig. 3) and habitats (F(1, 6.02) = 36.70, p < 0.0006; Fig. 3).
The interaction between habitat and bumblebee types was also significant (F s,
199.96) = 9.96, p < 0.0001).

Regarding specimens collected from orchards, workers had higher body N
concentration than ovipositing queens (estimated difference = 2.04 (SE = 0.35),
ta73) = 5.741, p < 0.0001), and males (estimated difference = 2.67 (SE = 0.28), f(150) = 9.49,
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Figure 2 Body carbon concentration of bumblebee males, young queens, ovipositing queens and

workers. Box plots showing body carbon concentrations of males, young queens, ovipositing queens

and workers of Bombus terrestris collected from apple orchards and oilseed rape fields. C = carbon.
Full-size k&l DOL: 10.7717/peerj.12953/fig-2

p < 0.0001). Young queens had higher body N concentration than males (estimated
difference = 1.77 (SE = 0.06), t(197) = 5.863, p < 0.0001).

Regarding specimens collected from oilseed rape fields, young queens had higher body
N concentration compared to ovipositing queens (estimated difference = 1.47 (SE = 0.32),
t209) = 4.617, p < 0.0005). In addition, workers had higher body N concentration than
ovipositing queens (estimated difference = 1.22 (SE = 0.29), t(297) = 4.618, p < 0.003).

Queens and workers from apple orchards had higher body N concentrations compared
to those collected from oilseed rape fields (all ps < 0.0007), whereas males did not differ
significantly in body N between apple orchards and oilseed rape fields.

C/N ratio
We observed significant differences in the C/N ratio between bumblebee types
(X3 = 136.76, p < 0.0001; Fig. 4) and habitats (x*;) = 14.79, p < 0.0002; Fig. 4).
The interaction between habitat and bumblebee types was also significant (x°¢) = 19.33,
p < 0.0003).

Regarding specimens collected from apple orchards, body C/N ratio was significantly
higher in males compared to workers (value ratio = 1.414 (SE = 0.054), z = 9.022,
p < 0.0001) and young queens (value ratio = 1.247 (SE = 0.052), z = 5.286, p < 0.0001).
Ovipositing queens also had higher body C/N ratio than workers (value ratio = 1.338
(SE = 0.069), z = 5.633, p < 0.0001), and young queens (value ratio = 1.180 (SE = 0.063),
z = 3.092, p = 0.0107).

Regarding specimens collected from oilseed rape fields, ovipositing queens had higher
body C/N ratios than workers (value ratio = 1.35 (SE = 0.05), z = 7.43, p < 0.0001), males

Krama et al. (2022), PeerdJ, DOI 10.7717/peerj.12953 719


http://dx.doi.org/10.7717/peerj.12953/fig-2
http://dx.doi.org/10.7717/peerj.12953
https://peerj.com/

Peer/

& Apple orchard ‘
B Oilseed rape field
10 ' :
= 8
N3
4
>
°
o
m 6 .
4
Males Yoﬁng Ovipdsiting Workers
queens queens

Figure 3 Body nitrogen concentration of bumblebee males, young queens, ovipositing queens and

workers. Box plots showing body nitrogen concentrations of males, young queens, ovipositing queens

and workers of Bombus terrestris collected from apple orchards and oilseed rape fields. N = nitrogen.
Full-size K&] DOT: 10.7717/peerj.12953/fig-3

(value ratio = 1.19 (SE = 0.05), z = 3.96, p < 0.005), and young queens (value ratio = 1.33
(SE = 0.06), z = 6.49, p < 0.0001). Additionally, males had significantly higher body C/N
ratio than worker bumblebees (value ratio = 1.14 (SE = 0.05), z = 3.29, p < 0.047).
Young queens, ovipositing queens, and workers from apple orchards had significantly
lower body C/N ratios compared to corresponding caste members collected from oilseed
rape fields (all ps < 0.0001), whereas males did not differ between habitats significantly.

Number of worker- and queen cocoons

Regarding B. terrestris nests collected from oilseed rape fields, the number of worker
cocoons eclosed (x*(1) = 8.56, p = 0.003, Fig. 5A) and total numbers of worker cocoons
(OCa1y = 3.89, p = 0.049, Fig. 5B) were significantly higher than in nests collected from apple
orchards. There was no significant difference between habitats, regarding number of queen
cocoons eclosed (Xz(l) = 1.21, p = 0.271, Fig. 5C), total number of queen cocoons

() = 1.15, p = 0.284, Fig. 5D) and the number of worker- (x°(;) = 2.10, p = 0.148) or
queen cocoons intact (x*;) = 2.58, p = 0.108).

Number of pollen- and wax cells

We observed a significantly higher number of pollen cells (x*) = 11.3, p < 0.001, Fig. 5E)
in B. terrestris nests collected from oilseed rape fields, compared to nests collected from
apple orchards, but there was no significant difference for the number of wax cells

(@ = 3.11, p = 0.078, Fig. 5F).
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Figure 4 Body carbon to nitrogen ratio of bumblebee males, young queens, ovipositing queens and
workers. Box plots showing body carbon:nitrogen ratio of males, young queens, ovipositing queens and
workers of Bombus terrestris collected from apple orchards and oilseed rape fields. C = carbon,
N = nitrogen. Full-size K&l DOT: 10.7717/peerj.12953/fig-4

Theory predicts that environmental change and associated physiological reactions should
alter the macronutrient demands of stressed organisms and affect their development and
reproductive strategies (Hawlena ¢ Schmitz, 2010b; Schmitz, Rosenblatt ¢ Smylie, 2016;
Krams et al., 2020). In this study, we showed that while B. terrestris body mass differed
between castes, these differences were not present between specimens collected from apple
orchards and oilseed rape fields. However, body C and N concentrations of bumblebee
castes were generally lower in specimens collected from oilseed rape fields compared to
apple orchards, while the observed C/N ratios were lower in specimens collected from
apple orchards compared to oilseed rape fields. Specifically, specimens of young queens,
ovipositing queens and workers collected from apple orchards showed lower C/N ratios
and higher body N concentrations compared to corresponding specimens collected from
oilseed rape fields. Since a higher C/N ratio is often considered to be an indicator of stress,
we suggest that all castes of B. terrestris except males likely experienced functionally higher
stress levels in oilseed rape fields than in apple orchards.

Apple trees and oilseed rape are both important agricultural plants. Oilseed rape
cultivation severely depletes the soil of nutrients, and thus requires large amounts of
fertilizers, which is not typical for cultivation of apple trees (Colnenne, 1998; Dubousset,
Etienne & Avice, 2010). This suggests that oilseed rape invests significant resources into
intense growth, as well as the flowering that provides pollinators with food resources.
Therefore, oilseed rape is considered a nectar- and pollen rich crop (Berrocoso et al., 2015;
Bertazzini & Forlani, 2016). Nectar is important to adult bumblebees as a source of
carbohydrates for sustaining flight and foraging. Pollen is crucial to the development of
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Figure 5 Reproductive parameters of bumblebees in old apple orchards and oilseed rape fields. For
Bombus terrestris nests collected from apple orchards and oilseed rape fields, box plots showing the
number of worker cocoons eclosed (A), total number of worker cocoons (intact and eclosed; B), number
of queen cocoons eclosed (C), total number of queen cocoons (intact and eclosed; D), number of pollen
cells (E), and number of wax cells (F). Full-size k&) DOI: 10.7717/peerj.12953/fig-5

larvae, as it is the principal source of proteins (Kriesell, Hilpert ¢ Leonhardt, 2017). Both of
these food resources are abundant over the course of 4 to 6 weeks in oilseed rape
agroecosystems (depending on cultivar) (Woodcock et al., 2016). The enormous flower
density and abundant nectar and pollen resources provided by oilseed rape benefit such
oilseed rape-foraging bumblebee species as B. terrestris (Hoyle, Hayter & Cresswell, 2007;
Kleijn et al., 2015). Mass-flowering of oilseed rape attracts pollinators, potentially resulting
in underpollination of other local plant species such as native wildflowers (Holzschuh et al.,
2011). In contrast, flowering apple trees are highly attractive to bumblebees for a
maximum of 10 days during their mass-flowering period in our study region. Accordingly,
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bumblebee colonies may grow faster when located in- or around oilseed rape fields;
subsequently, the colonies will start producing the reproductive generation (males and
young queens) earlier than would occur in apple orchards (Woodcock et al., 2016). Since
life history traits reflect the differential allocation of different resources to competing
life functions (Speakman & Garratt, 2014), trade-offs between higher resource abundance
and more intense reproductive investments may result in higher stress levels caused by the
tremendous reproductive effort of bumblebees in oilseed rape fields.

Our data show that higher C/N ratios in bumblebees collected from oilseed rape fields
coincides with much higher reproductive output in this habitat compared to apple
orchards. The higher total number of worker cocoons, and larger amounts of food
resources (pollen cells), were observed in hives collected from oilseed rape fields, compared
to those collected from apple orchards. More food evidently allowed bumblebees in oilseed
rape fields to invest in reproduction, resulting in a significantly higher number of workers
and young queens produced. Reproduction comes at the cost of affecting lifespan,
immunity, and other life history traits (Lawniczak et al., 2007; Harshman & Zera, 2007),
while extra physical activities may be detrimental for longevity (Tanaka et al., 2019;
Hayashi & Kezuka, 2020). The production of sex hormones can also mediate the cost of
reproduction by trading off higher investment in reproduction against decreased
investment into somatic functions (Harshman & Zera, 2007).

Food quality and energetic value are of particular importance in life history decisions,
and can greatly enhance an organism’s investment in reproduction and fitness when
available ad libitum (Krams et al., 2015, 2017). Thus, food availability often improves
reproductive success, which we may have observed here with regard to bumblebees
inhabiting oilseed rape fields. However, as investments in reproduction often compete with
the immune system for the same resources, high reproductive investment and fitness-gain
can come at the expense of stress reflected in higher C/N ratios found in workers,
ovipositing queens, and young queens inhabiting oilseed rape agroecosystems.

The absence of a significant difference between the C/N ratios of males in apple orchards
and oilseed rape fields supports the idea that a higher C/N ratio may be due to an
investment in reproduction, as well as the associated high-intensity foraging behavior
observed in ovipositing queens, young queens and workers in oilseed rape fields. It is
important to note that the availability of nectar and pollen in oilseed rape fields sharply
ends before the end of bumblebee reproductive season (Carvell et al., 2011; Williams,
Regetz & Kremen, 2012; Woodcock et al., 2016), which is not the case in apple orchards
where bumblebees rely on many other plants besides apple trees. It has been found that
while abundance of foraging resources is of high importance for worker production in
bumblebees (Westphal, Steffan-Dewenter & Tscharntke, 2009; Woodcock et al., 2016),
queen production and population sustainability depends on resource availability during
the whole breeding season (Williams, Regetz ¢ Kremen, 2012; Woodcock et al., 2016).
Our results fully support these findings showing higher investment in worker production
in B. terrestris breeding in oilseed rape fields and similar effort in queen production in
apple orchards and oilseed rape fields. Future research should measure lifespan and
investigate the immune system of bumblebees reproducing in different habitats, including
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the most optimal habitats for pollen and nectar availability to better understand the role of
ecological factors such as floral phenology in trade-offs between life history traits.

Our data suggest that apple orchards may be an optimal habitat for certain bumblebees.
This may be due to the higher proportion of trees having a positive impact on biodiversity
and abundance of bumblebees (Sober et al., 2020). However, the flowering season for apple
trees is relatively short, subsequently increasing B. terrestris’s body N demand, as this
element is found in muscles required for longer foraging flights. In contrast, bumblebees
can find food within the vicinity of their hives in- and around oilseed rape fields,
decreasing their body N demand (Krams et al., 2021b). This shows that flora phenology
must be taken into account to better understand the role of habitat quality on survival and
reproductive strategies of pollinators.

It is important to note that bumblebees and their hives may be relatively more exposed
to direct sunlight in oilseed rape agroecosystems than in apple orchards. This could lower
the need for excess carbohydrate-rich food, and decrease their body C concentration.
Under lower ambient temperatures, or no access to direct sunlight, bumblebees must
warm up to fly and forage (Bujok et al., 2002; Seeley et al., 2003). Bumblebee flight muscles
must reach at least 30 °C in order for the bumblebee to become airborne (Goller ¢ Esch,
1990). Generation of heat can be achieved via flight muscle shivering, as well as in the
absence of shivering, by means of receiving action potentials (Esch, Goller ¢» Heinrich,
1991). If bumblebee hives are more exposed to the direct sunlight, these muscle-associated
heat generating activities may be less needed, explaining lower body N concentration in
bumblebees collected from oilseed rape fields. More favorable ambient temperatures could
also explain the lower body C concentrations we observed in bumblebees collected from
oilseed rape fields, as less carbohydrate-based fuel is required for thermogenesis in warmer
habitats.

Finally, lower body N concentrations and higher C/N ratios in specimens collected from
oilseed rape fields, compared to apple orchards, may be explained by greater investments
in reproduction in terms of offspring number, and less so in their somatic growth, because
bumblebees could potentially reach larger sizes when living in oilseed rape agroecosystems.
It was observed that grasshoppers consume and process more proteins under higher
ambient temperatures (Schmitz, Rosenblatt & Smylie, 2016), and we suggest that in
bumblebees a similar relationship may result in more rapid development of workers and
higher reproductive output, as we observed in hives collected from oilseed rape fields.
Therefore, relationships between investment in offspring production, temperature effects,
and body C- and N concentrations should be investigated in future research.

CONCLUSIONS

We found significant differences in reproductive success, body C- and N concentrations,
and C/N ratio of B. terrestris types (workers, young queens, ovipositing queens, males) in
two agricultural habitats. Surprisingly, our results show that reproductive output was
significantly higher in oilseed rape fields than in apple orchards, the latter being considered
a more natural habitat due to the presence of several layers of vegetation. On the other
hand, physiological stress, indicated by the higher C/N ratios of queens and workers, was
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lower in apple orchards. This suggests that bumblebees can achieve higher fitness when
reproducing in oilseed rape fields. Our study highlights a positive impact of high-intensity
oilseed rape cultivation, particularly the achievement of meeting the nutritional
requirements of animals (Knutie, Chaves ¢ Gotanda, 2019), in this case the bumblebee
B. terrestris. We suggest that approaches based on ecological stoichiometry may be
instrumental in building on the knowledge of how habitat quality can affect pollinators.
In this study, we did not carry out any experimental tests to provide additional resources to
manipulate the duration of food availability in the apple orchards. Although these tests
could help validate our results, extra sucrose solution cannot replace the whole quality of
the habitat, consisting of different floral resources, microclimate and microorganisms, and
pollen. While we plan to perform such experimental trials in the future, they require extra
caution.
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