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Abstract

Traditionally the machine learning assisted quality as-
sessment of biomedical signals (such as electrocardiogram
- ECG, photoplethysmography - PPG) have classified a
signal segment quality as ”good” or ”bad” and used this
assessment to determine if the segment is usable for further
processing steps, such as heart beat estimation. In princi-
ple, this is a suitable approach and can be justified by its
straightforward implementation and applicability. How-
ever, in the case of body sensor networks with multiple si-
multaneously operating units, such as IMUs (Inertial Mea-
surement Units) there is a need to select the best perform-
ing axes for further processing, instead of processing the
data among all axes (which can be computationally inten-
sive). For a single IMU, there are already six separate
acceleration and angular velocity axes to be evaluated. In
this paper, instead of classifying the signal segments sim-
ply as ”good” or ”bad” quality we propose a learning to
rank based approach for the quality assessment of cardiac
signals, which is able to determine the relative importance
of a signal axis or waveform. We illustrate that the method
can generalize between multiple human experts annotated
ground truths in automated best axis selection and ranking
of signal segments based on their quality.

1. Introduction

Noise in cardiac signals can be originated from various
sources, such as body motion or electrical disturbances.
Usually, there is a need to perform some kind of pre-
processing in order to separate the noisy signal segments
(such as motion artifacts) from the rest of the signal. Usu-
ally, the signal being monitored contains similar or repeat-
ing patterns (such as in the case of ECG signal of a spe-
cific lead). In the case of multi-dimensional mechanocar-
diography (MCG), which is based on joint accelerometers
and gyroscopes, both intra and inter-subject variability be-
tween persons is large (in comparison with ECG). In ad-

dition, the noise varies significantly in both amplitude and
frequency, especially if the subject is not still.

When processing ECG signals for example, it has been
shown that classifying the signals simply as having ”good”
or ”bad” quality using a binary classifier could provide de-
crease in the error rates i.e. on the number of false alarms
using physiological signal databases [1]. Thus, the de-
tection of noise and motion artifacts forms a crucial pre-
processing step in automated diagnosis systems and tele-
monitoring [2], since false diagnosis alarms may lead to
unnecessary visits to hospitals and cause unnecessary ex-
tra burden to the medical staff.

If the signals being measured are classified only as
”good” or ”bad” quality, a classifier tries to find a separa-
tion between the two separate classes. Then, only the good
quality signal segments are selected for for further process-
ing. On the other hand, if all the signals are of ”good”
class/quality, it would still make sense to select only the
best ones of these ”good” signals for further processing,
especially if the signals convey similar information. This
could be used to optimize the performance of an automated
diagnosis system. One alternative would be to examine the
a posteriori probabilities of the classifier outputs and se-
lect the largest, but a more preferred option would be to
directly use a classifier which has been truly designed to
this purpose.

If considering a regression approach, which output is
also continuous value - and keeping the application in mind
- it might be unnecessary difficult to a human expert to de-
cide which is the exact quality of a given signal segment
in some specific continuous scale (such as 1 to 100). Here
we propose a pairwise learning to rank approach to solve
this issue. Learning to rank can be used to order human
preferences (or signals, for instance) based on their rela-
tive importance with respect to each other. In the super-
vised learning scenario proposed, a human expert decides
based on two signal segments which one of those more
likely is of better quality and which one of lower quality.
Thus, the human experts gives an ordering for a signal-
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pair shown to the expert. In this paper we concentrate on
the quality assessment of cardiac IMU signals. MCG/IMU
is a promising non-invasive modality in body sensor net-
work applications due to the wide availability of compact
MEMS sensors. Furthermore, our approach can also scale
also to other modalities beyond MCG/IMU (such as ECG,
PPG, EEG - electroencephalography).

2. Related Work

Cardiac signal quality analysis belongs to a more gen-
eral class of quality assessment, which has been exten-
sively studied, for example, in image processing [3]. In
general, quality assessment can be performed with an ex-
isting reference signal, or ”blindly” - without any refer-
ence. Learning to rank was recently proposed for blind
image quality assessment in [4]. The concept of rank based
learning has previously been used, for example, to optimiz-
ing clickthrough data in the internet search engines [5].

The recent advances of ballistocardiography (BCG) and
seismocardiography (SCG) have been reviewed in [6].
Originally, SCG was proposed in [7] to measure the tiny
cardiogenic accelerations induced by the heart into the hu-
man body. In BCG [8], the subject is monitored through
special equipment (such as force sensors) installed e.g.
to the weighting scale, chair or the bed where the per-
son is on [6]. Gyrocardiography (GCG) is another non-
invasive technique based on chest rotational vibrations in-
duced by the heart movement [9]. BCG, SCG, and GCG
have been suggested for various clinical and well-being ap-
plications [6, 9].

In the telemonitoring domain, a system based on ECG
and PPG was designed [10], which mainly operated in
idle mode (to save battery). The aim of the system was
heart rate estimation and it was able to detect automati-
cally when a sufficiently good signal segment had been
processed. A traditional approach for compensating mo-
tion artifacts in ECG is to attach an accelerometer and fil-
tering the ECG [11] through information available from
the accelerometer. In [12] adaptive filtering was used for
the cancellation of noise in ECG analysis. Motion artifacts
have also been studied in the context of a ballistocardio-
gram measurement of a weighting scale [13].

3. Data Acquisition and Labeling

We collected IMU measurements from 71 healthy vol-
unteers (16 females). The duration of each measurement
was approximately 3 min. We used a standard Sony Xpe-
ria Z-series smartphone equipped with Google Android OS
for the data collection. The smartphone was placed on the
chest of the subjects while laying down in a bed. Approxi-
mately half of the measurements formed a training set and
the others a test set. The captured data (all six accelerome-

ter and gyroscope axes) were pre-processed with FFT (Fast
Fourier Transform) brick wall bandpass filter (1 Hz to 45
Hz) to remove both signal bias and noise. Any other noise
removal was not performed to the data, thus the data was
applied as such after the filtering to the test set and training
set generation. Thus, motion artifacts existed in both the
test and training sets.

The data was divided into 10 s duration segments, which
we consider to be long enough to provide a heart rate es-
timate or equivalent, but being short enough to provide a
human expert a view upon the extent of noise and motion
artifacts among an arbitrary pair of signals. Three persons
with experience in cardiac signal processing annotated the
same 500 pairs of randomly selected image segments ac-
cording to their relative quality. The human experts were
given three alternatives for each of the signal segment-
pairs. The alternatives were 1) upper is of better quality, 2)
lower is of better quality and 3) skip (if the human expert
could not make a decision based on the segments quality).
The criteria for quality assessment was that the segment
showed better in terms of beat identifiability and was sub-
ject to less motion artifacts. A test set was generated in
a similar fashion by the same three human experts and it
consisted of 200 randomly generated signal pairs for each
expert (each expert saw the same segments).

4. Feature Extraction and Learning

We utilize multiscale 1-D local binary pattern (1-D
LBP) features [14] to describe the quality characteristics
of the IMU signals. We utilized spacings between individ-
ual signal samples of 1, 5, 10, 15, 20, 30 and 50 samples
to cover both small scale and large temporal scale changes
in the signals. The 1-D LBP was calculated by comparing
temporal samples within a known spacing to a chosen cen-
ter sample of a temporal window. If the center sample is
smaller or equal to the peripheral sample (within the win-
dow), a bit 1 is chosen as the outcome and bit 0 otherwise.
All the succeeding bits are concatenated and changed to a
decimal, which is between 0 to 255 with eight bits (eight
bits used in each spacing in this paper). For instance, a
spacing of 5 samples means that the 1-D LBP window is
of temporal length of 5*4 samples backwards in time from
the center sample and 5*4 samples forward in time from
the center sample (in total 41 samples, where there are al-
ways 4 non-used samples between two succeeding LBP
samples).

We also utilized uniform patterns [15] (LBPs with at
most two 1-0 or 0-1 transitions) to reduce the feature vec-
tor length. The initial dimension of the feature vector
was 256*7 (seven different spacings and for each spac-
ing a separate histogram of length 256), while utilizing
the uniform patterns only it became 59*7, i.e. 413 his-
togram bins. As described, the data was divided into 10
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Figure 1. An example of ordering six IMU (3-accelerometer and 3-gyroscope) axes with respect to their relevance/quality.
The same axes on the right and on the left are highlighted with the same color. The length of each segment is 10 seconds
at 200 Hz sampling rate of the smartphone.

second non-overlapping segments, which were used for
the generation of the feature vectors. We used a pairwise
ranking support vector machine (SVM) approach available
at http://olivier.chapelle.cc/primal/ described at [5] for the
learning of the human expert preferences.

Naturally, it may be that a human expert biases the learn-
ing results towards his/hers own judgement. If the training
generalizes well also to other people, it is probable that
the learning has succeeded. We obtained an average rate
of 67.8 % in sorting two given signal segments in a correct
preference order by their estimated quality/relevance using
leave-one-person-out cross-validation (one human expert
at a time was used for training and the others were used for
testing). With using the same person for both training and
testing we obtained an average rate of 73.5 % in the order-
ing the signal-pairs (without cross-validation of the human
experts). In both tests ”skipped” signal segment pairs were
omitted. Fig. 1, shows an example of all six IMU axes
from one of the persons of the test set, and the same signals
sorted according to their best relevance. The correspond-
ing axes in the two columns of Fig. 1 are highlighted with
the same color.

The tendency that the results are biased towards the
opinion of the human expert (i.e. 67.8 % with person-
based cross-validation and 73.5 % accuracy otherwise)
would not necessarily be a disadvantage. For instance,
if instead of signal processing experts, the human experts

would be cardiologists, their opinion on sufficient qual-
ity might also reflect a characteristics of reliable signal
segment for diagnosis purposes. As the ultimate target is
to provide efficient tools for automated diagnosis systems
based on cardiac data, human involvement could be bene-
fited also this way. Studying whether the method proposed
in this paper could be used towards this purpose is, how-
ever, left for future work.

5. Discussion

We proposed a method for biomedical signal quality as-
sessment through learning to rank. We utilized six axis
IMU signals with 3 accelerometer and 3 gyroscope axes
captured with a standard smartphone. In the future we
plan to test the developed methods with other modalities
such as PPG, ECG and potentionally EEG. Although the
focus of this paper was on best axis selection, the learning
to rank could be utilized also to more sophisticated pur-
poses, such as improving the performance of automated
diagnosis systems utilizing body sensor networks. We uti-
lized 1-D LBP features, which aim at detecting the struc-
ture of the signal at various scales. We also tested some
other features such as mean and standard deviation of the
signal segment, as well as the magnitude and location of
the main signal frequency component through FFT, but it
seems that they would not improve the classification rate
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significantly. We observed also, that increasing the size of
the training set generally improved the classification rate,
which seems promising, as the size of the training set (500
signal pairs) was still fairly small.

6. Conclusion

We presented a novel machine learning approach for
ranking of cardiac signals according to their quality. In our
application, the quality of the signal referred to how well
the heart beats can be identified within the IMU signal, as
well as to the amount of motion artifacts with the given
signal segment. In the future, we plan to test the developed
algorithm to ECG, PPG and EEG as well as other modali-
ties to aid automated monitoring and diagnosis, with train-
ing data labeled by cardiologists. The developed algorithm
could part of heart beat extraction process or part of even
more advanced automatic diagnosis system, where the se-
lection of a proper signal for further processing performed
via learning to rank to save computing resources and im-
prove the detection accuracy.
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